EP3592528A1 - Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients - Google Patents

Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients

Info

Publication number
EP3592528A1
EP3592528A1 EP18713314.5A EP18713314A EP3592528A1 EP 3592528 A1 EP3592528 A1 EP 3592528A1 EP 18713314 A EP18713314 A EP 18713314A EP 3592528 A1 EP3592528 A1 EP 3592528A1
Authority
EP
European Patent Office
Prior art keywords
shaft
measuring
central
arrangement according
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18713314.5A
Other languages
German (de)
English (en)
Inventor
Franck LHOMME
Johann Fleury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel Participations SAS
Original Assignee
Sidel Participations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations SAS filed Critical Sidel Participations SAS
Publication of EP3592528A1 publication Critical patent/EP3592528A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/006Blow-moulding plants, e.g. using several blow-moulding apparatuses cooperating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/28Blow-moulding apparatus
    • B29C49/30Blow-moulding apparatus having movable moulds or mould parts
    • B29C49/36Blow-moulding apparatus having movable moulds or mould parts rotatable about one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4205Handling means, e.g. transfer, loading or discharging means
    • B29C49/42093Transporting apparatus, e.g. slides, wheels or conveyors
    • B29C49/42095Rotating wheels or stars

Definitions

  • the invention relates to an arrangement for measuring the angular position of a rotary table for transporting a container, the arrangement comprising:
  • An angular sensor which comprises a rotary measuring shaft and which is intended to measure an angle representative of the angular position of the plate.
  • the in-line and mass-produced bottle manufacturing facilities include a plurality of processing machines that are installed in the chain. Each processing machine comprises means of automated transport of the containers.
  • the containers circulate, preferably continuously, from an entrance of the installation to an output of the installation.
  • the transport tray is integral in rotation with a central shaft which is rotated by a motor.
  • processing machines are provided with moving parts which must be synchronized with the means transporting said installation.
  • a blowing machine it is for example an elongation rod which is intended to stretch the container.
  • a variable pitch transfer wheel it is for example gripping tongs of the containers.
  • the angular sensor comprises a measuring shaft which is coupled to an upper end of the central shaft driving the plate.
  • the tray has many massive elements which are mounted regularly around the axis of rotation of the plate, for example a blowing machine on board molds or a transfer wheel on the mobile gripping arms.
  • these massive elements are mobile, in particular in rotation, the distribution of the masses is likely to vary during the operation of the machine, which alters the regularity of distribution of the masses around the axis of rotation of the central shaft . This causes an unbalance effect on the central shaft.
  • the upper end of the central shaft is arranged at a relatively large distance, for example more than three meters, above the plateau. It follows that the shaft is likely to be slightly deformed in bending under the effect of unbalance. This causes radial vibrations of the axis of rotation of the upper end of the shaft at each turn of the plate.
  • the angular sensor being carried by a fixed support, the axis of rotation of its measuring shaft remains radially fixed. This causes misalignments of the central shaft with respect to the measuring shaft during the rotation of the plate.
  • the measuring shaft is then not perfectly coaxial with the central shaft over the duration of a plateau turn. In fact, the misalignment of the axis of rotation of the upper end of the central shaft with the axis of rotation of the measuring shaft is likely to vary dynamically depending on the rotation angle of the tray. The measurement error thus varies dynamically during the same lap.
  • the upper end of the central shaft is subject to cyclical torsion which thus shifts physically the angular position of the upper end of the central shaft relative to the angular position of the plate.
  • the moving masses are controlled in displacement relative to the plate at each turn, moving towards and away alternately from the axis of rotation of the central shaft. This is for example the case of the molds of a blowing machine which are open and then closed at each turn of the plate.
  • the successive movements of each moving mass on board in one turn causes repeated variations in the moment of inertia of the plateau. This results in an oscillation of the speed of rotation of the central shaft at a determined frequency several times per revolution on either side of an average rotation speed.
  • the invention proposes an arrangement of the type described above, characterized in that the rotary measuring shaft is connected in rotation with the central shaft in a transmission ratio determined by means of a kinematic motion transmission chain comprising at least a transmission wheel offset radially from the central shaft.
  • the measuring shaft is connected in rotation directly with an intermediate rotating shaft which is arranged radially away from the central shaft and which is interposed in the kinematic chain between the measuring shaft and the central shaft;
  • the intermediate shaft is intended to carry no container
  • the intermediate shaft is arranged in a kinematic transmission chain between a motor and the central shaft;
  • the intermediate shaft is formed by an output shaft of a geared motor driven by the motor;
  • the measuring shaft is arranged substantially coaxially with the intermediate shaft and is rotatably connected with the intermediate shaft by coupling means;
  • the measuring shaft is connected in rotation with the intermediate shaft by a mechanism for transmitting motion to at least two transmission wheels;
  • the motion transmission kinematic chain between the measuring shaft and the central shaft comprises at least one flexible motion transmission belt
  • the arrangement comprises means for tensioning the flexible transmission belt with a tension making it possible to filter cyclic variations of speeds of the central shaft;
  • the measuring shaft is directly connected in rotation with the central shaft; -
  • the measuring shaft is rotatably connected with an intermediate portion of the central shaft which is arranged closer to the plate than a free upper end of the central shaft;
  • the plate is part of a rotary blowing machine which comprises a plurality of molding units which are evenly distributed on the periphery of the plate.
