WO2018177864A1 - Turbolader für eine brennkraftmaschine sowie turbinengehäuse - Google Patents

Turbolader für eine brennkraftmaschine sowie turbinengehäuse Download PDF

Info

Publication number
WO2018177864A1
WO2018177864A1 PCT/EP2018/057247 EP2018057247W WO2018177864A1 WO 2018177864 A1 WO2018177864 A1 WO 2018177864A1 EP 2018057247 W EP2018057247 W EP 2018057247W WO 2018177864 A1 WO2018177864 A1 WO 2018177864A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
housing
turbine wheel
turbocharger
flow
Prior art date
Application number
PCT/EP2018/057247
Other languages
English (en)
French (fr)
Inventor
Ivo Sandor
Sebastian WITTWER
Michael Klaus
Ralf Böning
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201880021605.5A priority Critical patent/CN110520598B/zh
Priority to EP18718704.2A priority patent/EP3601739B1/de
Publication of WO2018177864A1 publication Critical patent/WO2018177864A1/de
Priority to US16/564,458 priority patent/US11002154B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/54Radial bearings

Definitions

  • Turbocharger for an internal combustion engine and turbine housing The invention relates to a turbocharger for an internal combustion engine.
  • Exhaust gas turbochargers are increasingly used to increase performance in automotive internal combustion engines. This happens more and more often with the aim of reducing the internal combustion engine with the same or even increased performance in size and weight while reducing consumption and thus the CO 2 emissions, in view of ever stricter legal requirements in this regard.
  • the operating principle is to use the energy contained in the exhaust gas flow to increase a pressure in an intake tract of the internal combustion engine and thus to effect a better filling of a combustion chamber of the internal combustion engine with air-oxygen.
  • more fuel such as gasoline or diesel, per combustion process can be implemented, so the performance of the engine can be increased.
  • the exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, a fresh air compressor arranged in the intake tract and a rotor bearing arranged therebetween.
  • the exhaust gas turbine has a turbine housing and a turbine runner, which is arranged therein and driven by the exhaust gas mass flow.
  • the fresh air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up a boost pressure.
  • the turbine runner and the compressor runner are rotatably mounted on the opposite ends of a common shaft, the so-called rotor shaft, and thus form the so-called turbocharger rotor.
  • the rotor shaft extends axially between the turbine runner and the compressor runner through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is radially and axially rotatably mounted therein, with respect to the rotor shaft axis.
  • this structure drives driven by the exhaust gas mass flow turbine wheel on the rotor shaft to the compressor impeller, whereby the pressure in the intake of the engine, based on the
  • Air-oxygen is effected.
  • An object of the invention is to provide a concept for a turbocharger which contributes to the safe operation of a turbocharger.
  • a turbocharger for an internal combustion engine has a bearing housing in which a rotor shaft is rotatably mounted about a rotor axis of rotation, wherein the rotor shaft is mounted in the bearing housing via at least two radial bearings.
  • the turbocharger has an exhaust gas turbine with a turbine wheel, which is arranged rotationally fixed on the rotor shaft and which has a impeller Beschau felung with a plurality of turbine blades, and with a turbine housing, which is mechanically fixed to the bearing housing and which surrounds the turbine wheel on.
  • a meridionalansieht the exhaust gas turbine applies:
  • At least one turbine blade of the turbine wheel has a flow inlet edge and a flow outlet edge for the exhaust gas mass flow.
  • the flow inlet edge has a maximum inlet radius R in and the flow outlet edge has a maximum outlet radius R out , in each case relative to the rotor axis of rotation.
  • the at least one turbine blade has a the
  • Turbine housing facing outer contour which extends from the flow inlet edge to the flow outlet edge and an axial extension length L axTlp has.
  • the turbine housing has a housing contour, which is opposite to the outer contour.
  • the outer contour of the at least one turbine blade has an axial length portion L cover the axial extent L axTip , in which the at least one turbine blade is axially covered by the turbine housing .
  • the turbine housing and the turbine wheel are designed and tuned to one another such that the following condition resp. Equation is satisfied:
  • turbocharger failure may occur during operation of the turbocharger, such as in turbocharger design test stands or turbocharger and rotor components.
  • turbocharger design test stands or turbocharger and rotor components.
  • the turbine wheel In the case of a shaft breakage of the rotor shaft, for example, the turbine wheel can no longer be held axially by a thrust bearing in its intended position. In this case, the turbine wheel would be moved in the direction of a turbine housing outlet for the exhaust gas mass flow mainly by aerodynamic forces, for example due to prevailing gas pressures. In this case, the proportion of the turbine blades of the turbine wheel, which has a larger diameter than an outlet diameter of the turbine housing at the downstream end of the turbine wheel, abuts against the turbine housing and obstructs the turbine wheel in its axial movement in the direction of the turbine housing outlet. It has further been recognized that if this fraction of turbine blades is not sufficiently large, the turbine blades will be plastically deformed in the event of a shaft fracture such that the turbine wheel may undergo another unintentional axial displacement.
  • the turbocharger described provides that the turbine wheel and turbine housing are designed and arranged according to the above formulated condition (equation).
  • the condition specifies that a contour profile of the turbine housing and / or the at least one turbine wheel blade are transformed in a targeted manner in comparison to known turbines.
  • the condition defines a minimum value of the length fraction of the turbine blade that is axially covered.
  • a turbocharger designed according to the conditions helps to avoid the disadvantages mentioned above in the event of damage, in particular the shaft breakage mentioned, in particular if the turbine wheel is only radially mounted. It is not absolutely necessary to constructively reinforce a back plate and / or the Turbinenradschaufein. In other words, thanks to the above condition, it is not necessary to thicken the turbine wheel blade accordingly. Also, thanks to the above condition, it is not necessary to have a low trim ratio, ie a ratio between the maximum exit radius R out
  • Meridionalansieht means, for example, a planar, two-dimensional view, in which an outermost contour of the turbine wheel is shown, the turbine wheel at a
  • Rotation about the rotor axis of rotation which also corresponds to a rotational axis of the turbine, moves off.
  • the view may also relate to or include at least Tei le of the turbine housing, in particular an inner contour with minimal radius relative to the rotational axis in the region of the turbine wheel is dargestel lt, which would leave the turbine housing during rotation about the axis of rotation.
  • the outer contour of the opposite housing contour of the turbine housing (English: shroud) is formed corresponding to the outer contour.
  • At the lowest radial distance tip. : I, with respect to the rotor axis of rotation may be by a distance which is constant over the entire axial region between the leading edge and the trailing edge. However, it is also conceivable that the distance is present only in sections, in a single area or point with respect to the axis of rotation.
  • the axial length portion is meant the axial extent of the outer contour in which a radius resp. a diameter of the turbine wheel with respect to the rotor axis of rotation is greater than a minimum diameter / radius of the turbine housing in the region of a downstream end of the turbine wheel.
  • the diameter of the turbine wheel is larger than a smallest diameter of the turbine housing.
  • it is Denj enigen axial region of a turbine wheel, which would be the turbine wheel and the Turbi ⁇ nengepur in a plane normal to the rotor axis of rotation pro- j ifug, is covered or overlapped by the turbine housing.
  • the outer contour of the at least one blade has an axial overlap portion which has the axial length portion L cover of the axial extent L axTip .
  • the ratio R out to R in is also referred to as trim or trim ratio.
  • the trim ratio is between 0, 8 and one of the other limits specified above.
  • a turbine wheel for an exhaust gas turbocharger according to one of the preceding embodiments is disclosed.
  • the turbine wheel has impeller inspection with multiple turbine blades.
  • the turbine wheel is configured such that the following
  • At least one turbine blade of the turbine wheel has a flow inlet edge and a flow outlet edge for the exhaust gas mass flow
  • L axTip describes an axial extension length of an outer contour of the at least one turbine blade, wherein the outer contour extends from the flow inlet edge to the flow outlet edge and, in normal operation, faces a surrounding turbine housing;
  • Tip clr a minimum radial distance between a housing contour of the turbine housing, which in the normal operation of the outer contour opposite, and describes the outer contour with respect to the rotor axis of rotation.
