EP3589926B1 - Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines - Google Patents

Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines Download PDF

Info

Publication number
EP3589926B1
EP3589926B1 EP18712944.0A EP18712944A EP3589926B1 EP 3589926 B1 EP3589926 B1 EP 3589926B1 EP 18712944 A EP18712944 A EP 18712944A EP 3589926 B1 EP3589926 B1 EP 3589926B1
Authority
EP
European Patent Office
Prior art keywords
thermocouples
probes
thermocouple
measuring device
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18712944.0A
Other languages
German (de)
English (en)
Other versions
EP3589926A1 (fr
Inventor
Rafaël SAMSON
Antoine Pascal Moutaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Helicopter Engines SAS
Original Assignee
Safran Helicopter Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines SAS filed Critical Safran Helicopter Engines SAS
Priority to PL18712944T priority Critical patent/PL3589926T3/pl
Publication of EP3589926A1 publication Critical patent/EP3589926A1/fr
Application granted granted Critical
Publication of EP3589926B1 publication Critical patent/EP3589926B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/026Arrangements for signalling failure or disconnection of thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping

Definitions

  • the invention relates to temperature measurement, in particular in turboprop engines.
  • the temperature of the gases in the turbines can rise above a thousand degrees.
  • thermocouple probes which offer the advantage of having very wide continuous measurement ranges.
  • thermocouple probe The operation of a thermocouple probe is based on the exploitation of the Seebeck effect: a potential difference is generated by a thermoelectric effect between two junction points of conductors of different natures subjected to a temperature difference.
  • the temperature difference between the hot weld and the cold welds generates a potential difference, which is measured between the two cold welds of the thermocouple.
  • this measurement principle has the drawback of delivering low voltage levels, which generates difficulties during the acquisition of the signal by the computer, in particular due to the influence of various electromagnetic fields which disturbs the measurement.
  • thermocouples have already been proposed, in the state of the art, to put two or more thermocouple probes in series.
  • the association of thermocouples in series makes it possible quite simply to increase the voltage levels allowing the acquisition to be carried out.
  • the loss of a thermocouple causes the loss of a complete measurement branch. This solution improves failure detection but can decrease the availability rate of the machine.
  • thermoelectric couples having a higher Seebeck coefficient can also make it possible to increase the voltage levels at the probe output.
  • the torque currently used is a type called K, or chromel-alumel.
  • the pairs considered are type E, or chromel (nickel + chromium alloy) -constantan (nickel + copper alloy), type J, or iron-constantan, and type N, or Nisil (nickel + silica alloy) -Nicrosil ( Nickel + Chromium + Silica alloy).
  • a given thermoelectric couple can have a smaller operating range, the E and J types having a continuous range of 800 ° C and 720 ° C respectively compared to the 1100 ° C of the K type.
  • type J is not suitable for use in an oxidizing and humid environment.
  • WO 2016/055726 describes a sensor for measuring the temperature of gases at the outlet of a gas turbine such as a helicopter turbine.
  • FR 1 138 404 describes an electrical assembly intended to give the average value of several simultaneous measurements.
  • EP 0 878 851 describes an apparatus for generating thermoelectric energy.
  • FR 3 023 415 describes a thermoelectric generator for powering an electrical or electronic device.
  • An object of the invention is to increase the voltage level at the output of the thermometric measuring device.
  • Another aim is to increase the operational robustness of the thermometric measurement system.
  • Another object is to increase the availability of the thermometric measuring system.
  • Another object is to improve fault detection in the thermometric measurement system.
  • the invention provides a temperature measurement device comprising at least three temperature probes, a computer, the computer being configured to estimate a temperature from voltage measurements at the output of the probes, characterized in that the probes are connected to each other in several meshes mounted in series, at least one mesh comprising at least two probes mounted in parallel and at least one other mesh comprising one probe or several probes mounted in parallel.
  • the invention proposes an industrial machine comprising such a temperature measuring device.
  • the invention proposes a turbomachine comprising such a temperature measuring device.
  • the temperature measuring device consists of mounting thermocouple probes 1, 2, 3 and 4 in an electrical circuit 5 connected at its terminals 6 to a computer 7 converting the voltage U recorded into a temperature difference between the welds cold thermocouples and their hot weld, the assembly associating in series meshes 57, 58, each of the meshes comprising thermocouples 10, 20 and 30, 40 mounted in parallel.
  • thermocouple probes 100, 200, 300, 400 With reference to the figure 1 , an installation diagram corresponding to an assembly comprising 4 thermocouple probes 100, 200, 300, 400 is shown.
  • the probes are implanted in an inter-turbine section 8 and connected to a junction box 9.
  • the probes are integrated into the inter-turbine section 8 on its periphery, at its wall on the same plane orthogonal to the direction of gas flow.
  • thermocouple 10 comprises a junction of a first type 13, that is to say a solder between a first conductor of the thermoelectric couple and a strand of the electrical interface conductor 16, a junction of a second type 14 between the second conductor of the thermoelectric couple and another strand of electrical connection conductor 17, and a hot solder 15 at the point of contact of the conductors of the thermoelectric couple.
  • the first and second type junctions ie the cold welds of the thermocouples, are all located in the junction box 9 and must be maintained at the same temperature to avoid generating a parasitic electromotive force.
  • junction box 9 is therefore a thermally controlled isothermal box, similar to a box described in the patent application. FR3027106 .
  • thermocouples As the internal resistance of the circuit increases with the length of the cable, it is necessary that the strands placed in parallel respect the same lengths to avoid biasing the local average electromotive forces.
  • the strands of certain thermocouples can therefore be bent to present the same cable length for each thermocouple at the input of the junction box 9 and of the computer 7.
  • thermocouples 10, 20, 30, 40 The series and parallel association of thermocouples 10, 20, 30, 40 is produced by copper links 55 in the junction box 9. This makes it possible to reduce the production costs of the thermocouple harness by making the junctions in a remote box. or downstream of the harness base.
  • the assembly carried out in the junction box 9 comprises an assembly of the junctions of the first type 13 and 23 of the thermocouples 10 and 20 between them and the junctions of the second type 34 and 44 of the probes 30 and 40 between them, these two poles then being linked. at the outlet of the junction box 9.
  • the equipotential bonding 56 of the second type junctions 14 and 24 of the thermocouples 10 and 20 and of the first type junctions 33 and 43 of the thermocouples 30 and 40 is then made, thus forming a series connection of two meshes 57 and 58, the mesh 57 comprising the thermocouples 10 and 20 associated in parallel and the cell 58 comprising the thermocouples 30 and 40 associated in parallel.
  • the computer 7 is connected to the terminals of the junction box 9, and converts the measured voltage U into a temperature difference between the inter-turbine section 8 and the junction box 9, the temperature of the junction box 9 being controlled by a temperature sensor. temperature.
  • the computer 7 then establishes the temperature of the intra-turbine gases by adding the temperature difference between the hot weld and the cold welds to the temperature of the cold welds.
  • the probes for example probe 1 include two thermocouples (10, 11 for probe 1) per jacket (12 for probe 1), thus making it possible to produce two measurement channels temperature.
  • thermocouple probes on a turboprop plane are suitable for making the temperature measuring device.
  • a first solution comprises 4 thermocouple probes 100, 200, 300, 400 arranged circularly at 90 ° from each other.
  • a second solution comprises 6 thermocouple probes 100, 200, 300, 400, 500, 600 arranged circularly at 60 ° from each other.
  • thermocouple probes 100, 200, 300, 400, 500, 600, 700, 800 arranged circularly at 45 ° from each other.
  • thermocouple probes to form two measurement channels.
