EP3601739B1 - Turbolader für eine brennkraftmaschine sowie turbinenrad - Google Patents

Turbolader für eine brennkraftmaschine sowie turbinenrad Download PDF

Info

Publication number
EP3601739B1
EP3601739B1 EP18718704.2A EP18718704A EP3601739B1 EP 3601739 B1 EP3601739 B1 EP 3601739B1 EP 18718704 A EP18718704 A EP 18718704A EP 3601739 B1 EP3601739 B1 EP 3601739B1
Authority
EP
European Patent Office
Prior art keywords
turbine
axtip
turbocharger
housing
turbine wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18718704.2A
Other languages
English (en)
French (fr)
Other versions
EP3601739A1 (de
Inventor
Ivo Sandor
Sebastian WITTWER
Michael Klaus
Ralf Böning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3601739A1 publication Critical patent/EP3601739A1/de
Application granted granted Critical
Publication of EP3601739B1 publication Critical patent/EP3601739B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/54Radial bearings

Definitions

  • the invention relates to a turbocharger for an internal combustion engine.
  • Exhaust gas turbochargers are increasingly being used to increase the performance of motor vehicle internal combustion engines. This is happening more and more frequently with the aim of reducing the size and weight of the internal combustion engine with the same or even increased performance and at the same time reducing consumption and thus CO 2 emissions in view of the increasingly strict legal requirements in this regard.
  • the operating principle consists in using the energy contained in the exhaust gas flow in order to increase a pressure in an intake tract of the internal combustion engine and thus bring about better filling of a combustion chamber of the internal combustion engine with air-oxygen. This means that more fuel, such as petrol or diesel, can be converted per combustion process, i.e. the performance of the combustion engine can be increased.
  • the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and a rotor bearing arranged in between.
  • the exhaust gas turbine has a turbine housing and a turbine impeller which is arranged therein and is driven by the exhaust gas mass flow.
  • the fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up boost pressure.
  • the turbine impeller and the compressor impeller are arranged in a rotationally fixed manner on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor.
  • the rotor shaft extends axially between the turbine rotor and the compressor rotor through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is rotatably mounted in it radially and axially with respect to the rotor shaft axis.
  • the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, which increases the pressure in the intake tract of the combustion engine, based on the fresh air mass flow behind the fresh air compressor, and thus causes better filling of the combustion chamber with air-oxygen.
  • Such an exhaust gas turbocharger for an internal combustion engine is, for example, in document EP 3 144 541 A1 disclosed.
  • This has a bearing housing which is arranged between an exhaust gas turbine with a turbine impeller and a centrifugal compressor with a compressor impeller and in which a rotor shaft is mounted so that it can rotate about a rotor axis of rotation on which the turbine impeller and the compressor impeller are each arranged in a rotationally fixed manner.
  • the turbine wheel has wheel blading and is arranged in the turbine housing, which is mechanically fixed to the bearing housing.
  • the turbine wheel includes turbine blades each having a flow leading edge and a flow trailing edge that define an entry radius and an exit radius of the turbine wheel.
  • the turbine blades have an outer contour facing the turbine housing, which extends from the flow inlet edge to the flow outlet edge.
  • the turbine housing has a housing contour that is opposite the outer contour of the turbine blades, with a radial distance being formed between the housing contour and the outer contour, which enables contact-free rotation of the turbine impeller in the turbine housing.
  • An object on which the invention is based is to specify a concept for a turbocharger that contributes to safe operation of a turbocharger.
  • the turbine housing and the turbine wheel are designed and matched to one another in such a way that the following condition or equation is met: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in .
  • damage to the turbocharger can occur during operation of the turbocharger, for example during test bench runs for the design of the turbocharger or components of the turbocharger such as the rotor. For example, a component failure of the rotor shaft or the impellers, such as a broken shaft, can occur.
  • the turbine wheel can no longer be held in its intended position axially by an axial bearing.
  • the turbine wheel would be moved in the direction of a turbine housing outlet for the exhaust gas mass flow primarily by aerodynamic forces, for example due to prevailing gas pressures.
  • the portion of the turbine blades of the turbine wheel that has a larger diameter than an outlet diameter of the turbine housing at the downstream end of the turbine wheel abuts the turbine housing and hinders the turbine wheel in its axial movement in the direction of the turbine housing outlet. It was also recognized that if this proportion of the turbine wheel blades is not sufficiently large, the turbine blades are plastically deformed in the event of a shaft breakage in such a way that the turbine wheel can carry out a further, unwanted axial displacement.
  • the turbocharger described provides that the turbine wheel and turbine housing are designed and arranged according to the condition (equation) formulated above.
  • the condition stipulates that a contour profile of the turbine housing and/or the at least one turbine wheel blade are specifically redesigned compared to known turbines.
  • a length portion (L cover ) of the turbine wheel blade, in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet, is increased in such a way that in the event of a shaft breakage, a larger proportion of the turbine wheel blades would be plastically deformed in the event of an axial displacement , so that further axial movement of the turbine wheel with respect to the rotor axis of rotation is impeded or limited.
  • the length portion of the turbine wheel blade in which a diameter of the turbine wheel is larger than a smallest diameter DA of the turbine housing at the turbine blade outlet is increased simply by the redesign.
  • the condition defines a minimum value of said length portion of the turbine wheel blade.
  • Such a design based on the given equation contributes to the fact that the turbine wheel, after a shaft breakage, i.e. in the event of damage to the turbocharger, one provides greater resistance to further axial displacement upon collision with the housing.
  • the equation thus enables an optimal design for the turbine wheel and turbine housing on the basis of various parameters.
  • certain parameters of the like can be specified, with one or more remaining parameters being able to be determined using the equation. In this way, a reasonable adjustment of the parameters can always be achieved according to the framework conditions.
  • using the equation it is possible to easily determine the axial cover length L cover necessary for the above advantages and functions.
  • a turbocharger designed according to the conditions helps to avoid the disadvantages mentioned at the outset in the event of damage, in particular the shaft breakage mentioned, in particular when the turbine wheel is only mounted radially.
  • it is not absolutely necessary to constructively reinforce a back disk and/or the turbine wheel blades.
  • it is not necessary to correspondingly thicken the turbine wheel blades.
  • it is not necessary to provide a low trim ratio, ie a ratio between the maximum exit radius R out and the maximum entry radius R in .
  • Material costs among other things, can be saved as a result. Both such measures would be disadvantageous with regard to the performance of the turbocharger, for example due to higher mass inertia.
  • a meridional view means, for example, a flat, two-dimensional view in which an outermost contour of the turbine wheel is shown, which the turbine wheel traces during a rotation about the rotor axis of rotation, which also corresponds to an axis of rotation of the turbine wheel.
  • the view can also relate to or include at least parts of the turbine housing, with an inner contour with a minimal radius in relation to the axis of rotation in the area of the turbine wheel being shown in particular, which the turbine housing would traverse when rotating about the axis of rotation.
  • the housing contour of the turbine housing (English: shroud) opposite the outer contour is designed to correspond to the outer contour.
  • the smallest radial distance Tip clr with respect to the axis of rotation of the rotor can be a distance that is constant over the entire axial area between the leading edge and the trailing edge. However, it is also conceivable for the distance to be present only in sections, in a single area or point with respect to the axis of rotation.
  • the axial length component (L cover ) means that axial extent of the outer contour in which a radius or a diameter of the turbine wheel with respect to the rotor axis of rotation is larger than a minimum diameter/radius of the turbine housing in the region of a downstream end of the turbine wheel. In other words, in this area the diameter of the turbine wheel is larger than a smallest diameter of the turbine housing. In other words, it is that axial area of a turbine wheel which, if the turbine wheel and the turbine housing were projected into a plane normal to the rotor axis of rotation, is covered or overlapped by the turbine housing. In other words, this is the area that lies in the shadow of the turbine housing in relation to the rotor axis of rotation.