  • the turbine wheel allows the above advantages and features.
  • a method of manufacturing a turbocharger according to any one of the above embodiments is disclosed.
  • the method comprises the steps: Determining and / or determining the parameters of the maximum entry radius R in , the maximum exit radius R out , the axial extension length L axTip , the axial length portion L cover and the minimum radial distance tip clr such that for the turbine wheel and the turbine housing the following Condition is fulfilled:
  • the method allows the above advantages and functions.
  • FIG. 1 shows a schematic sectional view of a turbocharger
  • FIGS. 2 and 3 are two diagrammatic sectional views of exhaust turbines of a turbocharger
  • Figure 4 is a schematic sectional view of an exhaust gas turbine of a turbocharger according to an exemplary embodiment
  • Figure 5 is an equation for the interpretation of the exhaust gas turbine according to the imple mentation game
  • FIG. 6 shows a diagram representation of the equation of FIG. 5 with three exemplary parameter selections.
  • FIG. 1 schematically shows an exemplary exhaust gas turbocharger 1 in a sectional view, which has an exhaust gas turbine 20, a
  • Fresh air compressor 30 and a rotor bearing 40 has.
  • the exhaust gas turbine 20 is equipped with a Wastegateventi 129 and an exhaust gas mass flow AM is indicated by arrows.
  • Fresh air compressor 30 has a thrust recirculation valve 39 and a fresh air mass flow FM is also indicated by arrows.
  • turbocharger rotor 10 rotates in operation about a rotor axis of rotation 15 of the rotor shaft 14.
  • a common exhaust-gas turbocharger 1 As a rule, a common exhaust-gas turbocharger 1, as shown in FIG. 1, has a multi-part construction.
  • a turbine housing 21 which can be arranged in the exhaust tract of the internal combustion engine
  • a compressor housing 31 which can be arranged in the intake tract of the internal combustion engine and between turbine housing 21 and compressor housing 31 a bearing housing 41 are arranged side by side with respect to the common turbocharger axle 2 and are connected to one another by assembly technology.
  • the bearing housing 41 is disposed axially between the turbine housing 21 and the compressor housing 31.
  • the rotor shaft 14 of the turbocharger rotor 10 and the required LageranOrdnung for axial bearing and for pivotal mounting of the rotor shaft 14 is added.
  • turbocharger rotor 10 Another structural unit of the exhaust gas turbocharger 1 is the turbocharger rotor 10, the Läuferwel le 14, which is arranged in the turbine housing 21 turbine wheel 12 with a Impeller blading 121 and arranged in the compressor housing 31 compressor impeller 13 having an impeller blading 131 has.
  • the turbine wheel 12 and the compressor wheel 13 have a plurality of blades arranged on a corresponding hub.
  • the turbine runner 12 and the compressor wheel 13 are arranged on the Weg1 legend ends of the common Läuferwel le 14 and rotatably connected thereto.
  • the Läuferwel le 14 extends axially in the direction of the turbocharger 2 through the bearing housing 41 and is rotatably mounted in this axially and radially about its longitudinal axis, the rotor axis of rotation 15, wherein the rotor axis of rotation 15 coincides with the turbocharger axis 2.
  • the turbocharger rotor 10 is supported by its rotor shaft 14 by means of two radial bearings 42 and an axial bearing disk 43. Both the radial bearing 42 and the axial bearing disc 43 are supplied via oil supply channels 44 of an oil connection 45 with lubricant.
  • Turbine housing 21 has one or more exhaust gas annular channels, so-called exhaust gas passages 22, which are arranged annularly around turbocharger axis 2 and turbine runner 12 and taper in the shape of a helix toward turbine runner 12.
  • These exhaust gas flutes 22 have a common or common, tangentially outwardly directed Abgaszu 1500kanal 23 with a manifold connecting piece 24 for connection to an exhaust manifold (not shown) of an internal combustion engine through which the exhaust gas mass flow AM into the j ehyroid exhaust flute 22 and then flows on the turbine runner 12.
  • the turbine housing 21 further includes an exhaust discharge passage 26 extending from the axial end of the turbine runner 12 toward the turbocharger shaft 2 and having an exhaust port 27 for connection to the exhaust system (not shown) of the engine. About this Abgasab adoptedkanal 26 exiting the turbine wheel 12 exhaust gas mass flow AM is discharged into the exhaust system of the engine.
  • turbocharger 1 Further details of the turbocharger 1 are not explained in detail at this point. It should be noted that the turbocharger 1 described in Figure 1 is to be understood as an example and Alternatively, it may also have other embodiments, without any limitations for the following description of imple mentation of the invention with reference to Figures 4 to 6 result.
  • FIGS. 2 and 3 each show in a meridional manner exhaust gas turbines 20 of a turbocharger 1, which respectively comprise a turbine housing 21 and a turbine wheel 12 with a plurality of turbine blades 122.
  • FIG. 2 shows a radial-axial turbine wheel
  • FIG. 3 shows a radial turbine wheel in a schematic half section.
  • the rotor rotation axis 15, which corresponds to a rotation axis 123 of the turbine wheel 12, is indicated in each case.
  • one of a plurality of turbine blades 122 is shown, which are typically arranged on the hub of the turbine wheel 12.
  • the turbine wheel 12 has an upstream, axial end 124 and a downstream, axial end 125.
  • the illustrated turbine blade 122 like all other turbine blades, has a flow inlet edge 126 for the exhaust gas mass flow AM and a flow exit edge 127 for the exhaust gas mass flow AM after exiting the turbine wheel 12 or. from the turbine blades 122.
  • the flow inlet edge 126 and / or the flow outlet edge 127 can run obliquely or otherwise, for example, parallel to the rotor axis of rotation 15, as can be seen with reference to FIGS. 2 and 3.
  • the flow inlet edge 126 and the flow outlet edge 127 are connected via an outer contour 128 (English Tip).
  • the outer contour 128 lies directly opposite a housing contour 211 of the turbine housing 21, which surrounds the turbine wheel 12.
  • the housing contour 211 is formed corresponding to the outer contour 128, wherein a course of the two contours 128 and 211 in the view shown in wesentl paral lel to each other with respect to the Rotation axis 123.
  • the further turbine housing 21 is not shown for reasons of clarity.
  • the flow inlet edge 126 has a maximum inlet radius R in and the flow outlet edge 127 has a maximum outlet radius R out .
  • the outer contour 128 has relative to the axis of rotation 123 and. the rotor axis of rotation 15 has an axial extension length L axTlp .
  • the outer contour 128 has an axial length portion L cover of the axial extent L axTlp , in which the turbine blades 122 are covered axially by the turbine housing 21. In other words, this means the axial region in which a diameter of the turbine wheel 12 is greater than a smallest diameter DA of the turbine housing 21 at the turbine exhaust outlet 129 for the exhaust gas mass flow AM.
  • the housing contour 211 and the outer contour 128 are spaced from one another in such a way that a minimal gap is formed, wherein a smallest radial distance tip clr between the housing contour 211 and the outer contour 128 prevails.
  • turbochargers can lead to damage with various adverse consequences.
  • Figures 4 to 6 are described from management examples of turbines 20, which allow in the event of damage of the turbocharger 1, the aforementioned functions and Vortei le.
  • FIG. 4 shows a turbine 20, which essentially corresponds to the turbines of FIGS. 2 and 3.
  • the above parameter definitions apply analogously.
  • the turbine 20 is formed so that the equation shown in Figure 5 is satisfied.
  • the condition is:
  • the ratio R out to R in can be referred to as trim (see FIG. 5).
  • trim see FIG. 5
  • the design and manufacture of the turbine 2 0 is carried out, for example, such that certain parameters are given and by the conditions remaining parameters are determined in order to obtain a minimum required value for L Cover .
  • the axial length component L cover is enlarged and tuned to the turbine housing 21.
  • the turbine wheel 12 has an enlarged portion, which is covered by the turbine housing 21.
  • FIG. 6 shows a diagram in which the trim value is plotted on the X axis and the ratio of L cover to L axT ip is plotted on the Y axis.
  • three curves of the equation according to FIG. 5 are shown, which differ by the percentage values shown to the right of the diagram, which result from the ratio of tip clr to R in .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Turbolader (1) für eine Brennkraftmaschine, aufweisend - ein Lagergehäuse (41), in dem eine Läuferwelle (14) drehbar um eine Läuferdrehachse (15) gelagert ist; - eine Abgasturbine (20) mit einem Turbinenrad (12), welches drehfest auf der Läuferwelle (14) angeordnet ist und welches eine Laufradbeschaufeiung (121) mit mehreren Turbinenschaufeln (122) aufweist, und mit einem Turbinengehäuse (21), welches mechanisch an dem Lagergehäuse (41) festgelegt ist und welches das Turbinenrad (12) umgibt; wobei bezügl ich einer Meridionalansieht der Abgasturbine (20) das Turbinengehäuse (21) und das Turbinenrad (12) derart ausgebi ldet und zueinander abgestimmt sind, dass die folgende Bedin un erfüllt ist (I).