  • Each measurement channel therefore comprises an assembly comprising a thermocouple of each double probe, the thermocouples of one channel being mounted electrically in a circuit comprising a series connection of two meshes composed of two thermocouples mounted in parallel.
  • one embodiment of the temperature measurement device comprises two different cabling for the two measurement channels A and B.
  • Channel A comprises by example a series association of two meshes 57a and 58a, a first mesh 57a composed of thermocouples 10 and 30 mounted in parallel and a second mesh 58a composed of thermocouples 20 and 40 mounted in parallel.
  • Channel B comprises a series association of two links 57b and 58b, a first link 57b composed of thermocouples 11 and 21 mounted in parallel and a second link 58b composed of thermocouples 31 and 41 mounted in parallel.
  • Each measurement channel is connected independently of the other to the computer, which therefore measures their voltages Ua (channel A) and Ub (channel B), which are homogeneous in normal operation since the thermocouples making up measurement channels A and B are arranged at the same azimuths.
  • thermocouples 10 and 11 are considered to be an opening in the circuit on channels A and B, which does not cause a significant loss of precision.
  • the voltage U supplied to the computer 7 remains in the same order of magnitude, ie the sum of the electromotive forces of two thermocouples.
  • thermocouples 20 and 21 are considered to be openings in their respective measurement channel.
  • the information is lost on channel B, but remains available and of the same order magnitude on channel A, i.e. the sum of the electromotive forces of thermocouples 30 and 40.
  • This type of implementation makes it possible, in addition to increasing the measurement voltage U at the terminals of the assembly, to maintain the availability of measurements on at least one of the channels in the event of a single or double failure and to detect an anomaly in the event of loss of 'one of the ways.
  • thermocouple probes With reference to figures 6 and 7 , the mounting of 5 double thermocouple probes can be carried out in two different ways.
  • thermocouples 10 and 40 are wired in such a way as to produce an assembly composed of the placing in series of three meshes, a first mesh 57a composed of thermocouples 10 and 40 mounted in parallel, a second mesh 58a composed of thermocouples 20 and 50 mounted in parallel and a third link 59a comprising the thermocouple 30.
  • the probes are wired so as to produce an assembly composed of the placing in series of three meshes, a first link 57b composed of thermocouples 11 and 21 mounted in parallel , a second link 58b composed of thermocouples 31 and 51 mounted in parallel and a third link 59b comprising the thermocouple 41.
  • This embodiment makes it possible, in addition to increasing the measurement voltage U, to keep the measurement on at least one of the channels in the event of a single or double failure, in addition to allowing the detection of an anomaly by the loss of one of the channels if the 300 or 400 probe is damaged.
  • FIG. 7 Another embodiment of the temperature measuring device, shown in figure 7 , favors the availability of the measurement system.
  • the probes are wired so as to produce an assembly made up of placing two meshes in series, a first mesh 57a composed of probes 10 and 30 and 50 mounted in parallel, a second mesh 58a composed of probes 20 and 40 mounted in parallel.
  • the probes are wired in such a way as to produce an assembly made up of the placing two meshes in series, a first mesh 57b composed of probes 11 and 21 and 31 mounted in parallel, a second mesh 58b composed of probes 41 and 51 mounted in parallel.
  • This embodiment makes it possible to guarantee the operation of at least one of the measurement channels even in the event of a triple failure.
  • the deterioration of probes 200 and 400 renders channel A inoperative and reveals a defect, just as the deterioration of probes 400 and 500 renders channel B inoperative and therefore makes it possible to detect a defect.
  • an embodiment of the temperature measurement device comprises 6 double thermocouple probes, the assembly of which favors availability to the detriment of fault detection and the increase in the measurement voltage.
  • Channel A comprises a series connection of two meshes, a first mesh 57a composed of thermocouples 10, 30 and 50 mounted in parallel and a second mesh 58a composed of thermocouples 20, 40 and 60 mounted in parallel.
  • Channel B has two meshes in series, a first mesh 57b composed of thermocouples 11, 21 and 31 mounted in parallel and a second mesh 58b composed of thermocouples 41, 51 and 61 mounted in parallel.
  • an embodiment of the temperature measuring device comprises 6 double thermocouple probes, the assembly of which favors the increase in the measurement voltage U and the detection of a fault, a double fault which can cause the loss of one of the channels.
  • Channel A comprises a series connection of three meshes, a first mesh 57a composed of thermocouples 10 and 40 mounted in parallel, a second mesh 58a composed of thermocouples 20 and 50 mounted in parallel and a third mesh 59a composed of thermocouples 30 and 60 mounted in parallel.
  • Channel B comprises a series connection of three meshes, a first mesh 57b composed of thermocouples 11 and 21 mounted in parallel, a second mesh 58b composed of thermocouples 31 and 41 mounted in parallel and a third link 59b composed of thermocouples 51 and 61 mounted in parallel.
  • an embodiment of the temperature measuring device comprises on its channel A an assembly favoring availability and on its channel B an assembly favoring fault detection and the measurement voltage U.
  • Channel A therefore comprises two meshes in series, a first mesh 57a composed of thermocouples 10, 30 and 50 mounted in parallel and a second mesh 57b composed of thermocouples 20, 40 and 60 mounted in parallel.
  • Channel B comprises a series connection of three meshes, a first mesh 57b composed of thermocouples 11 and 41 mounted in parallel, a second mesh 58b composed of thermocouples 21 and 51 mounted in parallel and a third mesh 59b composed of thermocouples 31 and 61 mounted in parallel.
  • thermocouple probes 100, 200, 300, 400, 500, 600 is shown.
  • the probes are implanted in an inter-turbine section 8 and connected to a junction box 9.
  • the probes are integrated into the inter-turbine section 8 on its periphery, at its wall on the same plane orthogonal to the direction of gas flow.
  • thermocouple 10 comprises a junction of a first type 13, that is to say a solder between the conductor of a first type of the thermoelectric couple and a strand of the electrical interface conductor 16, a junction of the second type 14 between the conductor of the second type of the thermoelectric couple and another strand of electrical connection conductor 17, and a hot solder 15 at the point of contact of the conductors of the thermoelectric couple.
  • thermocouple cold welds are all located in junction box 9.
  • thermocouples 10, 20, 30, 40, 50 and 60 The series and parallel association of thermocouples 10, 20, 30, 40, 50 and 60 is made by copper links 55 in the junction box 9.
  • the assembly carried out in the junction box 9 comprises an assembly of the junctions of the first type 13, 33 and 53 of the thermocouples 10, 30 and 50 between them and the junctions of the second type 24, 44 and 64 of the probes 20, 40 and 60 between them, these two poles then being linked to the output of the junction box 9.
  • the equipotential bonding 56 of the second type junctions 14, 34 and 54 of the thermocouples 10, 30 and 50 and of the first type junctions 23, 43 and 63 of the thermocouples 20, 40 and 60 is then carried out, thus forming a series connection of two meshes 57 and 58, the mesh 57 comprising the thermocouples 10, 30 and 50 associated in parallel and the mesh 58 comprising the thermocouples 20, 40 and 60 associated in parallel.
  • the computer 7 is connected to the terminals of the junction box 9, and converts the measured voltage U into a temperature difference between the inter-turbine section 8 and the junction box 9, the temperature of the junction box 9 being controlled by a temperature sensor. temperature.
  • a minimum system configuration includes three dual thermocouple probes.
  • the two measurement channels A and B each comprise two meshes 57 and 58 connected in series in order to comply with the criterion of increasing the output voltage level.
  • Mesh 57 comprises two thermocouples mounted in parallel to meet the system availability criterion and mesh 58 comprises a thermocouple, complying with the fault detection criterion.
  • cell 57a comprises thermocouples 10 and 20 of probes 1 and 2, cell 58a comprising thermocouple 30 of probe 3.
  • cell 57b comprises thermocouples 11 and 31 of probes 1 and 3, cell 58b comprising thermocouple 21 of probe 2.
  • thermocouples In non-detailed embodiments integrating probes comprising a different number of thermocouples, it would be possible to produce a different number of measurement channels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