  • the outer contour of the at least one blade has an axial overlap section that corresponds to the axial length component L cover of the axial extension L axTip .
  • the ratio Tip clr to R in is : hint clr R in ⁇ 2.5 % .
  • the ratio Tip clr to R in is : hint clr R in ⁇ 2.0 % .
  • the ratio Tip clr to R in is : hint clr R in ⁇ 1.5 % .
  • the ratio of L cover to L axtip is : L covers L axTip > 0.2 .
  • the ratio of L cover to L axtip is : L covers L axTip > 0.25 .
  • the ratio of L cover to L axtip is: L covers L axTip > 0.3 .
  • the ratio of R out to R in is : R out R in > 0.8 .
  • the ratio of R out to R in is : R out R in ⁇ 0.95 .
  • the ratio of R out to R in is : R out R in ⁇ 0.93 .
  • the ratio of R out to R in is : R out R in ⁇ 0.92 .
  • the ratio of R out to R in is : R out R in ⁇ 0.91 .
  • the ratio of R out to R in is : R out R in ⁇ 0.90 .
  • the ratio R out to R in is also referred to as the trim or trim ratio.
  • the trim ratio is between 0.8 and one of the other limits specified above.
  • a turbine wheel for a turbocharger according to one of the previous embodiments is disclosed.
  • the turbine wheel has impeller blading with a plurality of turbine blades.
  • the turbine wheel is designed in such a way that the following condition is met: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in
  • the turbine wheel enables the advantages and functions mentioned above.
  • the method enables the advantages and functions mentioned above.
  • FIG 1 shows a schematic of an exemplary exhaust gas turbocharger 1 in a sectional view, which has an exhaust gas turbine 20 , a fresh air compressor 30 and a rotor bearing 40 .
  • the exhaust gas turbine 20 is equipped with a wastegate valve 29 and an exhaust gas mass flow AM is indicated with arrows.
  • the fresh air compressor 30 has an overrun air recirculation valve 39 and a fresh air mass flow FM is also indicated with arrows.
  • a so-called turbocharger rotor 10 of the exhaust gas turbocharger 1 has a turbine wheel 12 (also called turbine wheel), a compressor wheel 13 (also called compressor wheel) and a rotor shaft 14 (also called shaft).
  • turbocharger rotor 10 rotates about a rotor axis of rotation 15 of the rotor shaft 14.
  • the rotor axis of rotation 15 and at the same time the turbocharger axis 2 are represented by the center line drawn in and characterize the axial alignment of the exhaust gas turbocharger 1.
  • a common exhaust gas turbocharger 1 As shown in figure 1 shown, a multi-part structure.
  • a turbine housing 21 that can be arranged in the exhaust tract of the internal combustion engine, a compressor housing 31 that can be arranged in the intake tract of the internal combustion engine, and a bearing housing 41 between the turbine housing 21 and the compressor housing 31 are arranged next to one another with respect to the common turbocharger axis 2 and are connected to one another in terms of assembly.
  • the bearing housing 41 is arranged axially between the turbine housing 21 and the compressor housing 31 .
  • the bearing housing 41 accommodates the rotor shaft 14 of the turbocharger rotor 10 and the bearing arrangement required for the axial bearing and for the rotary bearing of the rotor shaft 14 .
  • turbocharger rotor 10 Another assembly of the exhaust gas turbocharger 1 is the turbocharger rotor 10, the rotor shaft 14, which is arranged in the turbine housing 21 turbine impeller 12 with a Impeller blading 121 and arranged in the compressor housing 31 compressor impeller 13 having an impeller blading 131.
  • the turbine wheel 12 as well as the compressor wheel 13 have a plurality of blades which are arranged on a corresponding hub.
  • the turbine wheel 12 and the compressor wheel 13 are arranged on the opposite ends of the common rotor shaft 14 and are non-rotatably connected thereto.
  • the rotor shaft 14 extends axially through the bearing housing 41 in the direction of the turbocharger axis 2 and is rotatably mounted in it axially and radially about its longitudinal axis, the rotor axis of rotation 15 , with the rotor axis of rotation 15 coinciding with the turbocharger axis 2 .
  • the turbocharger rotor 10 is mounted with its rotor shaft 14 by means of two radial bearings 42 and an axial bearing disk 43 . Both the radial bearing 42 and the axial bearing disk 43 are supplied with lubricant via oil supply channels 44 of an oil connection 45 .
  • the turbine housing 21 has one or more exhaust gas annular ducts, so-called exhaust gas flows 22 , arranged in a ring shape around the turbocharger axis 2 and the turbine impeller 12 , tapering helically towards the turbine impeller 12 .
  • These exhaust gas flows 22 have a respective or common, tangentially outwardly directed exhaust gas supply channel 23 with a manifold connecting piece 24 for connection to an exhaust manifold (not shown) of an internal combustion engine, through which the exhaust gas mass flow AM flows into the respective exhaust gas flow 22 and then onto the turbine impeller 12 flows.
  • the turbine housing 21 also has an exhaust gas discharge channel 26 which runs away from the axial end of the turbine impeller 12 in the direction of the turbocharger axis 2 and has an exhaust connection piece 27 for connection to the exhaust system (not shown) of the internal combustion engine.
  • the exhaust gas mass flow AM emerging from the turbine impeller 12 is discharged into the exhaust system of the internal combustion engine via this exhaust gas discharge channel 26 .
  • turbocharger 1 Further details of the turbocharger 1 are not explained in more detail at this point. It should be noted that the in figure 1 described turbocharger 1 is to be understood as an example and alternatively can also have other configurations, without there being any restrictions for the following description of exemplary embodiments of the invention with reference to FIG Figures 4 to 6 result.
  • Figures 2 and 3 each show a meridional view of exhaust gas turbines 20 of a turbocharger 1, each of which has a turbine housing 21 and a turbine wheel 12 with a plurality of turbine blades 122.
  • FIG 2 is a radial-axial turbine wheel and in figure 3 a radial turbine wheel is shown in a schematic half section.
  • the turbine wheel 12 has an upstream, axial end 124 and a downstream, axial end 125.
  • the turbine blade 122 shown like all other turbine blades, has a flow inlet edge 126 for the exhaust gas mass flow AM and a flow outlet edge 127 for the exhaust gas mass flow AM after exiting the turbine wheel 12 or the turbine blades 122.
  • the flow inlet edge 126 and/or the flow outlet edge 127 can run obliquely or otherwise, approximately parallel, to the rotor axis of rotation 15, as shown in FIG Figures 2 and 3 is evident.
  • the flow inlet edge 126 and the flow outlet edge 127 are connected via an outer contour 128 (English tip).
  • the outer contour 128 lies directly opposite a housing contour 211 of the turbine housing 21 which surrounds the turbine wheel 12 .
  • the housing contour 211 is designed to correspond to the outer contour 128, with a course of the two contours 128 and 211 in the view shown running essentially parallel to one another with respect to FIG Axis of rotation 123.
  • the other turbine housing 21 is not shown for reasons of clarity.
  • the flow entry edge 126 has a maximum entry radius R in and the flow exit edge 127 has a maximum exit radius R out .
  • the outer contour 128 has an axial extension length L axTiP in relation to the axis of rotation 123 or the axis of rotation 15 of the rotor.
  • Outer contour 128 has an axial length portion L cover of axial extent L axTiP , in which a diameter of turbine wheel 12 is greater than a smallest diameter DA of turbine housing 21 at turbine blade outlet 129 for exhaust gas mass flow AM.
  • the housing contour 211 and the outer contour 128 are spaced apart from one another in such a way that a minimal gap is formed, with a smallest radial distance Tip clr between the housing contour 211 and the outer contour 128 prevailing.
  • turbochargers can be damaged with various adverse consequences. Based on Figures 4 to 6 exemplary embodiments of turbines 20 are described which, in the event of damage to the turbocharger 1, enable the functions and advantages mentioned at the outset.
  • figure 4 shows a turbine 20, which is essentially the turbine of Figures 2 and 3 is equivalent to.
  • the above parameter definitions apply analogously.
  • the turbine 20 is designed in such a way that the figure 5 equation shown is satisfied.
  • the condition is: L covers L axTip > 1 ⁇ hint clr R in ⁇ 3 ⁇ 4 ⁇ 1 1 ⁇ R out R in . This achieves the advantages and functions mentioned at the outset. It should be mentioned at this point that the ratio R out to R in can be called the trim (see Fig. figure 5 ) .
  • the turbine 20 is designed and manufactured, for example, in such a way that certain parameters are specified and the remaining parameters are determined using the conditions in order to obtain a necessary minimum value for L Cover .
  • the axial length portion L cover is increased and matched to the turbine housing 21 .
  • the turbine wheel 12 has an enlarged portion that is covered by the turbine housing 21 .
  • figure 6 shows a diagram in which the trim value is plotted on the x-axis and the ratio of L cover to L axTip is plotted on the y-axis.
  • Three curves according to the equation are exemplary figure 5 shown, which are distinguished by the percentage values shown on the right next to the diagram, which result from the ratio Tip clr to R in .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Supercharger (AREA)