Description

Beschreibung
Turbolader für eine Brennkraftmaschine sowie Turbinengehäuse Die Erfindung betrifft einen Turbolader für eine Brennkraftmaschine .
Abgasturbolader werden vermehrt zur Leistungssteigerung bei Kraftfahrzeug-Verbrennungsmotoren eingesetzt . Dies geschieht immer häufiger mit dem Ziel , den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinbl ick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern . Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen, um einen Druck in einem Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung eines Brennraumes des Verbrennungsmotors mit Luft-Sauerstoff zu bewirken . Somit kann mehr Treibstoff , wie Benzin oder Diesel , pro Verbrennungsvorgang umgesetzt werden, also die Leistung des Verbrennungsmotors erhöht werden .
Dazu weist der Abgasturbolader eine im Abgastrakt des Verbrennungsmotors angeordnete Abgasturbine, einen im Ansaugtrakt angeordneten Frischluftverdichter und ein dazwischen angeordnetes Läuferlager auf . Die Abgasturbine weist ein Turbinengehäuse und ein darin angeordnetes , durch den Abgasmassenstrom angetriebenes Turbinenlaufrad auf . Der Frischluftverdichter weist ein Verdichtergehäuse und ein darin ange- ordnetes , einen Ladedruck aufbauendes Verdichterlaufrad auf. Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüber1 legenden Enden einer gemeinsamen Welle, der sogenannten Läuferwelle, drehfest angeordnet und bilden so den sogenannten Turboladerläufer . Die Läuferwelle erstreckt sich axial zwischen Turbinenlaufrad und Verdichterlaufrad durch das zwischen Abgasturbine und Frischluftverdichter angeordnete Läuferlager und ist in diesem, in Bezug auf die Läuferwellenachse, radial und axial drehgelagert . Gemäß diesem Aufbau treibt das vom Abgasmassenstrom angetriebene Turbinenlaufrad über die Läuferwelle das Verdichterlaufrad an , wodurch der Druck im Ansaugtrakt des Verbrennungsmotors , bezogen auf den
Frischluftmassenstrom hinter dem Frischluftverdichter, erhöht und dadurch eine bessere Befüllung des Brennraumes mit
Luft-Sauerstoff bewirkt wird .
Eine Aufgabe, die der Erfindung zugrunde liegt, ist es , ein Konzept für einen Turbolader anzugeben, welches zu einem sicheren Betrieb eines Turboladers beiträgt .
Es wird ein Turbolader für eine Brennkraftmaschine offenbart . Der Turbolader weist ein Lagergehäuse auf, in dem eine Läuferwelle drehbar um eine Läuferdrehachse gelagert ist, wobei die Läu- ferwelle über zumindest zwei Radial lager in dem Lagergehäuse gelagert ist . Der Turbolader weist eine Abgasturbine mit einem Turbinenrad, welches drehfest auf der Läuferwelle angeordnet ist und welches eine Laufradbeschau felung mit mehreren Turbinenschaufeln aufweist, und mit einem Turbinengehäuse, welches mechanisch an dem Lagergehäuse festgelegt ist und welches das Turbinenrad umgibt, auf . Bezüglich einer Meridionalansieht der Abgasturbine gilt :
- Zumindest eine Turbinenschaufel des Turbinenrads weist eine Strömungseintrittskante und eine Strömungsaustritts kante für den Abgasmassenstrom auf .
- Die Strömungseintrittskante weist einen maximalen Eintrittsradius Rin auf und die Strömungsaustrittskante weist einen maximalen Austrittsradius Rout auf, jeweils bezogen auf die Läuferdrehachse .
- Die zumindest eine Turbinenschaufel weist eine dem
Turbinengehäuse zugewandte Außenkontur auf, die sich von der Strömungseintrittskante bis zu der Strömungsaustrittskante erstreckt und eine axiale Erstreckungs länge LaxTlp hat .
- Das Turbinengehäuse weist eine Gehäusekontur auf, die der Außenkontur gegenüberliegt .
- Die Außenkontur der zumindest einen Turbinenschaufel weist einen axialen Längenanteil Lcover der axialen Erstreckung LaxTip auf, in welchem die zumindest eine Turbinenschaufel axial von dem Turbinengehäuse überdeckt ist .
- Zwischen der Gehäusekontur und der Außenkontur ist bezüglich der Läu ferdrehachse ein geringster radialer Abstand Tipclr ausgebildet .
Das Turbinengehäuse und das Turbinenrad sind derart ausgebildet und zueinander abgestimmt , dass die folgende Bedingung bzw . Gleichung erfüllt ist :
Figure imgf000005_0001
Es wurde erkannt, dass es während des Betriebs des Turboladers , beispielsweise bei Prüfstandsläufen zur Auslegung des Turboladers oder Komponenten des Turboladers wie des Läufers , zu einem Schadensfall für den Turbolader kommen kann . Beispielsweise kann es zu einem Bautei 1versagen der Läuferwelle oder der Laufräder , etwa einem Wellenbruch, kommen .
Im Falle eines Wellenbruchs der Läuferwelle kann beispielsweise das Turbinenrad nicht mehr axial durch ein Axiallager in seiner vorgesehenen Position gehalten werden . In diesem Fall würde das Turbinenrad vorwiegend durch aerodynamische Kräfte, etwa aufgrund vorherrschender Gasdrücke, in Richtung eines Turbi- nengehäuseausgangs für den Abgasmassenstrom bewegt . Dabei stößt der Anteil der Turbinenschaufeln des Turbinenrads, welcher einen größeren Durchmesser als ein Austrittsdurchmesser des Turbinengehäuses am stromabwärt igen Ende des Turbinenrads aufweist, am Turbinengehäuse an und behindert das Turbinenrad in seiner axialen Bewegung in Richtung Turbinengehäuseausgang . Es wurde weiter erkannt , dass , wenn dieser Anteil der Turbinenrad- schaufeln nicht aus reichend groß ist, die Turbinenschaufeln im Fall eines Wellenbruchs derart plastisch verformt werden, dass das Turbinenrad eine weitere, nicht gewollte axiale Verschiebung vollziehen kann .
Nachteilig in einem solchen Fall wäre unter anderem, dass Kolbenringe von Oldichtungen ihre ursprüngliche axiale Position verlassen könnten und so eine Dichtwirkung verloren ginge . Dies hätte unter anderem die negative Folge, dass Öl in solchen Mengen austreten könnte, dass der Verbrennungsmotor, in dessen 01- kreislauf der Turbolader eingekoppelt ist, unmittelbar abgestellt werden muss , um Schäden zu vermeiden . Ein Ölaustritt sollte j edoch unbedingt oder weitestgehend vermieden werden, um zumindest Notlaufeigenschaften des Systems zu gewährleisten . Darüber hinaus wurde erkannt, dass ein Wellenbruch zwischen den Öldichtungen, etwa den Kolbenringen beider Dichtungen, nachteilig ist , da neben den Laufrädern und den daran verbleibenden Wel lenstummein auch die Dichtungen den Turbolader verlassen könnten , was den beschriebenen negativen Ölverlust weiter begünstigen würde .