    DOMAINE TECHNIQUE GÉNÉRAL ET ART ANTÉRIEUR
  • L'invention concerne la mesure de température, notamment au sein des turbopropulseurs.
  • Au sein des turbopropulseurs, la température des gaz dans les turbines peut s'élever au-delà du millier de degrés.
  • Les mesures de température y sont réalisées grâce à des sondes thermocouples qui offrent l'avantage de présenter de très larges plages de mesure continues.
  • Le fonctionnement d'une sonde thermocouple est basé sur l'exploitation de l'effet Seebeck : une différence de potentiel est générée par effet thermoélectrique entre deux points de jonction de conducteurs de natures différentes soumis à une différence de température.
  • Classiquement, une sonde thermocouple présente trois types de conducteurs :
    • deux conducteurs de nature différente constituent ensemble le couple thermoélectrique ; ces deux conducteurs sont soudés en un point qui est destiné à être immergé dans le milieu dont on cherche à déterminer la température, cette soudure étant par convention appelée soudure chaude ;
    • deux brins de conducteur de même nature constituent classiquement l'interface électrique ; un brin est soudé à un des conducteurs du couple thermoélectrique et un autre est soudé au deuxième conducteur du couple thermoélectrique, ces soudures étant par convention appelées soudures froides.
  • La différence de température entre la soudure chaude et les soudures froides génère une différence de potentiel, qui est mesurée entre les deux soudures froides du thermocouple.
  • Ce principe de mesure présente cependant l'inconvénient de délivrer de faibles niveaux de tension, ce qui génère des difficultés lors de l'acquisition du signal par le calculateur, notamment en raison de l'influence de champs électromagnétiques divers qui perturbe la mesure.
  • Il existe donc un besoin pour une solution de mesure de température permettant d'augmenter le niveau de signal en sortie de capteur, afin de favoriser l'acquisition, tout en simplifiant la réalisation des étages d'entrée du calculateur et en diminuant les coûts de production.
  • Il a déjà été proposé, dans l'état de la technique, de mettre en série deux ou plusieurs sondes thermocouples. L'association de thermocouples en série permet d'augmenter assez simplement les niveaux de tension permettant de réaliser l'acquisition. Cependant la perte d'un thermocouple engendre la perte d'une branche complète de mesure. Cette solution améliore la détection de panne mais peut faire diminuer le taux de disponibilité de la machine.
  • L'utilisation de couples thermoélectriques présentant un coefficient Seebeck supérieur peut également permettre d'augmenter les niveaux de tension en sortie de sonde. Le couple actuellement utilisé est un type appelé K, ou chromel-alumel. Les couples envisagés sont le type E, ou chromel (alliage nickel + chrome)-constantan (alliage nickel + cuivre), le type J, ou fer-constantan, et le type N, ou Nisil (alliage Nickel + Silice)-Nicrosil (alliage Nickel + Chrome + Silice). Certaines contraintes se présentent cependant, en effet un couple thermoélectrique donné peut présenter une plage de fonctionnement plus réduite, les types E et J présentant une plage continue de 800°C et 720°C respectivement face aux 1100°C du type K. De plus le type J ne convient pas à une utilisation dans un milieu oxydant et humide.
  • Il est également possible d'amplifier les niveaux de tension au plus près de la sonde, évitant ainsi de faire parcourir des signaux de faibles niveaux sur de longues distances, cette solution ayant été envisagée mais complexifiant la mesure.
  • WO 2016/055726 décrit un capteur pour mesurer la température des gaz à la sortie d'une turbine à gaz telle qu'une turbine d'hélicoptère.
  • FR 1 138 404 décrit un montage électrique destiné à donner la valeur moyenne de plusieurs mesures simultanées.
  • EP 0 878 851 décrit un appareil de génération d'énergie thermoélectrique.
  • FR 3 023 415 décrit un générateur thermoélectrique pour l'alimentation d'un dispositif électrique ou électronique.
  • PRÉSENTATION GÉNÉRALE DE L'INVENTION
  • Un but de l'invention est d'augmenter le niveau de tension en sortie du dispositif de mesure thermométrique.
  • Un autre but est d'augmenter la robustesse de fonctionnement du système de mesure thermométrique.
  • Un autre but est d'augmenter la disponibilité du système de mesure thermométrique.
  • Un autre but est d'améliorer la détection de panne dans le système de mesure thermométrique.
  • Selon un aspect, l'invention propose un dispositif de mesure de température comportant au moins trois sondes de température, un calculateur, le calculateur étant configuré pour estimer une température à partir de mesures de tension en sortie des sondes, caractérisé en ce que les sondes sont reliées entre elles selon plusieurs mailles montées en série, au moins une maille comportant au moins deux sondes montées en parallèle et au moins une autre maille comportant une sonde ou plusieurs sondes montées en parallèle.
  • Un tel dispositif est avantageusement complété par les différentes caractéristiques suivantes prises seules ou en combinaison :
    • au moins une sonde de température est un thermocouple ;
    • au moins une sonde comporte plusieurs thermocouples ;
    • deux mailles en série comportent chacune au moins un thermocouple, deux thermocouples desdites mailles étant montés en série et la soudure froide entre un conducteur de liaison et un conducteur d'un premier type du couple thermoélectrique d'un premier thermocouple est reliée de manière équipotentielle à la soudure froide entre un conducteur de liaison et un conducteur d'un second type du couple thermoélectrique de l'autre thermocouple, de manière à additionner les forces électromotrices des deux thermocouples ;
    • le dispositif comporte au moins deux thermocouples montés en parallèle et les soudures froides sur les conducteurs de même type des couples thermoélectriques des deux thermocouples sont reliées de manière équipotentielle, les deux thermocouples présentant ainsi la même différence de potentiel ;
    • les soudures froides des thermocouples des différentes mailles sont contenues dans un boîtier de liaison isotherme ;
