EP3591332A1 - Penetrator comprising a penetrator body, a penetrator head and a shock absorber in between - Google Patents

Penetrator comprising a penetrator body, a penetrator head and a shock absorber in between Download PDF

Info

Publication number
EP3591332A1
EP3591332A1 EP19179756.2A EP19179756A EP3591332A1 EP 3591332 A1 EP3591332 A1 EP 3591332A1 EP 19179756 A EP19179756 A EP 19179756A EP 3591332 A1 EP3591332 A1 EP 3591332A1
Authority
EP
European Patent Office
Prior art keywords
penetrator
head
shock absorber
damping
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19179756.2A
Other languages
German (de)
French (fr)
Other versions
EP3591332B1 (en
EP3591332B8 (en
Inventor
Jakob Breiner
Martin Baur
Markus Graswald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP3591332A1 publication Critical patent/EP3591332A1/en
Publication of EP3591332B1 publication Critical patent/EP3591332B1/en
Application granted granted Critical
Publication of EP3591332B8 publication Critical patent/EP3591332B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
    • F42B30/02Bullets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/06Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with hard or heavy core; Kinetic energy penetrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/08Self-propelled projectiles or missiles, e.g. rockets; Guided missiles for carrying measuring instruments; Arrangements for mounting sensitive cargo within a projectile; Arrangements for acoustic sensitive cargo within a projectile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/001Devices or processes for assembling ammunition, cartridges or cartridge elements from parts

Definitions

  • the present invention relates to a penetrator.
  • the present invention relates in particular to a penetrator for a supersonic missile such as a guided missile, a guided or unguided missile, and / or a (ballistic) projectile or the like for acting on targets made of ultra-high-strength target material.
  • UHPC ultra-high performance concrete
  • steel fibers are added as high-strength components, which means that the concrete's compressive strength can be increased by up to 200 MPa.
  • Added polypropylene fibers also improve fire resistance and prevent the UHPC from suddenly failing when exposed to fire due to a very high vapor pressure.
  • penetrators with very high impact speeds are proposed, among other things.
  • the high impact forces that occur as a result mean that the internal components of the penetrator, including the electronic elements, and in particular the active charge, are superior to the extremely high mechanical ones Shock loads are protected. Regardless of this, there are generally higher demands on the mechanical resistance of the penetrator and in particular on its housing, so that it can penetrate the target material as completely as possible without premature structural failure.
  • the high compressive strength of such concrete materials can increase the risk of ricochets when struck at an angle.
  • the publication EP 2 002 197 B1 describes a missile with a missile head, in which electronic equipment is installed, which is sealed against the missile head via an O-ring, the O-ring being intended to dampen vibrations at the same time.
  • the present invention is based on the problem of finding solutions for supersonic penetrators with improved impact damping.
  • the penetrator comprises a penetrator fuselage, a penetrator head which is modularly designed for releasable attachment to the penetrator fuselage, and a flat shock absorber which is designed between the penetrator fuselage and the penetrator head to dampen impact loads of the penetrator head on the penetrator fuselage.
  • One idea on which the present invention is based is to modularly design a penetrator, that is to say an active system for a missile, a missile and / or a projectile or the like, with an exchangeable head, the modular design provides a particularly suitable attachment area for cushioning between the head and torso of the penetrator.
  • the damping is carried out over a large area in order to achieve the ideal compromise between the installation space required and the damping effect against pressure.
  • the damping can protect shock-sensitive components of the penetrator, such as electronic components, active charges or the like. For example, an undesired premature detonation of an explosive charge can be avoided in this way.
  • shock-sensitive components of the penetrator such as electronic components, active charges or the like.
  • an undesired premature detonation of an explosive charge can be avoided in this way.
  • Such sensitive elements can, for example, be accommodated in the fuselage of the penetrator.
  • the probability of failure and / or defect when using the penetrator can be reduced.
  • the system according to the invention is also able to withstand the considerable impact loads of an impact at supersonic speeds.
  • the damping offers additional protection of the system against, for example, a detonation of a possible pre-charge or the like.
  • the modular design of the penetrator offers the further advantage that the penetrator can be flexibly equipped with different heads, which can be designed differently, for example, depending on the specific application.
  • separate active charges can be provided, which can be divided between the two modules (ie the head and the body), it being possible for the separate charges to be ignitable independently of one another or under different conditions.
  • the penetrator fuselage can be subdivided into further modules, which can also have separate active charges and / or can carry different payloads and / or other components.
  • Such multi-stage active charges can in particular be designed with delayed ignition to one another, for example in combination with an ignition system which determines a depth of penetration and Building on this, certain active charges ignite. With such split charges, the size of the individual active charges in particular can be reduced.
  • the shock absorber can comprise a first damping disk.
  • the damping disk can have, for example, low-density materials with a low modulus of elasticity and a high yield point, or be made from these, e.g. As magnesium and / or aluminum alloys, glass fiber reinforced plastic, etc., to ensure sufficient elastic deformation and high elongation rates.
  • the first damping disk can be designed to be closed and arranged axially.
  • the damping system can thus be designed particularly simply in the form of a single disk.
  • the shock absorber can comprise at least one second damping disk.
  • the second damping disc can be annular and axially concentric with the first damping disc.
  • additional damping disks can also be provided, which, for example, can also be arranged in a ring and axially concentric with the first and second damping disks.
  • further closed or ring-shaped damping disks are integrated in the shock absorber.
  • several closed and / or annular damping disks can be arranged axially one behind the other.
  • the shock absorber can be made of a solid material at least in some areas.
  • the shock absorber can be made entirely of a solid material.
  • the shock absorber comprises one or more damping disks that are made of the same or different solid materials.
  • a closed first damping disc can be made of a metal material such as a metal, a metal alloy or a combination of materials, e.g. a magnesium alloy and / or an aluminum alloy.
  • the shock absorber can have a honeycomb structure and / or wave structure at least in some areas.
  • complex internal geometries or internal structures of the shock absorber or of its damping disks are provided.
  • the shock absorber can comprise one or more damping disks, which are made of a honeycomb-like material and / or form a honeycomb structure.
  • differently shaped cavity structures can be provided, e.g. foam-like materials.
  • the shock absorber can have a light metal material, a fiber composite material and / or a plastic.
  • the shock absorber can comprise one or more damping disks, which have and / or are made of a light metal material, e.g. an aluminum material.
  • plastics and / or fiber materials can be used, e.g. glass fiber and / or carbon fiber reinforced plastic.
  • the shock absorber can be designed in several stages to adjust the damping behavior.
  • the shock absorber be designed in several stages for a progressive absorption of shock loads.
  • the shock absorber can comprise a plurality of damping disks arranged axially one behind the other, which have different mechanical damping properties, for example a number of damping disks with an incrementally increasing or decreasing elasticity module.
  • damping disks can be provided which consist of several layers with corresponding properties.
  • radial fastening bores can be formed in the penetrator body and the penetrator head.
  • the penetrator head and the penetrator body can be designed such that they can be plugged together in order to align the fastening bores with one another.
  • a plurality of screw bores can be formed azimuthally around the penetrator head and the penetrator body.
  • the radial fastening bores can be designed as elongated holes.
  • Elongated holes are particularly suitable as mounting holes so that a relative axial movement of the penetrator head and the penetrator body can be compensated for without causing damage to the structure of the penetrator.
  • Figure 1 shows a schematic perspective view of a penetrator 10 obliquely from the front.
  • the penetrator 10 is designed for use at supersonic speeds, eg Mach 2 or more, especially for acting on targets made of ultra-high-strength target material such as ultra-high-performance concrete (UHPC). Upon impact at such a speed on such a material, the penetrator must withstand impact loads of more than 300,000 m / s 2 in typical applications, acting in periods of less than one millisecond. In order to do justice to these extreme operating conditions and to be able to penetrate such high-strength targets, several different techniques are linked to one another in the penetrator shown, as will be explained in detail below.
  • UHPC ultra-high-performance concrete
  • the invention is fundamentally not limited to this application, but can also be used in the subsonic area.
  • the penetrator can be trained to fight targets from materials other than UHPC.
  • the penetrator 10 of the Fig. 1 comprises a penetrator head 6 and a penetrator body 7, which are of modular design and can be detachably attached to one another.
  • the penetrator head 6 thus serves, as it were, as an attachment, which can be assembled for certain applications. Damping is provided between the penetrator head 6 and the penetrator body 7, as is the case with reference to FIG Fig. 6 is explained in more detail below.
  • the geometric configuration of the penetrator 10, including the penetrator head 6 and the penetrator body 7, described as follows, is to be understood only as an example. In the Fig. 6 Damping shown can also be combined with differently designed penetrators 10.
  • the penetrator head 6 is made integrally with a penetrator tip 1 and a chisel ring 2 made of a tungsten-based solid carbide with a cobalt matrix. In general, however, these components can have any heavy metal-based alloy in other designs, in particular with a ceramic component in a ductile matrix.
  • the penetrator tip 1 has an ogive nose shape and is axially upstream of the chisel rim 2 (cf. Fig. 5 ).
  • the chisel ring has five chisel elements 3, which are arranged radially offset around the penetrator tip 1 at regular azimuthal distances from one another. Due to the upstream position of the penetrator tip 1, the individual chisel elements 3 are positioned axially back relative to the penetrator tip 1. Each chisel element 3 has a radially oriented radial cutting edge 4 and an azimuthally oriented azimuthal cutting edge 5 (cf. Fig. 3 ). Each radial cutting edge 4 stands radially from the penetrator tip 1 from. The respective azimuthal cutting edge 5 is in turn seated radially on the outside on the associated radial cutting edge 4.
  • the radial cutting edges 4 are arranged axially back relative to the azimuthal cutting edges 5, the chisel elements 3 specifically running axially obliquely backwards from the azimuthal cutting edge 5 via the radial cutting edge 4 at an angle of approximately 60 ° to the penetrator tip 1.
  • Each radial cutting edge 4 is here ground on two sides, while the azimuthal cutting edges 5 are ground on one side with a cutting edge tapering axially towards the rear.
  • the penetrator tip 1 and the surrounding chisel rim 2 of the penetrator 10 shown are geometrically designed and arranged in such a way that a multi-stage penetration process is created, by means of which a greatly increased penetration capacity compared to conventional penetrators when applied to armor made of UHPC is achieved.
  • the penetrator 10 initially impinges with the upstream penetrator tip 1 on a target object, a radially spreading pre-damage to the target object occurring in the impact area. Then the chisel elements 3 of the chisel ring 2 hit the target with the azimuthal cutting edges 5 and engage in this in a claw-like manner.
  • Both the one-sided cutting shape and the arrangement of the azimuthal cutting edges 5 reduce the risk of ricochets at oblique turning angles. Due to the existing pulse, the penetrator 10 is then driven further into the target. Here, the radial cutting edges 4 smash the previously damaged impact point between the azimuthal cutting edges 5 and the penetrator tip 1, with reinforcement elements such as steel reinforcements or steel fibers being cut or cut through by the radial cutting edges 4.
  • the double-edged design of the radial cutting edges 4 prevents an undesired rotation of the penetrator 10 from being generated. At the same time, resulting debris can flow freely between the chisel elements 3.
  • the penetrator head 6 has a larger radial diameter than the chisel rim 2 (cf. Fig. 5 ), so that the rubble material is then displaced to the outside. As soon as a critical depth of penetration is reached, a rear side of the armor material can be pushed off due to a massive shear failure of the armor material (English: "scabbing"). The sensitivity of the armor material to shear loads had previously been significantly increased due to the targeted separation of the reinforcement structures.
  • the penetrator body 7 has a cylindrical basic shape, along which a total of four axially aligned slide rails 8 and four also axially aligned debris channels 9 are arranged alternately in azimuth.
  • the debris channels 9 are used for the forwarding of debris, which is discharged along the penetrator head 6.
  • the debris channels 9 have been milled into the penetrator body 7 as depressions.
  • the debris channels 9 thus ensure hydrostatic pressure compensation during the penetration of the penetrator 10 into the target object.
  • Both the penetrator head 6 and the penetrator body 7, in particular the penetrator tip 1 and / or the slide rails 8, can be provided with a suitable low-friction and / or wear-resistant coating in order to further improve the penetration of the penetrator 10.
  • a suitable low-friction and / or wear-resistant coating in order to further improve the penetration of the penetrator 10.
  • this is made of cold work steel in this embodiment.
  • radial fastening bores 11 are formed in the penetrator body 7 and the penetrator head 6.
  • the radial fastening bores 11 of the penetrator body 7 are incorporated into a fastening base 15 of the penetrator body 11, via which the penetrator body 7 can be inserted into a complementarily shaped receiving recess 16 of the penetrator head 6.
  • the penetrator head 6 in turn has a fastening collar 17 through which its radial fastening bores 11 pass.
  • the penetrator body 7 and the penetrator head 6 can thus be plugged together in such a way that the fastening bores 11 are aligned with one another and then appropriate screws, bolts or similar fastening means can be introduced.
  • Fig. 6 shows a schematic perspective view of the penetrator from Fig. 1 obliquely from the front with a built-in shock absorber 12 according to an embodiment of the invention.
  • the shock absorber 12 is formed flat between the penetrator body 7 and the penetrator head 6 in order to dampen impact loads of the penetrator head 6 on the penetrator body 7 which arise during the impact on or the penetration into a target object.
  • the shock absorber 12 comprises a first damping disk 13, which is designed to be closed and arranged axially.
  • the shock absorber 12 comprises a second damping disc 14, which is designed as an annular disc axially concentric with respect to the first damping disc 13.
  • the first damping disk 13 lies here on the mounting base 15 of the penetrator body 7 within the receiving recess 16 of the penetrator head 6.
  • the second damping disk 14 is arranged around the fastening base 15 on the penetrator body 7 opposite the fastening collar 17 of the penetrator head 6.
  • the geometries of the penetrator head 6 and of the penetrator body 7 ensure a linear guidance of these bodies to one another, which among other things prevents the entire system from buckling or bending. This also results in a uniform loading of the damping disks 13, 14.
  • the damping disks 13, 14 can be made of a solid material such as an aluminum alloy or a fiber-reinforced plastic. In principle, however, more complex damping materials or damping systems can also be used, e.g. Honeycomb structures, wave structures and / or the like. Furthermore, the damping disks 13, 14 can be of multilayer design in order to absorb impact loads step by step and / or progressively. In general, other complex internal geometries or internal structures of the damping disks 13, 14 are also provided in other versions.
  • the modular design of the penetrator 10 shown offers, due to its construction, an advantageous mounting area for the shock absorber 12 between the penetrator body 7 and the penetrator head 6.
  • the shock absorber 12 is designed to be as flat as possible on the one hand to keep the installation space as small as possible and on the other hand to reduce the damping effect Maximize pressure stress.
  • shock-sensitive components of the penetrator 10 such as, for example, electronic components, active charges or the like, can be protected which, for example, can be accommodated in the penetrator body 7 (not shown).
  • the damping offers in particular additional protection of the system against, for example, a detonation of a possible pre-charge or the like.
  • the fastening bores 11 are advantageously designed as elongated holes with a widened axial diameter along the penetrator axis, so that the fastening means have sufficient play when the penetrator 10 strikes and the penetrator head 6 deflects on the fuselage body 7 as a result.
  • the penetrator shown is an efficient, highly effective and supersonic system with improved impact damping for acting on ultra-high-strength targets, for example made of UHPC. Due to the modular design, the system can be converted particularly flexibly, quickly and in a targeted manner.

