EP3596391B1 - Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible - Google Patents

Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible Download PDF

Info

Publication number
EP3596391B1
EP3596391B1 EP18758556.7A EP18758556A EP3596391B1 EP 3596391 B1 EP3596391 B1 EP 3596391B1 EP 18758556 A EP18758556 A EP 18758556A EP 3596391 B1 EP3596391 B1 EP 3596391B1
Authority
EP
European Patent Office
Prior art keywords
ionization
gas
air
volume flow
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18758556.7A
Other languages
German (de)
English (en)
Other versions
EP3596391A1 (fr
Inventor
Enno Jan Vrolijk
Jan Dannemann
Hartmut Hennrich
Jens Hermann
Hans-Joachim Klink
Stephan Wald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3596391A1 publication Critical patent/EP3596391A1/fr
Application granted granted Critical
Publication of EP3596391B1 publication Critical patent/EP3596391B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • F23L5/02Arrangements of fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices

Definitions

  • the invention relates to a method for regulating a fuel gas-operated heater.
  • Another problem with the control method is that different types of gas, e.g. Natural gas or liquid gas, as well as gas qualities, are used.
  • the parameters of the control process must be adapted to the type of gas or gas quality, as otherwise the combustion will be unclean.
  • the air ratio is preferably different for different burner power points and for different gas families (eg natural gas or liquid gas). This relationship is usually stored in the control unit in the form of performance-dependent ⁇ characteristics. Automatic gas type detection is required to automatically select the correct characteristic.
  • the calorific value of the different gases corresponds approximately to the value of the air requirement L. This relationship is used to precontrol the modulating combustion air fan to a desired burner output. Since all gases change their volume under different temperatures and pressures, the conditions listed above only apply under the same pressure and temperature conditions. In the case of the different conditions for gas and air in practice, however, either the respective mass flow or correspondingly corrected volume flows must be used as a basis for regulating the combustion process (exa temperature increase of 30 K, air expands by 10% without more air molecules participating in the combustion process so that without correction the air ratio would decrease by 10%).
  • the invention is based on the object of providing a gas type-independent method for regulating a fuel gas-operated heating device.
  • the method should be able to determine the type of gas and its control parameters to be adaptable to the specific type of gas in further developments.
  • a method for regulating a fuel gas-operated heater using an ionization setpoint power characteristic wherein a gas volume flow supplied via a gas supply and an air volume flow supplied via a fan are mixed to form a gas-air mixture and with an air ratio ⁇ based on a desired burner output Burner of the heater are fed.
  • the air ratio ⁇ is monitored by means of an ionization measurement method of a burner flame of the burner.
  • the mixture calibration is carried out by an ionization current control, in which the air ratio ⁇ of the gas-air mixture is adjusted to a value ⁇ ion-max at which a maximum ionization measurement signal is achieved on an ionization electrode of the ionization measurement in the burner flame. From the maximum ionization measurement signal, an ionization signal target value for the air ratio ⁇ is calculated at a calibration point and then the air ratio ⁇ ion-max is adjusted to a target air ratio ⁇ soll until the ionization measurement signal corresponds to the calculated ionization signal target value.
  • the burner output is regulated for the respective heat demand on the heater.
  • the amount of air required for this is changed by a control unit with the speed-controlled fan.
  • the fan speed essentially corresponds to the air volume flow.
  • the supplied gas volume flow is varied by an electrically modulated gas actuator or gas valve and measured by a gas mass flow sensor.
  • the gas volume flow is also regulated via the control unit.
  • the fan is preferably designed as a premix fan for mixing gas and air, so that the fan supplies a mixture volume flow to the burner.
  • the gas-air mixture control is based on the continuous detection of the air volume flow by a fan speed detection and the downstream regulation of the gas volume via the control unit, the target value of the gas volume being taken from a stored characteristic curve.
  • the plausibility check can determine whether the parameters influencing optimal combustion such as gas type, gas quality, exhaust system, components of the heater such as the non-return valves in front of the burner or the heat exchanger function in the desired way. Any change in these parameters affects the gas / air ratio and therefore the ionization measurement signal. This in turn can be detected.