    • le dispositif comporte plusieurs sondes comportant chacune au moins deux thermocouples, des thermocouples des différentes sondes étant reliés entre eux pour définir deux voies de mesure, chaque voie de mesure comportant une pluralité de mailles montées en série, dont
      • ▪ au moins une maille comporte au moins deux sondes montées en parallèle et
      • ▪ au moins une autre maille comporte une sonde ou plusieurs sondes montées en parallèle,
      le câblage des voies étant configuré de sorte qu'au moins une sonde comprenne un thermocouple monté dans une première maille sur une voie et un deuxième thermocouple monté dans une deuxième maille sur l'autre voie.
  • Selon un autre aspect, l'invention propose une machine industrielle comportant un tel dispositif de mesure de température.
  • Selon un autre aspect, l'invention propose une turbomachine comportant un tel dispositif de mesure de température.
  • PRÉSENTATION DES FIGURES
  • D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées sur lesquelles :
    • la figure 1 est une représentation schématique de l'implantation des sondes dans le dispositif de mesure thermométrique et le montage électrique associé pour une configuration comportant 4 sondes ;
    • la figure 2 représente l'implantation des sondes sur un plan de la section inter-turbines selon des configurations comportant différents nombres de sondes ;
    • la figure 3 représente le montage électrique des deux voies de mesures dans une configuration comportant 4 sondes à deux thermocouples chacune ;
    • la figure 4 représente le montage électrique des deux voies de mesures dans une configuration comportant 4 sondes à deux thermocouples chacune, dans un cas de fonctionnement où la sonde 1 est endommagée ;
    • la figure 5 représente le montage électrique des deux voies de mesures dans une configuration comportant 4 sondes à deux thermocouples chacune, dans un cas de fonctionnement où les sondes 1 et 2 sont endommagées ;
    • la figure 6 représente une configuration du montage électrique des deux voies de mesures dans une configuration comportant 5 sondes à deux thermocouples chacune ;
    • la figure 7 représente une seconde configuration du montage électrique des deux voies de mesures dans une configuration comportant 5 sondes à deux thermocouples chacune ;
    • la figure 8 représente une configuration du montage électrique des deux voies de mesures dans une configuration comportant 6 sondes à deux thermocouples chacune ;
    • la figure 9 représente une seconde configuration du montage électrique des deux voies de mesures dans une configuration comportant 6 sondes à deux thermocouples chacune ;
    • la figure 10 représente une troisième configuration du montage électrique des deux voies de mesures dans une configuration comportant 6 sondes à deux thermocouples chacune ;
    • la figure 11 est une représentation schématique de l'implantation des sondes dans le dispositif de mesure thermométrique et le montage électrique associé pour une configuration comportant 6 sondes ;
    • la figure 12 est une représentation schématique de l'implantation des sondes à double thermocouples dans le dispositif de mesure thermométrique et les montages des deux voies de mesure associées pour une configuration comportant 3 sondes.
    DESCRIPTION D'UN OU PLUSIEURS MODES DE MISE EN ŒUVRE ET DE RÉALISATION
  • Le dispositif de mesure de température consiste en un montage de sondes à thermocouples 1, 2, 3 et 4 dans un circuit électrique 5 relié au niveau de ses bornes 6 à un calculateur 7 convertissant la tension U relevée en une différence de température entre les soudures froides des thermocouples et leur soudure chaude, le montage associant en série des mailles 57, 58, chacune des mailles comportant des thermocouples 10, 20 et 30, 40 montés en parallèle.
  • Il est entendu que les exemples évoqués ci-après sont purement illustratifs et non limitatifs, le dispositif décrit pouvant comporter un nombre de mailles, de sondes ou de thermocouples différent des exemples décrits.
  • Exemple d'installation du dispositif de mesure de température
  • En référence à la figure 1, un schéma d'installation correspondant à un montage comportant 4 sondes thermocouple 100, 200, 300, 400 est représenté.
  • Les sondes sont implantées dans une section inter-turbine 8 et raccordées à un boîtier de jonction 9.
  • Les sondes sont intégrées dans la section inter-turbine 8 sur sa périphérie, au niveau de sa paroi sur un même plan orthogonal à la direction de circulation des gaz.
  • Un thermocouple 10 comporte une jonction d'un premier type 13, c'est-à-dire une soudure entre un premier conducteur du couple thermoélectrique et un brin du conducteur d'interface électrique 16, une jonction d'un second type 14 entre le second conducteur du couple thermoélectrique et un autre brin de conducteur de liaison électrique 17, et une soudure chaude 15 au point de contact des conducteurs du couple thermoélectrique.
  • Les jonctions de premier et deuxième type, c'est à dire les soudures froides des thermocouples, sont toutes situées dans le boîtier de jonction 9 et doivent être maintenues à la même température pour éviter de générer une force électromotrice parasite.
  • Le boîtier de jonction 9 est donc un boîtier isotherme contrôlé thermiquement, semblable à un boîtier décrit dans la demande de brevet FR3027106 .
  • La résistance interne du circuit augmentant avec la longueur du câble, il est nécessaire que les brins mis en parallèle respectent les mêmes longueurs pour éviter de biaiser les forces électromotrices moyennées locales. Les brins de certains thermocouples pourront donc être repliés pour présenter la même longueur de câble pour chaque thermocouple en entrée du boîtier de jonction 9 et du calculateur 7.
  • L'association en série et parallèle des thermocouples 10, 20, 30, 40 est réalisée par des liaisons en cuivre 55 dans le boîtier de jonction 9. Ceci permet de réduire les coûts de production du harnais thermocouple en réalisant les jonctions dans un boitier déporté ou en aval de l'embase du harnais.
  • Le montage réalisé dans le boîtier de jonction 9 comporte un assemblage des jonctions de premier type 13 et 23 des thermocouples 10 et 20 entre elles et les jonctions de deuxième type 34 et 44 des sondes 30 et 40 entre elles, ces deux pôles étant ensuite liés à la sortie du boîtier de jonction 9.