Abstract

Ein Penetrator umfasst einen Penetratorrumpf, eine Penetratorkopf, welcher modular zur lösbaren Befestigung an dem Penetratorrumpf ausgebildet ist, und einen flächigen Stoßdämpfer, welcher zwischen dem Penetratorrumpf und dem Penetratorkopf dazu ausgebildet ist, Stoßlasten des Penetratorkopfs auf den Penetratorrumpf abzudämpfen.A penetrator comprises a penetrator body, a penetrator head, which is designed in a modular manner for detachable attachment to the penetrator body, and a flat shock absorber, which is designed between the penetrator body and the penetrator head to dampen impact loads of the penetrator head on the penetrator body.

Description

Die vorliegende Erfindung betrifft einen Penetrator. Die vorliegende Erfindung betrifft insbesondere einen Penetrator für einen überschallfähigen Flugkörper wie einen Lenkflugkörper, eine gelenkte oder ungelenkte Rakete, und/oder ein (ballistisches) Geschoss oder dergleichen zur Einwirkung auf Ziele aus ultrahochfestem Zielmaterial.The present invention relates to a penetrator. The present invention relates in particular to a penetrator for a supersonic missile such as a guided missile, a guided or unguided missile, and / or a (ballistic) projectile or the like for acting on targets made of ultra-high-strength target material.

In den letzten Jahren ist die Leistungsfähigkeit von Panzerungen aus Beton, Stahlbeton, Stahlfaserbeton oder anderen bewehrten Materialien immer weiter erhöht worden. Ein derartiges Material stellt beispielsweise Ultrahochleistungsbeton (englisch: "Ultra High Performance Concrete", UHPC) dar, ein Werkstoff mit duktilem Verhalten, welcher sich durch besonders hohe Dichtigkeit, Festigkeit und Schlagzähigkeit auszeichnet. Hierbei werden Stahlfasern als hochfeste Bestandteile beigemischt, wodurch eine stark erhöhte Druckfestigkeit des Betons von bis zu 200 MPa erreicht werden kann. Beigemischte Polypropylenfasern verbessern zusätzlich den Brandwiderstand und verhindern, dass der UHPC bei einer Brandbeaufschlagung aufgrund eines sehr hohen Dampfdrucks schlagartig versagt.In recent years, the performance of armor made of concrete, reinforced concrete, steel fiber reinforced concrete or other reinforced materials has been increased continuously. Such a material is, for example, ultra-high performance concrete (UHPC), a material with ductile behavior that is characterized by particularly high tightness, strength and impact resistance. Steel fibers are added as high-strength components, which means that the concrete's compressive strength can be increased by up to 200 MPa. Added polypropylene fibers also improve fire resistance and prevent the UHPC from suddenly failing when exposed to fire due to a very high vapor pressure.

