EP3581082B1 - Saugroboter und verfahren zur steuerung eines saugroboters - Google Patents

Saugroboter und verfahren zur steuerung eines saugroboters Download PDF

Info

Publication number
EP3581082B1
EP3581082B1 EP19175820.0A EP19175820A EP3581082B1 EP 3581082 B1 EP3581082 B1 EP 3581082B1 EP 19175820 A EP19175820 A EP 19175820A EP 3581082 B1 EP3581082 B1 EP 3581082B1
Authority
EP
European Patent Office
Prior art keywords
vacuum cleaner
cleaning device
robotic vacuum
separation unit
separating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19175820.0A
Other languages
English (en)
French (fr)
Other versions
EP3581082A1 (de
Inventor
Stefan Tiekötter
Seyfettin Kara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP3581082A1 publication Critical patent/EP3581082A1/de
Application granted granted Critical
Publication of EP3581082B1 publication Critical patent/EP3581082B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/12Dry filters
    • A47L9/122Dry filters flat
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/20Means for cleaning filters
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the invention relates to a robotic vacuum cleaner for autonomous cleaning of floor surfaces, the robotic vacuum cleaner having a first drive device for moving over floor surfaces, the robotic vacuum cleaner having a blower unit for generating a suction air flow, the robotic vacuum cleaner having a first separation unit for separating particles from the suction air flow, wherein the vacuum robot has a second separating unit for separating particles from the suction air flow and wherein the second separating unit is arranged downstream of the suction air of the first separating unit.
  • the robotic vacuum cleaners known from the prior art use filter elements in order to separate and store dust and dirt particles picked up during the cleaning operation.
  • a first separating unit for example in the form of a cyclone separator or a dust cassette, is often used for this purpose, which separates larger dust and dirt particles from the suction air flow by the influence of gravity.
  • This first separating unit is usually followed by a second separating unit downstream of the suction air flow, which separates and stores fine dust particles from the suction air flow.
  • Single-stage or multi-stage filter elements for example made of a fleece material, are used as the second separation unit.
  • a problem with all known filter elements is their tendency to become clogged with dust and dirt particles that have been separated out after a certain cleaning period.
  • a vacuum robot which has a drive device for moving over floor surfaces and a blower unit. Furthermore, the vacuum robot has a first separating unit for separating particles and a second separating unit for separating particles from the suction air flow. The second separating unit is arranged downstream of the first separating unit in the suction air. A cleaning device is arranged on the second separating unit, wherein the cleaning device cleans the second separating unit of separated particles.
  • the problem of the invention is therefore to provide an improved robotic vacuum cleaner that generates sufficient cleaning performance and whose filter elements are Users do not need to be cleaned manually.
  • a device according to patent claim 1 and a method according to patent claim 10 are provided.
  • a cleaning device is arranged on the second separating unit, wherein the cleaning device cleans the second separating unit of separated particles.
  • the first separating unit is designed as a cyclone separator or as a dust cassette, with the first separating unit separating larger dust and dirt particles from the suction air flow.
  • the second separating unit is designed as a filter element, which separates dust and dirt particles from the suction air flow.
  • the second separating unit is arranged suction air downstream of the first separating unit, as a result of which at least part of the generated suction air flow first passes through the first separating unit and then through the second separating unit.
  • the cleaning device is arranged directly on or adjacent to the second separating unit in the vacuum robot.
  • the cleaning device is designed to remove dust and dirt particles that have been deposited on or in the second separating unit during the cleaning operation of the robotic vacuum cleaner.
  • the cleaning of the second separating unit by the cleaning device prevents clogging of the second separating unit with separated dust and dirt particles during the cleaning operation of the vacuum robot.
  • the cleaning of the second separating unit by the cleaning device takes place automatically without the user having to remove the second separating unit from the vacuum robot and clean it manually. This automatic cleaning of the second separating unit by the cleaning device ensures, on the one hand, a constantly high suction power of the vacuum robot throughout the entire cleaning operation and, at the same time, reduces manual maintenance work by the user.
  • the second separating unit has a filter element, in particular a multi-stage filter element.
  • the filter element is designed to separate and/or store dust and dirt particles from a suction air flow.
  • the multi-stage filter element has a pre-filter and/or a main filter and/or a post-filter.