  • FIG. 1 is a diagrammatic view from above showing a rotary blowing machine forming part of a container manufacturing installation, as well as a preform transport wheel up to the rotary blowing machine and a transport wheel. containers arranged at the outlet of the rotary blowing machine;
  • FIG. 2 is a diagrammatic view from above which shows a motion transmission kinematic chain enabling the different rotary plates of FIG. 1 to be rotated synchronously;
  • FIG. 3 is a view in axial section along the sectional plane 3-3 of FIG. 2, which shows an arrangement for measuring the angular position of the plate of the rotary blowing machine produced according to a first embodiment of FIG. invention
  • FIG. 4 is a view in axial section along the sectional plane 4-4 of FIG. 2 which shows an arrangement for measuring the angular position of the plate of the rotary blowing machine produced according to a second embodiment of FIG. 'invention.
  • FIG. 1 a rotary machine 10 for processing a container of thermoplastic material.
  • the rotary processing machine is part of an apparatus for manufacturing containers made of thermoplastic material, such as bottles, flasks, etc.
  • Such a rotary processing machine comprises individual means of transport of the containers, as well as processing means which are here embarked on the means of transport.
  • the transport means comprise a plate 12 which extends in a radial plane.
  • the plate 12 is secured in rotation about a central shaft 14 having an axially oriented axis "B" of rotation.
  • such an installation comprises several processing machines which are arranged in the chain so as to continuously produce containers in large series.
  • the installation comprises, by way of nonlimiting example, a rotary blowing machine for forming containers from hot preforms, for example by stretch-blow molding, a rotary filling machine and a rotary capping machine.
  • the containers are conveyed continuously between these different processing machines by rotary transfer wheels.
  • the rotary processing machine 10 is a rotary blowing machine.
  • the on-board processing means on the rotary blowing machine comprise a plurality of molding units 16 which are regularly distributed over the periphery of the plate 12. Such an assembly formed by the plate 12 carrying the molding units 16 is generally called " carousel".
  • Each molding unit 16 comprises two half-molds which are capable of occupying a closed position to allow the molding of the container from a preform and an open position in which the half-molds are spaced apart from each other. to allow extraction of molded containers.
  • the half-molds are here articulated around a hinge axis axially oriented.
  • the molding units 16 are controlled in the open position only in the vicinity of a fixed angular sector 18 of the trajectory of the molding units which successively allows the unloading of the molded containers and the loading of the hot preforms. They occupy their closed position on the rest of the circular trajectory around the axis "B" of rotation of the plate 12.
  • FIG. 1 also shows a rotating preform transfer wheel which is intended to convey the preforms to the rotary machine for processing.
  • the rotary transfer wheel comprises a plate 22 which extends in a radial plane.
  • the plate 22 is integral in rotation with a central shaft 24 of axis "C" rotation axially oriented.
  • the rotary transfer wheel 20 has arms 25 movably mounted on the plate 22. Each arm 25 is capable of individually gripping a preform.
  • the plant also includes a rotatable molded container transfer wheel 26 for receiving the molded containers in the unloading and loading angular sector 18 of the rotary processing machine.
  • Wheel 26 rotary transfer comprises a plate 28 which extends in a radial plane.
  • the plate 28 is integral in rotation with a central shaft axially "D" axis of rotation.
  • the rotary transfer wheel 26 comprises arms 31 movably mounted on the plate 28. Each arm 31 is able to individually grip a molded container.
  • the rotary processing machine 10 is rotated by a motor 32 via a drive kinematic chain.
  • the motor 32 is equipped with a geared motor 34.
  • the geared motor 34 comprises an axially oriented axially oriented axis output shaft "E".
  • the transmission kinematic chain is equipped with different transmission wheels such as pinions and / or pulleys.
  • the output shaft 36 is guided in rotation by a guide bearing 39, here a ball bearing, which is mounted on a fixed support plate 43.
  • the output shaft 36 is equipped with a first driving pulley 38.
  • the first driving pulley 38 rotates a first driven pulley 40 which is mounted on a parallel shaft 42 by means of a first flexible transmission belt 41 such as a belt or a chain.
  • the parallel shaft 42 also carries an input gear 44. It will be understood that the pinions are transmission wheels.
  • the input gear 44 is meshing with an output gear 46 which is mounted on the central shaft 14 of the rotary processing machine.
  • the rotary machine 10 is rotated by the motor 32 with a transmission ratio determined by the diameter of the different transmission wheels.
  • the output gear 46 is here arranged axially under the plate 12.
  • the latter is stretched by means 48 under tension such as a tensioner roller which exerts a transverse force "F" determined on one of the strands of the flexible belt 41 transmission.
  • the output shaft 36 of the geared motor 34 is equipped with a second drive pulley 50.
  • This second drive pulley 50 rotates, via a second flexible transmission belt 54, a second driven pulley 52 which is mounted on the central shaft 24 of the first wheel
  • the second rotary transfer wheel 26 is rotated by a third flexible transmission belt 56 cooperating with a pulley 58 mounted on the central shaft 24 of the first transfer wheel 20 and with a second pulley 60 mounted on the shaft 30 of the second transfer wheel 26.
  • Each belt 54, 56 is tensioned by tensioning means such as rollers 62, 64 associated tensioners.
  • the manufacturing facility is equipped with movable members whose movements are controlled by electric motors. These electric control motors are synchronized according to the angular position of the plate 12 of the rotary processing machine. For this purpose, it is necessary to know the angular position of the rotary processing machine. To do this, the installation is equipped with an angle sensor 66, also known as an "encoder".
  • such an angular sensor 66 comprises a rotary shaft 68 for measuring axis "G" of axial orientation.
  • the rotary measuring shaft 68 drives a detection device (not shown) which is housed in a fixed casing 70.
  • this is a optical sensor, a magnetic sensor or any other type of sensor capable of measuring an angle of rotation of the measuring shaft.