Um Panzerungen aus derartigen Materialen wirksam zu durchbrechen, werden unter anderem Penetratoren mit sehr hohen Aufprallgeschwindigkeiten vorgeschlagen. Die hierdurch auftretenden hohen Einschlagskräfte bedingen jedoch, dass die inneren Komponenten des Penetrators einschließlich der elektronischen Elemente und insbesondere der Wirkladung gegenüber den extrem hohen mechanischen Stoßlasten geschützt werden. Davon unabhängig werden generell höhere Anforderungen an die mechanische Widerstandsfähigkeit des Penetrators und insbesondere an dessen Gehäuse gestellt, damit dieser das Zielmaterial ohne frühzeitiges Strukturversagen möglichst vollständig durchschlagen kann. Zudem kann die hohe Druckfestigkeit derartiger Betonmaterialien das Querschlägerrisiko bei schrägem Auftreffen erhöhen.In order to effectively break through armor made of such materials, penetrators with very high impact speeds are proposed, among other things. The high impact forces that occur as a result, however, mean that the internal components of the penetrator, including the electronic elements, and in particular the active charge, are superior to the extremely high mechanical ones Shock loads are protected. Regardless of this, there are generally higher demands on the mechanical resistance of the penetrator and in particular on its housing, so that it can penetrate the target material as completely as possible without premature structural failure. In addition, the high compressive strength of such concrete materials can increase the risk of ricochets when struck at an angle.

Die Druckschrift EP 2 002 197 B1 beschreibt eine Rakete mit einem Raketenkopf, in dem elektronisches Equipment installiert ist, welches über einen O-Ring gegenüber dem Raketenkopf abgedichtet ist, wobei der O-Ring gleichzeitig Vibrationen abdämpfen soll.The publication EP 2 002 197 B1 describes a missile with a missile head, in which electronic equipment is installed, which is sealed against the missile head via an O-ring, the O-ring being intended to dampen vibrations at the same time.

Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, Lösungen für überschallfähige Penetratoren mit verbesserter Einschlagsdämpfung zu finden.Against this background, the present invention is based on the problem of finding solutions for supersonic penetrators with improved impact damping.

Erfindungsgemäß wird diese Aufgabe gelöst durch einen Penetrator mit den Merkmalen des Patentanspruchs 1.According to the invention, this object is achieved by a penetrator having the features of patent claim 1.

Demgemäß ist ein Penetrator vorgesehen. Der Penetrator umfasst einen Penetratorrumpf, eine Penetratorkopf, welcher modular zur lösbaren Befestigung an dem Penetratorrumpf ausgebildet ist, und einen flächigen Stoßdämpfer, welcher zwischen dem Penetratorrumpf und dem Penetratorkopf dazu ausgebildet ist, Stoßlasten des Penetratorkopfs auf den Penetratorrumpf abzudämpfen.Accordingly, a penetrator is provided. The penetrator comprises a penetrator fuselage, a penetrator head which is modularly designed for releasable attachment to the penetrator fuselage, and a flat shock absorber which is designed between the penetrator fuselage and the penetrator head to dampen impact loads of the penetrator head on the penetrator fuselage.

Eine der vorliegenden Erfindung zugrunde liegende Idee besteht darin, einen Penetrator, d.h. eines Wirksystems für einen Flugkörper, eine Rakete und/oder ein Geschoss oder dergleichen, modular mit einem austauschbaren Kopf auszubilden, wobei das modulare Design einen besonders geeigneten Anbringungsbereich für eine Dämpfung zwischen dem Kopf und dem Rumpf des Penetrators bietet. Die Dämpfung wird hierbei flächig ausgeführt, um einen möglichst idealen Kompromiss zwischen benötigtem Installationsraum und Dämpfungswirkung gegenüber Druckbeanspruchung zu erzielen. Mittels der Dämpfung können stoßempfindliche Komponenten des Penetrators wie beispielsweise elektronische Bauteile, Wirkladungen oder dergleichen geschützt werden. Beispielsweise kann derart eine ungewünschte verfrühte Detonation einer Sprengladung vermieden werden. Solche empfindlichen Elemente können beispielsweise in dem Rumpf des Penetrators untergebracht werden. Darüber hinaus kann die Ausfall- und/oder Defektwahrscheinlichkeit beim Einsatz des Penetrators gesenkt werden. Dies macht den Penetrator der Erfindung besonders geeignet für Anwendungen gegen ultrahochfeste Panzerungen, d.h. in Ausführungen im Überschallbereich. Aufgrund der Dämpfung ist das erfindungsgemäße System auch den erheblichen Stoßlasten eines Aufpralls bei Überschallgeschwindigkeiten gewachsen. Ferner bietet die Dämpfung einen zusätzlichen Schutz des Systems gegen beispielsweise eine Detonation einer möglichen Vorhohlladung oder dergleichen. Der modulare Aufbau des Penetrators bietet den weiteren Vorteil, dass der Penetrator flexibel mit unterschiedlichen Köpfen ausgestattet werden kann, die beispielsweise je nach konkretem Anwendungsfall unterschiedlich ausgeführt sein können. Weiterhin können separierte Wirkladungen vorgesehen sein, die auf die beiden Module (d.h. den Kopf und den Rumpf) aufgeteilt sein können, wobei die getrennten Ladungen unabhängig voneinander bzw. unter unterschiedlichen Bedingungen zündbar sein können. Prinzipiell kann der Penetratorrumpf in weitere Module unterteilt sein, die ebenfalls separierte Wirkladungen aufweisen können und/oder unterschiedliche Nutzlasten und/oder weitere Komponenten mitführen können. Derartige mehrstufige Wirkladungen können insbesondere verzögerter Zündung zueinander ausgebildet sein, z.B. in Kombination mit einem Zündungssystem, welches eine Eindringtiefe feststellt und darauf aufbauend bestimmte Wirkladungen zündet. Mit derartigen aufgeteilten Ladungen kann insbesondere die Größe der einzelnen Wirkladungen reduziert werden.One idea on which the present invention is based is to modularly design a penetrator, that is to say an active system for a missile, a missile and / or a projectile or the like, with an exchangeable head, the modular design provides a particularly suitable attachment area for cushioning between the head and torso of the penetrator. The damping is carried out over a large area in order to achieve the ideal compromise between the installation space required and the damping effect against pressure. The damping can protect shock-sensitive components of the penetrator, such as electronic components, active charges or the like. For example, an undesired premature detonation of an explosive charge can be avoided in this way. Such sensitive elements can, for example, be accommodated in the fuselage of the penetrator. In addition, the probability of failure and / or defect when using the penetrator can be reduced. This makes the penetrator of the invention particularly suitable for applications against ultra-high-strength armor, ie in versions in the supersonic range. Because of the damping, the system according to the invention is also able to withstand the considerable impact loads of an impact at supersonic speeds. Furthermore, the damping offers additional protection of the system against, for example, a detonation of a possible pre-charge or the like. The modular design of the penetrator offers the further advantage that the penetrator can be flexibly equipped with different heads, which can be designed differently, for example, depending on the specific application. Furthermore, separate active charges can be provided, which can be divided between the two modules (ie the head and the body), it being possible for the separate charges to be ignitable independently of one another or under different conditions. In principle, the penetrator fuselage can be subdivided into further modules, which can also have separate active charges and / or can carry different payloads and / or other components. Such multi-stage active charges can in particular be designed with delayed ignition to one another, for example in combination with an ignition system which determines a depth of penetration and Building on this, certain active charges ignite. With such split charges, the size of the individual active charges in particular can be reduced.

Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den weiteren Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren.Advantageous refinements and developments result from the further subclaims and from the description with reference to the figures.

Gemäß einer Weiterbildung kann der Stoßdämpfer eine erste Dämpfungsscheibe umfassen. Die Dämpfungsscheibe kann beispielsweise Materialien geringer Dichte mit niedrigem Elastizitätsmodul und hoher Fließgrenze aufweisen oder aus diesen gefertigt sein, z. B. Magnesium- und/oder Aluminiumlegierungen, glasfaserverstärkten Kunststoff etc., um eine ausreichende elastische Verformung und hohe Dehnungsraten zu gewährleisten.According to a further development, the shock absorber can comprise a first damping disk. The damping disk can have, for example, low-density materials with a low modulus of elasticity and a high yield point, or be made from these, e.g. As magnesium and / or aluminum alloys, glass fiber reinforced plastic, etc., to ensure sufficient elastic deformation and high elongation rates.

Gemäß einer Weiterbildung kann die erste Dämpfungsscheibe geschlossen ausgebildet und axial angeordnet sein. In dieser Weiterbildung kann das Dämpfungssystem somit besonders einfach in Form einer einzelnen Scheibe ausgebildet sein.According to a further development, the first damping disk can be designed to be closed and arranged axially. In this development, the damping system can thus be designed particularly simply in the form of a single disk.