Description

  • Die Erfindung betrifft einen Turbolader für eine Brennkraftmaschine.
  • Abgasturbolader werden vermehrt zur Leistungssteigerung bei Kraftfahrzeug-Verbrennungsmotoren eingesetzt. Dies geschieht immer häufiger mit dem Ziel, den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinblick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern. Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen, um einen Druck in einem Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung eines Brennraumes des Verbrennungsmotors mit Luft-Sauerstoff zu bewirken. Somit kann mehr Treibstoff, wie Benzin oder Diesel, pro Verbrennungsvorgang umgesetzt werden, also die Leistung des Verbrennungsmotors erhöht werden.
  • Dazu weist der Abgasturbolader eine im Abgastrakt des Verbrennungsmotors angeordnete Abgasturbine, einen im Ansaugtrakt angeordneten Frischluftverdichter und ein dazwischen angeordnetes Läuferlager auf. Die Abgasturbine weist ein Turbinengehäuse und ein darin angeordnetes, durch den Abgasmassenstrom angetriebenes Turbinenlaufrad auf. Der Frischluftverdichter weist ein Verdichtergehäuse und ein darin angeordnetes, einen Ladedruck aufbauendes Verdichterlaufrad auf. Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüberliegenden Enden einer gemeinsamen Welle, der sogenannten Läuferwelle, drehfest angeordnet und bilden so den sogenannten Turboladerläufer. Die Läuferwelle erstreckt sich axial zwischen Turbinenlaufrad und Verdichterlaufrad durch das zwischen Abgasturbine und Frischluftverdichter angeordnete Läuferlager und ist in diesem, in Bezug auf die Läuferwellenachse, radial und axial drehgelagert. Gemäß diesem Aufbau treibt das vom Abgasmassenstrom angetriebene Turbinenlaufrad über die Läuferwelle das Verdichterlaufrad an, wodurch der Druck im Ansaugtrakt des Verbrennungsmotors, bezogen auf den Frischluftmassenstrom hinter dem Frischluftverdichter, erhöht und dadurch eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff bewirkt wird.
  • Ein solcher Abgasturbolader für eine Brennkraftmaschine ist zum Beispiel in Dokument EP 3 144 541 A1 offenbart. Dieser weist ein Lagergehäuse auf, das zwischen einer Abgasturbine mit einem Turbinenlaufrad und einem Radialverdichter mit einem Verdichterlaufrad angeordnet ist und in dem eine Läuferwelle drehbar um eine Läuferdrehachse gelagert ist, auf der das Turbinenlaufrad und das Verdichterlaufrad jeweils drehfest angeordnet sind. Das Turbinenlaufrad weist eine Laufrad-Beschaufelung auf, und ist in dem Turbinengehäuse angeordnet, welches mechanisch an dem Lagergehäuse festgelegt ist. Das Turbinenlaufrad weist Turbinenschaufeln auf, die jeweils eine Strömungseintrittskante und eine Strömungsaustrittskante aufweisen, die einen Eintrittsradius und einen Austrittsradius des Turbinenlaufrads definieren. Die Turbinenschaufeln haben eine dem Turbinengehäuse zugewandte Außenkontur, die sich von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt. Das Turbinengehäuse weist eine Gehäusekontur auf, die der Außenkontur der Turbinenschaufeln gegenüberliegt, wobei zwischen der Gehäusekontur und der Außenkontur ein radialer Abstand ausgebildet ist, der ein berührungsloses Drehen des Turbinenlaufrades im Turbinengehäuse ermöglicht.
  • Weiterhin offenbart auch die Druckschrift US 2016 341 072 A1 einen Turbolader mit einer Abgasturbine, die ein Turbinenlaufrad aufweist, das in einem Turbinengehäuse mit einer Gehäusekontur angeordnet ist, wie bereits in dem vorausgehenden Absatz beschrieben.
  • Eine Aufgabe, die der Erfindung zugrunde liegt, ist es, ein Konzept für einen Turbolader anzugeben, welches zu einem sicheren Betrieb eines Turboladers beiträgt.
  • Es wird ein Turbolader für eine Brennkraftmaschine , gemäß Anspruch 1, offenbart. Der Turbolader weist ein Lagergehäuse auf, in dem eine Läuferwelle drehbar um eine Läuferdrehachse gelagert ist, wobei die Läuferwelle über zumindest zwei Radiallager in dem Lagergehäuse gelagert ist. Der Turbolader weist eine Abgasturbine mit einem Turbinenrad, welches drehfest auf der Läuferwelle angeordnet ist und welches eine Laufradbeschaufelung mit mehreren Turbinenschaufeln aufweist, und mit einem Turbinengehäuse, welches mechanisch an dem Lagergehäuse festgelegt ist und welches das Turbinenrad umgibt, auf. Bezüglich einer Meridionalansicht der Abgasturbine gilt:
    • Zumindest eine Turbinenschaufel des Turbinenrads weist eine Strömungseintrittskante und eine Strömungsaustrittskante für den Abgasmassenstrom auf.
    • Die Strömungseintrittskante weist einen maximalen Eintrittsradius Rin auf und die Strömungsaustrittskante weist einen maximalen Austrittsradius Rout auf, jeweils bezogen auf die Läuferdrehachse.
    • Die zumindest eine Turbinenschaufel weist eine dem Turbinengehäuse zugewandte Außenkontur auf, die sich von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt und eine axiale Erstreckungslänge LaxTip hat.
    • Das Turbinengehäuse weist eine Gehäusekontur auf, die der Außenkontur gegenüberliegt.
    • Die Außenkontur der zumindest einen Turbinenschaufel weist einen axialen Längenanteil Lcover der axialen Erstreckung LaxTip auf, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt für den Abgasmassenstrom AM.
    • Zwischen der Gehäusekontur und der Außenkontur ist bezüglich der Läuferdrehachse ein geringster radialer Abstand Tipclr ausgebildet.
  • Das Turbinengehäuse und das Turbinenrad sind derart ausgebildet und zueinander abgestimmt, dass die folgende Bedingung bzw. Gleichung erfüllt ist: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in .
    Figure imgb0001
  • Es wurde erkannt, dass es während des Betriebs des Turboladers, beispielsweise bei Prüfstandsläufen zur Auslegung des Turboladers oder Komponenten des Turboladers wie des Läufers, zu einem Schadensfall für den Turbolader kommen kann. Beispielsweise kann es zu einem Bauteilversagen der Läuferwelle oder der Laufräder, etwa einem Wellenbruch, kommen.
  • Im Falle eines Wellenbruchs der Läuferwelle kann beispielsweise das Turbinenrad nicht mehr axial durch ein Axiallager in seiner vorgesehenen Position gehalten werden. In diesem Fall würde das Turbinenrad vorwiegend durch aerodynamische Kräfte, etwa aufgrund vorherrschender Gasdrücke, in Richtung eines Turbinengehäuseausgangs für den Abgasmassenstrom bewegt. Dabei stößt der Anteil der Turbinenschaufeln des Turbinenrads, welcher einen größeren Durchmesser als ein Austrittsdurchmesser des Turbinengehäuses am stromabwärtigen Ende des Turbinenrads aufweist, am Turbinengehäuse an und behindert das Turbinenrad in seiner axialen Bewegung in Richtung Turbinengehäuseausgang. Es wurde weiter erkannt, dass, wenn dieser Anteil der Turbinenradschaufeln nicht ausreichend groß ist, die Turbinenschaufeln im Fall eines Wellenbruchs derart plastisch verformt werden, dass das Turbinenrad eine weitere, nicht gewollte axiale Verschiebung vollziehen kann.