  • the angle sensor 66 is arranged to measure an angle representative of the angular position of the tray 12 of the rotary machine 10.
  • the half-molds in fact have very large masses, for example of the order of several tens of kilograms.
  • the molding units 16 By opening only in the angular sector 18, the molding units 16 cause an imbalance in the distribution of the masses around the axis "B" of rotation because the half-molds in the open position are then slightly closer to the axis "B" rotation than the half-molds in the closed position.
  • each molding unit 16 causes a variation in the moment of inertia of the rotary processing machine.
  • the invention proposes to replace the direct coupling of the rotating rotary shaft 68 with the central shaft 14 by a transmission kinematic chain comprising at least one transmission wheel, such as a gearbox. pulley or gear, radially offset from the central shaft. This eliminates measurement errors caused by the dynamic misalignment of the rotary measuring shaft 68 with the central shaft 14.
  • the transmission ratio between the central shaft 14 and the measuring shaft 68 is advantageously a power of two. For example, when the transmission ratio is 1: 4, it is known that the measurement shaft 68 will perform four turns for a central shaft revolution 14. The signal emitted by the angular sensor 66 is thus likely to be processed by an electronic control unit (not shown) which is able to deduce the angle of rotation of the central shaft 14.
  • the measurement shaft 68 is directly linked in rotation with the central shaft 14.
  • the casing 70 is fixed radially close to the central shaft 14, for example to a fixed support 72.
  • the measuring shaft 68 extends here parallel to the central shaft 14.
  • the central shaft 14 carries a first transmission wheel 74 which cooperates with a second transmission wheel 76 for driving the shaft 68 for measuring rotation.
  • the second transmission wheel 76 is mounted directly on the rotary measuring shaft 68.
  • the rotary measuring shaft 68 is thus led directly by the central shaft 14.
  • the second transmission wheel 76 is axially offset relative to the central shaft 14.
  • the two transmission wheels 74, 76 are here formed by gears which mesh directly.
  • the transmission wheels are formed by pulleys which are connected by a flexible transmission belt.
  • the measuring shaft is arranged so that its axis forms an angle with the axis of the central shaft.
  • the transmission wheels are then formed by gears with concurrent axes.
  • the first gear wheel 74 is advantageously arranged closer of the plate 12 than the free upper end of the central shaft 14 in the axial direction.
  • the axial distance between the plate 12 and the first transmission wheel 74 is less than about one meter.
  • the measuring shaft 68 is connected in rotation directly with an intermediate rotary shaft.
  • This intermediate rotary shaft is arranged radially at a distance from the central shaft 14. Said rotary shaft intermediate is thus interposed in the kinematic chain between the measuring shaft 68 and the central shaft 14.
  • said intermediate rotary shaft is intended to carry no container.
  • it is not subject to variations of moment of inertia and, moreover, its moment of inertia is low compared to that of the assembly formed by the central shaft 14 and its plate 12 of the made of the absence of container transport tray.
  • Said intermediate shaft is for example arranged in a kinematic transmission chain between the motor 32 and the central shaft 14.
  • said intermediate shaft is here formed by the output shaft 36 of the gearmotor 34. It has indeed been found that this The arrangement made it possible to very satisfactorily reduce the measurement errors of the angular sensor 66.
  • the measuring shaft 68 is here arranged parallel to the shaft
  • the housing 70 of the angular sensor 66 is here fixed to the support plate 43 by means of a fixed flange 77.
  • the rotary measuring shaft 68 is connected in rotation with the central shaft 14 by a transmission kinematic chain comprising a plurality of transmission wheels offset radially with respect to the central shaft 14, more particularly the input gear 44, the pinion 78 and the transmission wheel 76.
  • the same advantage can be obtained by replacing the pinions by pulleys cooperating with a flexible transmission belt.
  • the transmission ratio between the output shaft of the geared motor and the central shaft of the rotary processing machine is a power of two
  • the measuring shaft is then connected in rotation with the intermediate shaft by coupling means.
  • the speed of rotation of the plate 12 oscillates as a function of the openings and closures of the molding units 16. Such oscillations do not make it possible to carry out a fluid control of the movable members controlled by an electric motor. Indeed, these movable members are then themselves subjected to the same speed oscillations during their movements.
  • the arrangement of a flexible transmission belt transmission in the motion transmission kinematic chain between the measuring shaft 68 and the central shaft 14 is capable of mechanically filtering these speed oscillations induced by the kinematics of the movements of the openings and the closures of the molding units.
  • This filtering effect can be obtained in particular by adjusting the tensioning means of the flexible transmission belt to a voltage for filtering cyclic speed variations of the central shaft 14.
  • the arrangement of the angular sensor 66 according to the second embodiment of the invention makes it possible to filter the oscillations of speed very effectively.
  • the voltage usually applied to the first belt 41 of transmission is indeed already adapted to filter very effectively oscillations speeds. Such an arrangement thus does not require any particular adjustment.
  • the arrangement made according to the teachings of the invention thus makes it possible to obtain an accurate measurement of the angular position of the plate 12 of the rotary processing machine in a simple manner and without having to resort to expensive coupling devices.
  • the invention also proposes a solution for efficiently mechanically filtering the rotational speed oscillations of the plate 12 simply by adjusting the tension of a flexible transmission belt.
  • the invention has been described with reference to a rotary blowing machine. It will be understood that other rotating machines of the manufacturing facility can benefit from the invention.
  • the rotary processing machine can be formed by a filling machine.
  • the invention can also be applied to a transfer wheel comprising pivoting arms. Indeed, such a wheel is also subject to variations of moment of inertia may cause measurement errors similar to those found on rotary blowing machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

