EP3604698B1 - Verfahren und spülsystem zum spülen von wasserleitungsnetzen - Google Patents

Verfahren und spülsystem zum spülen von wasserleitungsnetzen Download PDF

Info

Publication number
EP3604698B1
EP3604698B1 EP19188574.8A EP19188574A EP3604698B1 EP 3604698 B1 EP3604698 B1 EP 3604698B1 EP 19188574 A EP19188574 A EP 19188574A EP 3604698 B1 EP3604698 B1 EP 3604698B1
Authority
EP
European Patent Office
Prior art keywords
control device
sensors
flushing
water pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19188574.8A
Other languages
English (en)
French (fr)
Other versions
EP3604698A1 (de
Inventor
Sascha Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABA Beul GmbH
Original Assignee
ABA Beul GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABA Beul GmbH filed Critical ABA Beul GmbH
Publication of EP3604698A1 publication Critical patent/EP3604698A1/de
Application granted granted Critical
Publication of EP3604698B1 publication Critical patent/EP3604698B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/08Arrangement of draining devices, e.g. manual shut-off valves

Definitions

  • the invention relates to a method and a flushing system for flushing water supply networks in buildings, in particular drinking and / or service water supply networks, whereby a water temperature and / or a water flow in one with a water house entry is connected to the public supply network and with a plurality of sub-distribution lines and Tapping points formed water pipe network is determined, with a flushing device, the water pipe network is at least partially flushed by means of a plurality of flushing valves, wherein the control device stores the measured values of the sensors over a period of time.
  • Such methods and flushing systems are well known and are regularly used for flushing water pipe networks in order to be able to ensure compliance with the relevant hygiene regulations for drinking and service water pipe networks.
  • the German Drinking Water Ordinance contains regulations to avoid contamination of the drinking water by bacteria, for example due to long stagnation times of the water in the pipes suitable security measures are mandatory.
  • suitable security measures are mandatory.
  • large buildings such as residential buildings with a large number of residential units, old people's and nursing homes, hospitals, schools, gyms, hotels, etc.
  • a hygiene-compliant operation of the drinking and service water supply network must be ensured at all times.
  • the German Drinking Water Ordinance regulates further details in the version last valid before the filing date of the present patent application.
  • the disadvantage of the known method or flushing system is that they can only be used effectively in the case of water pipe networks laid in new buildings. At least one design of the water supply network of a building must be known in order to be able to To be able to retrofit the water supply network with a flush valve. Only then is it possible to set the control device for the flushing valve in such a way that, given certain measured values from sensors or according to a preset time, sufficient flushing of the water supply network takes place without too much water being wasted. In buildings with existing water supply networks or old buildings with water supply networks, where the design of the respective water supply network is no longer known and can therefore no longer be traced without great effort, the flushing valves in question cannot be effectively used. For example, it is possible that certain lines of piping are not flushed sufficiently or beyond the necessary extent because their route and connection within the water supply network is not known.
  • the WO 2018/104738 A1 describes a system for the acquisition of relevant data for flushing water pipe networks. It is provided that temperatures and amounts of liquid in sections of the water supply network are measured using various sensors and stored by means of data processing. Among other things, a comparative analysis of different stored time periods can also be carried out. The aim of data collection and storage is a water-saving flushing of the water pipe network.
  • the EP 2 500 475 A2 discloses a flushing apparatus and method for flushing water supply networks.
  • the flushing device comprises a control device as well as temperature sensors and flushing valves. With the temperature sensors, a temperature profile is measured in the relevant sub-distribution line of the water supply network, that is to say stored by the control device over a period of time. A flushing process is then triggered automatically by the control device as a function of the temperature profile.
  • the EP 2 166 159 A2 shows a method for flushing a water pipe network in a building, for example in a hotel.
  • a sub-distribution network with tapping points is provided for supplying individual rooms, with a flush valve being integrated in a cistern of a toilet flush.
  • the flushing valve forms a flushing device together with an electronic control.
  • the controller comprises a data memory and a sensor, with which a water flow through the cistern can be measured and stored. To avoid contamination of the drinking water line, the control automatically triggers a rinsing process if this is necessary or if no drinking water has been withdrawn within a time interval.
  • a flushing amount can also be adapted to a drinking water withdrawal carried out in the time interval.
  • the present invention is therefore based on the object of proposing a method and a flushing system for flushing water pipe networks in buildings, which can also be used effectively on already existing water pipe networks.
  • a water temperature and / or a water flow in a water supply network connected with a water house entry and formed with a plurality of sub-distribution lines and taps is determined by means of sensors , wherein the water pipe network is at least partially flushed by means of a plurality of flushing valves of a flushing device, wherein by means of a control device connected to the sensors and the flushing valves, the flushing of the water pipe network as a function of the sensors determined measured values by a Actuation of the flushing valves is initiated, the control device storing the measured values of the sensors over a period of time, the actuating of the flushing valves taking into account the stored measured values by the control device, the control device performing a pattern analysis of the measured values of the sensors stored over the period of time, the Control device derives a flushing strategy for actuating the flushing valves from the pattern analysis.
  • the water supply network of a building which is filled with water or liquid is flushed by actuating the flushing valve, which is initiated by means of the control device.
  • the control device can be a computer with software running on it, wherein the control device can be positioned on the flushing valve or also spatially separated from the flushing valve.
  • the water pipe network also has sensors which measure a water temperature and / or a water flow in the area of the respective sensor in a pipe section of the water pipe network.
  • the sensors are positioned or connected in or on at least one sub-distribution line, preferably in or on the plurality of sub-distribution lines.
  • the sub-distribution lines regularly have draw-off points through which water can be drawn from the water supply network.
  • control device When water is withdrawn at a tap, water flows through a sub-distribution line, possibly with a change in the water temperature. This change in the water temperature and / or the water flow is measured by means of the sensors and transmitted to the control device.