  • Nachteilig in einem solchen Fall wäre unter anderem, dass Kolbenringe von Öldichtungen ihre ursprüngliche axiale Position verlassen könnten und so eine Dichtwirkung verloren ginge. Dies hätte unter anderem die negative Folge, dass Öl in solchen Mengen austreten könnte, dass der Verbrennungsmotor, in dessen Ölkreislauf der Turbolader eingekoppelt ist, unmittelbar abgestellt werden muss, um Schäden zu vermeiden. Ein Ölaustritt sollte jedoch unbedingt oder weitestgehend vermieden werden, um zumindest Notlaufeigenschaften des Systems zu gewährleisten. Darüber hinaus wurde erkannt, dass ein Wellenbruch zwischen den Öldichtungen, etwa den Kolbenringen beider Dichtungen, nachteilig ist, da neben den Laufrädern und den daran verbleibenden Wellenstummeln auch die Dichtungen den Turbolader verlassen könnten, was den beschriebenen negativen Ölverlust weiter begünstigen würde.
  • Der beschriebene Turbolader sieht vor, dass Turbinenrad und Turbinengehäuse entsprechend der oben formulierten Bedingung (Gleichung) ausgelegt und angeordnet sind. Die Bedingung gibt vor, dass ein Konturverlauf des Turbinengehäuses und/oder der zumindest einen Turbinenradschaufel gezielt umgestaltet sind im Vergleich zu bekannten Turbinen. Insbesondere wird ein Längenanteil (Lcover) der Turbinenradschaufel, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt, derart vergrößert, dass im Falle eines Wellenbruchs ein größerer Anteil der Turbinenrad Schaufeln bei einer axialen Verschiebung plastisch verformt würde, so dass eine weitere axiale Bewegung des Turbinenrad bezüglich der Läuferdrehachse behindert oder begrenzt ist. Beispielsweise wird ausgehend von einer konventionellen Gehäusekontur im Bereich des Turbinenrads allein durch die Umgestaltung der Längenanteil der Turbinenradschaufel, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt, vergrößert. Mit anderen Worten ist durch die Bedingung ein Mindestwert des genannten Längenanteils der Turbinenradschaufel definiert.
  • Durch eine derartige Auslegung anhand der vorgegebenen Gleichung wird dazu beigetragen, dass das Turbinenrad nach einem Wellenbruch, also in einem Schadensfall des Turboladers, einen größeren Widerstand gegen weitere axiale Verschiebung bei Kollision mit dem Gehäuse liefert. Die Gleichung ermöglicht also anhand von verschiedenen Parametern eine optimale Auslegung für Turbinenrad und Turbinengehäuse. Je nach Rahmenbedingungen für den Turbolader wie Einsatzzweck, Verwendungszweck oder anderen, können bestimmte Parameter dergleichen vorgegeben sein, wobei ein oder mehrere restliche Parameter mithilfe der Gleichung ermittelt werden können. So kann entsprechend den Rahmenbedingungen stets eine sinnvolle Abstimmung der Parameter erreicht werden. Insbesondere ist es mithilfe der Gleichung möglich, die für die obigen Vorteile und Funktionen notwendige axiale Überdeckungslänge Lcover auf einfache Art und Weise zu bestimmen.
  • Ein entsprechend der Bedingungen ausgelegten Turbolader trägt dazu bei, die eingangs genannten Nachteile bei einem Schadensfall, insbesondere den genannten Wellenbruch, zu vermeiden, insbesondere, wenn das Turbinenrad nur noch radial gelagert ist. Dabei ist es nicht zwingend notwendig, eine Rückenscheibe und/oder die Turbinenradschaufeln konstruktiv zu verstärken. Es ist mit anderen Worten dank der obigen Bedingung nicht notwendig, die Turbinenradschaufeln entsprechend aufzudicken. Auch ist es dank der obigen Bedingung nicht notwendig, ein niedriges Trimverhältnis, d.h. ein Verhältnis zwischen dem maximalen Austrittsradius Rout und dem maximalen Eintrittsradius Rin, vorzusehen. Dadurch können unter anderem Materialkosten eingespart werden. Beide solcher Maßnahmen wären nachteilig hinsichtlich des Leistungsverhaltens des Turboladers, beispielsweise aufgrund von höheren Massenträgheiten.
  • Meridionalansicht bedeutet beispielsweise eine ebene, zweidimensionale Ansicht, in welcher eine äußerste Kontur des Turbinenrads dargestellt ist, die das Turbinenrad bei einer Rotation um die Läuferdrehachse, die auch einer Drehachse des Turbinenrad entspricht, abfährt. Die Ansicht kann auch zumindest Teile des Turbinengehäuses betreffen oder einschließen, wobei insbesondere eine Innenkontur mit minimalstem Radius bezogen auf die Drehachse im Bereich des Turbinenrads dargestellt ist, die das Turbinengehäuse bei Rotation um die Drehachse abfahren würde.
  • Die der Außenkontur gegenüberliegende Gehäusekontur des Turbinengehäuses (englisch: shroud) ist korrespondierend zu der Außenkontur ausgebildet. Bei dem geringsten radialen Abstand Tipclr bezüglich der Läuferdrehachse kann es sich um einen Abstand handeln, der über den gesamten axialen Bereich zwischen der Eintrittskante und der Austrittskante, konstant ist. Es ist jedoch auch denkbar, dass der Abstand nur abschnittsweise, in einem einzelnen Bereich oder Punkt bezüglich der Drehachse vorliegt.
  • Mit dem axialen Längenanteil (Lcover) ist diejenige axiale Erstreckung der Außenkontur gemeint, in welchem ein Radius bzw. ein Durchmesser des Turbinenrads bezüglich der Läuferdrehachse größer ist als ein minimaler Durchmesser/Radius des Turbinengehäuses im Bereich eines stromabwärtigen Endes des Turbinenrads. Anders ausgedrückt ist in diesem Bereich der Durchmesser des Turbinenrads größer als ein kleinster Durchmesser des Turbinengehäuses. Mit anderen Worten handelt es sich um denjenigen axialen Bereich eines Turbinenrads, der, würde man das Turbinenrad und das Turbinengehäuse in eine Ebene normal zu der Läuferdrehachse projizieren, von dem Turbinengehäuse überdeckt oder überlappt ist. Mit wieder anderen Worten handelt es sich um denjenigen Bereich, der im Schatten des Turbinengehäuses liegt bezogen auf die Läuferdrehachse. Anders ausgedrückt hat die Außenkontur der zumindest einen Schaufel einen axialen Überdeckungsabschnitt, der dem axialen Längenanteil Lcover der axialen Erstreckung LaxTip entspricht.
  • Die folgenden Ausführungsformen tragen allesamt zu den obigen Vorteilen und Funktionen bei, wobei die obige Bedingung in vorteilhafter Weise weitergebildet ist durch die Vorgabe von einem oder mehreren Grenzwerten.
  • Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin: Tip clr R in 2,5 %
    Figure imgb0002
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin: Tip clr R in 2,0 %
    Figure imgb0003
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin: Tip clr R in 1,5 %