Gemäß einer Weiterbildung kann der Stoßdämpfer zumindest eine zweite Dämpfungsscheibe umfassen. Die zweite Dämpfungsscheibe kann ringförmig und axial konzentrisch zu der ersten Dämpfungsscheibe ausgebildet sein. Prinzipiell können zusätzlich weitere Dämpfungsscheiben vorgesehen sein, die beispielsweise ebenfalls ringförmig und axial konzentrisch zu der ersten und der zweiten Dämpfungsscheibe angeordnet sein können. Prinzipiell ist es alternativ oder zusätzlich vorgesehen, dass weitere geschlossene oder ringförmige Dämpfungsscheiben in den Stoßdämpfer integriert sind. In einem konkreten Beispiel können mehrere geschlossene und/oder ringförmige Dämpfungsscheiben axial hintereinander angeordnet sein.According to a further development, the shock absorber can comprise at least one second damping disk. The second damping disc can be annular and axially concentric with the first damping disc. In principle, additional damping disks can also be provided, which, for example, can also be arranged in a ring and axially concentric with the first and second damping disks. In principle, it is alternatively or additionally provided that further closed or ring-shaped damping disks are integrated in the shock absorber. In a specific example, several closed and / or annular damping disks can be arranged axially one behind the other.

Gemäß einer Weiterbildung kann der Stoßdämpfer zumindest bereichsweise aus einem Vollmaterial gefertigt sein. Insbesondere kann der Stoßdämpfer vollständig aus einem Vollmaterial gefertigt sein. In einem konkreten Beispiel umfasst der Stoßdämpfer eine oder mehrere Dämpfungsscheiben, die aus dem gleichen oder unterschiedlichen Vollmaterialien gefertigt sind. Beispielsweise kann eine geschlossene erste Dämpfungsscheibe aus einem Metallmaterial wie einem Metall, einer Metalllegierung oder einer metallischen Materialkombination bestehen, z.B. einer Magnesiumlegierung und/oder einer Aluminiumlegierung.According to a further development, the shock absorber can be made of a solid material at least in some areas. In particular, the shock absorber can be made entirely of a solid material. In a specific example, the shock absorber comprises one or more damping disks that are made of the same or different solid materials. For example, a closed first damping disc can be made of a metal material such as a metal, a metal alloy or a combination of materials, e.g. a magnesium alloy and / or an aluminum alloy.

Gemäß einer Weiterbildung kann der Stoßdämpfer zumindest bereichsweise eine Wabenstruktur und/oder Wellenstruktur aufweisen. Prinzipiell sind komplexe Innengeometrien bzw. Innentstrukturen des Stoßdämpfers bzw. von dessen Dämpfungsscheiben vorgesehen. Beispielsweise kann der Stoßdämpfer einer oder mehrere Dämpfungsscheiben umfassen, die aus einem wabenartigen Material gefertigt sind und/oder eine Wabenstruktur bilden. Alternativ oder zusätzlich können anders geformte Hohlraumstrukturen vorgesehen sein, z.B. schaumstoffartige Materialien.According to a further development, the shock absorber can have a honeycomb structure and / or wave structure at least in some areas. In principle, complex internal geometries or internal structures of the shock absorber or of its damping disks are provided. For example, the shock absorber can comprise one or more damping disks, which are made of a honeycomb-like material and / or form a honeycomb structure. Alternatively or additionally, differently shaped cavity structures can be provided, e.g. foam-like materials.

Gemäß einer Weiterbildung kann der Stoßdämpfer ein Leichtmetallmaterial, ein Faserverbundmaterial und/oder einen Kunststoff aufweisen. Beispielsweise kann der Stoßdämpfer eine oder mehrere Dämpfungsscheiben umfassen, die ein Leichtmetallmaterial aufweisen und/oder aus diesem gefertigt sind, z.B. ein Aluminiummaterial. Alternativ oder zusätzlich können Kunststoffe und/oder Fasermaterialien zum Einsatz kommen, z.B. glasfaser- und/oder kohlenstofffaserverstärkter Kunststoff.According to a further development, the shock absorber can have a light metal material, a fiber composite material and / or a plastic. For example, the shock absorber can comprise one or more damping disks, which have and / or are made of a light metal material, e.g. an aluminum material. Alternatively or additionally, plastics and / or fiber materials can be used, e.g. glass fiber and / or carbon fiber reinforced plastic.

Gemäß einer Weiterbildung kann der Stoßdämpfer mehrstufig zur Einstellung des Dämpfungsverhaltens ausgebildet sein. Insbesondere kann der Stoßdämpfer mehrstufig für eine progressive Aufnahme von Stoßlasten ausgebildet sein. Beispielsweise kann der Stoßdämpfer mehrere axial hintereinander angeordnete Dämpfungsscheiben umfassen, die unterschiedliche mechanische Dämpfungseigenschaften aufweisen, z.B. mehrere Dämpfungsscheiben mit sich inkrementell steigerndem bzw. abfallendem Elastizitätsmodul. Alternativ oder zusätzlich können Dämpfungsscheiben vorgesehen sein, die aus mehreren Schichten mit entsprechenden Eigenschaften bestehen.According to a further development, the shock absorber can be designed in several stages to adjust the damping behavior. In particular, the shock absorber be designed in several stages for a progressive absorption of shock loads. For example, the shock absorber can comprise a plurality of damping disks arranged axially one behind the other, which have different mechanical damping properties, for example a number of damping disks with an incrementally increasing or decreasing elasticity module. As an alternative or in addition, damping disks can be provided which consist of several layers with corresponding properties.

Gemäß einer Weiterbildung können radiale Befestigungsbohrungen in dem Penetratorrumpf und dem Penetratorkopf ausgebildet sein. Der Penetratorkopf und der Penetratorrumpf können zusammensteckbar ausgebildet sein, um die Befestigungsbohrungen zueinander auszurichten. Beispielsweise kann eine Vielzahl von Schraubenbohrungen azimutal um den Penetratorkopf und den Penetratorrumpf herum ausgebildet sein.According to a further development, radial fastening bores can be formed in the penetrator body and the penetrator head. The penetrator head and the penetrator body can be designed such that they can be plugged together in order to align the fastening bores with one another. For example, a plurality of screw bores can be formed azimuthally around the penetrator head and the penetrator body.

Gemäß einer Weiterbildung können die radialen Befestigungsbohrungen als Langlöcher ausgebildet sein. Langlöcher sind besonders geeignet als Befestigungsbohrungen, damit eine relative axiale Bewegung des Penetratorkopfes und des Penetratorrumpfes kompensiert werden kann, ohne dass es zu Beschädigungen an der Struktur des Penetrators kommt.According to a further development, the radial fastening bores can be designed as elongated holes. Elongated holes are particularly suitable as mounting holes so that a relative axial movement of the penetrator head and the penetrator body can be compensated for without causing damage to the structure of the penetrator.

Die obigen Ausgestaltungen und Weiterbildungen lassen sich, sofern sinnvoll, beliebig miteinander kombinieren. Weitere mögliche Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale der Erfindung. Insbesondere wird dabei der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der vorliegenden Erfindung hinzufügen.The above refinements and developments can, if appropriate, be combined with one another as desired. Further possible refinements, developments and implementations of the invention also include combinations of features of the invention described above or below with reference to the exemplary embodiments, which are not explicitly mentioned. In particular, the person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the present invention.

Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren angegebenen Ausführungsbeispiele näher erläutert. Es zeigen dabei:

Fig. 1
schematische perspektivische Ansicht eines Penetrators von schräg vorne;
Fig. 2
schematische perspektivische Detailansicht eines Penetratorkopfes des Penetrators aus Fig.1;
Fig. 3
schematische perspektivische Seitenansicht des Penetratorkopfes aus Fig. 2;
Fig. 4
schematische perspektivische Ansicht des Penetratorkopfes aus Fig. 2 von schräg hinten;
Fig. 5
schematische perspektivische Seitenansicht des Penetrators aus Fig. 1; und
Fig. 6
schematische perspektivische Ansicht des Penetrators aus Fig. 1 von schräg vorne mit einem eingebauten Stoßdämpfer gemäß einer Ausführungsform der Erfindung.
The present invention is explained in more detail below with reference to the exemplary embodiments given in the schematic figures. It shows:
Fig. 1
schematic perspective view of a penetrator obliquely from the front;
Fig. 2
schematic perspective detail view of a penetrator head of the penetrator Fig.1 ;
Fig. 3
schematic perspective side view of the penetrator head Fig. 2 ;
Fig. 4
schematic perspective view of the penetrator head Fig. 2 from diagonally behind;
Fig. 5
schematic perspective side view of the penetrator Fig. 1 ; and
Fig. 6
schematic perspective view of the penetrator Fig. 1 diagonally from the front with a built-in shock absorber according to an embodiment of the invention.