  • the control device is therefore also connected to the flushing valve and the sensors, so that measured values or control signals or data can be exchanged.
  • Such a communication connection can be established via a cable connection or also a wireless radio connection.
  • the control device determines the measured values of the sensors over a period of time or an operating period of the water supply network, whereby water does not necessarily have to be withdrawn at a tap within the period of time. It is essential that the control device stores the measured values of the sensors determined in the period of time.
  • the control device initiates an actuation of the flushing valve.
  • the flushing valve together with a free outlet, forms a flushing device for the water flowing out of the flushing valve.
  • the flushing device can have a plurality of flushing valves in the water supply network. In this case it is advantageous if the plurality of flushing valves are jointly controlled by the control device. Overall, the fact that the control device stores the measured values over the period provides the option of using the stored measured values for determining a point in time and a duration of a flushing process by the control device.
  • control device can initiate and design the flushing process as a function of the measured values determined by the sensors in the time segment. For example, it is possible to only carry out the rinsing process if, in total, insufficient amount of water has flowed through a certain sub-distribution line in the period of time, the rinsing process then being able to be carried out until the desired water flow has been achieved at the relevant sensor.
  • the control device carries out a pattern analysis of the measured values of the sensors stored over the period of time.
  • special periods of use water temperatures and water flows from tapping points can be determined in parallel.
  • the control device can determine the use of certain tapping points at certain times to a certain extent if this takes place regularly. A The point in time for flushing the water supply network or a relevant sub-distribution line can thus be delayed if necessary.
  • the control device derives a flushing strategy for actuating the flushing valve from the pattern analysis.
  • the flushing strategy can then be based on the pattern of the use of the water supply network, a change in use, for example due to a change in use of the building in question, can always result in the control device adapting the flushing strategy to the changed usage behavior. This also means that it is no longer necessary to manually set or program the control device in any way, since it can always develop and apply a flushing strategy that is optimized for user behavior.
  • volume sensors with which a flow rate and / or flow rate and / or temperature sensors with which a water temperature can be measured in different sub-distribution lines in the water supply network can be used as sensors.
  • volume sensors or temperature sensors for measuring a volume flow or a flow rate or a water temperature which can be used by the control device to obtain measured values, are already regularly located in existing water supply networks.
  • the water supply network can be used to distribute cold water and / or hot water.
  • the water pipe network can be formed from a cold water pipe network and / or a hot water pipe network.
  • the hot water pipe network can then also include hot water storage tanks, boilers or heat exchangers, which can be indirectly supplied with cold water via a water house entry.
  • sensors with which the operating states of fittings and / or apparatuses installed in the water supply network can be measured can also be used as sensors. What is essential with the sensors is that they can be operated via an electrical supply line and, if necessary, can be read out by the control device or another control device. In principle, sensors can also be supplied with electrical energy autonomously via a battery or a power generator, in which case a wireless connection to the control device, for example via a radio standard, is possible. These sensors can be sensors already present in the water supply network, such as a thermocouple in a drinking water heater.
  • the fittings can be electronic sanitary fittings or any type of valve which can signal status information that can be detected with the control device. State information can, for example, reflect a functional state of the valve - open or closed.
  • the apparatus can include operating components, pumps, filters, cisterns or flush valves.
  • the control device can also use such apparatus to determine an operating state of the respective apparatus, for example the speed of a pump, the state of a filter or an actuation of a cistern. If, for example, an electronic sanitary fitting on a hand wash basin is triggered without contact by a user, a defined amount of water flows out of the relevant sub-distribution line via this sanitary fitting, the control device then using the trigger signal of the electronic sanitary fitting to register the amount of water that has escaped and as a measured value for can store the water flow.
  • the control device can record and store the measured values of the sensors at regular time intervals, when a measured value changes, or continuously. So it can be provided that the control device, for example, the speed of a pump or one with The temperature value measured by a sensor is continuously recorded and stored, or these measured values are determined at defined time intervals in order to keep the amount of data as small as possible. Continuous acquisition is also understood to mean acquisition with a sampling frequency, with regular time intervals being understood to mean a time interval of at least several minutes, hours or days.
  • the control device can record and store the measured values of the sensors in the water pipe network with a cold water installation, hot water installation, ring line, tree structure, mesh structure and / or floor installation. In principle, it is therefore irrelevant in which type of water pipe network the sensors are installed, it also being possible for combinations of the aforementioned installations to be present in the water pipe network.
  • the control device can take into account the measured values stored in the period of at least one month, preferably at least one year. On the basis of the measured values stored over this long period of time, the control device can then determine whether, if necessary, on certain days of the week, months, weeks or individual days within a year, special features occur when using the water supply network and take these special features into account when the flush valve is operated. For example, water consumption and thus water flow can be lower on weekends than on working days or vice versa.
  • the control device can weight and evaluate the measured values of the sensors stored over the period with regard to relevance for a microbiological contamination for each sensor, wherein the actuation of the flushing valve can take place as a function of the evaluation by the control device.
  • the water supply network is in a hygienic condition if the water has a temperature of less than 20 ° and greater than 55 ° C. Contamination of the water is inhibited by the reproduction of germs. In this case, for example, time intervals for actuating the flushing valve can be lengthened.