  • the parameters influencing optimal combustion such as gas type, gas quality, exhaust system, components of the heater such as the non-return valves in front of the burner or the heat exchanger function in the desired way. Any change in these parameters affects the gas / air ratio and therefore the ionization measurement signal. This in turn can be detected.
  • the mixture calibration according to the invention enables the air ratio ⁇ to be adjusted and the heater to be converted into optimal combustion, taking into account the parameters influencing the combustion.
  • the values of the air requirement value L are known for each gas, as described above.
  • the gas type determination can thus be recorded automatically via the mixture calibration and stored in the control unit of the heater.
  • the control device can then use laboratory-technically predefined control characteristics for the corresponding type of gas, in particular the corresponding ionization setpoint power characteristic, for further control.
  • an advantageous embodiment of the method provides for the ionization setpoint power characteristic to be adapted by the mixture calibration over an entire power range of the heater if the ionization measurement signal is above a specified threshold value from an ionization measurement signal. Setpoint deviates. The adaptation of the ionization setpoint power characteristic takes place over its entire course by the ratio detected at the calibration point of the mixture calibration. The new ionization setpoint power characteristic is then saved. After the mixture calibration, the gas and air quantities are regulated along the stored characteristic curve with the corresponding performance-dependent air ratio and the newly determined air requirement value L.
  • the air ratio ⁇ is adjusted by changing the gas volume flow or gas mass flow until the ionization measurement signal corresponds to the calculated ionization signal setpoint. This is possible in a simple and very precise way by activating the gas actuator. The actual gas mass flow can also be compared directly via the gas mass flow sensor.
  • the mixture calibration can be run through in a long version and in a short version.
  • a mixture volume flow is first generated at a defined fan speed and the associated air volume flow is recorded.
  • a maximum value of the ionization signal is determined immediately, and from this a new ionization target value for a known one is determined and adjusted.
  • the air requirement is determined from the gas and air volume regulated at this operating point and used for further mixture control.
  • the associated ionization signal setpoint is determined via the ionization setpoint power characteristic.
  • the ionization current signal is measured by the control unit and compared with the currently stored characteristic curve value.
  • the steps of the ionization current regulation are then run through and the ionization target value power characteristic curve is adapted and stored as described above. In this case, the ionization signal maximum only has to be determined in exceptional cases.
  • the mixture calibration is preferably carried out at a power point of the heater which corresponds to its maximum power or the burner power in a range of 50-70%.
  • the method includes a transit time measurement to check the correct function of the gas mass sensor.
  • a transit time measurement an amount of the supplied gas volume flow is actively varied via a control of the gas actuator or gas valve and the transit time between the control and the detection of the gas volume variation at the gas mass sensor is compared with a predefined setpoint transit time.
  • the gas valve position can be increased or reduced by a pulse, an oscillation or an actual value jump when it is varied.
  • the nominal run time is determined in advance in the laboratory. If the running time is above a limit value, there is a gas sensor fault and the heater is set to emergency mode, for example with limited modulation.
  • the method also includes a run time measurement to determine the gas-air mixture volume flow.
  • the amount of the supplied gas volume flow is actively varied and the transit time between the activation and a change in the ionization measurement signal and, optionally, additionally the level and type of change in the ionization measurement signal is recorded.
  • the measured transit time is then with compared to a laboratory-based predetermined transit time-volume flow characteristic. If the effect on the ionization measurement signal due to the change in gas volume flow is too small or if the ionization measurement signal changes in the wrong direction, the heater is switched to emergency mode. If the effect is within the tolerance range, the mixture volume flow is determined from the comparison of the running time using a table of values determined by the laboratory.
  • the transit time measurement is repeated at predetermined time intervals.
  • a plausibility check of a sufficient air volume flow is continuously implemented over the entire performance range.
  • the blower speed is checked for plausibility in terms of safety.