  • La liaison équipotentielle 56 des jonctions de deuxième type 14 et 24 des thermocouples 10 et 20 et des jonctions de premier type 33 et 43 des thermocouples 30 et 40 est ensuite réalisée, formant ainsi une mise en série de deux mailles 57 et 58, la maille 57 comportant les thermocouples 10 et 20 associés en parallèle et la maille 58 comportant les thermocouples 30 et 40 associés en parallèle.
  • Le calculateur 7 est relié aux bornes du boîtier de jonction 9, et convertit la tension mesurée U en différence de température entre la section inter-turbine 8 et le boîtier de jonction 9, la température du boîtier de jonction 9 étant contrôlée par une sonde de température.
  • Le calculateur 7 établit ensuite la température des gaz intra-turbine en ajoutant la différence de température entre la soudure chaude et les soudures froides à la température des soudures froides.
  • Dans une des formes du dispositif de mesure de température, les sondes (par exemple la sonde 1) comportent deux thermocouples (10, 11 pour la sonde 1) par chemise (12 pour la sonde 1), permettant donc de réaliser deux voies de mesure de température.
  • Intégration des sondes dans la turbine
  • En référence à la figure 2, différentes solutions d'agencement des sondes thermocouples sur un plan de turbopropulseur conviennent pour réaliser le dispositif de mesure de température.
  • Une première solution comporte 4 sondes thermocouples 100, 200, 300, 400 disposées circulairement à 90° les unes des autres.
  • Une deuxième solution comporte 6 sondes thermocouples 100, 200, 300, 400, 500, 600 disposées circulairement à 60° les unes des autres.
  • Une autre solution comporte 8 sondes thermocouples 100, 200, 300, 400, 500, 600, 700, 800 disposées circulairement à 45° les unes des autres.
  • Montage à 4 sondes thermocouples doubles
  • Un mode de réalisation du dispositif de mesure de température consiste à monter 4 sondes thermocouples doubles pour former deux voies de mesure.
  • Chaque voie de mesure comporte donc un montage comportant un thermocouple de chaque sonde double, les thermocouples d'une voie étant montés électriquement selon un circuit comportant une mise en série de deux mailles composées de deux thermocouples montés en parallèle.
  • En référence à la figure 3, dans le cadre d'une solution retenue comportant 4 sondes thermocouples 100, 200, 300 et 400, un mode de réalisation du dispositif de mesure de température comporte deux câblages différents pour les deux voies de mesure A et B. La voie A comporte par exemple une association en série de deux mailles 57a et 58a, une première maille 57a composée des thermocouples 10 et 30 montés en parallèle et une seconde maille 58a composée des thermocouples 20 et 40 montés en parallèle. La voie B comporte elle une association en série de deux mailles 57b et 58b, une première maille 57b composée des thermocouples 11 et 21 montés en parallèle et une seconde maille 58b composée des thermocouples 31 et 41 montés en parallèle.
  • Chaque voie de mesure est reliée indépendamment de l'autre au calculateur, qui mesure donc leurs tensions Ua (voie A) et Ub (voie B), qui sont homogènes en cas de fonctionnement normal car les thermocouples composant les voies de mesure A et B sont disposés aux mêmes azimuts.
  • En référence à la figure 4, ce mode de réalisation permet, en cas de dégradation d'une sonde, de ne pas perdre d'information ou de précision sur les deux voies de mesure simultanément. En cas de perte de la sonde 100 par exemple, les thermocouples 10 et 11 sont considérés comme une ouverture dans le circuit sur les voies A et B, ce qui n'engendre pas de perte significative de précision. La tension U fournie au calculateur 7 reste dans le même ordre de grandeur, soit la somme des forces électromotrices de deux thermocouples.
  • En référence à la figure 5, en cas de détérioration d'une deuxième sonde, une des voies reste opérationnelle. Dans cet exemple, la sonde 200 est également endommagée. Les thermocouples 20 et 21 sont considérés comme des ouvertures dans leur voie de mesures respective. L'information est perdue sur la voie B, mais reste disponible et du même ordre de grandeur sur la voie A, soit la somme des forces électromotrices des thermocouples 30 et 40.
  • Ce type de réalisation permet, en plus d'augmenter la tension U de mesure aux bornes du montage, de conserver la disponibilité des mesures sur au moins une des voies en cas de panne simple ou double et de détecter une anomalie en cas de perte d'une des voies.
  • Montage à 5 sondes thermocouples doubles
  • En référence aux figures 6 et 7, le montage de 5 sondes thermocouples doubles peut être réalisé de deux manières différentes.
  • Un mode de réalisation du dispositif de mesure de température, représenté sur la figure 6, privilégie l'augmentation de la tension U de mesure. Sur la voie A, les sondes sont câblées de manière à réaliser un montage composé de la mise en série de trois mailles, une première maille 57a composée des thermocouples 10 et 40 montées en parallèle, une seconde maille 58a composée des thermocouples 20 et 50 montées en parallèle et une troisième maille 59a comportant le thermocouple 30. Sur la voie B, les sondes sont câblées de manière à réaliser un montage composé de la mise en série de trois mailles, une première maille 57b composée des thermocouples 11 et 21 montées en parallèle, une seconde maille 58b composée des thermocouples 31 et 51 montées en parallèle et une troisième maille 59b comportant le thermocouple 41.
  • Ce mode de réalisation permet, en plus d'augmenter la tension U de mesure, de conserver la mesure sur au moins une des voies en cas de panne simple ou double, en plus de permettre la détection d'une anomalie par la perte d'une des voies si la sonde 300 ou 400 est endommagée.
  • Un autre mode de réalisation du dispositif de mesure de température, représenté sur la figure 7, privilégie la disponibilité du système de mesure. Sur la voie A, les sondes sont câblées de manière à réaliser un montage composé de la mise en série de deux mailles, une première maille 57a composée des sondes 10 et 30 et 50 montées en parallèle, une seconde maille 58a composée des sondes 20 et 40 montées en parallèle. Sur la voie B, les sondes sont câblées de manière à réaliser un montage composé de la mise en série de deux mailles, une première maille 57b composée des sondes 11 et 21 et 31 montées en parallèle, une seconde maille 58b composée des sondes 41 et 51 montées en parallèle.