Der beschriebene Turbolader sieht vor, dass Turbinenrad und Turbinengehäuse entsprechend der oben formulierten Bedingung (Gleichung) ausgelegt und angeordnet sind. Die Bedingung gibt vor , dass ein Konturverlauf des Turbinengehäuses und/oder der zumindest einen Turbinenradschaufel gez ielt umgestaltet sind im Vergleich zu bekannten Turbinen . Insbesondere wird ein Längenanteil (Lcover) der Turbinenradschaufel , der durch das Gehäuse axial abgedeckt wird, derart vergrößert, dass im Falle eines Wel lenbruchs ein größerer Anteil der Turbinenrad Schaufeln bei einer axialen Verschiebung plastisch ver formt würde , so dass eine weitere axiale Bewegung des Turbinenrad bezüglich der Läuferdrehachse behindert oder begrenzt ist . Beispielsweise wird ausgehend von einer konventionel len Gehäusekontur im Bereich des Turbinenrads allein durch die Umgestaltung der Längenanteil der Turbinenradschaufel, der durch das Gehäuse axial abgedeckt wird, vergrößert . Mit anderen Worten ist durch die Bedingung ein Mindestwert des Längenanteils der Turbinenradschaufel , der axial abgedeckt wird, definiert .
Durch eine derartige Auslegung anhand der vorgegebenen Gleichung wird dazu beigetragen , dass das Turbinenrad nach einem Wel- lenbruch, also in einem Schadensfall des Turboladers , einen größeren Widerstand gegen weitere axiale Verschiebung bei Kollision mit dem Gehäuse liefert . Die Gleichung ermöglicht also anhand von verschiedenen Parametern eine optimale Auslegung für Turbinenrad und Turbinengehäuse. Je nach Rahmenbedingungen für den Turbolader wie Einsatz zweck, Verwendungszweck oder anderen , können bestimmte Parameter dergleichen vorgegeben sein, wobei ein oder mehrere restliche Parameter mithi 1 fe der Gleichung ermittelt werden können . So kann entsprechend den Rahmenbedingungen stets eine sinnvolle Abstimmung der Parameter erreicht werden . Insbesondere ist es mithilfe der Gleichung möglich, die für die obigen Vortei le und Funktionen notwendige axiale Überdeckungs länge Lcover auf einfache Art und Weise zu bestimmen .
Ein entsprechend der Bedingungen ausgelegten Turbolader trägt dazu bei , die eingangs genannten Nachteile bei einem Scha- densfall, insbesondere den genannten Wellenbruch, zu vermeiden , insbesondere, wenn das Turbinenrad nur noch radial gelagert ist . Dabei ist es nicht zwingend notwendig, eine Rückenscheibe und/oder die Turbinenradschaufein konstruktiv zu verstärken . Es ist mit anderen Worten dank der obigen Bedingung nicht notwendig, die Turbinenradschaufein entsprechend aufzudicken . Auch ist es dank der obigen Bedingung nicht notwendig, ein niedriges Trimverhältnis , d.h. ein Verhältnis zwischen dem maximalen Austrittsradius Rout
und dem maximalen Eintrittsradius Rin, vorzusehen . Dadurch können unter anderem Material kosten eingespart werden . Beide solcher Maßnahmen wären nachteilig hinsichtlich des Leistungsverhaltens des Turboladers , beispielsweise aufgrund von höheren Massenträgheiten .
Meridionalansieht bedeutet beispielsweise eine ebene , zweidimensionale Ansicht, in welcher eine äußerste Kontur des Turbinenrads dargestellt ist , die das Turbinenrad bei einer
Rotation um die Läuferdrehachse , die auch einer Drehachse des Turbinenrad entspricht , abfährt . Die Ansicht kann auch zumindest Tei le des Turbinengehäuses betreffen oder einschließen, wobei insbesondere eine Innenkontur mit minimalstem Radius bezogen auf die Drehachse im Bereich des Turbinenrads dargestel lt ist, die das Turbinengehäuse bei Rotation um die Drehachse abfahren würde . Die der Außenkontur gegenüberliegende Gehäuse kontur des Turbinengehäuses (englisch : shroud) ist korrespondierend zu der Außenkontur ausgebildet . Bei dem geringsten radialen Abstand Tip.:i , bezüglich der Läuferdrehachse kann es sich um einen Abstand handeln , der über den gesamten axialen Bereich zwischen der Eintrittskante und der Austrittskante, konstant ist . Es ist j edoch auch denkbar, dass der Abstand nur abschnittsweise, in einem einzelnen Bereich oder Punkt bezüglich der Drehachse vorliegt .
Mit dem axialen Längenanteil ist diej enige axiale Erstreckung der Außenkontur gemeint , in welchem ein Radius bzw . ein Durchmesser des Turbinenrads bezüglich der Läuferdrehachse größer ist als ein minimaler Durchmesser /Radius des Turbinengehäuses im Bereich eines stromabwärt igen Endes des Turbinenrads . Anders ausgedrückt ist in diesem Bereich der Durchmesser des Turbinenrads größer als ein kleinster Durchmesser des Turbinengehäuses . Mit anderen Worten handelt es sich um denj enigen axialen Bereich eines Turbinenrads , der , würde man das Turbinenrad und das Turbi¬ nengehäuse in eine Ebene normal zu der Läuferdrehachse pro- j izieren, von dem Turbinengehäuse überdeckt oder überlappt ist . Mit wieder anderen Worten handelt es sich um denj enigen Bereich, der im Schatten des Turbinengehäuses 1 iegt bezogen auf die Läuferdrehachse . Anders ausgedrückt hat die Außenkontur der zumindest einen Schaufel einen axialen Überdeckungsabschnitt, der den axialen Längenanteil Lcover der axialen Erstreckung LaxTip hat .
Die folgenden Aus führungs formen tragen al lesamt zu den obigen Vorteilen und Funktionen bei , wobei die obige Bedingung in vorteilhafter Weise weitergebildet ist durch die Vorgabe von einem oder mehreren Grenzwerten .
Gemäß einer Aus führungs form gilt für das Verhältnis Tipclr zu Rin :
Figure imgf000008_0001
Gemäß einer Ausführungsform gilt für das Verhältnis Tipclr zu Rin :
Figure imgf000008_0002
Figure imgf000009_0001
Das Verhältnis Rout zu Rin wird auch als Trim oder Trimverhältnis bezeichnet .
Gemäß Ausführungs formen liegt das Trimverhältnis zwischen 0 , 8 und einer der weiteren, oben angegebenen Grenzen. Des Weiteren wird ein Turbinenrad für einen Abgasturbolader gemäß einer der vorigen Aus führungs formen offenbart . Das Turbinenrad weist eine Laufradbeschau felung mit mehreren Turbinenschaufeln auf . Das Turbinenrad ist derart ausgebildet, dass die folgende