    Figure imgb0004
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip: L cover L axTip > 0,2
    Figure imgb0005
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip: L cover L axTip > 0,25
    Figure imgb0006
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Lcover zu Laxtip: L cover L axTip > 0,3
    Figure imgb0007
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in > 0,8
    Figure imgb0008
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in < 0,95
    Figure imgb0009
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in < 0,93
    Figure imgb0010
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in < 0,92
    Figure imgb0011
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in < 0,91
    Figure imgb0012
    .
  • Gemäß einer Ausführungsform gilt für das Verhältnis Rout zu Rin: R out R in < 0,90
    Figure imgb0013
    .
  • Das Verhältnis Rout zu Rin wird auch als Trim oder Trimverhältnis bezeichnet.
  • Gemäß Ausführungsformen liegt das Trimverhältnis zwischen 0,8 und einer der weiteren, oben angegebenen Grenzen.
  • Des Weiteren wird ein Turbinenrad für einen Turbolader gemäß einer der vorigen Ausführungsformen offenbart. Das Turbinenrad weist eine Laufradbeschaufelung mit mehreren Turbinenschaufeln auf. Das Turbinenrad ist derart ausgebildet, dass die folgende Bedingung erfüllt ist: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in
    Figure imgb0014
  • Dabei gilt bezüglich einer Meridionalansicht des Turbinenrads, dass
    • zumindest eine Turbinenschaufel des Turbinenrads eine Strömungseintrittskante und eine Strömungsaustrittskante für den Abgasmassenstrom aufweist;
    • Rin einen maximalen Eintrittsradius der Strömungseintrittskante und Rout einen maximalen Austrittsradius der Strömungsaustrittskante beschreibt, jeweils bezogen auf eine Drehachse des Turbinenrads;
    • LaxTip eine axiale Erstreckungslänge einer Außenkontur der zumindest einen Turbinenschaufel beschreibt, wobei sich die Außenkontur von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt und in einem bestimmungsgemäßen Betrieb einem umgebenden Turbinengehäuse zugewandt ist;
    • Lcover einen axialen Längenanteil der axialen Erstreckung LaxTip der Außenkontur beschreibt, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt;
    • Tipclr einen geringsten radialen Abstand zwischen einer Gehäusekontur des Turbinengehäuses, welche in dem bestimmungsgemäßen Betrieb der Außenkontur gegenüberliegt, und der Außenkontur bezüglich der Läuferdrehachse beschreibt.
  • Es gelten die obigen Ausführungen analog.
  • Das Turbinenrad ermöglicht die oben genannten Vorteile und Funktionen.
  • Des Weiteren wird ein Verfahren zum Herstellen eines Turboladers gemäß einer der obigen Ausführungsformen offenbart. Das Verfahren umfasst die Schritte:
    • Ermitteln und/oder Bestimmen der Parameter des maximalen Eintrittsradius Rin, des maximalen Austrittsradius Rout, der axialen Erstreckungslänge LaxTip, des axialen Längenanteils Lcover und des geringsten radialen Abstands Tipclr derart, dass für das Turbinenrad und das Turbinengehäuse die folgende Bedingung erfüllt ist: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in
      Figure imgb0015
      und
    • Fertigen des Turbinenrads und des Turbinengehäuses anhand der mittels der Bedingung ermittelten Parameter.
  • Es gelten die obigen Ausführungen analog.
  • Das Verfahren ermöglicht die oben genannten Vorteile und Funktionen.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung, ohne Einschränkung der Allgemeinheit, beschrieben.
  • Die Ausführungsbeispiele werden unter Zuhilfenahme der angehängten Figuren nachfolgend beschrieben. Gleichartige oder gleichwirkende Elemente sind figurenübergreifend mit den gleichen Bezugszeichen versehen.
  • In den Figuren zeigen:
  • Figur 1
    eine schematische Schnittansicht eines Turboladers,
    Figur 2 und 3
    zwei schematische Schnittansichten von Abgasturbinen eines Turboladers,
    Figur 4
    eine schematische Schnittansicht einer Abgasturbine eines Turboladers gemäß einem Ausführungsbeispiel,
    Figur 5
    eine Gleichung für die Auslegung der Abgasturbine gemäß der vorliegenden Erfindung und
    Figur 6
    eine Diagrammdarstellung der Gleichung der Figur 5 mit drei beispielhaften Parameterauswahlen.
  • Figur 1 zeigt schematisiert einen exemplarischen Abgasturbolader 1 in Schnittdarstellung, der eine Abgasturbine 20, einen Frischluftverdichter 30 und ein Läuferlager 40 aufweist. Die Abgasturbine 20 ist mit einem Wastegateventil 29 ausgestattet und ein Abgasmassestrom AM ist mit Pfeilen angedeutet. Der Frischluftverdichter 30 weist ein Schub-Umluftventil 39 auf und ein Frischluft-Massestrom FM ist ebenfalls mit Pfeilen angedeutet. Ein sogenannter Turboladerläufer 10 des Abgasturboladers 1 weist ein Turbinenlaufrad 12 (auch Turbinenrad bezeichnet) , ein Verdichterlaufrad 13 (auch Verdichterrad bezeichnet) sowie eine Läuferwelle 14 auf (auch Welle bezeichnet) . Der Turboladerläufer 10 rotiert im Betrieb um eine Läuferdrehachse 15 der Läuferwelle 14. Die Läuferdrehachse 15 und gleichzeitig die Turboladerachse 2 (auch Längsachse bezeichnet) sind durch die eingezeichnete Mittellinie dargestellt und kennzeichnen die axiale Ausrichtung des Abgasturboladers 1.
  • In der Regel weist ein gebräuchlicher Abgasturbolader 1, wie in Figur 1 dargestellt, einen mehrteiligen Aufbau auf. Dabei sind ein im Abgastrakt des Verbrennungsmotors anordenbares Turbinengehäuse 21, ein im Ansaugtrakt des Verbrennungsmotors anordenbares Verdichtergehäuse 31 und zwischen Turbinengehäuse 21 und Verdichtergehäuse 31 ein Lagergehäuse 41 bezüglich der gemeinsamen Turboladerachse 2 nebeneinander angeordnet und montagetechnisch miteinander verbunden.
  • Das Lagergehäuse 41 ist axial zwischen dem Turbinengehäuse 21 und dem Verdichtergehäuse 31 angeordnet. Im Lagergehäuse 41 ist die Läuferwelle 14 des Turboladerläufers 10 sowie die erforderliche Lageranordnung zur Axiallagerung und zur Drehlagerung der Läuferwelle 14 aufgenommen.
  • Eine weitere Baueinheit des Abgasturboladers 1 stellt der Turboladerläufer 10 dar, der die Läuferwelle 14, das in dem Turbinengehäuse 21 angeordnete Turbinenlaufrad 12 mit einer Laufradbeschaufelung 121 und das in dem Verdichtergehäuse 31 angeordnete Verdichterlaufrad 13 mit einer Laufradbeschaufelung 131 aufweist. Mit anderen Worten haben das Turbinenrad 12 sowie das Verdichterrad 13 mehrere Schaufeln, die auf einer entsprechenden Nabe angeordnet sind. Das Turbinenlaufrad 12 und das Verdichterlaufrad 13 sind auf den sich gegenüberliegenden Enden der gemeinsamen Läuferwelle 14 angeordnet und mit dieser drehfest verbunden. Die Läuferwelle 14 erstreckt sich in Richtung der Turboladerachse 2 axial durch das Lagergehäuse 41 und ist in diesem axial und radial um seine Längsachse, die Läuferdrehachse 15, drehgelagert, wobei die Läuferdrehachse 15 mit der Turboladerachse 2 zusammenfällt. Der Turboladerläufer 10 ist mit seiner Läuferwelle 14 mittels zweier Radiallager 42 und einer Axiallagerscheibe 43 gelagert. Sowohl die Radiallager 42 als auch die Axiallagerscheibe 43 werden über Ölversorgungskanäle 44 eines Ölanschlusses 45 mit Schmiermittel versorgt.