  • Ce mode de réalisation permet de garantir le fonctionnement d'au moins une des voies de mesure même en cas de panne triple. La détérioration des sondes 200 et 400 rend la voie A inopérante et révèle un défaut tout comme la détérioration des sondes 400 et 500 rend la voie B inopérante et permet donc de détecter un défaut.
  • Montage à 6 sondes thermocouples doubles
  • En référence à la figure 8, un mode de réalisation du dispositif de mesure de température comporte 6 sondes thermocouples doubles, dont le montage privilégie la disponibilité au détriment de la détection de panne et l'augmentation de la tension de mesure.
  • La voie A comporte une mise en série de deux mailles, une première maille 57a composée des thermocouples 10, 30 et 50 montées en parallèle et une seconde maille 58a composée des thermocouples 20, 40 et 60 montées en parallèle. La voie B comporte une mise en série de deux mailles, une première maille 57b composée des thermocouples 11, 21 et 31 montées en parallèle et une seconde maille 58b composée des thermocouples 41, 51 et 61 montées en parallèle.
  • En référence à la figure 9, un mode de réalisation du dispositif de mesure de température comporte 6 sondes thermocouples doubles, dont le montage privilégie l'augmentation de la tension U de mesure et la détection de panne, une panne double pouvant causer la perte d'une des voies.
  • La voie A comporte une mise en série de trois mailles, une première maille 57a composée des thermocouples 10 et 40 montées en parallèle, une deuxième maille 58a composée des thermocouples 20 et 50 montées en parallèle et une troisième maille 59a composée des thermocouples 30 et 60 montées en parallèle. La voie B comporte une mise en série de trois mailles, une première maille 57b composée des thermocouples 11 et 21 montées en parallèle, une deuxième maille 58b composée des thermocouples 31 et 41 montées en parallèle et une troisième maille 59b composée des thermocouples 51 et 61 montées en parallèle.
  • En référence à la figure 10, un mode de réalisation du dispositif de mesure de température comporte sur sa voie A un montage privilégiant la disponibilité et sur sa voie B un montage privilégiant la détection de panne et la tension U de mesure. La voie A comporte donc une mise en série de deux mailles, une première maille 57a composée des thermocouples 10, 30 et 50 montées en parallèle et une seconde maille 57b composée des thermocouples 20, 40 et 60 montées en parallèle. La voie B comporte une mise en série de trois mailles, une première maille 57b composée des thermocouples 11 et 41 montées en parallèle, une deuxième maille 58b composée des thermocouples 21 et 51 montées en parallèle et une troisième maille 59b composée des thermocouples 31 et 61 montées en parallèle.
  • En référence à la figure 11, un schéma d'installation correspondant à un montage comportant 6 sondes thermocouples 100, 200, 300, 400, 500, 600 est représenté.
  • Les sondes sont implantées dans une section inter-turbine 8 et raccordées à un boîtier de jonction 9.
  • Les sondes sont intégrées dans la section inter-turbine 8 sur sa périphérie, au niveau de sa paroi sur un même plan orthogonal à la direction de circulation des gaz.
  • Un thermocouple 10 comporte une jonction d'un premier type 13, c'est-à-dire une soudure entre le conducteur d'un premier type du couple thermoélectrique et un brin du conducteur d'interface électrique 16, une jonction de deuxième type 14 entre le conducteur de deuxième type du couple thermoélectrique et un autre brin de conducteur de liaison électrique 17, et une soudure chaude 15 au point de contact des conducteurs du couple thermoélectrique.
  • Les jonctions de premier et deuxième type, les soudures froides des thermocouples, sont toutes situées dans le boîtier de jonction 9.
  • L'association en série et parallèle des thermocouples 10, 20, 30, 40, 50 et 60 est réalisée par des liaisons en cuivre 55 dans le boîtier de jonction 9.
  • Le montage réalisé dans le boîtier de jonction 9 comporte un assemblage des jonctions de premier type 13, 33 et 53 des thermocouples 10, 30 et 50 entre elles et les jonctions de deuxième type 24, 44 et 64 des sondes 20, 40 et 60 entre elles, ces deux pôles étant ensuite liés à la sortie du boîtier de jonction 9.
  • La liaison équipotentielle 56 des jonctions de deuxième type 14, 34 et 54 des thermocouples 10, 30 et 50 et des jonctions de premier type 23, 43 et 63 des thermocouples 20, 40 et 60 est ensuite réalisée, formant ainsi une mise en série de deux mailles 57 et 58, la maille 57 comportant les thermocouples 10, 30 et 50 associés en parallèle et la maille 58 comportant les thermocouples 20, 40 et 60 associés en parallèle.
  • Le calculateur 7 est relié aux bornes du boîtier de jonction 9, et convertit la tension mesurée U en différence de température entre la section inter-turbine 8 et le boîtier de jonction 9, la température du boîtier de jonction 9 étant contrôlée par une sonde de température.
  • En référence à la figure 12, une configuration minimale du système comporte trois sondes à double thermocouples.
  • Les deux voies de mesures A et B comportent chacune deux mailles 57 et 58 montées en série pour respecter le critère d'augmentation du niveau de tension de sortie.
  • La maille 57 comporte deux thermocouples montés en parallèle pour respecter le critère de disponibilité du système et la maille 58 comporte un thermocouple, respectant le critère de détection de panne.
  • Sur la voie A, la maille 57a comporte les thermocouples 10 et 20 des sondes 1 et 2, la maille 58a comportant le thermocouple 30 de la sonde 3.
  • Sur la voie B, la maille 57b comporte les thermocouples 11 et 31 des sondes 1 et 3, la maille 58b comportant le thermocouple 21 de la sonde 2.
  • Cette association des sondes dans des mailles différentes selon la voie de mesure permet de respecter le critère de robustesse du système, la perte d'une sonde entraînant la perte d'une seule voie de mesure, la seconde voie de mesure demeurant fonctionnelle.
  • Dans des modes de réalisation non détaillés intégrant des sondes comportant un nombre différent de thermocouples, il serait possible de réaliser un nombre différent de voies de mesures.