Bedingung erfüllt ist :
Figure imgf000010_0001
Dabei gilt bezüglich einer Meridionalansieht des Turbinenrads, dass
- zumindest eine Turbinenschaufel des Turbinenrads eine Strömungseintrittskante und eine Strömungsaustrittskante für den Abgasmassenstrom aufweist;
- Rin einen maximalen Eintrittsradius der Strömungsein- trittskante und Rout einen maximalen Austritts radius der Strömungsaustrittskante beschreibt , jeweilsbezogen auf eine Drehachse des Turbinenrads;
- LaxTip eine axiale Erstreckungs länge einer Außenkontur der zumindest einen Turbinenschaufel beschreibt, wobei sich die Außenkontur von der Strömungseintritts kante bis zu der Strömungsaustrittskante erstreckt und in einem bestimmungsgemäßen Betrieb einem umgebenden Turbinengehäuse zugewandt ist;
- Lcover einen axialen Längenanteil der axialen Erstreckung LaxTip der Außenkontur beschreibt , in welchem die Turbinenschaufel axial von dem Turbinengehäuse überdeckt ist;
- Tipclr einen geringsten radialen Abstand zwischen einer Gehäusekontur des Turbinengehäuses , welche in dem bestimmungsgemäßen Betrieb der Außenkontur gegenüberliegt, und der Außenkontur bezüglich der Läuferdrehachse beschreibt .
Es gelten die obigen Aus führungen analog .
Das Turbinenrad ermöglicht die oben genannten Vortei le und Funktionen .
Des Weiteren wird ein Verfahren zum Herstellen eines Turboladers gemäß einer der obigen Aus führungs formen offenbart . Das Verfahren umfasst die Schritte : - Ermitteln und/oder Bestimmen der Parameter des maximalen Eintrittsradius Rin, des maximalen Austrittsradius Rout , der axialen Erstreckungslänge LaxTip , des axialen Längenanteils Lcover und des geringsten radialen Abstands Tipclr , derart , dass für das Turbinenrad und das Turbinengehäuse die folgende Bedingung erfüllt ist :
Figure imgf000011_0001
- Fertigen des Turbinenrads und des Turbinengehäuses anhand de mittels der Bedingung ermittelten Parameter .
Es gelten die obigen Aus führungen analog .
Das Verfahren ermöglicht die oben genannten Vorteile und Funktionen .
Im Folgenden werden Aus führungsbeispiele der Erfindung, ohn Einschränkung der Allgemeinheit, beschrieben .
Die Aus führungsbeispiele werden unter Zuhi 1 fenahme der ange hängten Figuren nachfolgend beschrieben . Gleichartige oder gleichwirkende Elemente sind figurenübergrei fend mit den gleichen Bezugszeichen versehen . den Figuren zeige
Figur 1 eine schematische Schnittansicht eines Turboladers ,
Figur 2 und 3 zwei schematische Schnittansichten von Abgas- turbinen eines Turboladers ,
Figur 4 eine schematische Schnittansicht einer Abgasturbine eines Turboladers gemäß einem Aus führungsbeispiel , Figur 5 eine Gleichung für die Auslegung der Abgasturbine gemäß dem Aus führungsbei spiel und Figur 6 eine Diagrammdarstellung der Gleichung der Figur 5 mit drei beispielhaften Parameterauswahlen .
Figur 1 zeigt schematisiert einen exemplarischen Abgasturbolader 1 in Schnittdarstellung, der eine Abgasturbine 20, einen
Frischluftverdichter 30 und ein Läuferlager 40 aufweist . Die Abgasturbine 20 ist mit einem Wastegateventi 129 ausgestattet und ein Abgasmassestrom AM ist mit Pfeilen angedeutet . Der
Frischluftverdichter 30 weist ein Schub-Umluftventil 39 auf und ein Frischluft-Massestrom FM ist ebenfalls mit Pfeilen angedeutet . Ein sogenannter Turboladerläufer 10 des Abgasturboladers
1 weist ein Turbinenlaufrad 12 (auch Turbinenrad bezeichnet ) , ein Verdichterlaufrad 13 (auch Verdi chterrad bezeichnet ) sowie eine Läuferwelle 14 auf (auch Welle bezeichnet) . Der Turboladerläufer 10 rotiert im Betrieb um eine Läuferdrehachse 15 der Läuferwelle 14. Die Läuferdrehachse 15 und gleichzeitig die Turboladerachse
2 (auch Längsachse bezeichnet) sind durch die eingezeichnete Mittellinie dargestellt und kennzeichnen die axiale Ausrichtung des Abgasturboladers 1.
In der Regel weist ein gebräuchlicher Abgasturbolader 1, wie in Figur 1 dargestellt, einen mehrteiligen Aufbau auf . Dabei sind ein im Abgastrakt des Verbrennungsmotors anordenbares Turbinengehäuse 21 , ein im Ansaugtrakt des Verbrennungsmotors anordenbares Verdichtergehäuse 31 und zwischen Turbinengehäuse 21 und Verdichtergehäuse 31 ein Lagergehäuse 41 bezüglich der gemeinsamen Turboladerachse 2 nebeneinander angeordnet und montagetechnisch miteinander verbunden . Das Lagergehäuse 41 ist axial zwischen dem Turbinengehäuse 21 und dem Verdichtergehäuse 31 angeordnet . Im Lagergehäuse 41 ist die Läuferwelle 14 des Turboladerläufers 10 sowie die erforderliche LageranOrdnung zur Axial lägerung und zur Drehlagerung der Läuferwelle 14 aufgenommen .
Eine weitere Baueinheit des Abgasturboladers 1 stellt der Turboladerläufer 10 dar, der die Läuferwel le 14 , das in dem Turbinengehäuse 21 angeordnete Turbinenlaufrad 12 mit einer Laufradbeschaufelung 121 und das in dem Verdichtergehäuse 31 angeordnete Verdichterlaufrad 13 mit einer Laufradbeschaufelung 131 aufweist . Mit anderen Worten haben das Turbinenrad 12 sowie das Verdichterrad 13 mehrere Schaufeln , die auf einer ent- sprechenden Nabe angeordnet sind . Das Turbinenlaufrad 12 und das Verdichterlaufrad 13 sind auf den sich gegenüber1 legenden Enden der gemeinsamen Läuferwel le 14 angeordnet und mit dieser drehfest verbunden . Die Läuferwel le 14 erstreckt sich in Richtung der Turboladerachse 2 axial durch das Lagergehäuse 41 und ist in diesem axial und radial um seine Längsachse, die Läuferdrehachse 15, drehgelagert, wobei die Läuferdrehachse 15 mit der Turboladerachse 2 zusammenfällt . Der Turboladerläufer 10 ist mit seiner Läuferwelle 14 mittels zweier Radiallager 42 und einer Axiallagerscheibe 43 gelagert . Sowohl die Radial lager 42 als auch die Axial lagerscheibe 43 werden über Ölversorgungskanäle 44 eines ÖlanSchlusses 45 mit Schmiermittel versorgt .