  • the control device can each assign a code number in the measured values of the sensors, the code number being able to reflect the relevance of the measured value for a microbiological contamination, in particular with legionella.
  • the key figure can be a relative, dimensionless number.
  • a prerequisite for a water flow that is acceptable from a hygienic point of view is a turbulent flow with a Reynolds number Re ⁇ 2300.
  • a pressure dependency can be neglected, since pressure differences are too small.
  • control device can use the characteristic number as a function of time, taking into account a time-dependent one for the microbiological contamination Determine component and / or a measured variable-dependent component.
  • Each tap or each flush valve of a water pipe network has a time-dependent influence on the parameters of the water pipe network that influence the microbiological contamination.
  • the control device can form an average value of the characteristic numbers from the characteristic numbers.
  • the control device can form a matrix of the key figures from the key figures.
  • the matrix can include the key figures of all measuring points or sensors, as shown in the following example: K K first Measuring point ⁇ K 1 , n ⁇ ⁇ ⁇ K m , 1 ⁇ K latest Measuring point
  • the flush valve can be actuated by the control device as a function of a deviation of a characteristic number, a mean value or a matrix from a respective range specification for the characteristic number, the mean value or the matrix.
  • the default range can be defined beforehand and stored in the control device. This always ensures that microbiological contamination of the water supply network is prevented.
  • the control device can therefore carry out a pattern prediction on the basis of the measured values of the sensors of the pattern analysis stored over the period of time. Overall, this makes it possible to optimize the flushing of the water pipe network even further, so that there is no waste of water during flushing. Furthermore but it is also ensured that the water supply network can always be operated in a hygienically perfect manner.
  • the control device can relate the measured values of different sensors to one another and derive functional dependencies of the sensors. This becomes possible if the control device examines the measured values using statistical methods, for example correlations. The control device can then also determine that a sub-distribution line is flushed when a valve is opened at a tap. This direct connection between the tap and sub-distribution line could not have been known due to ignorance of the design of the water supply network, but it could result from the derivation of the functional connections by the control device.
  • control device can determine the actuation of the flush valve by means of artificial intelligence.
  • Artificial intelligence is understood here to mean an automation of a flushing behavior of the control device, in which the control device is programmed in such a way that it can independently adapt to a changed use of the water supply network.
  • the flushing system for flushing water pipe networks in buildings, in particular drinking and / or service water pipe networks, comprises a flushing device, a control device and a water pipe network connected to the public supply network with a water house inlet, the water pipe network having a plurality of sub-distribution lines, taps and sensors for determining a water temperature and / or a water flow, wherein the water pipe network can be at least partially flushed by means of the flushing device, wherein the flushing device has a plurality of flushing valves with a free outlet, wherein the control device is connected to the sensors and the flushing valves, and a flushing of the Water supply network in Depending on the measured values determined with the sensors can be initiated by actuating the flushing valves, the control device being designed such that the measured values of the sensors can be stored over a period of time, the actuating of the flushing valves being executable by the control device taking into account the stored measured values, wherein With the control device, a pattern analysis of the measured
  • the Fig. 2 shows a function graph for a characteristic number of a water flow or a water flow in a pipe of a water supply network, a Reynolds number being plotted on the abscissa axis and a characteristic number being plotted on the ordinate axis.
  • the Reynolds number can only be determined while the pipe flow is running. This means that a time-dependent function must be superimposed on the determined value for the Reynolds number. As time goes on, the determined figure drifts away from the standard value 1, so that stagnation is also taken into account in the case of water standing in a pipe.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Domestic Plumbing Installations (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und ein Spülsystem zum Spülen von Wasserleitungsnetzen in Gebäuden, insbesondere Trink- und/oder Brauchwasserleitungsnetze, wobei mittels Sensoren eine Wassertemperatur und/oder ein Wasserdurchfluss in einem mit einer Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossen und mit einer Mehrzahl von Unterverteilungsleitungen und Zapfstellen ausgebildeten Wasserleitungsnetz bestimmt wird, wobei mittels einer Mehrzahl von Spülventilen eine Spülvorrichtung das Wasserleitungsnetz zumindest teilweise gespült wird, wobei die Steuervorrichtung die Messwerte der Sensoren über einen Zeitraum speichert.
  • Derartige Verfahren und Spülsysteme sind hinreichend bekannt und werden regelmäßig zum Spülen von Wasserleitungsnetzen eingesetzt, um eine Einhaltung der einschlägigen Hygienevorschriften für Trink- und Brauchwasserleitungsnetze sicherstellen zu können. Unter anderem sind in der deutschen Trinkwasserverordnung Vorschriften zur Vermeidung von Kontaminationen des Trinkwassers durch Bakterien, die beispielsweise durch lange Stagnationszeiten des Wassers in den Leitungen entstehen können, geeignete Sicherheitsmaßnahmen zwingend vorgeschrieben. Insbesondere in großen Gebäuden, wie Wohnhäuser mit einer Mehrzahl von Wohneinheiten, Alten- und Pflegeheime, Krankenhäuser, Schulen, Turnhallen, Hotels usw. muss jederzeit ein hygienekonformer Betrieb des Trink- und Brauchwassersleitungsnetzes sichergestellt werden. Näheres regelt die deutsche Trinkwasserverordnung in der zuletzt vor dem Anmeldetag der vorliegenden Patentanmeldung gültigen Fassung.
  • Um diesen Anforderungen gerecht zu werden, ist es bereits bekannt, die betreffenden Leitungen eines Wasserleitungsnetzes durch Spülen derselben von derartigen Kontaminationen zu befreien. So beschreibt die EP 2 096 214 A2 ein Trink- und Brauchwasserversorgungsnetz eines Gebäudes mit einer Wasserhauseinführung bzw. einem Hausanschluss, wobei die Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossen ist, und verschiedenen, davon abgehenden innerhalb des Gebäudes verlegten Leitungen, denen Spülleitungen zugeordnet sind, die mit einem Abwasserabgang kommunizieren, der an das öffentliche Abwassernetz angeschlossen ist.
  • Weiter ist es aus der DE 10 2014 208 261 A1 bekannt, eine Steuervorrichtung zum Spülen eines Wasserleitungsnetzes einzusetzen, wobei die Steuervorrichtung in Abhängigkeit von Sensoren, die eine Temperatur und ein verbrauchtes Volumen in einer Unterverteilungsleitung des Wasserleitungsnetzes messen, ein Spülventil betätigt. So ist es dann möglich, mittels der Steuervorrichtung eine bedarfsgerechte Spülung des Wasserleitungsnetzes durch die Betätigung des Spülventils zu initiieren und so Wasser einzusparen. Ein weiteres, über eine Steuervorrichtung betätigtes Spülventil ist aus der EP 3 020 877 A1 bekannt.