  • the runtime measurement can be used as a further expansion stage in order to carry out a combustion air calculation according to the stationary recorded values at various power points. This means that the internally stored characteristic curve for calculating the combustion air can be corrected dynamically.
  • the method also provides that the actual air volume flow is calculated from a difference between the set air volume flow and the mixture volume flow determined via the transit time measurement and optionally a measured temperature of the air volume flow.
  • the method provides that the fan speed and a target air volume flow resulting therefrom are continuously compared with the actual air volume flow. If the speed deviates too much in the course of operation despite the same air volume flow, for example due to a blocked heat exchanger, the control unit switches off the heater and issues an alarm message.
  • the method includes the integration of the mixture calibration in a starting method for cold starting the heater. Ignition attempts of the gas-air mixture are carried out until a burner flame is detected via the ionization measurement.
  • the gas mass flow present at the time of ignition is kept constant and stored in the control unit.
  • the starting air requirement L start is determined from the ratio of the gas volume flow to the air volume flow taken from the blower characteristic and corresponding to the ignition speed, and the gas type is determined from this as described above.
  • the starting point for the next burner start is determined from the stored gas mass flow and the ignition range.
  • FIG 1 is a schematic structure of a heater 100 for carrying out the control method with a modulating premix blower 5, the ambient air a and mixes with gas.
  • the gas is fed to the premix blower 5 via a gas line in which a gas safety valve 1, a gas valve 2 controllable by way of example via a motor M and a gas mass sensor 3 are arranged.
  • the gas inlet pressure d is adapted to the gas control pressure c.
  • the mixture After mixing with ambient air, the mixture has the mixture pressure b.
  • an optional non-return flap 6 is provided at the blower outlet.
  • the mixture then has the burner pressure e. This is followed by the burner 28 with the ionization electrode 7 arranged in the burner flame and a siphon 10 connected to the burner housing.
  • the heat exchanger 18 is arranged around the burner 28. Continued in the flow direction, the exhaust system follows with the exhaust flap 8. The exhaust gas pressure f prevails in the exhaust system. The amount of gas and the fan speed and therefore the air ratio are regulated by means of the control unit 9, in which the regulating characteristics are stored.
  • FIG. 2 shows the partial process of the mixture calibration of the control procedure in the short version.
  • the fan speed n of the premix fan 5 is set to a fixed value via the control device 9 and the actual air volume flow vL-ist is calculated in step 300 using the run time measurement described above.
  • the ionization flow control takes place at a fixed air volume flow vL-act, in that the gas quantity is increased until a maximum ionization measurement signal (lo-max) is reached.
  • the ionization signal setpoint (lo-soll, lo-neu) for the desired air ratio ⁇ is calculated from the maximum ionization measurement signal and the gas quantity is then regulated in step 615 until the ionization measurement signal corresponds to the calculated ionization signal setpoint lo-soll.
  • the short version of the ionization calibration takes place with every mixture calibration.
  • FIG. 3 shows the partial process of the mixture calibration of the control method in the long version.
  • the fan speed n of the premix fan 5 is set to a fixed value via the control device 9 and the actual air volume flow vL-ist is calculated.
  • the ionization signal setpoint value lo-soll is determined using the ionization setpoint power characteristic and the burner power P.
  • the ionization current at the ionization electrode 7 is measured by the control unit 9 in an ionization measurement process and compared with the characteristic value. If the values match, the measured ionization current is used for further mixture calibration.
  • the ionization setpoint performance characteristic is calibrated by increasing the gas quantity in step 612 with a fixed air volume flow vL-act until a maximum ionization measurement signal lo-max is reached. From the maximum ionization measurement signal, the ionization signal setpoint 624 (lo-soll) for the desired air ratio ⁇ (at 625) is calculated. According to step 613, the original ionization setpoint power characteristic curve lo-old is corrected over its entire power range by the ratio detected at the calibration point of the mixture calibration to the new ionization setpoint power characteristic curve lo-new. The new ionization target value performance characteristic lo-new is stored in the memory of the control device 9.
  • step 615 the amount of gas is regulated until the ionization measurement signal corresponds to the calculated target ionization signal value lo-soll.
  • ionization calibration is only carried out in exceptional cases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (13)