L'invention concerne un agencement pour la mesure de la position angulaire d'un plateau (12) rotatif destiné à transporter un récipient, l'agencement comportant : - un plateau (12) solidaire en rotation autour d'un arbre (14) central comportant un axe (B) de rotation d'orientation axiale; - un capteur (66) angulaire qui comporte un arbre (68) rotatif de mesure et qui est destiné à mesurer un angle représentatif de la position angulaire du plateau (12); caractérisé en ce que l'arbre (68) rotatif de mesure est lié en rotation avec l'arbre (14) central selon un rapport de transmission déterminé par l'intermédiaire d'une chaîne cinématique de transmission de mouvement comportant au moins une roue (44, 76) de transmission décalée radialement par rapport à l'arbre (14) central.

Description

"Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients"
DOMAINE TECHNIQUE DE L'INVENTION
L'invention se rapporte à un agencement pour la mesure de la position angulaire d'un plateau rotatif destiné à transporter un récipient, l'agencement comportant :
- un plateau solidaire en rotation autour d'un arbre central comportant un axe de rotation d'orientation axiale ;
- un capteur angulaire qui comporte un arbre rotatif de mesure et qui est destiné à mesurer un angle représentatif de la position angulaire du plateau. ARRIERE PLAN TECHNIQUE DE L'INVENTION
Les installations de fabrication de bouteilles en ligne et en grandes séries comportent une pluralité de machines de traitement qui sont installées à la chaîne. Chaque machine de traitement comporte des moyens de transport automatisé des récipients. Ainsi, les récipients circulent, de préférence de manière continue, depuis une entrée de l'installation jusqu'à une sortie de l'installation.
Dans le cadre de l'invention, on s'intéressera plus particulièrement aux machines de traitement équipées de plateaux rotatifs de transport de récipients. Le plateau de transport est solidaire en rotation d'un arbre central qui est entraîné en rotation par un moteur.
Ces différentes machines fonctionnent de manière synchronisée pour permettre le passage automatique des récipients d'une machine à l'autre.
En outre, certaines machines de traitement sont munies d'organes mobiles qui doivent être synchronisés avec les moyens de transport de ladite installation. Dans le cas d'une machine de soufflage, il s'agit par exemple d'une tige d'élongation qui est destinée à étirer le récipient. Dans le cas d'une roue de transfert à pas variable, il s'agit par exemple de pinces de préhension des récipients.
Jusqu'à très récemment, la synchronisation des différents organes mobiles de l'installation était réalisée de manière purement mécanique, par exemple au moyen de cames ou de mécanisme de transmission de mouvement.
Cependant, certains organes mobiles sont désormais commandés individuellement par un moteur électrique. Cette évolution des installations permet de recourir à une synchronisation électronique de ces organes mobiles avec le reste de l'installation. Le remplacement de la synchronisation mécanique par la synchronisation électronique permet ainsi de réduire le coût de fabrication des installations en diminuant le nombre d'éléments de la machine. Ceci permet en outre de s'affranchir de certaines opérations de maintenance en réduisant le nombre de pièces d'usure et en éliminant certaines causes mécaniques de pannes.
Pour permettre une telle synchronisation électronique desdits organes mobiles, il est nécessaire de déterminer à chaque instant la position angulaire du plateau rotatif de transport des récipients. A cet effet, il est connu d'utiliser un capteur angulaire, aussi connu sous la désignation de "codeur rotatif".
Le capteur angulaire comporte un arbre de mesure qui est accouplé à une extrémité supérieure de l'arbre central entraînant le plateau. Un tel agencement est satisfaisant pour synchroniser des actions ne nécessitant pas une grande précision.
Néanmoins, on a constaté que les mesures prises par le capteur angulaire présentaient des erreurs pouvant aller jusqu'à 6° de différence entre la position angulaire mesurée et la position angulaire réelle du plateau. Bien que la cause de ces erreurs de mesure n'ait pas été établie de manière certaine, on soupçonne qu'un défaut de concentricité de la partie haute de la machine soit en cause.
En effet, le plateau embarque de nombreux éléments massifs qui sont montés régulièrement autour de l'axe de rotation du plateau, par exemple une machine de soufflage embarque des moules ou une roue de transfert embarque des bras de préhension mobiles. En outre, lorsque ces éléments massifs sont mobiles, notamment en rotation, la répartition des masses est susceptible de varier pendant le fonctionnement de la machine, ce qui altère la régularité de répartition des masses autour de l'axe de rotation de l'arbre central. Ceci provoque un effet de balourd sur l'arbre central.
De plus, l'extrémité supérieure de l'arbre central est agencée à une distance relativement importante, par exemple à plus de trois mètres, au-dessus du plateau. Il s'ensuit que l'arbre est susceptible d'être légèrement déformé en flexion sous l'effet du balourd. Ceci provoque des vibrations radiales de l'axe de rotation de l'extrémité supérieure de l'arbre à chaque tour de plateau. Or, le capteur angulaire étant porté par un support fixe, l'axe de rotation de son arbre de mesure demeure radialement fixe. Ceci provoque des désalignements de l'arbre central par rapport à l'arbre de mesure pendant la rotation du plateau. L'arbre de mesure n'est alors pas parfaitement coaxial avec l'arbre central sur toute la durée d'un tour de plateau. De fait, le défaut d'alignement de l'axe de rotation de l'extrémité supérieure de l'arbre central avec l'axe de rotation de l'arbre de mesure est susceptible de varier dynamiquement en fonction de l'angle de rotation du plateau. L'erreur de mesure varie ainsi de manière dynamique au cours d'un même tour.
En outre, l'extrémité supérieure de l'arbre central est susceptible de subir une torsion cyclique qui décale ainsi physiquement la position angulaire de l'extrémité supérieure de l'arbre central par rapport à la position angulaire du plateau.
Pour la commande de certains organes mobiles, par exemple les tiges d'étirage, une telle erreur est susceptible d'être extrêmement préjudiciable. Par exemple, la remontée de la tige d'étirage est susceptible d'être retardée au point que la tige d'étirage est toujours engagée dans le récipient lorsque celui-ci est censé être pris en charge par une roue de sortie. Il s'ensuit que le récipient risque d'être endommagé, que l'installation entière est susceptible d'être mise en arrêt de sécurité, voire que certains composants de la machine sont détériorés.
Par ailleurs, les masses mobiles sont commandées en déplacement par rapport au plateau à chaque tour, se rapprochant et s'écartant alternativement de l'axe de rotation de l'arbre central. C'est par exemple le cas des moules d'une machine de soufflage qui sont ouverts puis fermés à chaque tour de plateau. Les mouvements successifs de chaque masse mobile embarquée sur le plateau en un tour provoquent des variations répétées de moment d'inertie du plateau. Ceci se traduit par une oscillation de la vitesse de rotation de l'arbre central à une fréquence déterminée plusieurs fois par tour de part et d'autre d'une vitesse moyenne de rotation.