  • Nachteilig bei dem bekannten Verfahren bzw. Spülsystems ist, dass diese nur bei in neuen Gebäuden verlegten Wasserleitungsnetzen effektiv eingesetzt werden können. Zumindest muss eine Ausgestaltung des Wasserleitungsnetzes eines Gebäudes bekannt sein, um das Wasserleitungsnetz mit einem Spülventil nachrüsten zu können. Erst dann wird es möglich, die Steuervorrichtung für das Spülventil so einzustellen, dass bei bestimmten Messwerten von Sensoren oder nach einer Zeitvorgabe eine ausreichende Spülung des Wasserleitungsnetzes erfolgt, ohne dass zu viel Wasser verschwendet wird. Bei Gebäuden mit bestehenden Wasserleitungsnetzen oder Altbauten mit Wasserleitungsnetzen, bei denen die Ausgestaltung des jeweiligen Wasserleitungsnetzes nicht mehr bekannt, und daher nicht mehr ohne größeren Aufwand nachvollziehbar ist, können die betreffenden Spülventile nicht effektiv in Einsatz gebracht werden. So ist es beispielsweise möglich, dass bestimmte Leitungsstränge nicht ausreichend oder über das notwendige Maß hinaus gespült werden, da deren Verlauf und Verbindung innerhalb des Wasserleitungsnetzes nicht bekannt ist.
  • Die WO 2018/104738 A1 beschreibt ein System zur Erfassung von für eine Spülung von Wasserleitungsnetzen relevanten Daten. Dabei ist vorgesehen, dass über verschiedene Sensoren Temperaturen und Flüssigkeitsmengen in Abschnitten des Wasserleitungsnetzes gemessen und mittels Datenverarbeitung gespeichert werden. Unter anderem kann auch eine vergleichende Analyse verschiedener gespeicherter Zeitabschnitte durchgeführt werden. Ziel der Datensammlung und Speicherung ist eine wassersparende Spülung des Wasserleitungsnetzes.
  • Die EP 2 500 475 A2 offenbart eine Spülvorrichtung und ein Verfahren zum Spülen von Wasserleitungsnetzen. Die Spülvorrichtung umfasst eine Steuervorrichtung sowie Temperatursensoren und Spülventile. Mit den Temperatursensoren wird in der betreffenden Unterverteilungsleitung des Wasserleitungsnetzes ein Temperaturverlauf gemessen, d.h. von der Steuervorrichtung über einen Zeitraum gespeichert. Ein Spülvorgang wird dann in Abhängigkeit des Temperaturverlaufs von der Steuervorrichtung automatisiert ausgelöst.
  • Die EP 2 166 159 A2 zeigt ein Verfahren zum Spülen eines Wasserleitungsnetzes in einem Gebäude, z.B. in einem Hotel. Zur Versorgung einzelner Zimmer ist jeweils ein Unterverteilungsnetz mit Zapfstellen vorgesehen, wobei ein Spülventil in einem Spülkasten einer Toilettenspülung integriert ist. Das Spülventil bildet zusammen mit einer elektronischen Steuerung eine Spülvorrichtung aus. Die Steuerung umfasst einen Datenspeicher und einen Sensor, mit dem ein Wasserdurchfluss des Spülkastens gemessen und gespeichert werden kann. Zur Vermeidung einer Verkeimung der Trinkwasserleitung löst die Steuerung automatisch einen Spülvorgang aus, wenn dies erforderlich ist bzw. in einem Zeitintervall keine Trinkwasserentnahme erfolgt ist. Auch kann eine Spülmenge dabei in eine im Zeitintervall erfolgte Trinkwasserentnahme angepasst werden.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und ein Spülsystem zum Spülen von Wasserleitungsnetzen in Gebäuden vorzuschlagen, das auch effektiv an bereits vorhandenen Wasserleitungsnetzen einsetzbar ist.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 1 und ein Spülsystem mit den Merkmalen des Anspruchs 16 gelöst.
  • Bei dem erfindungsgemäßen Verfahren zum Spülen von Wasserleitungsnetzen in Gebäuden, insbesondere Trink- und/oder Brauchwasserleitungsnetze, wird mittels Sensoren eine Wassertemperatur und/oder ein Wasserdurchfluss in einem mit einer Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossenen und mit einer Mehrzahl von Unterverteilungsleitungen und Zapfstellen ausgebildeten Wasserleitungsnetz bestimmt, wobei mittels einer Mehrzahl von Spülventilen einer Spülvorrichtung das Wasserleitungsnetz zumindest teilweise gespült wird, wobei mittels einer mit den Sensoren und den Spülventilen verbundenen Steuervorrichtung des Spülen des Wasserleitungsnetzes in Abhängigkeit mit den Sensoren ermittelten Messwerten durch eine Betätigung der Spülventile initiiert wird, wobei die Steuervorrichtung die Messwerte der Sensoren über einen Zeitraum speichert, wobei die Betätigung der Spülventile unter Berücksichtigung der gespeicherten Messwerte durch die Steuervorrichtung erfolgt, wobei die Steuervorrichtung eine Musteranalyse der über den Zeitraum gespeicherten Messwerte der Sensoren durchführt, wobei die Steuervorrichtung aus der Musteranalyse eine Spülstrategie zur Betätigung der Spülventile ableitet.
  • Demnach wird das Wasserleitungsnetz eines Gebäudes, welches mit Wasser bzw. Flüssigkeit gefüllt ist durch die Betätigung des Spülventils, die mittels der Steuervorrichtung initiiert wird, gespült. Bei der Steuervorrichtung kann es sich dabei um einen Computer mit einer darauf laufenden Software handeln, wobei die Steuervorrichtung an dem Spülventil oder auch räumlich getrennt von dem Spülventil positioniert sein kann. Weiter verfügt das Wasserleitungsnetz über Sensoren, die eine Wassertemperatur und/oder einen Wasserdurchfluss im Bereich des jeweiligen Sensors in einem Leitungsabschnitt des Wasserleitungsnetzes messen. Die Sensoren sind in bzw. an zumindest einer Unterverteilungsleitung, vorzugsweise in oder an der Mehrzahl von Unterverteilungsleitungen positioniert bzw. angeschlossen. Die Unterverteilungsleitungen weisen regelmäßig Zapfstellen auf, über die Wasser aus dem Wasserleitungsnetz entnommen werden kann. Bei einer Entnahme von Wasser an einer Zapfstelle wird ein Wasserdurchfluss in einer Unterverteilungsleitung mit gegebenenfalls einer Änderung einer Wassertemperatur bewirkt. Diese Änderung der Wassertemperatur und/oder des Wasserdurchflusses wird mittels der Sensoren gemessen und an die Steuervorrichtung übermittelt. Die Steuervorrichtung ist daher auch mit dem Spülventil und den Sensoren verbunden, so dass Messwerte bzw. Steuersignale oder Daten ausgetauscht werden können. Eine derartige Kommunikationsverbindung kann über eine Kabelverbindung oder auch eine kabellose Funkverbindung ausgebildet werden. Die Steuervorrichtung ermittelt die Messwerte der Sensoren über einen Zeitraum bzw. eine Betriebsdauer des Wasserleitungsnetzes, wobei innerhalb des Zeitraums nicht zwangsläufig eine Entnahme von Wasser an einer Zapfstelle erfolgen muss. Wesentlich ist, dass die Steuervorrichtung die in dem Zeitraum ermittelten Messwerte der Sensoren speichert. Je nach einer eventuellen Änderung der Messwerte innerhalb des Zeitraums oder auch bei unveränderten Messwerten initiiert die Steuervorrichtung eine Betätigung des Spülventils. Das Spülventil bildet dabei zusammen mit einem freien Auslauf für das aus dem Spülventil ausströmende Wasser eine Spülvorrichtung aus. Die Spülvorrichtung kann dabei eine Mehrzahl von Spülventilen in dem Wasserleitungsnetz aufweisen. In diesem Fall ist es vorteilhaft, wenn die Mehrzahl von Spülventilen von der Steuervorrichtung gemeinsam gesteuert werden. Insgesamt ergibt sich dadurch, dass die Steuervorrichtung die Messwerte über den Zeitraum speichert die Möglichkeit die gespeicherte Messwerte zur Bestimmung eines Zeitpunkts und einer Dauer eines Spülvorgangs durch die Steuervorrichtung heranzuziehen. Genauere Kenntnisse über eine Ausbildung des Wasserleitungsnetzes müssen dann auch nicht mehr vorliegen, da die Steuervorrichtung den Spülvorgang in Abhängigkeit der durch die Sensoren ermittelten Messwerte in dem Zeitabschnitt initiieren und ausgestalten kann. Beispielsweise ist es möglich, den Spülvorgang erst dann durchzuführen, wenn in den Zeitabschnitt insgesamt keine ausreichende Wassermenge eine bestimmte Unterverteilungsleitung durchströmt hat, wobei der Spülvorgang dann so lange durchgeführt werden kann, bis der gewünschte Wasserdurchfluss an dem betreffenden Sensor realisiert wurde.