  1. Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible (100) en utilisant une courbe caractéristique de puissance de consigne d'ionisation, dans lequel la régulation de l'appareil de chauffage (100) a lieu le long de la courbe caractéristique de puissance de la consigne d'ionisation et ainsi
    a. un débit volumique de gaz fourni par une alimentation en gaz et un débit volumique d'air fourni par un ventilateur sont mélangés pour former un mélange gaz-air et fournis à un brûleur (28) de l'appareil de chauffage selon un rapport d'air A basé sur une puissance de brûleur souhaitée,
    b. le rapport d'air λ est surveillé au moyen d'un procédé de mesure d'ionisation d'une flamme de brûleur du brûleur (28),
    c. un contrôle de plausibilité a lieu, dans lequel un signal de mesure d'ionisation du procédé de mesure d'ionisation est évalué, et en cas d'écart par rapport à une consigne du signal de mesure d'ionisation, un étalonnage du mélange gaz-air a lieu, et dans lequel
    d. l'étalonnage du mélange a lieu grâce à une régulation du courant d'ionisation, dans laquelle le mélange gaz-air est adapté à une valeur à laquelle un signal de mesure d'ionisation maximum est atteint, et une consigne de signal d'ionisation pour le rapport d'air de consigne λconsigne est calculée à un point d'étalonnage à partir du signal de mesure d'ionisation maximum, dans lequel, lors de la régulation du courant d'ionisation, le rapport d'air λ est adapté à l'étalonnage du mélange par la modification du débit volumique de gaz ou du débit massique de gaz jusqu'à ce que le signal de mesure d'ionisation corresponde à la consigne de signal d'ionisation calculée.
  2. Procédé selon la revendication 1, caractérisé en ce qu'une valeur de besoin d'air L est calculée à partir du rapport d'air de consigne λconsigne et un type de gaz du gaz est déterminé par la valeur de besoin d'air.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, lors de l'étalonnage du mélange, le rapport d'air λ est adapté par la modification du débit volumique de gaz jusqu'à ce que le signal de mesure d'ionisation corresponde à la consigne de signal d'ionisation calculée.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la régulation de l'appareil de chauffage (100) a lieu le long de la courbe caractéristique de puissance de la consigne d'ionisation et la courbe caractéristique de puissance de la consigne d'ionisation est adaptée par l'étalonnage de mélange sur toute une plage de puissance de l'appareil de chauffage lorsque le signal de mesure d'ionisation dépasse une valeur de seuil définie d'une consigne de signal de mesure d'ionisation.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que, lors de l'étalonnage du mélange, un débit volumique est d'abord généré et mesuré à une vitesse de ventilateur définie, et la consigne de signal d'ionisation associée est déterminée par l'intermédiaire de la courbe caractéristique de puissance de la consigne d'ionisation.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que, pour déterminer le débit volumique d'air fourni par le ventilateur pour une puissance de brûleur requise, le rapport d'air souhaité est déterminé à partir d'une courbe caractéristique de puissance du rapport d'air et le débit volumique d'air à fournir par le ventilateur est calculé à partir de celle-ci.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une mesure de la durée de fonctionnement pour tester un capteur de masse de gaz, dans laquelle une quantité du débit volumique de gaz fourni est modifiée activement par l'intermédiaire d'une commande d'une vanne de gaz (2) et une durée de fonctionnement entre la commande et une détection de la variation de volume de gaz au niveau du capteur de masse de gaz (3) est comparée à une consigne de durée de fonctionnement prédéfinie.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une mesure de la durée de fonctionnement pour la détermination du débit volumique du mélange gaz-air, dans laquelle une quantité du débit volumique de gaz fourni est modifiée activement par l'intermédiaire d'une commande d'une vanne de gaz (2) et une durée de fonctionnement entre la commande et une modification du signal de mesure d'ionisation et éventuellement également un niveau et un type de modification du signal de mesure d'ionisation sont détectés, et dans lequel la durée de fonctionnement mesurée est comparée à une courbe caractéristique de débit volumique de durée de fonctionnement techniquement prédéterminée en laboratoire et le débit volumique de mélange est déterminé à partir de celle-ci.
  9. Procédé selon la revendication précédente, caractérisé en ce que le débit volumique d'air réel est calculé à partir d'une différence entre un débit volumique d'air réglé et le débit volumique du mélange déterminé par la mesure de la durée de fonctionnement et éventuellement une température mesurée du débit volumique d'air.
  10. Procédé selon l'une des revendications précédentes 8 et 9, caractérisé en ce que la mesure de la durée de fonctionnement est répétée à des intervalles de temps prédéterminés.
  11. Procédé selon l'une des revendications précédentes 9 et 10, caractérisé en ce qu'une vitesse de ventilation du ventilateur (5) et un débit volumique d'air de consigne qui en résulte sont comparés en continu au débit volumique d'air réel.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étalonnage du mélange a lieu à un point de puissance de l'appareil de chauffage qui correspond à sa puissance maximale dans une plage de 50 à 70 %,
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étalonnage du mélange est intégré dans un procédé de démarrage pour le démarrage à froid d'un appareil de chauffage.
EP18758556.7A 2017-11-08 2018-08-09 Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible Active EP3596391B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017126137.0A DE102017126137A1 (de) 2017-11-08 2017-11-08 Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes
PCT/EP2018/071669 WO2019091612A1 (fr) 2017-11-08 2018-08-09 Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible

Publications (2)

Publication Number Publication Date
EP3596391A1 EP3596391A1 (fr) 2020-01-22
EP3596391B1 true EP3596391B1 (fr) 2020-12-30

Family

ID=63294200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18758556.7A Active EP3596391B1 (fr) 2017-11-08 2018-08-09 Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible

Country Status (4)

Country Link
EP (1) EP3596391B1 (fr)
CN (1) CN110573800B (fr)
DE (1) DE102017126137A1 (fr)
WO (1) WO2019091612A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105185A1 (de) 2018-03-07 2019-09-12 Ebm-Papst Landshut Gmbh Verfahren zur Brenngasartenerkennung bei einem brenngasbetriebenen Heizgerät
DE102019003451A1 (de) * 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Verfahren zum Überwachen eines Brenners und/oder eines Brennverhaltens eines Brenners sowie Brenneranordnung
DE102020102117A1 (de) 2020-01-29 2021-07-29 Ebm-Papst Landshut Gmbh Verfahren zur Optimierung eines Toleranzbereichs einer Regelungskennlinie einer elektronischen Gemischregelung bei einem Gasheizgerät
EP3913285A1 (fr) * 2020-05-22 2021-11-24 Pittway Sarl Procédé et appareil de commande pour faire fonctionner un appareil à brûleur à gaz
CN114576648B (zh) * 2021-11-18 2022-12-06 浙江菲斯曼供热技术有限公司 用于运行气体燃烧器的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604283D1 (de) * 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
DE102004055716C5 (de) 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
DE102010008908B4 (de) * 2010-02-23 2018-12-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung
DE102010046954B4 (de) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Verfahren zur Kalibrierung, Validierung und Justierung einer Lambdasonde
DE102010055567B4 (de) * 2010-12-21 2012-08-02 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
CN103256623B (zh) * 2012-02-20 2015-06-17 宝山钢铁股份有限公司 一种灵活控制脉冲烧嘴空气过剩系数的方法
DE102014224891A1 (de) * 2014-12-04 2016-06-09 Robert Bosch Gmbh Heizgerätevorrichtung und Verfahren zum Betrieb einer Heizgerätevorrichtung
DE102015116458A1 (de) * 2015-09-29 2017-03-30 Viessmann Werke Gmbh & Co Kg Verfahren zur Unterscheidung zweier für einen Verbrennungsprozess vorgesehener Brenngase mit unterschiedlich hohen Energiegehalten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3596391A1 (fr) 2020-01-22
CN110573800B (zh) 2021-06-15
DE102017126137A1 (de) 2019-05-09
WO2019091612A1 (fr) 2019-05-16
CN110573800A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
EP3596391B1 (fr) Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible
EP2594848B1 (fr) Procédé de commande d'un appareil à combustion et appareil à combustion
EP3683500B1 (fr) Procédé de régulation d'un mélange gazeux à l'aide d'un capteur de gaz et d'un capteur de mélange gazeux
EP3824366B1 (fr) Dispositif de réglage d'un mélange gazeux au moyen d'un capteur de gaz, d'un capteur de gaz combustible et d'un capteur de mélange gazeux
DE202019100263U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