Das Turbinengehäuse 21 weist einen oder mehrere ringförmig um die Turboladerachse 2 und das Turbinenlaufrad 12 angeordnete, sich schneckenförmig zum Turbinenlaufrad 12 hin verjüngende Abgas-Ringkanäle , sogenannte Abgasfluten 22 auf. Diese Abgas fluten 22 weisen einen j eweiligen oder gemeinsamen, tangential nach außen gerichteten Abgaszuführkanal 23 mit einem Krümmer-Anschlussstutzen 24 zum Anschluss an einen Abgaskrümmer (nicht dargestellt) eines Verbrennungsmotors auf, durch den der Abgasmassenstrom AM in die j eweilige Abgas flute 22 und dann auf das Turbinenlaufrad 12 strömt . Das Turbinengehäuse 21 weist weiterhin einen Abgasabführkanal 26 auf, der vom axialen Ende des Turbinenlaufrades 12 weg in Richtung der Turboladerachse 2 verläuft und einen Auspuff-Anschlussstutzen 27 zum Anschluss an das AuspuffSystem (nicht dargestellt) des Verbrennungsmotors aufweist . Über diesen Abgasabführkanal 26 wird der aus dem Turbinenlaufrad 12 austretende Abgasmassenstrom AM in das AuspuffSystem des Verbrennungsmotors abgeführt .
Weitere Details des Turboladers 1 werden an dieser Stelle nicht näher erläutert . Es sei darauf hingewiesen, dass der in Figur 1 beschriebene Turbolader 1 exemplarisch zu verstehen ist und alternativ auch anderweitige Ausgestaltungen haben kann, ohne dass sich Einschränkungen für die nachfolgende Beschreibung von Aus führungsbei spielen der Erfindung anhand der Figuren 4 bis 6 ergeben .
Figuren 2 und 3 zeigen jeweils in einer Meridionalansieht Abgasturbinen 20 eines Turboladers 1, die jeweilsein Turbinengehäuse 21 und ein Turbinenrad 12 mit mehreren Turbinenschaufeln 122 aufweisen . In Figur 2 ist ein Radial-Axial - Turbinenrad und in Figur 3 ist ein Radial-Turbinenrad in einem schematischen Halbschnitt dargestellt . Die Läuferdrehachse 15, die einer Drehachse 123 des Turbinenrads 12 entspricht, ist jeweilseingezeichnet. In den Darstellungen der Figuren 2 und 3 ist jeweils eine von mehreren Turbinenschaufeln 122 dargestellt, die typischerweise auf der Nabe des Turbinenrads 12 angeordnet sind .
Die Turbinen 20 der beiden Figuren 2 und 3 werden exemplarisch anhand der Figur 2 beschrieben .
Das Turbinenrad 12 hat ein stromaufwärtiges , axiales Ende 124 und ein stromabwärtiges , axiales Ende 125. Wie in der Meridio- nalansicht erkennbar, hat die dargestellte Turbinenschaufel 122 , wie auch alle weiteren Turbinenschaufeln, eine Strömungsein- trittskante 126 für den Abgasmassenstrom AM und eine Strömungsaustrittskante 127 für den Abgasmassenstrom AM nach dem Austritt aus dem Turbinenrad 12 bzw . aus den Turbinenschaufeln 122. Die Strömungseintrittskante 126 und/oder die Strömungsaustrittskante 127 können schräg oder andersartig, etwa pa- ral lel , zur Läuferdrehachse 15 verlaufen, wie anhand der Figuren 2 und 3 ersichtlich ist . Die Strömungseintritts kante 126 und die Strömungsaustrittskante 127 sind über eine Außenkontur 128 (englisch Tip) verbunden . Der Außenkontur 128 liegt direkt gegenüber einer Gehäusekontur 211 des Turbinengehäuses 21 , welches das Turbinenrad 12 umgibt . Die Gehäusekontur 211 ist korrespondierend zu der Außenkontur 128 ausgebildet, wobei ein Verlauf der beiden Konturen 128 und 211 in der gezeigten Ansicht im Wesentl ichen paral lel zueinander verläuft bezüglich der Drehachse 123. Das weitere Turbinengehäuse 21 ist aus Übersichtlichkeitsgründen nicht dargestellt .
Es wurde erkannt , dass sich die gezeigten Abgasturbinen 20 der Figuren 2 und 3 durch eine Mehrzahl von Parametern definieren lassen, die im Folgenden erläutert werden .
Die Strömungseintrittskante 126 hat einen maximalen Eintrittsradius Rin und die Strömungsaustrittskante 127 hat einen maximalen Austrittsradius Rout · Die Außenkontur 128 hat bezogen auf die Drehachse 123 bzw . die Läuferdrehachse 15 eine axiale Erstreckungslänge LaxTlp. Die Außenkontur 128 hat einen axialen Längenanteil Lcover der axialen Erstreckung LaxTlp, in welchem die Turbinenschaufeln 122 axial von dem Turbinengehäuse 21 überdeckt sind . Mit anderen Worten ist damit der axiale Bereich gemeint, in welchem ein Durchmesser des Turbinenrads 12 größer ist als ein kleinster Durchmesser DA des Turbinengehäuses 21 am Turbinenschaufeiaustritt 129 für den Abgasmassenstrom AM . Weiterhin sind die Gehäusekontur 211 und die Außenkontur 128 so zueinander beabstandet, dass sich ein minimaler Spalt ausbildet, wobei ein geringster radialer Abstand Tipclr zwischen der Gehäusekontur 211 und der Außenkontur 128 vorherrscht .
Wie eingangs erwähnt, kann es bei Turboladern zu einem Scha- densfall mit verschiedenen nachteiligen Folgen kommen . Anhand der Figuren 4 bis 6 werden Aus führungsbeispiele von Turbinen 20 beschrieben, die im Schadensfall des Turboladers 1 die eingangs genannten Funktionen und Vortei le ermöglichen .
Figur 4 zeigt eine Turbine 20, die im Wesentlichen den Turbinen der Figuren 2 und 3 entspricht . Die obigen Parameterdefinitionen gelten analog . Im Unterschied zu den beschriebenen Turbinen der Figuren 2 und 3 ist die Turbine 20 so ausgebildet, dass die in Figur 5 gezeigte Gleichung erfüllt ist . Die Bedingung lautet :
Figure imgf000015_0001
Dadurch werden die eingangs genannten Vorteile und Funktionen erreicht . Es sei an dieser Stelle erwähnt , dass das Verhältnis Rout zu R i n als Trim bezeichnet werden kann (s . Figur 5 ) . Die Auslegung und Herstellung der Turbine 2 0 erfolgt beispielsweise derart, dass bestimmte Parameter vorgeben sind und mittels der Bedingungen restliche Parameter ermittelt werden, um einen notwenigen Mindestwert für LCover zu erhalten . Vorteilhaft ist, wie auch in der Figur 4 im Unterschied zu den Beispielen der Figuren 2 und 3 zu sehen ist, dass der axiale Längenanteil Lcover vergrößert und mit dem Turbinengehäuse 21 abgestimmt ist . Dadurch hat das Turbinenrad 12 einen vergrößerten Anteil , der vom Turbinengehäuse 21 überdeckt ist .
Figur 6 zeigt ein Diagramm, bei welchem auf der X-Achse der Trimwert und auf der Y-Achse das Verhältnis aus Lcover zu LaxTip aufgetragen sind. Beispielhaft sind drei Kurven der Gleichung gemäß Figur 5 dargestellt, die sich durch die rechts neben dem Diagramm dargestellten Prozentwerte, die sich aus dem Verhältnis Tipclr zu Rin ergeben , unterscheiden .