Claims (9)

  1. Dispositif de mesure de température comportant au moins trois sondes (100,200,300) de température, un calculateur (7), le calculateur (7) étant configuré pour estimer une température à partir de mesures de tension (U) en sortie des sondes, caractérisé en ce que les sondes sont reliées entre elles selon plusieurs mailles (57,58) montées en série, au moins une maille (57) comportant au moins deux sondes (100,200) montées en parallèle et au moins une autre maille (58) comportant une autre sonde (300) ou plusieurs autres sondes montées en parallèle.
  2. Dispositif de mesure de température tel que défini par la revendication 1, caractérisé en ce qu'au moins une sonde (100) de température est un thermocouple (10).
  3. Dispositif de mesure de température selon l'une des revendications 1 ou 2, caractérisé en ce qu'au moins une sonde (100, 200, 300) comporte plusieurs thermocouples (10, 11, 20, 21, 30, 31).
  4. Dispositif de mesure de température selon une des revendications 2 ou 3, caractérisé en ce que deux mailles en série (57, 58) comportent chacune au moins un thermocouple, deux thermocouples (10, 30) desdites mailles étant montés en série et en ce que une soudure froide (14) entre un conducteur de liaison (17) et un conducteur d'un premier type du couple thermoélectrique d'un premier thermocouple (10) est reliée de manière équipotentielle à une autre soudure froide (33) entre un conducteur de liaison (36) et un conducteur d'un second type du couple thermoélectrique de l'autre thermocouple (30), de manière à additionner les forces électromotrices des deux thermocouples.
  5. Dispositif de mesure de température selon l'une des revendications 2 à 4, caractérisé en ce qu'il comporte au moins deux thermocouples (10, 20) montés en parallèle et en ce que les soudures froides (13) sur les conducteurs de même type des couples thermoélectriques des deux thermocouples sont reliées de manière équipotentielle, les deux thermocouples (10, 20) présentant ainsi la même différence de potentiel.
  6. Dispositif de mesure de température selon l'une des revendications 4 ou 5, caractérisé en ce que les soudures froides (16, 17, 26, 27, 36, 37) des thermocouples (10, 20, 30) des différentes mailles sont contenues dans un boîtier de liaison (9) isotherme.
  7. Dispositif de mesure de température selon l'une des revendications 3 à 6, caractérisé en ce qu'il comporte plusieurs sondes (100,200,300) comportant chacune au moins deux thermocouples (10,11,20,21,30,31), des thermocouples des différentes sondes étant reliés entre eux pour définir deux voies de mesure (A,B), chaque voie (A,B) de mesure comportant une pluralité de mailles (57b, 58b) montées en série, dont
    i. au moins une maille (57b) comporte au moins deux sondes (11, 31) montées en parallèle et
    ii. au moins une autre maille (58b) comporte une sonde (21) ou plusieurs sondes montées en parallèle,
    le câblage des voies étant configuré de sorte qu'au moins une sonde (100, 200, 300) comprenne un thermocouple (10, 20, 30) monté dans une première maille (57a) sur une voie (A) et un deuxième thermocouple (11, 21, 31) monté dans une deuxième maille (58b) sur l'autre voie (B).
  8. Machine industrielle comportant au moins un dispositif de mesure de température tel que défini dans l'une des revendications précédentes.
  9. Turbomachine, notamment turbopropulseur, comportant au moins un dispositif de mesure de température tel que défini dans l'une des revendications 1 à 7.
EP18712944.0A 2017-02-28 2018-02-28 Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines Active EP3589926B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18712944T PL3589926T3 (pl) 2017-02-28 2018-02-28 Pomiar termometryczny z wykorzystaniem siatki sond, w szczególności wewnątrz maszyn wirowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751644A FR3063343B1 (fr) 2017-02-28 2017-02-28 Mesure thermometrique par maillage de sondes, notamment au sein de turbomachines
PCT/FR2018/050471 WO2018158541A1 (fr) 2017-02-28 2018-02-28 Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines

Publications (2)

Publication Number Publication Date
EP3589926A1 EP3589926A1 (fr) 2020-01-08
EP3589926B1 true EP3589926B1 (fr) 2020-12-16

Family

ID=58739145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18712944.0A Active EP3589926B1 (fr) 2017-02-28 2018-02-28 Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines

Country Status (7)

Country Link
US (1) US11125630B2 (fr)
EP (1) EP3589926B1 (fr)
CN (1) CN110392823B (fr)
CA (1) CA3054845A1 (fr)
FR (1) FR3063343B1 (fr)
PL (1) PL3589926T3 (fr)
WO (1) WO2018158541A1 (fr)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1138404A (fr) * 1954-10-26 1957-06-13 Gen Motors Corp Nouveau montage électrique de mesure
AT273585B (de) * 1966-07-21 1969-08-25 H C Hans Dipl Ing Dr Dr List Einrichtung zur Überwachung der mechanischen und thermischen Beanspruchung von Brennkraftmaschinen
US3618386A (en) * 1970-06-10 1971-11-09 Avco Corp Fluidic temperature sensor averaging system
JPH1132492A (ja) * 1997-05-14 1999-02-02 Nissan Motor Co Ltd 熱電発電装置及びその駆動方法
GB2344892B (en) * 1998-12-16 2002-11-13 Solartron Group Ltd Cold junction compensation for multiple thermocouples
US7044638B2 (en) * 2004-05-24 2006-05-16 Rosemount Aerospace, Inc. Multi-element thermocouple
GB0709723D0 (en) * 2007-05-22 2007-06-27 Goodrich Control Sys Ltd Temperature sensing
CN101470027B (zh) * 2007-12-27 2011-12-21 鸿富锦精密工业(深圳)有限公司 温度测量装置及其温度测量方法
US8485724B2 (en) * 2010-03-31 2013-07-16 Microchip Technology Incorporated Thermocouple electromotive force voltage to temperature converter with integrated cold-junction compensation and linearization
US8921792B2 (en) * 2010-04-14 2014-12-30 Excelitas Technologies Singapore Pte. Ltd. Vertically stacked thermopile
US9176010B2 (en) * 2010-08-31 2015-11-03 Streamline Automation, Llc Miniaturized thermocouple scanner system
CN201945391U (zh) * 2010-12-20 2011-08-24 安徽鑫国仪表有限公司 一种铠装热电偶堆
FR3023415B1 (fr) * 2014-07-02 2016-08-05 Idt Conseil Generateur thermoelectrique a pertes reduites
CN104089707A (zh) * 2014-07-23 2014-10-08 电子科技大学 一种热电堆传感器
FR3027106B1 (fr) * 2014-10-08 2016-12-09 Turbomeca Sonde de mesure de la temperature regnant en sortie de turbine d'helicoptere
CN104481608B (zh) * 2014-11-07 2016-06-15 中国南方航空工业(集团)有限公司 温度测量装置、涡桨航空发动机和温度测量方法

Also Published As

Publication number Publication date
CA3054845A1 (fr) 2018-09-07
EP3589926A1 (fr) 2020-01-08
CN110392823B (zh) 2021-12-31
US20190383669A1 (en) 2019-12-19
PL3589926T3 (pl) 2021-05-17
WO2018158541A1 (fr) 2018-09-07
CN110392823A (zh) 2019-10-29
FR3063343A1 (fr) 2018-08-31
FR3063343B1 (fr) 2019-06-07
US11125630B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2016055726A1 (fr) Sonde de mesure de la temperature regnant en sortie de turbine d'helicoptere
JP6910471B2 (ja) 熱電対装置および温度測定方法
EP3589926B1 (fr) Mesure thermométrique par maillage de sondes, notamment au sein de turbomachines
EP2791638B1 (fr) Procede de mesure de la temperature
EP3062097A1 (fr) Capteur d'humidité avec module thermique
EP0047192A2 (fr) Système de mesure d'une grandeur d'état d'un fluide
FR2544859A1 (fr) Dispositif autoalimente de commutation sensible a un gradient de temperature
FR2989777A1 (fr) Correction d'une mesure de temperature d'une sonde de temperature de type a resistance thermometrique
EP2666000A1 (fr) Dispositif de mesure ou de determination d'une caracteristique d'un flux thermique echange entre un premier milieu et un deuxieme milieu
FR3042862B1 (fr) Capteur de temperature pour vehicule automobile comprenant un thermocouple
CA2786543A1 (fr) Circuit de detection des positions de contacteurs dans une turbomachine
EP2099264A1 (fr) Plaquette à circuit imprimé avec thermocouple
EP0557225B1 (fr) Dispositif de compensation de jonction froide pour thermocouple
EP0187723A2 (fr) Procédé et capteur de mesure perfectionnés, basés sur l'utilisation d'un thermocouple
FR2706610A1 (fr) Capteur de flux thermique et dispositif de mesure associé.
KR100470895B1 (ko) 초전도 선재를 이용한 고온초전도 케이블의 상변화 전압검출시스템
WO2018002545A1 (fr) Capteur pour répartiteur d'air d'admission avec thermocouple
FR2497944A1 (fr) Systeme de compensation dynamique pour la mesure d'une grandeur d'etat caracteristique d'un fluide en ecoulement
FR3065282B1 (fr) Capteur pour repartiteur d'air d'admission avec fonction redondance
FR3118359A1 (fr) Dispositif photovoltaïque bifacial de référence
FR2831268A1 (fr) Sonde de temperature et dispositif de freinage la comportant
FR3018615A1 (fr) Dispositif et procede de detection de particules rayonnantes
FR3067459A1 (fr) Capteur numerique de pression
FR2560382A1 (fr) Dispositif de mesure de temperature d'un corps par thermocouple
FR3066818A1 (fr) Capteur de temperature pour vehicule automobile comprenant un thermocouple de type n

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200615

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018010894

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1346038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1346038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201216

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018010894

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 7

Ref country code: CZ

Payment date: 20240125

Year of fee payment: 7

Ref country code: GB

Payment date: 20240123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240126

Year of fee payment: 7

Ref country code: IT

Payment date: 20240123

Year of fee payment: 7

Ref country code: FR

Payment date: 20240123

Year of fee payment: 7