  • Erfindungsgemäß führt die Steuervorrichtung eine Musteranalyse der über den Zeitraum gespeicherten Messwerte der Sensoren durch. Im Rahmen der Musteranalyse können besondere Nutzungszeiträume, Wassertemperaturen und Wasserdurchflüsse von Zapfstellen parallel ermittelt werden. Beispielsweise kann die Steuervorrichtung eine Nutzung bestimmter Zapfstellen zu bestimmten Zeitpunkten in einem bestimmten Umfang ermitteln, wenn diese regelmäßig erfolgt. Ein Zeitpunkt für eine Spülung des Wasserleitungsnetzes bzw. einer betreffenden Unterverteilungsleitung kann so gegebenenfalls verzögert werden.
  • Erfindungsgemäß leitet die Steuervorrichtung aus der Musteranalyse eine Spülstrategie zur Betätigung des Spülventils ab. Die Spülstrategie kann sich dann nach dem Muster der Nutzung des Wasserleitungsnetzes richten, wobei eine Nutzungsänderung, beispielsweise bedingt durch eine Umnutzung des betreffenden Gebäudes, stets dazu führen kann, dass die Steuervorrichtung die Spülstrategie an das geänderte Nutzungsverhalten anpasst. Damit ist es auch nicht mehr erforderlich, die Steuervorrichtung in irgendeiner Form händisch einzustellen oder zu programmieren, da diese stets eine an das Nutzerverhalten optimierte Spülstrategie ausbilden und anwenden kann.
  • Als Sensoren können Volumensensoren, mit denen eine Strömungsgeschwindigkeit und/oder Durchflussmenge und/oder Temperatursensoren, mit denen eine Wassertemperatur in voneinander verschiedenen Unterverteilungsleitungen im Wasserleitungsnetz gemessen werden können, verwendet werden. So befinden sich in bestehenden Wasserleitungsnetzen regelmäßig bereits Volumensensoren oder Temperatursensoren zur Messung eines Volumenstroms bzw. einer Durchflussmenge bzw. einer Wassertemperatur, die von der Steuervorrichtung zur Gewinnung von Messwerten verwendet werden können. Weiter ist es auch möglich, in ein bestehendes Wasserleitungsnetz derartige Sensoren nachträglich zu integrieren, vorzugsweise in den jeweiligen Unterverteilungsleitungen des Wasserleitungsnetzes. Das Wasserleitungsnetz kann zur Verteilung von Kaltwasser und/oder Warmwasser dienen. Dabei kann das Wasserleitungsnetz aus einem Kaltwasserleitungsnetz und/oder einem Warmwasserleitungsnetz ausgebildet sein. Das Warmwasserleitungsnetz kann dann noch Warmwasserspeicher, Boiler, oder Wärmetauscher umfassen, die über eine Wasserhauseinführung indirekt mit Kaltwasser versorgt werden können.
  • Als Sensoren können auch Betriebssensoren, mit denen Betriebszustände von im Wasserleitungsnetz verbauten Armaturen und/oder Apparate gemessen werden, verwendet werden. Wesentlich bei den Sensoren ist, dass diese über eine elektrische Versorgungsleitung betrieben werden können und gegebenenfalls von der Steuervorrichtung oder einem anderen Steuergerät ausgelesen werden können. Sensoren können prinzipiell auch über eine Batterie oder einen Stromerzeuger autonom mit elektrischer Energie versorgt werden, wobei dann eine drahtlose Verbindung mit der Steuervorrichtung, beispielsweise über einen Funkstandard, möglich ist. Diese Sensoren können ohnehin im Wasserleitungsnetz vorhandene Sensoren sein, wie beispielsweise ein Thermoelement in einem Trinkwassererwärmer. Die Armaturen können elektronische Sanitärarmaturen oder jegliche Art von Ventil sein, welches eine mit der Steuervorrichtung erfassbare Zustandsinformation signalisieren kann. Eine Zustandsinformation kann beispielsweise einen Funktionszustand des Ventils - offen oder geschlossen - wiedergeben. Die Apparate können Betriebskomponenten, Pumpen, Filter, Spülkästen oder Spülventile umfassen. Über derartige Apparate kann die Steuervorrichtung ebenfalls einen Betriebszustand der jeweiligen Apparate ermitteln, beispielsweise die Drehzahl einer Pumpe, den Zustand eines Filters oder eine Betätigung eines Spülkastens. Wenn zum Beispiel eine elektronische Sanitärarmatur an einem Handwaschbecken von einem Benutzer berührungslos ausgelöst wird, strömt über diese Sanitärarmatur eine definierte Menge Wasser aus der betreffenden Unterverteilungsleitung aus, wobei die Steuervorrichtung dann anhand des Auslösesignals der elektronischen Sanitärarmatur die ausgeströmte Menge Wasser registrieren und als ein Messwert für den Wasserdurchfluss speichern kann.
  • Die Steuervorrichtung kann die Messwerte der Sensoren in regelmäßigen Zeitabständen, bei einer Änderung eines Messwertes oder kontinuierlich erfassen und speichern. So kann vorgesehen sein, dass die Steuervorrichtung beispielsweise die Drehzahl einer Pumpe oder einen mit einem Sensor gemessenen Temperaturwert kontinuierlich erfasst und speichert, oder auch in definierten Zeitabständen diese Messwerte ermittelt, um eine Datenmenge möglichst gering zu halten. Unter einer kontinuierlichen Erfassung wird auch eine Erfassung mit einer Abtastfrequenz verstanden, wobei unter regelmäßigen Zeitabständen ein Zeitabstand von zumindest mehreren Minuten, Stunden oder Tage verstanden wird.
  • Die Steuervorrichtung kann die Messwerte der Sensoren in dem Wasserleitungsnetz mit einer Kaltwasserinstallation, Warmwasserinstallation, Ringleitung, Baumstruktur, vermaschte Struktur, und/oder Stockwerkinstallation erfassen und speichern. Prinzipiell ist es daher unerheblich in welcher Art eines Wasserleitungsnetzes die Sensoren verbaut sind, wobei auch Kombinationen der vorgenannten Installationen in dem Wasserleitungsnetz vorhanden sein können.
  • Die Steuervorrichtung kann die in dem Zeitraum von zumindest einem Monat, bevorzugt zumindest einem Jahr, gespeicherten Messwerte berücksichtigen. Anhand der über diesen langen Zeitraum gespeicherten Messwerten kann die Steuervorrichtung dann bestimmen, ob gegebenenfalls an bestimmten Wochentagen, Monaten, Wochen oder einzelnen Tagen innerhalb eines Jahres Besonderheiten bei einer Nutzung des Wasserleitungsnetzes auftreten und diese Besonderheiten bei der Betätigung des Spülventils berücksichtigen. Beispielsweise kann ein Wasserverbrauch und damit ein Wasserdurchfluss an Wochenenden geringer sein als an Werktagen oder umgekehrt.
  • Die Steuervorrichtung kann die über den Zeitraum gespeicherten Messwerte der Sensoren hinsichtlich einer Relevanz für eine mikrobiologische Verunreinigung für jeden Sensor gewichten und bewerten, wobei die Betätigung des Spülventils in Abhängigkeit der Bewertung durch die Steuervorrichtung erfolgen kann. So liegt beispielsweise ein hygienegerechter Zustand in dem Wasserleitungsnetz vor, wenn das Wasser eine Temperatur von kleiner als 20° und größer 55°C aufweist, da dann eine Verkeimung des Wassers durch eine Reproduktion von Keimen gehemmt ist. In diesem Fall können beispielsweise Zeitabstände zur Betätigung des Spülventils verlängert werden.
  • Die Steuervorrichtung kann in Messwerten der Sensoren jeweils eine Kennzahl zuweisen, wobei die Kennzahl die Relevanz des Messwertes für eine mikrobiologische Verunreinigung, insbesondere mit Legionellen, wiedergeben kann. Die Kennzahl kann in diesem Fall eine relative, dimensionslose Zahl sein. Eine Kennzahl für Wassertemperatur, insbesondere für Kaltwasser, kann beispielsweise mit der Formel K kalt = 1.3 T 10 13
    Figure imgb0001
    ermittelt werden. Die Kennzahl für Wasserdurchfluss bzw. einer Wasserströmung kann beispielsweise mit der Formel K Reynold = 1 2.1 T 100 10 7
    Figure imgb0002
    ermittelt werden. Dabei gilt als eine Voraussetzung für einen aus hygienischen Gesichtspunkten akzeptablen Wasserdurchfluss eine turbulente Strömung mit einer Reynoldszahl Re < 2300. Für eine kinematische Viskosität ν T = η ρ
    Figure imgb0003
    kann eine Druckabhängigkeit vernachlässigt werden, da auftredende Druckunterschiede zu gering sind.