Die beiliegenden Figuren sollen ein weiteres Verständnis der Ausführungsformen der Erfindung vermitteln. Sie veranschaulichen Ausführungsformen und dienen im Zusammenhang mit der Beschreibung der Erklärung von Prinzipien und Konzepten der Erfindung. Andere Ausführungsformen und viele der genannten Vorteile ergeben sich im Hinblick auf die Zeichnungen. Die Elemente der Zeichnungen sind nicht notwendigerweise maßstabsgetreu zueinander gezeigt.The accompanying figures are intended to provide a further understanding of the embodiments of the invention. They illustrate embodiments and, in connection with the description, serve to explain principles and concepts of the invention. Other embodiments and many of the advantages mentioned result themselves with regard to the drawings. The elements of the drawings are not necessarily shown to scale with respect to one another.

In den Figuren der Zeichnung sind gleiche, funktionsgleiche und gleich wirkende Elemente, Merkmale und Komponenten - sofern nichts anderes ausgeführt ist - jeweils mit denselben Bezugszeichen versehen.In the figures of the drawing, elements, features and components that are the same, have the same function and have the same effect — unless otherwise stated — are each provided with the same reference symbols.

Figur 1 zeigt eine schematische perspektivische Ansicht eines Penetrators 10 von schräg vorne. Figure 1 shows a schematic perspective view of a penetrator 10 obliquely from the front.

Der Penetrator 10 ist für den Einsatz mit Überschallgeschwindigkeiten, z.B. Mach 2 oder mehr, speziell zur Einwirkung auf Ziele aus ultrahochfestem Zielmaterial wie beispielsweise Ultrahochleistungsbeton (UHPC) ausgebildet. Bei einem Aufprall mit einer derartigen Geschwindigkeit auf ein solches Material muss der Penetrator in typischen Anwendungen Stoßlasten von mehr als 300,000 m/s2 standhalten, die in Zeiträumen unter einer Millisekunde wirken. Um diesen extremen Einsatzbedingungen gerecht zu werden und um derartige hochfeste Ziele durchschlagen zu können, werden in dem gezeigten Penetrator mehrere unterschiedliche Techniken miteinander verknüpft, wie im Folgenden detailliert erläutert wird. Bisherige, bekannte Systeme sind dem entgegen häufig nicht in der Lage einen Einschlag mit Überschallgeschwindigkeit zu überstehen, z.B. aufgrund von strukturellem Versagen, Zerstörung der Elektronik, verfrühter Schockinitiierung der Sprengladung usw. Zudem sind herkömmliche System vielfach ineffizient bezüglich Versagensmechanismen, Reibung etc.The penetrator 10 is designed for use at supersonic speeds, eg Mach 2 or more, especially for acting on targets made of ultra-high-strength target material such as ultra-high-performance concrete (UHPC). Upon impact at such a speed on such a material, the penetrator must withstand impact loads of more than 300,000 m / s 2 in typical applications, acting in periods of less than one millisecond. In order to do justice to these extreme operating conditions and to be able to penetrate such high-strength targets, several different techniques are linked to one another in the penetrator shown, as will be explained in detail below. Previously known systems, on the other hand, are often not able to survive an impact at supersonic speeds, for example due to structural failure, destruction of the electronics, premature shock initiation of the explosive charge, etc. In addition, conventional systems are often inefficient with regard to failure mechanisms, friction, etc.

Auch wenn sich im Folgenden mit der Anwendung im Überschallbereich beschäftigt wird, ist die Erfindung grundsätzlich nicht auf diesen Anwendungsfall beschränkt, sondern kann ebenso im Unterschallbereich genutzt werden. Weiterhin kann der Penetrator zur Bekämpfung von Zielen aus anderen Materialien als UHPC ausgebildet werden.Even if the application in the supersonic area is dealt with below, the invention is fundamentally not limited to this application, but can also be used in the subsonic area. Farther the penetrator can be trained to fight targets from materials other than UHPC.

Der Penetrator 10 der Fig. 1 umfasst einen Penetratorkopf 6 und einen Penetratorrumpf 7, welche modular ausgebildet sind und aneinander lösbar befestigt werden können. Der Penetratorkopf 6 dient somit gewissermaßen als Aufsatz, welcher für bestimmte Anwendungsfälle konfektioniert werden kann. Zwischen dem Penetratorkopf 6 und dem Penetratorrumpf 7 ist eine Dämpfung vorgesehen, wie sie mit Bezug auf Fig. 6 weiter unten näher erläutert wird. Die wie folgt geschilderte geometrische Ausgestaltung des Penetrators 10 samt des Penetratorkopfes 6 und des Penetratorrumpfes 7 ist lediglich beispielhaft zu verstehen. Die in Fig. 6 gezeigt Dämpfung kann ebenso mit anders ausgestalteten Penetratorn 10 kombiniert werden.The penetrator 10 of the Fig. 1 comprises a penetrator head 6 and a penetrator body 7, which are of modular design and can be detachably attached to one another. The penetrator head 6 thus serves, as it were, as an attachment, which can be assembled for certain applications. Damping is provided between the penetrator head 6 and the penetrator body 7, as is the case with reference to FIG Fig. 6 is explained in more detail below. The geometric configuration of the penetrator 10, including the penetrator head 6 and the penetrator body 7, described as follows, is to be understood only as an example. In the Fig. 6 Damping shown can also be combined with differently designed penetrators 10.

Detailansichten des Penetratorkopfes 6 sind in Fig. 2 bis 5 dargestellt, insbesondere in Fig. 2. Der Penetratorkopf 6 ist integral mit einer Penetratorspitze 1 und einem Meißelkranz 2 aus einem wolframbasierten Vollhartmetall mit Cobaltmatrix gefertigt. Allgemein können diese Komponenten in anderen Ausführungen jedoch eine beliebige schwermetallbasierte Legierung, insbesondere mit einem keramischen Anteil in einer duktilen Matrix, aufweisen. Die Penetratorspitze 1 weist eine spitzbogenförmige (ogive) Nasenform auf und ist gegenüber dem Meißelkranz 2 axial vorgelagert (vgl. z.B. Fig. 5). Der Meißelkranz weist fünf Meißelelemente 3 auf, die radial versetzt um die Penetratorspitze 1 herum mit regelmäßigen azimutalen Abständen zueinander angeordnet sind. Aufgrund der Vorlagerung der Penetratorspitze 1 sind die einzelnen Meißelelemente 3 axial zurückgelagert gegenüber der Penetratorspitze 1 positioniert. Jedes Meißelelement 3 weist eine radial ausgerichtete Radialschneide 4 und eine azimutal ausgerichtete Azimutalschneide 5 auf (vgl. Fig. 3). Hierbei steht jede Radialschneide 4 radial von der Penetratorspitze 1 ab. Die jeweilige Azimutalschneide 5 sitzt wiederum radial außen auf der zugehörigen Radialschneide 4 auf. Hierbei sind die Radialschneiden 4 axial zurückgelagert gegenüber den Azimutalschneiden 5 angeordnet, wobei die Meißelelemente 3 konkret von der Azimutalschneide 5 über die Radialschneide 4 axial schräg nach hinten unter einem Winkel von etwa 60° auf die Penetratorspitze 1 zulaufen. Jede Radialschneide 4 ist hierbei zweiseitig geschliffen ausgebildet, während die Azimutalschneiden 5 einseitig geschliffen mit einer axial nach hinten zulaufenden Schneide ausgebildet sind.Detailed views of the penetrator head 6 are in 2 to 5 shown, especially in Fig. 2 , The penetrator head 6 is made integrally with a penetrator tip 1 and a chisel ring 2 made of a tungsten-based solid carbide with a cobalt matrix. In general, however, these components can have any heavy metal-based alloy in other designs, in particular with a ceramic component in a ductile matrix. The penetrator tip 1 has an ogive nose shape and is axially upstream of the chisel rim 2 (cf. Fig. 5 ). The chisel ring has five chisel elements 3, which are arranged radially offset around the penetrator tip 1 at regular azimuthal distances from one another. Due to the upstream position of the penetrator tip 1, the individual chisel elements 3 are positioned axially back relative to the penetrator tip 1. Each chisel element 3 has a radially oriented radial cutting edge 4 and an azimuthally oriented azimuthal cutting edge 5 (cf. Fig. 3 ). Each radial cutting edge 4 stands radially from the penetrator tip 1 from. The respective azimuthal cutting edge 5 is in turn seated radially on the outside on the associated radial cutting edge 4. Here, the radial cutting edges 4 are arranged axially back relative to the azimuthal cutting edges 5, the chisel elements 3 specifically running axially obliquely backwards from the azimuthal cutting edge 5 via the radial cutting edge 4 at an angle of approximately 60 ° to the penetrator tip 1. Each radial cutting edge 4 is here ground on two sides, while the azimuthal cutting edges 5 are ground on one side with a cutting edge tapering axially towards the rear.