  • Das Turbinengehäuse 21 weist einen oder mehrere ringförmig um die Turboladerachse 2 und das Turbinenlaufrad 12 angeordnete, sich schneckenförmig zum Turbinenlaufrad 12 hin verjüngende Abgas-Ringkanäle, sogenannte Abgasfluten 22 auf. Diese Abgasfluten 22 weisen einen jeweiligen oder gemeinsamen, tangential nach außen gerichteten Abgaszuführkanal 23 mit einem Krümmer-Anschlussstutzen 24 zum Anschluss an einen Abgaskrümmer (nicht dargestellt) eines Verbrennungsmotors auf, durch den der Abgasmassenstrom AM in die jeweilige Abgasflute 22 und dann auf das Turbinenlaufrad 12 strömt. Das Turbinengehäuse 21 weist weiterhin einen Abgasabführkanal 26 auf, der vom axialen Ende des Turbinenlaufrades 12 weg in Richtung der Turboladerachse 2 verläuft und einen Auspuff-Anschlussstutzen 27 zum Anschluss an das Auspuffsystem (nicht dargestellt) des Verbrennungsmotors aufweist. Über diesen Abgasabführkanal 26 wird der aus dem Turbinenlaufrad 12 austretende Abgasmassenstrom AM in das Auspuffsystem des Verbrennungsmotors abgeführt.
  • Weitere Details des Turboladers 1 werden an dieser Stelle nicht näher erläutert. Es sei darauf hingewiesen, dass der in Figur 1 beschriebene Turbolader 1 exemplarisch zu verstehen ist und alternativ auch anderweitige Ausgestaltungen haben kann, ohne dass sich Einschränkungen für die nachfolgende Beschreibung von Ausführungsbeispielen der Erfindung anhand der Figuren 4 bis 6 ergeben.
  • Figuren 2 und 3 zeigen jeweils in einer Meridionalansicht Abgasturbinen 20 eines Turboladers 1, die jeweils ein Turbinengehäuse 21 und ein Turbinenrad 12 mit mehreren Turbinenschaufeln 122 aufweisen. In Figur 2 ist ein Radial-Axial-Turbinenrad und in Figur 3 ist ein Radial-Turbinenrad in einem schematischen Halbschnitt dargestellt. Die Läuferdrehachse 15, die einer Drehachse 123 des Turbinenrads 12 entspricht, ist jeweils eingezeichnet. In den Darstellungen der Figuren 2 und 3 ist jeweils eine von mehreren Turbinenschaufeln 122 dargestellt, die typischerweise auf der Nabe des Turbinenrads 12 angeordnet sind.
  • Die Turbinen 20 der beiden Figuren 2 und 3 werden exemplarisch anhand der Figur 2 beschrieben.
  • Das Turbinenrad 12 hat ein stromaufwärtiges, axiales Ende 124 und ein stromabwärtiges, axiales Ende 125. Wie in der Meridionalansicht erkennbar, hat die dargestellte Turbinenschaufel 122, wie auch alle weiteren Turbinenschaufeln, eine Strömungseintrittskante 126 für den Abgasmassenstrom AM und eine Strömungsaustrittskante 127 für den Abgasmassenstrom AM nach dem Austritt aus dem Turbinenrad 12 bzw. aus den Turbinenschaufeln 122. Die Strömungseintrittskante 126 und/oder die Strömungsaustrittskante 127 können schräg oder andersartig, etwa parallel, zur Läuferdrehachse 15 verlaufen, wie anhand der Figuren 2 und 3 ersichtlich ist. Die Strömungseintrittskante 126 und die Strömungsaustrittskante 127 sind über eine Außenkontur 128 (englisch Tip) verbunden. Der Außenkontur 128 liegt direkt gegenüber einer Gehäusekontur 211 des Turbinengehäuses 21, welches das Turbinenrad 12 umgibt. Die Gehäusekontur 211 ist korrespondierend zu der Außenkontur 128 ausgebildet, wobei ein Verlauf der beiden Konturen 128 und 211 in der gezeigten Ansicht im Wesentlichen parallel zueinander verläuft bezüglich der Drehachse 123. Das weitere Turbinengehäuse 21 ist aus Übersichtlichkeitsgründen nicht dargestellt.
  • Es wurde erkannt, dass sich die gezeigten Abgasturbinen 20 der Figuren 2 und 3 durch eine Mehrzahl von Parametern definieren lassen, die im Folgenden erläutert werden.
  • Die Strömungseintrittskante 126 hat einen maximalen Eintrittsradius Rin und die Strömungsaustrittskante 127 hat einen maximalen Austrittsradius Rout. Die Außenkontur 128 hat bezogen auf die Drehachse 123 bzw. die Läuferdrehachse 15 eine axiale Erstreckungslänge LaxTiP. Die Außenkontur 128 hat einen axialen Längenanteil Lcover der axialen Erstreckung LaxTiP, in welchem ein Durchmesser des Turbinenrads 12 größer ist als ein kleinster Durchmesser DA des Turbinengehäuses 21 am Turbinenschaufelaustritt 129 für den Abgasmassenstrom AM. Weiterhin sind die Gehäusekontur 211 und die Außenkontur 128 so zueinander beabstandet, dass sich ein minimaler Spalt ausbildet, wobei ein geringster radialer Abstand Tipclr zwischen der Gehäusekontur 211 und der Außenkontur 128 vorherrscht.
  • Wie eingangs erwähnt, kann es bei Turboladern zu einem Schadensfall mit verschiedenen nachteiligen Folgen kommen. Anhand der Figuren 4 bis 6 werden Ausführungsbeispiele von Turbinen 20 beschrieben, die im Schadensfall des Turboladers 1 die eingangs genannten Funktionen und Vorteile ermöglichen.
  • Figur 4 zeigt eine Turbine 20, die im Wesentlichen den Turbinen der Figuren 2 und 3 entspricht. Die obigen Parameterdefinitionen gelten analog. Im Unterschied zu den beschriebenen Turbinen der Figuren 2 und 3 ist die Turbine 20 so ausgebildet, dass die in Figur 5 gezeigte Gleichung erfüllt ist. Die Bedingung lautet: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in .
    Figure imgb0016
    Dadurch werden die eingangs genannten Vorteile und Funktionen erreicht. Es sei an dieser Stelle erwähnt, dass das Verhältnis Rout zu Rin als Trim bezeichnet werden kann (s. Figur 5) .
  • Die Auslegung und Herstellung der Turbine 20 erfolgt beispielsweise derart, dass bestimmte Parameter vorgeben sind und mittels der Bedingungen restliche Parameter ermittelt werden, um einen notwenigen Mindestwert für LCover zu erhalten. Vorteilhaft ist, wie auch in der Figur 4 im Unterschied zu den Beispielen der Figuren 2 und 3 zu sehen ist, dass der axiale Längenanteil Lcover vergrößert und mit dem Turbinengehäuse 21 abgestimmt ist. Dadurch hat das Turbinenrad 12 einen vergrößerten Anteil, der vom Turbinengehäuse 21 überdeckt ist.
  • Figur 6 zeigt ein Diagramm, bei welchem auf der X-Achse der Trimwert und auf der Y-Achse das Verhältnis aus Lcover zu LaxTip aufgetragen sind. Beispielhaft sind drei Kurven der Gleichung gemäß Figur 5 dargestellt, die sich durch die rechts neben dem Diagramm dargestellten Prozentwerte, die sich aus dem Verhältnis Tipclr zu Rin ergeben, unterscheiden.