EP1717514B1 (fr) Brûleur à gaz et méthodes pour le démarrage et le fonctionnement de ce brûleur
EP3499124A1 (fr) Composant d'appareil de chauffage et procédé de réglage d'un débit volumétrique de carburant
EP2405198A1 (fr) Procédé de calibration de régulation du rapport gaz combustible-air d'un brûleur à gaz combustible
EP3182007B1 (fr) Système d'appareil de chauffage et procédé faisant appel à un système d'appareil de chauffage
EP3680553B1 (fr) Procédé de régulation du rapport d'air de combustion sur le brûleur d'un appareil de chauffage
EP3746705A1 (fr) Procédé de réglage d'un mélange gazeux au moyen d'un capteur de mélange gazeux
DE102015207672B3 (de) Verfahren zur Regelung eines Kraftstofffördersystems
EP1923634B1 (fr) Réglage du mélange air / gaz combustible sur la température de flamme ou de brûleur d'un appareil de chauffage
EP3751200B1 (fr) Procédé de régulation d'un appareil chauffant à gaz combustible
EP2615278A2 (fr) Dispositif de dosage avec mélangeur de gaz et procédé de commande de la formation de mélange
EP3707433A1 (fr) Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible
WO2020030323A1 (fr) Procédé pour la régulation d'un rapport de mélange de gaz combustible et d'air pour un appareil de chauffage
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
AT505064B1 (de) Regelung des brenngas-luft-gemisches über die brenner- oder flammentemperatur eines heizgerätes
DE10220774B4 (de) Einrichtung zur Regelung eines Brenners
EP3859210B1 (fr) Procédé d'optimisation d'une plage de tolérance d'une courbe caractéristique d'une régulation de mélange électronique dans un appareil de chauffage à gaz
DE202019100264U1 (de) Heizgerät mit Regelung eines Gasgemisches unter Nutzung eines Gassensors und eines Gasgemischsensors
EP1351019B1 (fr) Procédé pour le contrôle du fonctionnement d'un système de régulation de brûleur pour appareil de chauffage
DE102004063992B4 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
DE202004017851U1 (de) Feuerungseinrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENNRICH, HARTMUT

Inventor name: DANNEMANN, JAN

Inventor name: VROLIJK, ENNO JAN

Inventor name: KLINK, HANS-JOACHIM

Inventor name: WALD, STEPHAN

Inventor name: HERMANN, JENS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERMANN, JENS

Inventor name: HENNRICH, HARTMUT

Inventor name: VROLIJK, ENNO JAN

Inventor name: WALD, STEPHAN

Inventor name: DANNEMANN, JAN

Inventor name: KLINK, HANS-JOACHIM

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20200930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003511

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350308

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210809

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230802

Year of fee payment: 6

Ref country code: IT

Payment date: 20230831

Year of fee payment: 6

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

Ref country code: DE

Payment date: 20230822

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230