Die Penetratorspitze 1 und der umliegende Meißelkranz 2 des gezeigten Penetrators 10 sind derart geometrisch gestaltet und angeordnet, dass ein mehrstufiger Penetrationsprozess entsteht, durch den ein stark erhöhtes Durchschlagsvermögen gegenüber herkömmlichen Penetratorn bei Anwendung auf Panzerungen aus UHPC erreicht wird. Der Penetrator 10 prallt zunächst mit der vorgelagerten Penetratorspitze 1 auf ein Zielobjekt auf, wobei eine sich radial ausbreitende Vorschädigung des Zielobjektes im Aufprallbereich entsteht. Anschließend treffen die Meißelelemente 3 des Meißelkranzes 2 mit den Azimutalschneiden 5 auf das Ziel auf und greifen in dieses klauenartig ein. Sowohl die einseitige Schneidenform als auch die Anordnung der Azimutalschneiden 5 verringern hierbei das Risiko von Querschlägern unter schrägen Einschlagswinkeln. Aufgrund des vorhandenen Impulses wird der Penetrator 10 anschließend weiter in das Ziel hineingetrieben. Hierbei zertrümmern die Radialschneiden 4 die vorgeschädigte Aufprallstelle zwischen den Azimutalschneiden 5 und der Penetratorspitze 1, wobei insbesondere Verstärkungselemente wie beispielsweise Stahlbewehrungen oder Stahlfasern von den Radialschneiden 4 durchtrennt bzw. durchschnitten werden. Die zweischneidige Ausführung der Radialschneiden 4 verhindert hierbei, dass eine ungewünschte Rotation des Penetrators 10 generiert wird. Gleichzeitig können entstehende Trümmer zwischen den Meißelelementen 3 ungehindert abfließen. Der Penetratorkopf 6 weist einen größeren radialen Durchmesser als der Meißelkranz 2 auf (vgl. Fig. 5), sodass das Trümmermaterial im Anschluss nach Außen verdrängt wird. Sobald eine kritische Eindringtiefe erreicht ist, kann eine Rückseite des Panzermaterials aufgrund eines massiven Scherversagens des Panzermaterials abgestoßen werden (englisch: "Scabbing"). Die Empfindlichkeit des Panzermaterials gegenüber Scherlasten wurde zuvor aufgrund des gezielten Zertrennens der Verstärkungsstrukturen erheblich vergrößert.The penetrator tip 1 and the surrounding chisel rim 2 of the penetrator 10 shown are geometrically designed and arranged in such a way that a multi-stage penetration process is created, by means of which a greatly increased penetration capacity compared to conventional penetrators when applied to armor made of UHPC is achieved. The penetrator 10 initially impinges with the upstream penetrator tip 1 on a target object, a radially spreading pre-damage to the target object occurring in the impact area. Then the chisel elements 3 of the chisel ring 2 hit the target with the azimuthal cutting edges 5 and engage in this in a claw-like manner. Both the one-sided cutting shape and the arrangement of the azimuthal cutting edges 5 reduce the risk of ricochets at oblique turning angles. Due to the existing pulse, the penetrator 10 is then driven further into the target. Here, the radial cutting edges 4 smash the previously damaged impact point between the azimuthal cutting edges 5 and the penetrator tip 1, with reinforcement elements such as steel reinforcements or steel fibers being cut or cut through by the radial cutting edges 4. The double-edged design of the radial cutting edges 4 prevents an undesired rotation of the penetrator 10 from being generated. At the same time, resulting debris can flow freely between the chisel elements 3. The penetrator head 6 has a larger radial diameter than the chisel rim 2 (cf. Fig. 5 ), so that the rubble material is then displaced to the outside. As soon as a critical depth of penetration is reached, a rear side of the armor material can be pushed off due to a massive shear failure of the armor material (English: "scabbing"). The sensitivity of the armor material to shear loads had previously been significantly increased due to the targeted separation of the reinforcement structures.

Der Penetratorrumpf 7 weist eine zylindrische Grundform auf, entlang derer insgesamt vier axial ausgerichtete Gleitschienen 8 und vier ebenfalls axial ausgerichtete Trümmerkanäle 9 azimutal alternierend angeordnet sind. Die Trümmerkanäle 9 dienen hierbei der Weiterleitung von Trümmermaterial, welches entlang des Penetratorkopfes 6 abgeführt wird. Hierzu sind die Trümmerkanäle 9 als Vertiefungen in den Penetratorrumpf 7 eingefräst worden. Die Trümmerkanäle 9 sorgen somit für einen hydrostatischen Druckausgleich während des Eindringens des Penetrators 10 in das Zielobjekt. Die Gleitschienen 8 hingegen versteifen den Penetrator 10 gegenüber Biegungen und führen diesen gleichzeitig weiter in das Zielobjekt hinein. Sowohl der Penetratorkopf 6 als auch der Penetratorrumpf 7, insbesondere die Penetratorspitze 1 und/oder die Gleitschienen 8, können mit einer geeigneten reibungsarmen und/oder verschleißfesten Beschichtung versehen sein, um das Eindringen des Penetrators 10 weiter zu verbessern. Um den Penetratorrumpf 7 mit einer ausreichenden Festigkeit und Steifigkeit zu versehen, ist dieser in dieser Ausführung aus einem Kaltarbeitsstahl gefertigt.The penetrator body 7 has a cylindrical basic shape, along which a total of four axially aligned slide rails 8 and four also axially aligned debris channels 9 are arranged alternately in azimuth. The debris channels 9 are used for the forwarding of debris, which is discharged along the penetrator head 6. For this purpose, the debris channels 9 have been milled into the penetrator body 7 as depressions. The debris channels 9 thus ensure hydrostatic pressure compensation during the penetration of the penetrator 10 into the target object. The slide rails 8, on the other hand, stiffen the penetrator 10 against bends and at the same time guide it further into the target object. Both the penetrator head 6 and the penetrator body 7, in particular the penetrator tip 1 and / or the slide rails 8, can be provided with a suitable low-friction and / or wear-resistant coating in order to further improve the penetration of the penetrator 10. In order to provide the penetrator hull 7 with sufficient strength and rigidity, this is made of cold work steel in this embodiment.

Aus Fig. 4 und 5 kann entnommen werden, dass in dem Penetratorrumpf 7 und dem Penetratorkopf 6 radiale Befestigungsbohrungen 11 ausgebildet sind. Hierbei sind die radialen Befestigungsbohrungen 11 des Penetratorrumpfes 7 in einen Befestigungssockel 15 des Penetratorrumpfes 11 eingearbeitet, über den der Penetratorrumpf 7 in eine komplementär geformte Aufnahmevertiefung 16 des Penetratorkopfes 6 einsteckbar ist. Der Penetratorkopf 6 weist wiederum einen Befestigungskragen 17 auf, durch den dessen radiale Befestigungsbohrungen 11 hindurchführen. Zur Montage können der Penetratorrumpf 7 und der Penetratorkopf 6 somit derart zusammengesteckt werden, dass die Befestigungsbohrungen 11 zueinander ausgerichtet werden und anschließend entsprechende Schrauben, Bolzen oder ähnliche Befestigungsmittel eingeführt werden können.Out Fig. 4 and 5 it can be seen that radial fastening bores 11 are formed in the penetrator body 7 and the penetrator head 6. Here, the radial fastening bores 11 of the penetrator body 7 are incorporated into a fastening base 15 of the penetrator body 11, via which the penetrator body 7 can be inserted into a complementarily shaped receiving recess 16 of the penetrator head 6. The penetrator head 6 in turn has a fastening collar 17 through which its radial fastening bores 11 pass. For assembly, the penetrator body 7 and the penetrator head 6 can thus be plugged together in such a way that the fastening bores 11 are aligned with one another and then appropriate screws, bolts or similar fastening means can be introduced.

Fig. 6 zeigt eine schematische perspektivische Ansicht des Penetrators aus Fig. 1 von schräg vorne mit einem eingebauten Stoßdämpfer 12 gemäß einer Ausführungsform der Erfindung. Fig. 6 shows a schematic perspective view of the penetrator from Fig. 1 obliquely from the front with a built-in shock absorber 12 according to an embodiment of the invention.

Der Stoßdämpfer 12 ist flächig zwischen dem Penetratorrumpf 7 und dem Penetratorkopf 6 dazu ausgebildet, Stoßlasten des Penetratorkopfs 6 auf den Penetratorrumpf 7 zu dämpfen, die während des Aufpralls auf bzw. des Eindringens in ein Zielobjekt entstehen. Hierzu umfasst der Stoßdämpfer 12 eine erste Dämpfungsscheibe 13, die geschlossen ausgebildet und axial angeordnet ist. Ferner umfasst der Stoßdämpfer 12 eine zweite Dämpfungsscheibe 14, die als Ringscheibe axial konzentrisch bezüglich der ersten Dämpfungsscheibe 13 ausgebildet ist. Die erste Dämpfungsscheibe 13 liegt hierbei auf dem Befestigungssockel 15 des Penetratorrumpfes 7 innerhalb der Aufnahmevertiefung 16 des Penetratorkopfes 6 auf. Die zweite Dämpfungsscheibe 14 ist um den Befestigungssockel 15 herum auf dem Penetratorrumpf 7 gegenüber von dem Befestigungskragen 17des Penetratorkopfes 6 angeordnet. Die Geometrien des Penetratorkopfes 6 sowie des Penetratorrumpfes 7 gewährleisten hierbei eine lineare Führung dieser Körper zueinander, wodurch unter anderem ein Einknicken bzw. Umbiegen des Gesamtsystems unterbunden werden kann. Ferner wird hierdurch eine gleichmäßige Belastung der Dämpfungsscheiben 13, 14 erreicht.The shock absorber 12 is formed flat between the penetrator body 7 and the penetrator head 6 in order to dampen impact loads of the penetrator head 6 on the penetrator body 7 which arise during the impact on or the penetration into a target object. For this purpose, the shock absorber 12 comprises a first damping disk 13, which is designed to be closed and arranged axially. Furthermore, the shock absorber 12 comprises a second damping disc 14, which is designed as an annular disc axially concentric with respect to the first damping disc 13. The first damping disk 13 lies here on the mounting base 15 of the penetrator body 7 within the receiving recess 16 of the penetrator head 6. The second damping disk 14 is arranged around the fastening base 15 on the penetrator body 7 opposite the fastening collar 17 of the penetrator head 6. The geometries of the penetrator head 6 and of the penetrator body 7 ensure a linear guidance of these bodies to one another, which among other things prevents the entire system from buckling or bending. This also results in a uniform loading of the damping disks 13, 14.