On a constaté qu'une telle oscillation ne permettait pas de commander les organes mobiles de manière fluide.
BREF RESUME DE L'INVENTION
L'invention propose un agencement du type décrit précédemment, caractérisé en ce que l'arbre rotatif de mesure est lié en rotation avec l'arbre central selon un rapport de transmission déterminé par l'intermédiaire d'une chaîne cinématique de transmission de mouvement comportant au moins une roue de transmission décalée radialement par rapport à l'arbre central.
Un tel agencement permet ainsi de s'affranchir des erreurs de mesure provoquées par les vibrations en flexion de l'arbre central. En effet, le fait de ne pas accoupler l'arbre de mesure directement à l'arbre central permet d'éviter les erreurs de mesure dues à la variation dynamique du défaut d'alignement de l'arbre de mesure avec l'arbre central.
Selon d'autres caractéristiques de l'invention :
- l'arbre de mesure est lié en rotation directement avec un arbre rotatif intermédiaire qui est agencé radialement à distance de l'arbre central et qui est interposé dans la chaîne cinématique entre l'arbre de mesure et l'arbre central ;
- l'arbre intermédiaire est destiné à ne transporter aucun récipient ;
- l'arbre intermédiaire est agencé dans une chaîne cinématique de transmission entre un moteur et l'arbre central ;
- l'arbre intermédiaire est formé par un arbre de sortie d'un motoréducteur entraîné par le moteur ;
- l'arbre de mesure est agencé sensiblement coaxialement à l'arbre intermédiaire et il est lié en rotation avec l'arbre intermédiaire par des moyens d'accouplement ;
- l'arbre de mesure est lié en rotation avec l'arbre intermédiaire par un mécanisme de transmission de mouvement à au moins deux roues de transmission ;
- la chaîne cinématique de transmission de mouvement entre l'arbre de mesure et l'arbre central comporte au moins une ceinture souple de transmission de mouvement ;
- l'agencement comporte des moyens de mise sous tension de la ceinture souple de transmission à une tension permettant de filtrer des variations cycliques de vitesses de l'arbre central ;
- l'arbre de mesure est directement lié en rotation avec l'arbre central ; - l'arbre de mesure est lié en rotation avec un tronçon intermédiaire de l'arbre central qui est agencé plus proche du plateau que d'une extrémité supérieure libre de l'arbre central;
- le plateau fait partie d'une machine rotative de soufflage qui comporte une pluralité d'unités de moulage qui sont réparties régulièrement sur la périphérie du plateau.
BREVE DESCRIPTION DES FIGURES D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique de dessus qui représente une machine rotative de soufflage faisant partie d'une installation de fabrication de récipients, ainsi qu'une roue de transport de préformes jusqu'à la machine rotative de soufflage et une roue de transport de récipients agencée à la sortie de la machine rotative de soufflage ;
- la figure 2 est une vue schématique de dessus qui représente une chaîne cinématique de transmission de mouvement permettant de faire tourner les différents plateaux rotatifs de la figure 1 de manière synchronisée ;
- la figure 3 est une vue en coupe axiale selon le plan de coupe 3-3 de la figure 2 qui représente un agencement pour la mesure de la position angulaire du plateau de la machine rotative de soufflage réalisé selon un premier mode de réalisation de l'invention ;
- la figure 4 est une vue en coupe axiale selon le plan de coupe 4-4 de la figure 2 qui représente un agencement pour la mesure de la position angulaire du plateau de la machine rotative de soufflage réalisé selon un deuxième mode de réalisation de l'invention. DESCRIPTION DETAILLEE DES FIGURES
Dans la suite de la description, des éléments présentant des structures identiques ou des fonctions analogues seront désignés par une même référence.
Dans la suite de la description, on adoptera à titre non limitatif une orientation axiale dirigée de bas en haut et indiquée par la flèche "A" des figures, ainsi que des orientations radiales s'étendant orthogonalement à la direction axiale.
On a représenté à la figure 1 une machine 10 rotative de traitement d'un récipient en matériau thermoplastique. La machine 10 rotative de traitement fait partie d'une installation de fabrication de récipients en matériau thermoplastique, telles que des bouteilles, des flacons, etc.
Une telle machine 10 rotative de traitement comporte des moyens de transport individuel des récipients, ainsi que des moyens de traitement qui sont ici embarqués sur les moyens de transport.
Les moyens de transport comportent un plateau 12 qui s'étend dans un plan radial. Le plateau 12 est solidaire en rotation autour d'un arbre 14 central comportant un axe "B" de rotation d'orientation axiale.
Généralement, une telle installation comporte plusieurs machines de traitement qui sont agencées à la chaîne de manière à produire en continue des récipients en grandes séries. L'installation comporte à titre d'exemple non limitatif une machine rotative de soufflage pour le formage de récipients à partir de préformes chaudes, par exemple par étirage-soufflage, une machine rotative de remplissage et une machine rotative de bouchage. Les récipients sont véhiculés de manière continue entre ces différentes machines de traitement par des roues rotatives de transfert. Dans l'exemple représenté à la figure 1, la machine 10 rotative de traitement est une machine rotative de soufflage.
Les moyens de traitement embarqués sur la machine 10 rotative de soufflage comportent une pluralité d'unités 16 de moulage qui sont réparties régulièrement sur la périphérie du plateau 12. Un tel ensemble formé par le plateau 12 portant les unités 16 de moulage est généralement appelé "carrousel". Chaque unité 16 de moulage comporte deux demi-moules qui sont susceptibles d'occuper une position fermée pour permettre le moulage du récipient à partir d'une préforme et une position ouverte dans laquelle les demi-moules sont écartés l'un de l'autre pour permettre l'extraction de récipients moulés. Les demi-moules sont ici articulés autour d'une charnière d'axe d'orientation axiale.
Les unités 16 de moulage sont commandées en position ouverte uniquement à proximité d'un secteur angulaire 18 fixe de la trajectoire des unités de moulage qui permet successivement le déchargement des récipients moulés et le chargement des préformes chaudes. Elles occupent leur position fermée sur le reste de la trajectoire circulaire autour de l'axe "B" de rotation du plateau 12.
On a aussi représenté à la figure 1 une roue 20 rotative de transfert de préformes qui est destinée à acheminer les préformes jusqu'à la machine 10 rotative de traitement. La roue 20 rotative de transfert comporte un plateau 22 qui s'étend dans un plan radial. Le plateau 22 est solidaire en rotation d'un arbre 24 central d'axe "C" de rotation d'orientation axiale. La roue 20 rotative de transfert comporte des bras 25 montés mobiles sur le plateau 22. Chaque bras 25 est apte à saisir individuellement une préforme.