Claims

Patentansprüche
1. Turbolader (1) für eine Brennkraftmaschine, aufweisend
- ein Lagergehäuse (41), in dem eine Läuferwelle (14) drehbar um eine Läuferdrehachse ( 15 ) gelagert ist ; und
- eine Abgasturbine (20) mit einem Turbinenrad ( 12 ) , welches drehfest auf der Läuferwelle (14) angeordnet ist und welches eine Laufradbeschaufelung ( 121 ) mit mehreren Turbinenschaufeln ( 122 ) aufweist , und mit einem Turbinengehäuse (21 ) , welches mechanisch an dem Lagergehäuse ( 41 ) festgelegt ist und welches das Turbinenrad ( 12 ) umgibt ;
wobei bezügl ich einer Meridionalansieht die Abgasturbine
(20)
- zumindest eine Turbinenschaufel ( 122 ) des Turbinenrads (12 ) eine Strömungseintrittskante (126) und eine Strömungsaustrittskante ( 127 ) für den Abgasmassenstrom (AM) aufweist ,
- die Strömungseintrittskante (126) einen maximalen Eintrittsradius Rin aufweist und die Strömungsaustrittskante (127) einen maximalen Austrittsradius Rout aufweist, j eweils bezogen auf die Läuferdrehachse (15) ;
- die zumindest eine Turbinenschaufel ( 122 ) eine dem Turbinengehäuse (21 ) zugewandte Außenkontur (128 ) aufweist, die sich von der Strömungseintrittskante (126) bis zu der Strömungsaustrittskante ( 127 ) erstreckt und eine axiale Erstre- ckungslänge LaxTip hat;
- das Turbinengehäuse (21 ) eine Gehäusekontur (211 ) aufweist, die der Außenkontur ( 128 ) gegenüberliegt;
- die Außenkontur ( 128 ) der zumindest einen Turbinenschaufel ( 122 ) einen axialen Längenanteil Lcove der axialen Erstreckung LaxTip aufweist, in welchem die zumindest eine Turbinenschaufel (122 ) axial von dem Turbinengehäuse (21 ) überdeckt ist; und
- zwischen der Gehäusekontur (211) und der Außenkontur (128) bezüglich der Läuferdrehachse ( 15 ) ein geringster radialer Abstand Tipcl r ausgebi ldet ist ;
und wobei das Turbinengehäuse (21 ) und das Turbinenrad (12 ) derart ausgebi ldet und zueinander abgestimmt sind, dass die folgende Bedingung erfüllt ist :
Figure imgf000018_0001
9. Turbinenrad ( 12 ) für einen Abgas turbolader (1) nach einem der vorhergehenden Ansprüche , aufweisend eine Laufradbe- schaufelung (121) mit mehreren Turbinenschaufeln ( 122 ) , wobei das Turbinenrad (12 ) derart ausgebildet ist, dass die folgende Bedingung erfüllt ist :
Figure imgf000018_0002
wobei bezüglich einer Meridionalans icht des Turbinenrads ( 12 ) - zumindest eine Turbinenschaufel ( 122 ) des Turbinenrads (12 ) eine Strömungseintritts kante (126) und eine Strömungs¬ austrittskante ( 127 ) für den Abgasmassenstrom (AM) aufweist ; - R,„ einen maximalen Eintrittsradius der Strömungseintrittskante (126) und Rout einen maximalen Austrittsradius der Strömungsaustrittskante ( 127 ) beschreibt, jeweilsbezogen auf eine Drehachse (123) des Turbinenrads (12) ;
- LaxTip eine axiale Erstreckungslänge einer Außenkontur
(128) der zumindest einen Turbinenschaufel ( 122 ) beschreibt , wobei sich die Außenkontur ( 128 ) von der Strömungseintrittskante (126) bis zu der Strömungsaustrittskante ( 127 ) erstreckt und in einem bestimmungsgemäßen Betrieb einem umgebenden Turbinen- gehäuse (21) zugewandt ist;
- Lcover einen axialen Längenanteil der axialen Erstreckung LaxTip der Außenkontur (128) beschreibt , in welchem die zumindest eine Turbinenschaufel (122 ) axial von dem Turbinengehäuse (21) überdeckt ist;
- Tipclr einen geringsten radialen Abstand zwischen einer
Gehäusekontur (211) des Turbinengehäuses (21 ) , welche in dem bestimmungsgemäßen Betrieb der Außenkontur (128) gegenüberliegt, und der Außenkontur (128) bezügl ich der Drehachse ( 123 ) beschreibt .
10. Verfahren zum Herstellen eines Turboladers (1) nach einem der Ansprüche 1 bis 8 , umfassend die Schritte :
- Ermitteln und/oder Bestimmen der Parameter des maximalen Eintrittsradius R±n, des maximalen Aus trittsradius Rout, der axialen Erstreckungslänge L.,xT,p, des axialen Längenanteils Lcover und des
geringsten radialen Abstands Tip,:! r derart , dass für das Turbinenrad ( 12 ) und das Turbinengehäuse (21 ) die folgende Bedingung erfüllt ist :
Figure imgf000019_0001
- Fertigen des Turbinenrads ( 12 ) und des Turbinengehäuses (21 ) anhand der mittels der Bedingung ermittelten Parameter .
PCT/EP2018/057247 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinengehäuse WO2018177864A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021605.5A CN110520598B (zh) 2017-03-30 2018-03-22 用于内燃发动机的涡轮增压器和涡轮壳体
EP18718704.2A EP3601739B1 (de) 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinenrad
US16/564,458 US11002154B2 (en) 2017-03-30 2019-09-09 Turbocharger for an internal combustion engine, and turbine housing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017205457.3 2017-03-30
DE102017205457.3A DE102017205457A1 (de) 2017-03-30 2017-03-30 Turbolader für eine Brennkraftmaschine sowie Turbinengehäuse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/564,458 Continuation US11002154B2 (en) 2017-03-30 2019-09-09 Turbocharger for an internal combustion engine, and turbine housing