Die Dämpfungsscheiben 13, 14 können aus einem Vollmaterial wie beispielsweise einer Aluminiumlegierung oder einem faserverstärktem Kunststoff gefertigt sein. Grundsätzlich können jedoch ebenso komplexere Dämpfungsmaterialien bzw. Dämpfungssysteme zur Anwendung kommen, z.B. Wabenstrukturen, Wellenstrukturen und/oder dergleichen. Weiterhin können die Dämpfungsscheiben 13, 14 mehrschichtig ausgebildet sein, um Stoßlasten schrittweise und/oder progressiv aufzufangen. Prinzipiell sind in anderen Ausführungen auch allgemeine komplexe Innengeometrien bzw. Innentstrukturen der Dämpfungsscheiben 13, 14 vorgesehen.The damping disks 13, 14 can be made of a solid material such as an aluminum alloy or a fiber-reinforced plastic. In principle, however, more complex damping materials or damping systems can also be used, e.g. Honeycomb structures, wave structures and / or the like. Furthermore, the damping disks 13, 14 can be of multilayer design in order to absorb impact loads step by step and / or progressively. In general, other complex internal geometries or internal structures of the damping disks 13, 14 are also provided in other versions.

Die gezeigte modulare Ausbildung des Penetrators 10 bietet konstruktionsbedingt zwischen dem Penetratorrumpf 7 und dem Penetratorkopf 6 einen vorteilhaften Anbringungsbereich für den Stoßdämpfer 12. Der Stoßdämpfer 12 ist flächig ausgeführt, um den benötigten Installationsraum einerseits so gering wie möglich zu halten und um die Dämpfungswirkung andererseits gegenüber einer Druckbeanspruchung zu maximieren. Mittels der Dämpfung können stoßempfindliche Komponenten des Penetrators 10 wie beispielsweise elektronische Bauteile, Wirkladungen oder dergleichen geschützt werden, die z.B. in dem Penetratorrumpf 7 untergebracht sein können (nicht eingezeichnet). Die Dämpfung bietet insbesondere einen zusätzlichen Schutz des Systems gegen beispielsweise eine Detonation einer möglichen Vorhohlladung oder dergleichen. Dies ist ein erheblicher Vorteil, da die auftretenden Schocklasten grundsätzlich eine technische Herausforderung beispielsweise für einen Zündelektronik darstellen können. Beispielsweise kann derart eine ungewünschte verfrühte Detonation einer Sprengladung vermieden werden. Darüber hinaus kann die Ausfall- und/oder Defektwahrscheinlichkeit beim Einsatz des Penetrators 10 gesenkt werden. Dies macht den Penetrator 10 besonders geeignet für die angesprochenen Anwendungen gegen UHPC-Panzerungen. Aufgrund der modularen Aufteilung des Penetrators 10 ist es weiterhin möglich eine Wirkladung auf die beiden Module des Penetrators 10 aufzuteilen, welcher insbesondere unabhängig voneinander oder zeitlich versetzt zueinander zündbar sein können, um die Wirksamkeit des Penetrators 10 weiter zu verbessern. Vorteilhafterweise sind die Befestigungsbohrungen 11 in der gezeigten Ausführung als Langlöcher mit einem verbreiterten axialen Durchmesser entlang der Penetratorachse ausgebildet, sodass die Befestigungsmittel ausreichend Spiel bei einem Aufschlag des Penetrators 10 und einem daraus resultierenden Einfedern des Penetratorkopfes 6 auf den Penetratorrumpf 7 aufweisen.The modular design of the penetrator 10 shown offers, due to its construction, an advantageous mounting area for the shock absorber 12 between the penetrator body 7 and the penetrator head 6. The shock absorber 12 is designed to be as flat as possible on the one hand to keep the installation space as small as possible and on the other hand to reduce the damping effect Maximize pressure stress. By means of the damping, shock-sensitive components of the penetrator 10, such as, for example, electronic components, active charges or the like, can be protected which, for example, can be accommodated in the penetrator body 7 (not shown). The damping offers in particular additional protection of the system against, for example, a detonation of a possible pre-charge or the like. This is a considerable advantage, since the shock loads that occur can in principle represent a technical challenge, for example for an ignition electronics. For example, an undesired premature detonation of an explosive charge can be avoided in this way. In addition, the probability of failure and / or defect when using the penetrator 10 can be reduced. This makes the penetrator 10 particularly suitable for the mentioned applications against UHPC armor. by virtue of the modular division of the penetrator 10, it is also possible to distribute an active charge to the two modules of the penetrator 10, which in particular can be fired independently of one another or at different times in order to further improve the effectiveness of the penetrator 10. In the embodiment shown, the fastening bores 11 are advantageously designed as elongated holes with a widened axial diameter along the penetrator axis, so that the fastening means have sufficient play when the penetrator 10 strikes and the penetrator head 6 deflects on the fuselage body 7 as a result.

Zusammenfassend wird mit dem gezeigten Penetrator ein effizientes, hochwirksames und überschallfähiges System mit verbesserter Einschlagsdämpfung für die Einwirkung auf ultra-hochfeste Ziele beispielsweise aus UHPC bereitgestellt. Aufgrund der modularen Gestaltung ist das System besonders flexibel, schnell und zielangepasst umrüstbar.In summary, the penetrator shown is an efficient, highly effective and supersonic system with improved impact damping for acting on ultra-high-strength targets, for example made of UHPC. Due to the modular design, the system can be converted particularly flexibly, quickly and in a targeted manner.

In der vorangegangenen detaillierten Beschreibung sind verschiedene Merkmale zur Verbesserung der Stringenz der Darstellung in einem oder mehreren Beispielen zusammengefasst worden. Es sollte dabei jedoch klar sein, dass die obige Beschreibung lediglich illustrativer, keinesfalls jedoch beschränkender Natur ist. Sie dient der Abdeckung aller Alternativen, Modifikationen und Äquivalente der verschiedenen Merkmale und Ausführungsbeispiele. Viele andere Beispiele werden dem Fachmann aufgrund seiner fachlichen Kenntnisse in Anbetracht der obigen Beschreibung sofort und unmittelbar klar sein.In the foregoing detailed description, various features to improve the stringency of the presentation have been summarized in one or more examples. However, it should be clear that the above description is only illustrative, but in no way limiting. It serves to cover all alternatives, modifications and equivalents of the various features and exemplary embodiments. Many other examples will immediately and immediately become apparent to those skilled in the art based on their technical knowledge in light of the above description.

Die Ausführungsbeispiele wurden ausgewählt und beschrieben, um die der Erfindung zugrundeliegenden Prinzipien und ihre Anwendungsmöglichkeiten in der Praxis bestmöglich darstellen zu können. Dadurch können Fachleute die Erfindung und ihre verschiedenen Ausführungsbeispiele in Bezug auf den beabsichtigten Einsatzzweck optimal modifizieren und nutzen. In den Ansprüchen sowie der Beschreibung werden die Begriffe "beinhaltend" und "aufweisend" als neutralsprachliche Begrifflichkeiten für die entsprechenden Begriffe "umfassend" verwendet. Weiterhin soll eine Verwendung der Begriffe "ein", "einer" und "eine" eine Mehrzahl derartig beschriebener Merkmale und Komponenten nicht grundsätzlich ausschließen.The exemplary embodiments were selected and described in order to be able to best represent the principles on which the invention is based and their possible uses in practice. This enables those skilled in the art to practice the invention and optimally modify and use their various embodiments in relation to the intended purpose. In the claims and the description, the terms "including" and "having" are used as neutral language terms for the corresponding terms "comprehensive". Furthermore, the use of the terms “a”, “an” and “an” should not fundamentally exclude a plurality of features and components described in this way.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
PenetratorspitzePenetratorspitze
22
Meißelkranzchisel wreath
33
Meißelelementcutting element
44
Radialschneideradial cutting
55
AzimutalschneideAzimutalschneide
66
Penetratorkopfpenetrator
77
PenetratorrumpfPenetratorrumpf
88th
Gleitschieneslide
99
Trümmerkanaldebris channel
1010
Penetratorpenetrator
1111
radiale Befestigungsbohrungradial mounting hole
1212
Stoßdämpfershock absorber
1313
erste Dämpfungsscheibefirst damping disc
1414
zweite Dämpfungsscheibesecond damping disc
D1D1
Durchmesser MeißelkranzChisel diameter
D2D2
Durchmesser PenetratorkopfPenetrator head diameter
D3D3
Durchmesser PenetratorspitzePenetrator tip diameter