Claims (10)

  1. Turbolader (1) für eine Brennkraftmaschine, aufweisend
    - ein Lagergehäuse (41), in dem eine Läuferwelle (14) drehbar um eine Läuferdrehachse (15) gelagert ist; und
    - eine Abgasturbine (20) mit einem Turbinenrad (12), welches drehfest auf der Läuferwelle (14) angeordnet ist und welches eine Laufradbeschaufelung (121) mit mehreren Turbinenschaufeln (122) aufweist, und mit einem Turbinengehäuse (21), welches mechanisch an dem Lagergehäuse (41) festgelegt ist und welches das Turbinenrad (12) umgibt;
    wobei bezüglich einer Meridionalansicht die Abgasturbine (20)
    - zumindest eine Turbinenschaufel (122) des Turbinenrads (12) eine Strömungseintrittskante (126) und eine Strömungsaustrittskante (127) für den Abgasmassenstrom (AM) aufweist,
    - die Strömungseintrittskante (126) einen maximalen Eintrittsradius Rin aufweist und die Strömungsaustrittskante (127) einen maximalen Austrittsradius Rout aufweist, jeweils bezogen auf die Läuferdrehachse (15);
    - die zumindest eine Turbinenschaufel (122) eine dem Turbinengehäuse (21) zugewandte Außenkontur (128) aufweist, die sich von der Strömungseintrittskante (126) bis zu der Strömungsaustrittskante (127) erstreckt und eine axiale Erstreckungslänge LaxTip hat;
    - das Turbinengehäuse (21) eine Gehäusekontur (211) aufweist, die der Außenkontur (128) gegenüberliegt;
    - die Außenkontur (128) der zumindest einen Turbinenschaufel (122) einen axialen Längenanteil Lcover der axialen Erstreckung LaxTip aufweist, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt für den Abgasmassenstrom AM; und
    - zwischen der Gehäusekontur (211) und der Außenkontur (128) bezüglich der Läuferdrehachse (15) ein geringster radialer Abstand Tipclr ausgebildet ist;
    und wobei die Abgasturbine dadurch gekennzeichnet ist,
    dass das Turbinengehäuse (21) und das Turbinenrad (12) derart ausgebildet und zueinander abgestimmt sind, dass die folgende Bedingung erfüllt ist:
    L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in .
    Figure imgb0017
  2. Turbolader (1) nach Anspruch 1, wobei für das Verhältnis Tipclr zu Rin gilt: Tip clr R in 2,5 %
    Figure imgb0018
    :
  3. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Tipclr zu Rin gilt: Tip clr R in 2,0 %
    Figure imgb0019
    .
  4. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Tipclr zu Rin gilt: Tip clr R in 1,5 %
    Figure imgb0020
    .
  5. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Lcover zu Laxtip gilt: L cover L axTip > 0,2
    Figure imgb0021
    .
  6. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Lcover zu Laxtip gilt: L cover L axTip > 0,25
    Figure imgb0022
    .
  7. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Lcover zu Laxtip gilt: L cover L axTip > 0,3
    Figure imgb0023
    .
  8. Turbolader (1) nach einem der vorhergehenden Ansprüche, wobei für das Verhältnis Rout zu Rin gilt: R out R in > 0,8
    Figure imgb0024
    , bevorzugt R out R in <
    Figure imgb0025
    0,95, besonders bevorzugt 0,8 < R out R in < 0,95
    Figure imgb0026
    .
  9. Turbinenrad (12) für einen Turbolader (1) nach einem der vorhergehenden Ansprüche, aufweisend eine Laufradbeschaufelung (121) mit mehreren Turbinenschaufeln (122), dadurch gekennzeichnet,
    dass das Turbinenrad (12) derart ausgebildet ist, dass die folgende Bedingung erfüllt ist: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in
    Figure imgb0027
    wobei bezüglich einer Meridionalansicht des Turbinenrads (12)
    - zumindest eine Turbinenschaufel (122) des Turbinenrads (12) eine Strömungseintrittskante (126) und eine Strömungsaustrittskante (127) für den Abgasmassenstrom (AM) aufweist;
    - Rin einen maximalen Eintrittsradius der Strömungseintrittskante (126) und Rout einen maximalen Austrittsradius der Strömungsaustrittskante (127) beschreibt, jeweils bezogen auf eine Drehachse (123) des Turbinenrads (12);
    - LaxTip eine axiale Erstreckungslänge einer Außenkontur (128) der zumindest einen Turbinenschaufel (122) beschreibt, wobei sich die Außenkontur (128) von der Strömungseintrittskante (126) bis zu der Strömungsaustrittskante (127) erstreckt und in einem bestimmungsgemäßen Betrieb einem umgebenden Turbinengehäuse (21) zugewandt ist;
    - Lcover einen axialen Längenanteil der axialen Erstreckung LaxTip der Außenkontur (128) beschreibt, in welchem ein Durchmesser des Turbinenrads größer ist als ein kleinster Durchmesser DA des Turbinengehäuses am Turbinenschaufelaustritt für den Abgasmassenstrom AM;
    - Tipclr einen geringsten radialen Abstand zwischen einer Gehäusekontur (211) des Turbinengehäuses (21), welche in dem bestimmungsgemäßen Betrieb der Außenkontur (128) gegenüberliegt, und der Außenkontur (128) bezüglich der Drehachse (123) beschreibt.
  10. Verfahren zum Herstellen eines Turboladers (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
    dass es die folgenden Schritte umfasst:
    - Ermitteln und/oder Bestimmen der Parameter des maximalen Eintrittsradius Rin, des maximalen Austrittsradius Rout, der axialen Erstreckungslänge LaxTip, des axialen Längenanteils Lcover und des geringsten radialen Abstands Tipclr derart, dass für das Turbinenrad (12) und das Turbinengehäuse (21) die folgende Bedingung erfüllt ist: L cover L axTip > 1 Tip clr R in × 3 π 4 × 1 1 R out R in
    Figure imgb0028
    und
    - Fertigen des Turbinenrads (12) und des Turbinengehäuses (21) anhand der mittels der Bedingung ermittelten Parameter.
EP18718704.2A 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinenrad Active EP3601739B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017205457.3A DE102017205457A1 (de) 2017-03-30 2017-03-30 Turbolader für eine Brennkraftmaschine sowie Turbinengehäuse
PCT/EP2018/057247 WO2018177864A1 (de) 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinengehäuse

Publications (2)

Publication Number Publication Date
EP3601739A1 EP3601739A1 (de) 2020-02-05
EP3601739B1 true EP3601739B1 (de) 2022-06-15

Family

ID=62025774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18718704.2A Active EP3601739B1 (de) 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinenrad

Country Status (5)

Country Link
US (1) US11002154B2 (de)
EP (1) EP3601739B1 (de)
CN (1) CN110520598B (de)
DE (1) DE102017205457A1 (de)
WO (1) WO2018177864A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940203A1 (de) 2020-07-16 2022-01-19 BMTS Technology GmbH & Co. KG Abgasturbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160341072A1 (en) * 2014-02-04 2016-11-24 Borgwarner Inc. Heat shield for mixed flow turbine wheel turbochargers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767185B2 (en) * 2002-10-11 2004-07-27 Honeywell International Inc. Turbine efficiency tailoring
WO2005119030A1 (de) 2004-06-04 2005-12-15 Abb Turbo Systems Ag Turbinennabenkühlung für abgasturbine
DE102009000214A1 (de) * 2009-01-14 2010-09-02 Ford Global Technologies, LLC, Dearborn Brennkraftmaschine mit Abgasturboaufladung
US9039353B2 (en) * 2009-07-02 2015-05-26 Borgwarner Inc. Turbocharger turbine
US9995158B2 (en) * 2013-01-14 2018-06-12 Borg Warner Inc. Split nozzle ring to control EGR and exhaust flow
DE102013210990A1 (de) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Abgasturbolader mit einem Radial-Axial-Turbinenrad
DE102013223873B4 (de) * 2013-11-22 2018-09-20 Continental Automotive Gmbh Abgasturbolader mit einem Twinscroll-Turbinengehäuse
US10267332B2 (en) * 2014-07-02 2019-04-23 Mitsubishi Heavy Industries, Ltd. Compressor
GB2533351A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Internal combustion engine having a two stage turbocharger
SE541037C2 (en) * 2015-04-29 2019-03-12 Scania Cv Ab A stopping arrangement, an intake and exhaust system, and a vehicle comprising such a system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160341072A1 (en) * 2014-02-04 2016-11-24 Borgwarner Inc. Heat shield for mixed flow turbine wheel turbochargers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EARL ET AL: "Chapter 7: Fundamentals of Turbine Design", 1 May 2003, HANDBOOK OF TURBOMACHINERY, CRC PRESS LLC, PAGE(S) 365 - 426, ISBN: 978-0-8247-0995-2, XP009532842 *

Also Published As

Publication number Publication date
US11002154B2 (en) 2021-05-11
WO2018177864A1 (de) 2018-10-04
CN110520598A (zh) 2019-11-29
EP3601739A1 (de) 2020-02-05
CN110520598B (zh) 2022-05-13
DE102017205457A1 (de) 2018-10-04
US20200003079A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
DE102014216162B4 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP1706597B1 (de) Strömungsmaschine mit einem axial verschiebbaren rotor
EP2136052A1 (de) Turboproptriebwerk mit einer Vorrichtung zum Erzeugen eines Kühlluftstroms
EP0243596B1 (de) Axialdrallregler für einen Abgasturbolader für Verbrennungsmotoren
WO2006117073A1 (de) Abgasturbolader für eine brennkraftmaschine
EP3682092B1 (de) Abgasturbine mit diffusor
DE102004029830A1 (de) Turbinenrad in einer Abgasturbine eines Abgasturboladers
DE102018221812A1 (de) Abgasturbine mit einer Abgasleiteinrichtung für einen Abgasturbolader und Abgasturbolader
DE10028733A1 (de) Abgasturbine für einen Turbolader
EP2112332B1 (de) Trägerring einer Leitvorrichtung mit Sperrluftkanal
DE102013201771A1 (de) Verdichter eines Abgasturboladers
EP3601739B1 (de) Turbolader für eine brennkraftmaschine sowie turbinenrad
DE102015006288A1 (de) Turbine für einen Abgasturbolader, insbesondere einer Verbrennungskraftmaschine, sowie Antriebseinrichtung für einen Kraftwagen
DE102012022647A1 (de) Abgasturbolader für eine Verbrennungskraftmaschine
EP3495639B1 (de) Verdichtermodul für eine strömungsmaschine, das die grenzschicht in einem verdichterzwischengehäuse abbaut
EP3636880B1 (de) Turbinenrad
DE102010020307A1 (de) Laufrad für eine Fluidenergiemaschine
EP4031752B1 (de) Konzentrische einleitung des waste-gate-massenstroms in einen strömungsoptimierten axialdiffusor
DE102012019632A1 (de) Radialverdichter für einen Abgasturbolader
DE102020004918B4 (de) Turbinenrad für eine Strömungsmaschine, insbesondere eines Kraftfahrzeugs, Strömungsmaschine sowie Kraftfahrzeug mit Strömungsmaschine
DE102016213626A1 (de) Turbine für einen Abgasturbolader
DE102018221147B4 (de) Aufgeladene Brennkraftmaschine mit Verdichter und stromaufwärts des Verdichters angeordneter Leiteinrichtung
DE102015016591A1 (de) Turbine für einen Abgasturbolader
WO2023061641A1 (de) Turboladergehäuse und abgasturbolader mit integral-turborotorgehäuse und verdichtergehäusedeckel
WO2023180071A1 (de) Düsenring für eine radialturbine, abgasturbine und abgasturbolader

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLAUS, MICHAEL

Inventor name: BOENING, RALF

Inventor name: SANDOR, IVO

Inventor name: WITTWER, SEBASTIAN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201105

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009924

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009924

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230322

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230322

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230322

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240331

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1498518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230322