  • Weiter kann die Steuervorrichtung die Kennzahl unter Berücksichtigung einer für die mikrobiologische Verunreinigung relevanten zeitabhängigen Komponente und/oder einer messgrößenabhängigen Komponente bestimmen. Jede Zapfstelle bzw. jedes Spülventil eines Wasserleitungsnetzes hat einen zeitabhängigen Einfluss auf die die mikrobiologische Verunreinigung beeinflussenden Parameter des Wasserleitungsnetzes. So kann die zeitabhängige Komponente und die messgrößenabhängige Komponente funktional dargestellt werden, beispielsweise mit der Formel: λ t 1,1 T 1,1 λ t 1 , n T 1 , n λ t m , 1 T m , 1 λ t m , n T m , n = S 1 S m
    Figure imgb0004
  • Ändert sich eine Temperatur an einer Messstelle bzw. einem Sensor durch eine Zapfstelle oder ein Spülventil nicht, so ist für diesen Messwert der Wassertemperatur λ (t) = 1 zu setzen. Insgesamt wird es so möglich aus der zeitabhängigen Komponente und der messgrößenabhängigen Komponente ein Kennfeld durch die Steuervorrichtung zu bestimmen, welches mit weiteren Kennfeldern, beispielsweise für eine Reynoldszahl, überlagert werden kann. Durch die Überlagerung dieser Kennfelder kann zum Beispiel auch für die Steuervorrichtung ermittelt werden, dass verschiedene Zapfstellen oder Spülventile einen Einfluss auf eine bestimmte Messstelle bzw. einen Sensor haben.
  • Die Steuervorrichtung kann aus den Kennzahlen einen Mittelwert der Kennzahlen bilden. Der Mittelwert kann mit der Formel K = K kalt + K Reynold 2
    Figure imgb0005
    durch die Steuervorrichtung, hier für Temperatur und Strömung, berechnet werden. Wenn ein Wasserleitungsnetz aus hygienischen Gesichtspunkten optimal betrieben wird, wird ein resultierender Kennwert 1 oder nahe 1 betragen. Weicht eine Temperatur oder eine Reynoldszahl einer Messstelle eines Sensors ab, wird sich der Mittelwert der Kennzahlen um so weiter von der Kennzahl 1 wegbewegen, je gravierender die Abweichung ist.
  • Die Steuervorrichtung kann aus den Kennzahlen eine Matrix der Kennzahlen bilden. Die Matrix kann die Kennzahlen aller Messstellen bzw. Sensoren umfassen, wie im nachfolgenden Beispiel dargestellt: K K erste Messstelle K 1 , n K m , 1 K letzte Messstelle
    Figure imgb0006
  • Durch eine Zuordnung von Matrixpunkten der Matrix zu tatsächlichen Messstellen bzw. Sensoren können für eine Hygiene kritische Bereiche des Wasserleitungsnetzes lokalisiert werden. Darüber hinaus ist es möglich, ergänzend zu der Matrix mit den Kennzahlen oder auch ohne Kennzahlen durch die Steuervorrichtung eine Matrix abzubilden, die die für die Hygiene des Wassers relevanten Informationen enthält. Diese Matrix kann beispielsweise im Rahmen der Finite-Elemente-Methode von der Steuervorrichtung verarbeitet werden.
  • Die Betätigung des Spülventils kann in Abhängigkeit einer Abweichung einer Kennzahl, eines Mittelwertes oder einer Matrix von einer jeweiligen Bereichsvorgabe, für die Kennzahl, den Mittelwert oder die Matrix, durch die Steuervorrichtung erfolgen. Die Bereichsvorgabe kann zuvor definiert und in der Steuervorrichtung gespeichert sein. So ist stets sichergestellt, dass einer mikrobiologischen Verunreinigung des Wasserleitungsnetzes vorgebeugt wird.
  • Die Steuervorrichtung kann daher eine Mustervorhersage auf Basis der über den Zeitraum gespeicherten Messwerte der Sensoren der Musteranalyse durchführen. Insgesamt wird es so möglich, ein Spülen des Wasserleitungsnetzes noch weiter zu optimieren, so dass es nicht zu einer Verschwendung von Wasser beim Spülen kommt. Darüber hinaus ist aber auch sichergestellt, dass das Wasserleitungsnetz stets hygienisch einwandfrei betrieben werden kann.
  • Die Steuervorrichtung kann die Messwerte unterschiedlicher Sensoren zueinander in Beziehung setzen und funktionale Abhängigkeiten der Sensoren ableiten. Dies wird möglich, wenn die Steuervorrichtung die Messwerte mittels statistischer Verfahren, beispielsweise Korrelationen untersucht. So kann die Steuervorrichtung dann auch ermitteln, dass eine Unterverteilungsleitung gespült wird, wenn an einer Zapfstelle ein Ventil geöffnet wird. Dieser direkte Zusammenhang von Zapfstelle und Unterverteilungsleitung könnte aufgrund einer Unkenntnis der Ausgestaltung des Wasserleitungsnetzes nicht bekannt gewesen sein, sich aber durch die Ableitung der funktionalen Zusammenhänge durch die Steuervorrichtung ergeben.
  • Insbesondere kann die Steuervorrichtung die Betätigung des Spülventils mittels künstlicher Intelligenz bestimmen. Unter künstlicher Intelligenz wird hier eine Automatisierung eines Spülverhaltens der Steuervorrichtung verstanden, bei der die Steuervorrichtung so programmiert ist, dass sie sich eigenständig an eine veränderte Nutzung des Wasserleitungsnetzes anpassen kann.
  • Das erfindungsgemäße Spülsystem zum Spülen von Wasserleitungsnetzen in Gebäuden, insbesondere Trink- und/oder Brauchwasserleitungsnetze, umfasst eine Spülvorrichtung, eine Steuervorrichtung und ein mit einer Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossenes Wasserleitungsnetz, wobei das Wasserleitungsnetz eine Mehrzahl von Unterverteilungsleitungen, Zapfstellen und Sensoren zur Bestimmung von einer Wassertemperatur und/oder eines Wasserdurchflusses umfasst, wobei mittels der Spülvorrichtung das Wasserleitungsnetz zumindest teilweise gespült werden kann, wobei die Spülvorrichtung eine Mehrzahl von Spülventilen mit einem freien Auslauf aufweist, wobei die Steuervorrichtung mit den Sensoren und den Spülventilen verbunden ist, und ein Spülen des Wasserleitungsnetzes in Abhängigkeit von mit den Sensoren ermittelten Messwerten durch eine Betätigung der Spülventile initiierbar ist, wobei die Steuervorrichtung derart ausgebildet ist, dass die Messwerte der Sensoren über einen Zeitraum speicherbar sind, wobei die Betätigung der Spülventile unter Berücksichtigung der gespeicherten Messwerte durch die Steuervorrichtung ausführbar ist, wobei mit der Steuervorrichtung eine Musteranalyse der über den Zeitraum gespeicherten Messwerte der Sensoren durchführbar ist, wobei mit der Steuervorrichtung aus der Musteranalyse eine Spülstrategie zur Betätigung der Spülventile ableitbar ist. Zu den Vorteilen des erfindungsgemäßen Spülsystems wird auf die Vorteilsbeschreibung des erfindungsgemäßen Verfahrens verwiesen. Weitere vorteilhafte Ausführungsformen eines Spülsystems ergeben sich aus den Merkmalen der auf den Verfahrensanspruch 1 rückbezogenen Unteransprüchen.
  • Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1
    einen Funktionsgraph einer Kennzahl für Kaltwasser;
    Fig. 2
    einen Funktionsgraph einer Kennzahl für Strömung.
  • An der Abszissenachse des in Fig. 1 dargestellten Funktionsgraphen für eine Kennzahl für eine Kaltwassertemperatur ist die Temperatur und an der Ordinatenachse die Kennzahl abgetragen. Eine Funktion der Kennzahl ergibt sich aus der Formel K kalt = 1.3 T 10 13
    Figure imgb0007
    wobei eine Kennzahl für Warmwasser prinzipiell in der Ordinatenachse gespiegelt und der Abszissenachse verschoben verlaufen würde.
  • Die Fig. 2 zeigt einen Funktionsgraphen für eine Kennzahl einer Wasserströmung bzw. einen Wasserdurchfluss in einem Rohr eines Wasserleitungsnetzes, wobei an der Abszissenachse eine Reynoldszahl und an der Ordinatenachse eine Kennzahl abgetragen ist. Eine Funktion der Kennzahl ergibt sich aus der Formel K Reynold = 1 2.1 T 100 10 7 .
    Figure imgb0008
  • Insbesondere kann die Reynoldszahl nur während einer laufenden Rohrströmung ermittelt werden. Das bedeutet, dass dem ermittelten Wert für die Reynoldszahl eine zeitabhängige Funktion überlagert werden muss. Die ermittelte Kennzahl driftet mit fortschreitender Zeit vom Normwert 1 weg, so dass auch bei in einer Leitung stehendem Wasser eine Stagnation berücksichtigt wird.