Claims (10)

Penetrator (10), mit: einem Penetratorrumpf (7); einem Penetratorkopf (6), welcher modular zur lösbaren Befestigung an dem Penetratorrumpf (7) ausgebildet ist; und einem flächigen Stoßdämpfer (12), welcher zwischen dem Penetratorrumpf (7) und dem Penetratorkopf (6) dazu ausgebildet ist, Stoßlasten des Penetratorkopfs (6) auf den Penetratorrumpf (7) abzudämpfen. Penetrator (10), with: a penetrator body (7); a penetrator head (6), which is modular for releasable attachment to the penetrator body (7); and a flat shock absorber (12) which is designed between the penetrator body (7) and the penetrator head (6) to dampen impact loads of the penetrator head (6) on the penetrator body (7). Penetrator (10) nach Anspruch 1, wobei der Stoßdämpfer (12) eine erste Dämpfungsscheibe (13) umfasst.The penetrator (10) of claim 1, wherein the shock absorber (12) comprises a first damping disc (13). Penetrator (10) nach Anspruch 2, wobei die erste Dämpfungsscheibe (13) geschlossen ausgebildet und axial angeordnet ist.Penetrator (10) according to claim 2, wherein the first damping disc (13) is closed and axially arranged. Penetrator (10) nach Anspruch 3, wobei der Stoßdämpfer (12) zumindest eine zweite Dämpfungsscheibe (14) umfasst, welche ringförmig und axial konzentrisch zu der ersten Dämpfungsscheibe (13) ausgebildet ist.Penetrator (10) according to claim 3, wherein the shock absorber (12) comprises at least one second damping disc (14) which is annular and axially concentric to the first damping disc (13). Penetrator (10) nach einem der Ansprüche 1 bis 4, wobei der Stoßdämpfer (12) zumindest bereichsweise aus einem Vollmaterial gefertigt ist.Penetrator (10) according to one of claims 1 to 4, wherein the shock absorber (12) is made at least in regions of a solid material. Penetrator (10) nach einem der Ansprüche 1 bis 5, wobei der Stoßdämpfer (12) zumindest bereichsweise eine Wabenstruktur und/oder Wellenstruktur aufweist.Penetrator (10) according to any one of claims 1 to 5, wherein the shock absorber (12) has a honeycomb structure and / or wave structure at least in regions. Penetrator (10) nach einem der Ansprüche 1 bis 6, wobei der Stoßdämpfer (12) zumindest eines von einem Leichtmetallmaterial, einem Faserverbundmaterial und/oder einem Kunststoff aufweist.The penetrator (10) according to one of claims 1 to 6, wherein the shock absorber (12) comprises at least one of a light metal material, a fiber composite material and / or a plastic. Penetrator (10) nach einem der Ansprüche 1 bis 7, wobei der Stoßdämpfer (12) mehrstufig zur Einstellung des Dämpfungsverhaltens ausgebildet ist.Penetrator (10) according to one of claims 1 to 7, wherein the shock absorber (12) is designed in several stages to adjust the damping behavior. Penetrator (10) nach einem der Ansprüche 1 bis 8, wobei radiale Befestigungsbohrungen (11) in dem Penetratorrumpf (7) und dem Penetratorkopf (6) ausgebildet sind, wobei der Penetratorkopf (6) und der Penetratorrumpf (7) zusammensteckbar sind, um die Befestigungsbohrungen (11) zueinander auszurichten.Penetrator (10) according to any one of claims 1 to 8, wherein radial fastening bores (11) are formed in the penetrator body (7) and the penetrator head (6), wherein the penetrator head (6) and the penetrator body (7) can be plugged together to form the Align the mounting holes (11) with each other. Penetrator (10) nach Anspruch 9, wobei die radialen Befestigungsbohrungen (11) als Langlöcher ausgebildet sind.Penetrator (10) according to claim 9, wherein the radial mounting holes (11) are designed as elongated holes.
EP19179756.2A 2018-07-06 2019-06-12 Penetrator comprising a penetrator body, a penetrator head and a shock absorber in between Active EP3591332B8 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018005406.4A DE102018005406B3 (en) 2018-07-06 2018-07-06 penetrator

Publications (3)

Publication Number Publication Date
EP3591332A1 true EP3591332A1 (en) 2020-01-08
EP3591332B1 EP3591332B1 (en) 2022-11-30
EP3591332B8 EP3591332B8 (en) 2023-01-04

Family

ID=66857658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19179756.2A Active EP3591332B8 (en) 2018-07-06 2019-06-12 Penetrator comprising a penetrator body, a penetrator head and a shock absorber in between

Country Status (2)

Country Link
EP (1) EP3591332B8 (en)
DE (1) DE102018005406B3 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1428679C1 (en) * 1964-12-29 1977-09-15 Deutsch Franz Forsch Inst Hard core bullet for fighting tank targets
EP0088999A2 (en) * 1982-03-17 1983-09-21 Rheinmetall GmbH Projectile with armour-piercing core for fighting a multiple-layer armour
EP0088898A1 (en) * 1982-03-17 1983-09-21 Rheinmetall GmbH Sub-calibre armour-piercing penetrator projectile
EP2002197A2 (en) 2006-03-31 2008-12-17 Raytheon Company Composite missile nose cone
DE202015004089U1 (en) * 2015-06-02 2015-08-04 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr penetrator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817969A (en) 1994-08-26 1998-10-06 Oerlikon Contraves Pyrotec Ag Spin-stabilized projectile with payload
DE102015013350A1 (en) 2015-10-15 2017-04-20 Mbda Deutschland Gmbh Guided missile and method of making a missile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1428679C1 (en) * 1964-12-29 1977-09-15 Deutsch Franz Forsch Inst Hard core bullet for fighting tank targets
EP0088999A2 (en) * 1982-03-17 1983-09-21 Rheinmetall GmbH Projectile with armour-piercing core for fighting a multiple-layer armour
EP0088898A1 (en) * 1982-03-17 1983-09-21 Rheinmetall GmbH Sub-calibre armour-piercing penetrator projectile
EP2002197A2 (en) 2006-03-31 2008-12-17 Raytheon Company Composite missile nose cone
DE202015004089U1 (en) * 2015-06-02 2015-08-04 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr penetrator

Also Published As

Publication number Publication date
EP3591332B1 (en) 2022-11-30
DE102018005406B3 (en) 2019-09-05
EP3591332B8 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
EP2455702B1 (en) Protection of an object from hollow charges
DE1428679C1 (en) Hard core bullet for fighting tank targets
DE19643757B4 (en) Kit for an armor
EP0088999B1 (en) Projectile with armour-piercing core for fighting a multiple-layer armour
EP3679315B1 (en) Full metal jacket safety bullet, in particular for multi-purpose applications
WO2017060118A1 (en) Penetrator and sub-caliber projectile
EP1075639B1 (en) Ammunition body, a method for inserting, and its use
DE3235404A1 (en) Explosive charge
EP3591332B1 (en) Penetrator comprising a penetrator body, a penetrator head and a shock absorber in between
WO2021028101A1 (en) Penetrator, use of a penetrator, and projectile
EP3591331B1 (en) Penetrator
EP1464915B1 (en) Mine protection device
DE102011011478A1 (en) Disassembled projectile for e.g. ground targets, has ballistic bodies comprising recesses that completely accommodate expandable media, where materials of ballistic bodies and expandable media have significant density difference
EP2453200A1 (en) Bullet
EP2212643B1 (en) Projectile
DE4135392C2 (en) Warhead
DE102012100573A1 (en) Protective element for protection against ballistic missiles and military vehicle
DE102004005042B4 (en) Universal KE bullet, especially for mid-caliber munitions
EP1790939A1 (en) An active reactive armour
DE102021002470B4 (en) Scalable active system and warhead
DE2839120C2 (en) Bullet with a tubular body
DE10151573A1 (en) Splinter protection to minimize collateral damage
EP3845853A1 (en) Projectile and ammunition
DE102019008390A1 (en) Housing for a warhead and a method for producing a housing for a warhead
EP1949021A1 (en) Segmented two-flange sabot

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200707

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 33/00 20060101ALN20220627BHEP

Ipc: F42B 12/74 20060101ALN20220627BHEP

Ipc: F42B 30/02 20060101ALI20220627BHEP

Ipc: F42B 15/08 20060101ALI20220627BHEP

Ipc: F42B 12/06 20060101AFI20220627BHEP

INTG Intention to grant announced

Effective date: 20220725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Ref document number: 502019006396

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

Ref country code: AT

Ref legal event code: REF

Ref document number: 1534979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502019006396

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230612

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230612