L'installation comporte aussi une roue 26 rotative de transfert de récipients moulés qui est destinée à réceptionner les récipients moulés dans le secteur 18 angulaire de déchargement et de chargement de la machine 10 rotative de traitement. La roue 26 rotative de transfert comporte un plateau 28 qui s'étend dans un plan radial. Le plateau 28 est solidaire en rotation d'un arbre 30 central d'axe "D" de rotation d'orientation axiale. La roue 26 rotative de transfert comporte des bras 31 montés mobiles sur le plateau 28. Chaque bras 31 est apte à saisir individuellement un récipient moulé.
Comme cela est illustré à la figure 2, la machine 10 rotative de traitement est entraînée en rotation par un moteur 32 par l'intermédiaire d'une chaîne cinématique de transmission. Le moteur 32 est équipé d'un motoréducteur 34. Le motoréducteur 34 comporte un arbre 36 de sortie d'axe "E" d'orientation axiale. La chaîne cinématique de transmission est équipée de différentes roues de transmission telles que des pignons et/ou des poulies.
Comme cela est représenté à la figure 4, l'arbre 36 de sortie est guidé en rotation par un pallier 39 de guidage, ici un roulement à billes, qui est monté sur une platine 43 de support fixe.
L'arbre 36 de sortie est équipé d'une première poulie 38 motrice. La première poulie 38 motrice entraîne en rotation une première poulie 40 menée qui est montée sur un arbre 42 parallèle au moyen d'une première ceinture 41 souple de transmission telle qu'une courroie ou une chaîne. L'arbre 42 parallèle porte aussi un pignon 44 d'entrée. On comprendra que les pignons sont des roues de transmission. Le pignon 44 d'entrée est engrené avec un pignon 46 de sortie qui est monté sur l'arbre 14 central de la machine 10 rotative de traitement. Ainsi, la machine 10 rotative de traitement est entraînée en rotation par le moteur 32 avec un rapport de transmission déterminé par le diamètre des différentes roues de transmission.
Comme cela est représenté à la figure 3, le pignon 46 de sortie est ici agencé axialement sous le plateau 12.
Pour le bon fonctionnement de la ceinture 41 souple de transmission, cette dernière est tendue par un moyen 48 de mise sous tension tel qu'un galet tendeur qui exerce un effort transversal "F" déterminé sur l'un des brins de la ceinture 41 souple de transmission.
Pour synchroniser la rotation des roues 20, 26 de transfert avec celle de la machine 10 rotative de traitement, ces premières sont entraînées en rotation par ledit moteur 32.
Ainsi, l'arbre 36 de sortie du motoréducteur 34 est équipé d'une deuxième poulie 50 motrice. Cette deuxième poulie 50 motrice entraîne en rotation, par l'intermédiaire d'une deuxième ceinture 54 souple de transmission, une deuxième poulie 52 menée qui est montée sur l'arbre 24 central de la première roue
20 de transfert.
Enfin, la deuxième roue 26 rotative de transfert est entraînée en rotation par une troisième ceinture 56 souple de transmission coopérant avec une poulie 58 monté sur l'arbre 24 central de la première roue 20 de transfert et avec une deuxième poulie 60 montée sur l'arbre 30 de la deuxième roue 26 de transfert.
Chaque ceinture 54, 56 est tendue par des moyens de mise sous tension tels que des galets 62, 64 tendeurs associés.
Par ailleurs, l'installation de fabrication est équipée d'organes mobiles dont les déplacements sont commandés par des moteurs électriques. Ces moteurs électriques de commande sont synchronisés en fonction de la position angulaire du plateau 12 de la machine 10 rotative de traitement. A cet effet, il est nécessaire de connaître la position angulaire de la machine 10 rotative de traitement. Pour ce faire, l'installation est équipée d'un capteur 66 angulaire, aussi connu sous le nom de "codeur".
Comme représenté aux figures 3 et 4, un tel capteur 66 angulaire comporte un arbre 68 rotatif de mesure d'axe "G" d'orientation axiale. L'arbre 68 rotatif de mesure entraîne un dispositif de détection (non représenté) qui est logé dans un carter 70 fixe. Selon des exemples non limitatifs, il s'agit d'un capteur optique, d'un capteur magnétique ou de tout autre type de capteur apte à mesurer un angle de rotation de l'arbre de mesure.
Le capteur 66 angulaire est agencé de manière à mesurer un angle représentatif de la position angulaire du plateau 12 de la machine 10 rotative de traitement.
On a constaté que l'accouplement du capteur 66 angulaire directement à l'extrémité supérieure de l'arbre 14 central de la machine 10 rotative de traitement ne permettait pas d'obtenir une mesure suffisamment précise sur un tour complet du plateau 12.
Les demi-moules présentent en effet des masses très importantes, par exemple de l'ordre de plusieurs dizaines de kilogrammes. En s'ouvrant seulement dans le secteur 18 angulaire, les unités 16 de moulage provoquent un déséquilibre de la répartition des masses autour de l'axe "B" de rotation car les demi-moules en position ouverte sont alors légèrement plus proches de l'axe "B" de rotation que les demi-moules en position fermée.
En outre, l'ouverture et la fermeture successive de chaque unité 16 de moulage provoque une variation du moment d'inertie de la machine 10 rotative de traitement.
Ceci provoque des vibrations dans l'arbre 14 central de la machine 10 rotative de traitement. L'amplitude de ces vibrations est d'autant plus importante qu'on s'éloigne du plateau 12. Or, l'arbre 14 central de la machine 10 rotative de traitement peut s'élever jusqu'à 3 à 4 mètres au-dessus du plateau 12.
Pour remédier à ce problème, l'invention propose de remplacer l'accouplement direct de l'arbre 68 rotatif de mesure en rotation avec l'arbre 14 central par une chaîne cinématique de transmission comportant au moins une roue de transmission, telle qu'une poulie ou un engrenage, décalée radialement par rapport à l'arbre central. On s'affranchit ainsi des erreurs de mesure provoquées par le défaut d'alignement dynamique de l'arbre 68 rotatif de mesure avec l'arbre 14 central.
Le rapport de transmission entre l'arbre 14 central et l'arbre 68 de mesure est avantageusement une puissance de deux. Par exemple, lorsque le rapport de transmission est de 1:4, on sait que l'arbre 68 de mesure effectuera quatre tours pour un tour d'arbre 14 central. Le signal émis par le capteur 66 angulaire est ainsi susceptible d'être traité par une unité électronique de commande (non représentée) qui est apte à déduire l'angle de rotation de l'arbre 14 central.
Selon un premier mode de réalisation de l'invention qui est représenté à la figure 3, l'arbre 68 de mesure est directement lié en rotation avec l'arbre 14 central. A cet effet, le carter 70 est fixé radialement à proximité de l'arbre 14 central, par exemple à un support 72 fixe. L'arbre 68 de mesure s'étend ici parallèlement à l'arbre 14 central.
L'arbre 14 central porte une première roue 74 de transmission qui coopère avec une deuxième roue 76 de transmission pour entraîner l'arbre 68 de mesure en rotation. La deuxième roue 76 de transmission est montée directement sur l'arbre 68 rotatif de mesure. L'arbre 68 rotatif de mesure est ainsi mené directement par l'arbre 14 central. La deuxième roue 76 de transmission est décalée axialement par rapport à l'arbre 14 central.