Publications (1)

Publication Number Publication Date
WO2018177864A1 true WO2018177864A1 (de) 2018-10-04

Family

ID=62025774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/057247 WO2018177864A1 (de) 2017-03-30 2018-03-22 Turbolader für eine brennkraftmaschine sowie turbinengehäuse

Country Status (5)

Country Link
US (1) US11002154B2 (de)
EP (1) EP3601739B1 (de)
CN (1) CN110520598B (de)
DE (1) DE102017205457A1 (de)
WO (1) WO2018177864A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940203A1 (de) 2020-07-16 2022-01-19 BMTS Technology GmbH & Co. KG Abgasturbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071550A1 (en) * 2002-10-11 2004-04-15 Martin Steven P. Turbine efficiency tailoring
WO2011002732A2 (en) * 2009-07-02 2011-01-06 Borgwarner Inc. Turbocharger turbine
DE102013223873A1 (de) * 2013-11-22 2015-05-28 Continental Automotive Gmbh Abgasturbolader mit einem Twinscroll-Turbinengehäuse
DE102016004770A1 (de) * 2015-04-29 2016-11-03 Scania Cv Ab Anschlaganordnung, Ansaug- und Abgasanlage und Fahrzeug umfassend solch eine Anlage
EP3144541A1 (de) * 2014-07-02 2017-03-22 Mitsubishi Heavy Industries, Ltd. Verdichter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119030A1 (de) 2004-06-04 2005-12-15 Abb Turbo Systems Ag Turbinennabenkühlung für abgasturbine
DE102009000214A1 (de) * 2009-01-14 2010-09-02 Ford Global Technologies, LLC, Dearborn Brennkraftmaschine mit Abgasturboaufladung
DE112013006014T5 (de) * 2013-01-14 2015-09-03 Borgwarner Inc. Geteilter Düsenring zum Steuern von AGR und Abgasdurchsatz
DE102013210990A1 (de) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Abgasturbolader mit einem Radial-Axial-Turbinenrad
US10669889B2 (en) * 2014-02-04 2020-06-02 Borgwarner Inc. Heat shield for mixed flow turbine wheel turbochargers
GB2533351A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Internal combustion engine having a two stage turbocharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071550A1 (en) * 2002-10-11 2004-04-15 Martin Steven P. Turbine efficiency tailoring
WO2011002732A2 (en) * 2009-07-02 2011-01-06 Borgwarner Inc. Turbocharger turbine
DE102013223873A1 (de) * 2013-11-22 2015-05-28 Continental Automotive Gmbh Abgasturbolader mit einem Twinscroll-Turbinengehäuse
EP3144541A1 (de) * 2014-07-02 2017-03-22 Mitsubishi Heavy Industries, Ltd. Verdichter
DE102016004770A1 (de) * 2015-04-29 2016-11-03 Scania Cv Ab Anschlaganordnung, Ansaug- und Abgasanlage und Fahrzeug umfassend solch eine Anlage

Also Published As

Publication number Publication date
US11002154B2 (en) 2021-05-11
DE102017205457A1 (de) 2018-10-04
EP3601739A1 (de) 2020-02-05
EP3601739B1 (de) 2022-06-15
CN110520598A (zh) 2019-11-29
US20200003079A1 (en) 2020-01-02
CN110520598B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
EP1759091B8 (de) Turbinenrad in einer abgasturbine eines abgasturboladers
DE102014216162B4 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016002701A1 (de) Turboladerturbinenanordnung
DE102016002722A1 (de) Turboladerturbinendüse und Sicherheitsstruktur
DE102018221812A1 (de) Abgasturbine mit einer Abgasleiteinrichtung für einen Abgasturbolader und Abgasturbolader
DE10028733A1 (de) Abgasturbine für einen Turbolader
DE102016214843A1 (de) Bypass-Ventil mit Klappenschürze für einen Abgasturbolader und Abgasturbolader mit einem solchen Bypass-Ventil
EP2112332B1 (de) Trägerring einer Leitvorrichtung mit Sperrluftkanal
EP3682092B1 (de) Abgasturbine mit diffusor
EP2058484A1 (de) Aufgeladene Brennkraftmaschine
EP2058485B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102015006288A1 (de) Turbine für einen Abgasturbolader, insbesondere einer Verbrennungskraftmaschine, sowie Antriebseinrichtung für einen Kraftwagen
DE102012022647A1 (de) Abgasturbolader für eine Verbrennungskraftmaschine
WO2018177864A1 (de) Turbolader für eine brennkraftmaschine sowie turbinengehäuse
DE102020202967A1 (de) Abgasturbolader mit Integralgehäuse
DE2154726A1 (de) Radial beaufschlagter abgasturbolader
DE102017012253B4 (de) Verdichter für einen Turbolader einer Brennkraftmaschine sowie Turbolader für eine Brennkraftmaschine
EP4031752B1 (de) Konzentrische einleitung des waste-gate-massenstroms in einen strömungsoptimierten axialdiffusor
DE102014212967B4 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102018221147B4 (de) Aufgeladene Brennkraftmaschine mit Verdichter und stromaufwärts des Verdichters angeordneter Leiteinrichtung
DE102016213626A1 (de) Turbine für einen Abgasturbolader
DE102015205910A1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2023061641A1 (de) Turboladergehäuse und abgasturbolader mit integral-turborotorgehäuse und verdichtergehäusedeckel
DE102013018560A1 (de) Lagerungsanordnung eines Rotors an einem Lagergehäuse eines Abgasturboladers
DE102014216163A1 (de) Aufgeladene Brennkraftmaschine mit Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18718704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018718704

Country of ref document: EP

Effective date: 20191030