Claims (16)

  1. Verfahren zum Spülen von Wasserleitungsnetzen in Gebäuden, insbesondere Trink- und/oder Brauchwasserleitungsnetze, wobei mittels Sensoren eine Wassertemperatur und/oder ein Wasserdurchfluss in einem mit einer Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossenen und mit einer Mehrzahl von Unterverteilungsleitungen und Zapfstellen ausgebildeten Wasserleitungsnetz bestimmt wird, wobei mittels einer Mehrzahl von Spülventilen einer Spülvorrichtung das Wasserleitungsnetz zumindest teilweise gespült wird, wobei die Steuervorrichtung die Messwerte der Sensoren über einen Zeitraum speichert,
    dadurch gekennzeichnet,
    dass mittels einer mit den Sensoren und den Spülventilen verbundenen Steuervorrichtung das Spülen des Wasserleitungsnetzes in Abhängigkeit von mit den Sensoren ermittelten Messwerten durch eine Betätigung der Spülventile initiiert wird, wobei die Betätigung der Spülventile unter Berücksichtigung der gespeicherten Messwerte durch die Steuervorrichtung erfolgt, wobei die Steuervorrichtung eine Musteranalyse der über den Zeitraum gespeicherten Messwerte der Sensoren durchführt, wobei die Steuervorrichtung aus der Musteranalyse eine Spülstrategie zur Betätigung der Spülventile ableitet.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass als Sensoren Volumensensoren, mit denen eine Strömungsgeschwindigkeit und/oder Durchflussmenge und/oder Temperatursensoren, mit denen eine Wassertemperatur in voneinander verschiedenen Unterverteilungsleitungen im Wasserleitungsnetz gemessen werden, verwendet werden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass als Sensoren Betriebssensoren, mit denen Betriebszustände von im Wasserleitungsnetz verbauten Armaturen und/oder Apparate gemessen werden, verwendet werden.
  4. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die Messwerte der Sensoren in regelmäßigen Zeitabständen, bei einer Änderung eines Messwertes oder kontinuierlich erfasst und speichert.
  5. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die Messwerte der Sensoren in dem Wasserleitungsnetz mit einer Kaltwasserinstallation, Warmwasserinstallation, Ringleitung, Baumstruktur, vermaschte Struktur, und/oder Stockwerksinstallation erfasst und speichert.
  6. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die in dem Zeitraum von zumindest einem Monat, bevorzugt zumindest einem Jahr, gespeicherten Messwerte berücksichtigt.
  7. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die über den Zeitraum gespeicherten Messwerte der Sensoren hinsichtlich einer Relevanz für eine mikrobiologische Verunreinigung für jeden Sensor gewichtet und bewertet, wobei die Betätigung des Spülventils in Abhängigkeit der Bewertung durch die Steuervorrichtung erfolgt.
  8. Verfahren nach Anspruch der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung den Messwerten der Sensoren jeweils eine Kennzahl zuweist, wobei die Kennzahl die Relevanz des Messwertes für eine mikrobiologische Verunreinigung, insbesondere mit Legionellen, widergibt.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die Kennzahl unter Berücksichtigung einer für die mikrobiologische Verunreinigung relevanten zeitabhängigen Komponente und/oder einer messgrößenabhängigen Komponente bestimmt.
  10. Verfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung aus den Kennzahlen einen Mittelwert der Kennzahlen bildet.
  11. Verfahren nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung aus den Kennzahlen eine Matrix der Kennzahlen bildet.
  12. Verfahren nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet,
    dass die Betätigung des Spülventils in Abhängigkeit einer Abweichung einer Kennzahl, eines Mittelwertes oder einer Matrix von einer jeweiligen Bereichsvorgabe durch die Steuervorrichtung erfolgt.
  13. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung eine Mustervorhersage auf Basis der über den Zeitraum gespeicherten Messwerte der Sensoren durchführt.
  14. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die Messwerte unterschiedlicher Sensoren zueinander in Beziehung setzt und funktionale Abhängigkeiten der Sensoren ableitet.
  15. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung die Betätigung des Spülventils mittels Künstlicher Intelligenz bestimmt.
  16. Spülsystem zum Spülen von Wasserleitungsnetzen in Gebäuden, insbesondere Trink- und/oder Brauchwasserleitungsnetze, umfassend eine Spülvorrichtung, eine Steuervorrichtung und ein mit einer Wasserhauseinführung an das öffentliche Versorgungsnetz angeschlossenes Wasserleitungsnetz, wobei das Wasserleitungsnetz eine Mehrzahl von Unterverteilungsleitungen, Zapfstellen und Sensoren zur Bestimmung von einer Wassertemperatur und/oder eines Wasserdurchflusses umfasst, wobei mittels der Spülvorrichtung das Wasserleitungsnetz zumindest teilweise gespült werden kann, wobei die Spülvorrichtung eine Mehrzahl von Spülventilen mit einem freien Auslauf aufweist, wobei die Steuervorrichtung derart ausgebildet ist, dass die Messwerte der Sensoren über einen Zeitraum speicherbar sind,
    dadurch gekennzeichnet,
    dass die Steuervorrichtung mit den Sensoren und den Spülventilen verbunden ist, und ein Spülen des Wasserleitungsnetzes in Abhängigkeit von mit den Sensoren ermittelten Messwerten durch eine Betätigung der Spülventile initiierbar ist, wobei die Betätigung der Spülventile unter Berücksichtigung der gespeicherten Messwerte durch die Steuervorrichtung ausführbar ist, wobei mit der Steuervorrichtung eine Musteranalyse der über den Zeitraum gespeicherten Messwerte der Sensoren durchführbar ist, wobei mit der Steuervorrichtung aus der Musteranalyse eine Spülstrategie zur Betätigung der Spülventile ableitbar ist.
EP19188574.8A 2018-08-01 2019-07-26 Verfahren und spülsystem zum spülen von wasserleitungsnetzen Active EP3604698B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018118651.7A DE102018118651A1 (de) 2018-08-01 2018-08-01 Verfahren und Spülsystem zum Spülen von Wasserleitungsnetzen