Les deux roues 74, 76 de transmission sont ici formées par des pignons qui s'engrènent directement.
En variante non représentée de ce premier mode de réalisation, les roues de transmission sont formées par des poulies qui sont liées par une ceinture de transmission souple.
Selon une autre variante non représentée de ce premier mode de réalisation, l'arbre de mesure est agencé de manière à ce que son axe forme un angle avec l'axe de l'arbre central. Les roues de transmission sont alors formées par des engrenages à axes concourants.
Grâce au jeu radial de fonctionnement propre à ce type de moyens de transmission de mouvement, les divers déplacements radiaux de l'arbre 14 central n'entraînent pas de contrainte sur l'arbre 68 de mesure.
En outre, pour éviter les erreurs de mesure causées par la déformation par torsion de l'arbre 14 central , et pour que les déplacements radiaux de l'arbre 14 central présentent une amplitude réduite, la première roue 74 de transmission est avantageusement agencée plus proche du plateau 12 que de l'extrémité supérieure libre de l'arbre 14 central selon la direction axiale. Par exemple, la distance axiale entre le plateau 12 et la première roue 74 de transmission est inférieure à environ un mètre.
Selon un deuxième mode de réalisation de l'invention qui est représenté à la figure 4, l'arbre 68 de mesure est lié en rotation directement avec un arbre rotatif intermédiaire. Cet arbre rotatif intermédiaire est agencé radialement à distance de l'arbre 14 central. Ledit arbre rotatif intermédiaire est ainsi interposé dans la chaîne cinématique entre l'arbre 68 de mesure et l'arbre 14 central.
Avantageusement, ledit arbre rotatif intermédiaire est destiné à ne transporter aucun récipient. De cette manière, il n'est pas soumis à des variations de moment d'inertie et, en outre, son moment d'inertie est faible par rapport à celui de l'ensemble formé par l'arbre 14 central et son plateau 12 du fait de l'absence de plateau de transport de récipient.
Ledit arbre intermédiaire est par exemple agencé dans une chaîne cinématique de transmission entre le moteur 32 et l'arbre 14 central. A titre d'exemple non limitatif, et comme représenté à la figure 4, ledit arbre intermédiaire est ici formé par l'arbre 36 de sortie du motoréducteur 34. On a en effet constaté que cet agencement permettait de réduire de manière très satisfaisante les erreurs de mesure du capteur 66 angulaire.
L'arbre 68 de mesure est ici agencé parallèlement à l'arbre
36 de sortie avec lequel il est lié en rotation par un mécanisme de transmission de mouvement à deux roues de transmission coplanaires. Le carter 70 du capteur 66 angulaire est ici fixé à la platine 43 de support par l'intermédiaire d'une bride 77 fixe.
Dans l'exemple représenté aux figures, il s'agit de deux pignons 78, 80 montés respectivement sur l'arbre 36 de sortie et par l'arbre 68 de mesure. Ces deux pignons 78, 80 sont engrenés directement l'un avec l'autre de manière que l'arbre 68 de mesure soit entraîné en rotation par l'arbre 36 de sortie.
Ainsi, l'arbre 68 rotatif de mesure est lié en rotation avec l'arbre 14 central par une chaîne cinématique de transmission comportant plusieurs roues de transmission décalées radialement par rapport à l'arbre 14 central, plus particulièrement le pignon 44 d'entrée, le pignon 78 et la roue76 de transmission.
Un tel agencement est très avantageux lorsque le rapport de transmission entre l'arbre 36 de sortie du motoréducteur 34 et l'arbre 14 central n'est pas une puissance de deux. En sélectionnant des pignons 78, 80 de diamètre adapté, on garantit que le rapport de transmission entre l'arbre 14 central et l'arbre
68 de mesure est bien une puissance de deux.
Selon une première variante, le même avantage peut être obtenu en remplaçant les pignons par des poulies coopérant avec une ceinture souple de transmission.
Selon une autre variante, lorsque le rapport de transmission entre l'arbre de sortie du motoréducteur et l'arbre central de la machine rotative de traitement est une puissance de deux, il est possible d'agencer l'arbre de mesure sensiblement coaxialement à l'arbre de sortie du motoréducteur. L'arbre de mesure est alors lié en rotation avec l'arbre intermédiaire par des moyens d'accouplement. Selon un autre aspect de l'invention, on a constaté que la vitesse de rotation du plateau 12 oscillait en fonction des ouvertures et fermetures des unités 16 de moulage. De telles oscillations ne permettent pas de réaliser une commande fluide des organes mobiles commandés par moteur électrique. En effet, ces organes mobiles se trouvent alors eux-mêmes soumis à des mêmes oscillations de vitesse lors de leurs déplacements.
Pour résoudre ce problème, il est possible de filtrer le signal émis par le capteur 66 angulaire, soit par des moyens informatiques, soit par des moyens électroniques.
Cependant, on a constaté que l'agencement d'une transmission par ceinture de transmission souple dans la chaîne cinématique de transmission de mouvement entre l'arbre 68 de mesure et l'arbre 14 central était susceptible de filtrer mécaniquement ces oscillations de vitesse induites par la cinématique des mouvements des ouvertures et des fermetures des unités de moulage. Cet effet de filtration peut être obtenu notamment en réglant les moyens de mise sous tension de la ceinture souple de transmission à une tension permettant de filtrer des variations cycliques de vitesses de l'arbre 14 central.
A cet égard, on a constaté que l'agencement du capteur 66 angulaire conformément au deuxième mode de réalisation de l'invention permettait de filtrer très efficacement les oscillations de vitesse. La tension habituellement appliquée à la première ceinture 41 de transmission est en effet déjà adaptée pour filtrer de manière très efficace les oscillations de vitesses. Un tel agencement ne requiert ainsi aucun réglage particulier.
L'agencement réalisé selon les enseignements de l'invention permet ainsi d'obtenir une mesure précise de la position angulaire du plateau 12 de la machine 10 rotative de traitement de manière simple et sans avoir à recourir à des dispositifs d'accouplement coûteux. En outre, l'invention propose aussi une solution pour permettre de filtrer mécaniquement de manière efficace les oscillations de vitesses de rotation du plateau 12 simplement en réglant la tension d'une ceinture souple de transmission.
L'invention a été décrite en référence à une machine rotative de soufflage. On comprendra que d'autres machines rotatives de l'installation de fabrication peuvent bénéficier de l'invention. Ainsi, la machine rotative de traitement peut être formée par une machine de remplissage.
L'invention peut aussi être appliquée à une roue de transfert comportant des bras pivotant. En effet, une telle roue est aussi soumise à des variations de moment d'inertie susceptibles de provoquer des erreurs de mesures similaires à celles constaté sur les machines rotative de soufflage.

Claims

REVENDICATIONS
1. Agencement pour la mesure de la position angulaire d'un plateau (12) rotatif destiné à transporter un récipient, l'agencement comportant :
- un plateau (12) solidaire en rotation autour d'un arbre
(14) central comportant un axe (B) de rotation d'orientation axiale ;
- un capteur (66) angulaire qui comporte un arbre (68) rotatif de mesure et qui est destiné à mesurer un angle représentatif de la position angulaire du plateau (12) ;
caractérisé en ce que l'arbre (68) rotatif de mesure est lié en rotation avec l'arbre (14) central selon un rapport de transmission déterminé par l'intermédiaire d'une chaîne cinématique de transmission de mouvement comportant au moins une roue (76) de transmission décalée radialement par rapport à l'arbre (14) central.
2. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'arbre (68) de mesure est lié en rotation directement avec un arbre (36) rotatif intermédiaire qui est agencé radialement à distance de l'arbre (14) central et qui est interposé dans la chaîne cinématique entre l'arbre (68) de mesure et l'arbre (14) central.
3. Agencement selon la revendication précédente, caractérisé en ce que l'arbre (36) intermédiaire est destiné à ne transporter aucun récipient.
4. Agencement selon la revendication précédente, caractérisé en ce que l'arbre (36) intermédiaire est agencé dans une chaîne cinématique de transmission entre un moteur (32) et l'arbre (14) central.
5. Agencement selon la revendication précédente, caractérisé en ce que l'arbre (36) intermédiaire est formé par un arbre de sortie d'un motoréducteur (34) entraîné par le moteur (32).
6. Agencement selon l'une quelconque des revendications 2 à 5, caractérisé en ce que l'arbre (68) de mesure est agencé sensiblement coaxialement à l'arbre (36) intermédiaire et il est lié en rotation avec l'arbre (36) intermédiaire par des moyens d'accouplement.
7. Agencement selon l'une quelconque des revendications 2 à 5, caractérisé en ce que l'arbre (68) de mesure est lié en rotation avec l'arbre (36) intermédiaire par un mécanisme de transmission de mouvement à au moins deux roues (74, 76) de transmission.
8. Agencement selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la chaîne cinématique de transmission de mouvement entre l'arbre (68) de mesure et l'arbre (14) central comporte au moins une ceinture (41) souple de transmission de mouvement.
9. Agencement selon la revendication précédente, caractérisé en ce qu'il comporte des moyens (48) de mise sous tension de la ceinture (41) souple de transmission à une tension permettant de filtrer des variations cycliques de vitesses de l'arbre (14) central.
10. Agencement selon la revendication 1, caractérisé en ce que l'arbre (68) de mesure est directement lié en rotation avec l'arbre (14) central.
11. Agencement selon la revendication précédente, caractérisé en ce que l'arbre (68) de mesure est lié en rotation avec un tronçon intermédiaire de l'arbre (14) central qui est agencé plus proche du plateau (12) que d'une extrémité supérieure libre de l'arbre (14) central.
12. Agencement selon l'une quelconque des revendications précédentes caractérisé en ce que le plateau (12) fait partie d'une machine (10) rotative de soufflage qui comporte une pluralité d'unités (16) de moulage qui sont réparties régulièrement sur la périphérie du plateau (12).
EP18713314.5A 2017-03-07 2018-03-06 Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients Withdrawn EP3592528A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751821A FR3054658B1 (fr) 2017-03-07 2017-03-07 Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de recipients
PCT/FR2018/050509 WO2018162836A1 (fr) 2017-03-07 2018-03-06 Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients

Publications (1)

Publication Number Publication Date
EP3592528A1 true EP3592528A1 (fr) 2020-01-15

Family

ID=58739160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18713314.5A Withdrawn EP3592528A1 (fr) 2017-03-07 2018-03-06 Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients

Country Status (4)

Country Link
EP (1) EP3592528A1 (fr)
CN (1) CN110382202B (fr)
FR (1) FR3054658B1 (fr)
WO (1) WO2018162836A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090456B1 (fr) 2018-12-19 2020-11-27 Sidel Participations Ligne de production de récipients controlée par un dispositif de détermination de position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105117A (ja) * 1997-10-01 1999-04-20 Japan Steel Works Ltd:The 中空成形機の型締装置
FR2990638B1 (fr) * 2012-05-15 2014-06-13 Sidel Participations "installation de fabrication de recipients comportant des moyens de transmission de mouvement a plusieurs vitesses entre un convoyeur et une station de formage"
DE102013217674A1 (de) * 2013-09-04 2015-03-05 Krones Ag Vorrichtung zum Ausrichten von Komponenten einer Rundläufermaschine
DE102014208642A1 (de) * 2014-05-08 2015-11-12 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem rotierenden Bauteil in einem Fahrzeug
DE102015107855A1 (de) * 2015-05-19 2016-11-24 Krones Ag Vorrichtung und Verfahren zum Erwärmen von Kunststoffvorformlingen mit wegstellbarer Bewegungseinrichtung

Also Published As

Publication number Publication date
CN110382202B (zh) 2022-03-18
FR3054658B1 (fr) 2018-08-17
CN110382202A (zh) 2019-10-25
WO2018162836A1 (fr) 2018-09-13
FR3054658A1 (fr) 2018-02-02

Similar Documents

Publication Publication Date Title
US4832173A (en) Device for rotating containers while transporting same
FR2986219A1 (fr) Convoyeur a chaine deformable entre une configuration etiree et une configuration compactee
WO2013107958A1 (fr) Machine d'impression sur articles en trois dimensions et procédé d'impression
WO2018162836A1 (fr) Agencement pour la mesure de la position angulaire d'un plateau rotatif de transport de récipients
EP3281768B1 (fr) Installation de fabrication de recipients comportant une roue de contournement d'une station de revetement
FR2900238A1 (fr) Module et installation de controle d'un article et installation de reglage de ce module
FR2639614A1 (fr) Procede pour emballer des cigarettes dans des paquets durs a dessus basculant
FR3027886A1 (fr) "dispositif de transport de preformes dans un four de conditionnement thermique"
FR3005461A1 (fr) Dispositif de motorisation synchronisee variable pour convoyeurs
CH633489A5 (fr) Appareil d'acheminement d'ebauches tubulaires vers une machine de formage.
EP2896584B1 (fr) Installation de contrôle de la qualité d'une succession d'articles, en particulier des bouteilles
WO2018069639A1 (fr) Procede de montage d'une installation de fabrication de recipient, et installation associee
EP0067762B1 (fr) Dispositif d'introduction d'objets allongés dans un couloir de transport
WO2021130243A1 (fr) Procede d'orientation angulaire de corps creux dans une installation de fabrication de recipients
FR2511919A1 (fr) Machine de tribofinition a broches
FR2990638A1 (fr) "installation de fabrication de recipients comportant des moyens de transmission de mouvement a plusieurs vitesses entre un convoyeur et une station de formage"
WO2013189747A1 (fr) Dispositif de transfert à pas variable pour des corps creux
EP3898174B1 (fr) Ligne de production de recipients controlee par un dispositif de determination de position
EP4249212A1 (fr) Station de chauffage de preformes comportant un moyen de mise en rotation des preformes au-dela d'une zone de chauffage
FR3090606A1 (fr) Procédé de contrôle de la synchronisation de deux roues de transport de corps creux
EP0376781A1 (fr) Installation de contrôle automatique de composants électroniques du type chips
FR2810651A1 (fr) Dispositif pour la constitution de lots successifs d'articles comprenant des moyens de transfert des articles, et installation comprenant ce dispositif
BE368657A (fr)
EP0502798A1 (fr) Installation permettant de dérouler une matière en bande, tele qu'une étoffe en vue de la contrôler et de la reconditionner sous la forme d'un enroulement de longueur déterminé
BE667130A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200911

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210122