Publications (2)

Publication Number Publication Date
EP3604698A1 EP3604698A1 (de) 2020-02-05
EP3604698B1 true EP3604698B1 (de) 2021-06-23

Family

ID=67439069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19188574.8A Active EP3604698B1 (de) 2018-08-01 2019-07-26 Verfahren und spülsystem zum spülen von wasserleitungsnetzen

Country Status (2)

Country Link
EP (1) EP3604698B1 (de)
DE (1) DE102018118651A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269468B2 (en) * 2003-09-05 2007-09-11 Fisher-Rosemount Systems, Inc. State machine function block with a user modifiable output configuration database
DE202008002822U1 (de) * 2008-02-28 2009-07-09 Gebr.Kemper Gmbh + Co.Kg Metallwerke Trink- und Brauchwasserversorgungseinrichtung eines Gebäudes und Steuervorrichtung für eine solche
DE102008047938A1 (de) * 2008-09-18 2010-04-01 Viega Gmbh & Co. Kg Trinkwasserleitungssystem zur Erhaltung der Trinkwassergüte und Verfahren zum Betrieb eines solchen Trinkwasserleitungssystems
DE102011013955B4 (de) * 2011-03-14 2018-12-27 Viega Technology Gmbh & Co. Kg Verfahren zum selbsttätigen Spülen
DE102014208261B4 (de) * 2014-04-30 2020-08-13 Aba Beul Gmbh Trink- und Brauchwassersystem eines Gebäudes und Verfahren zur Steuerung des Trink- und Brauchwassersystems
DE202014008946U1 (de) * 2014-11-12 2014-11-27 Aba Beul Gmbh Vorrichtung zum Spülen von Flüssigkeitsleitungen, insbesondere Trink- und/oder Brauchwasserleitungen in Gebäuden
DE102016103833A1 (de) * 2016-03-03 2017-09-07 Uponor Innovation Ab System und Verfahren zum Spülen einer Trinkwasserinstallation
GB201620879D0 (en) * 2016-12-08 2017-01-25 Omnia-Klenz Ltd Fluid distribution system and method of use thereof

Also Published As

Publication number Publication date
DE102018118651A8 (de) 2020-04-09
DE102018118651A1 (de) 2020-02-06
EP3604698A1 (de) 2020-02-05

Similar Documents

Publication Publication Date Title
EP2500475B1 (de) Verfahren und Vorrichtung zum selbsttätigen Spülen von Leitungen
EP2096214B1 (de) Trink-Brauchwasserversorgungseinrichtung eines Gebäudes und Steuervorrichtung für eine solche
EP3690151B1 (de) Trink- und brauchwassersystem und verfahren zum spülen desselben
EP2166159B1 (de) Trinkwasserleitungssystem zur Erhaltung der Trinkwassergüte und Verfahren zum Betrieb eines solchen Trinkwasserleitungssystems
EP3214230B1 (de) System und verfahren zum spülen einer trinkwasserinstallation
DE102014208261B4 (de) Trink- und Brauchwassersystem eines Gebäudes und Verfahren zur Steuerung des Trink- und Brauchwassersystems
WO2014029699A1 (de) Leckageschutz-anordnung
DE202012103128U1 (de) Anordnung zur Durchführung einer Hygienespülung in einer Wasserinstallation
DE102018009511A1 (de) Spülvorrichtung, System und Verfahren zur Durchführung von Hygienespülungen
EP2993271B1 (de) Steuervorrichtung und trink- und/oder brauchwassersystem mit einer solchen steuervorrichtung
DE202012012276U1 (de) Vorrichtung zum Reinigen einer häuslichen Wasserleitung und/oder zur Aufrechterhaltung der Wasserqualität
EP3604698B1 (de) Verfahren und spülsystem zum spülen von wasserleitungsnetzen
AT519689A1 (de) Spülvorrichtung zum spülen einer wasserleitung
EP3388811B1 (de) Vorrichtung und verfahren zur erkennung einer undichtigkeit in einem rohrleitungssystem für ein fluid
EP4130584A1 (de) Leitungsanordnung mit dezentraler trinkwassererwärmung und verfahren zum betrieb einer leitungsanordnung
DE102019107179A1 (de) Verfahren zur Wasserversorgung von mindestens einer Wasserentnahmestelle mit Kalt- und Warmwasser
EP4137645B1 (de) Trinkwasser-installation
EP2327971A2 (de) Verfahren zur Analyse der Wärmemengenverteilung in einem Heizsystem und Vorrichtung zur Durchführung des Verfahrens
EP3666984A1 (de) Spülvorrichtung und trink- und brauchwassersystem mit einer solchen spülvorrichtung
DE102005038406A1 (de) Verfahren zum Betreiben einer Anlage zur Bereitstellung von Warmwasser und entsprechende Einrichtung
EP2885467B1 (de) Trinkwasserinstallation mit einer Leckageschutzanordnung
DE102017117652A1 (de) Verfahren zur Erfassung einer Leckage in einem Gebäude-Trinkwassernetzwerk
DE102012102226B3 (de) Leitungssystem sowie Verfahren zur Überwachung eines Fluidleitungsnetzes
DE10118648A1 (de) Selektive Grauwasserentnahme
DE4421969A1 (de) Verfahren und Anordnung zur Ermittlung der von einem Strömungsmittel an einzelne, von einer gemeinsamen Wärmeträgereinspeisung betriebenen, Wärmeverbraucher übertragenen Wärmemenge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200709

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001660

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1404440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211025

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001660

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220725

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240918

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240801

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240724

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019001660

Country of ref document: DE

Owner name: CONEX IPR LTD., KINGSWINFORD, GB

Free format text: FORMER OWNER: ABA BEUL GMBH, 57439 ATTENDORN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623