  • a single-stage filter element as the second separating unit of a vacuum robot.
  • the filter element is made from a fleece material and/or a foam material and/or a pleated filter material. Multi-stage filter elements have a cleaning operation longer service life than single-stage filter elements and can also be operated without pre-separation by a first separation unit.
  • the cleaning device acts on the second separating unit by means of a translatory movement.
  • the cleaning device transmits a movement impulse to the second separating unit.
  • the translational movement of the cleaning device takes place at cyclic intervals.
  • the translational movement of the cleaning device takes place between a first and a second position, with the cleaning device not having any contact with the second separating unit in the first position and with the cleaning device being in contact with the second separating unit in the second position.
  • the cleaning device it is also conceivable for the cleaning device to be in permanent contact with the second separating unit, with the cleaning device transmitting a movement impulse to the second separating unit by moving between a first and a second position.
  • the action of the cleaning device on the separating unit through a translational movement leads to a mobilization of the dust and dirt particles stored there in the separating unit. As a result of this mobilization, the stored dust and dirt particles are released from the filter element of the second separation unit.
  • the cleaning device acts on the second separating unit by means of a rotary movement.
  • the cleaning device or elements of the cleaning device are engaged with the second separating unit.
  • the cleaning device transmits a movement impulse to the second separating unit.
  • the cleaning device or elements of the cleaning device perform a rotary movement, with the second separating unit assuming a stationary position.
  • the action of the cleaning device on the separating unit through a rotational movement leads to a mobilization of the dust and dirt particles stored there in the separating unit. As a result of this mobilization, the stored dust and dirt particles are released from the filter element of the second separation unit.
  • the cleaning device has a rod element, with the rod element acting on the second separating unit.
  • the rod element has an approximately elongated shape.
  • the rod element has widenings at least in sections.
  • the action of the rod element on the second separating unit results in an approximately rectangular contact between the rod element and the filter element of the second separating unit.
  • the cleaning device has a mesh element, with the mesh element acting on the second separating unit.
  • the mesh element has at least one agitation element which is in contact with a filter element of the second separating unit.
  • the network element has a large number of agitation elements, it is preferred that the agitation elements are distributed evenly over a base area of the network element.
  • the network element has a base area which approximately corresponds to a base area of the second separating unit.
  • the mesh member is moveable between first and second positions.
  • the use of a mesh element for the cleaning device enables extensive contact between the cleaning device and the filter element of the second separating unit. As a result, the movement impulse of the cleaning device is transmitted almost over the entire base area of the filter element of the second separating unit. This enables optimal cleaning of the second separating unit from stored dust and dirt particles.
  • the robotic vacuum cleaner has a second drive device, with the second drive device driving the cleaning device.
  • the drive device has a motor element and a gear element, which are set up to drive the cleaning device.
  • a second drive device enables independent operation of the cleaning device of the second separating unit. The second separating unit can thus be cleaned independently of any other operating status of the vacuum robot.
  • the cleaning device is driven by the first drive device.
  • the first drive device is set up to move the vacuum robot autonomously over the surface to be cleaned.
  • the first drive device Cleaning device drives via a coupling device.
  • the coupling device has at least one mechanical component which connects the first drive device to the cleaning device. In an alternative embodiment, however, it is also conceivable for the mechanical component to connect the cleaning device to a drive wheel of the robotic vacuum cleaner.
  • the coupling device enables the cleaning device to be operated via the drive energy which the first drive device generates. As a result, a separate second drive device is not required for the operation of the cleaning device. Transfer or navigation trips by the vacuum robot can thus be used for the cleaning operation of the second separating unit.
  • the robotic vacuum cleaner has an interface device, it being possible for the cleaning device to be driven via the interface device.
  • the interface device is designed to enter into a connection with an external transmission element, with the cleaning device being able to be driven via this connection.
  • a transmission element is arranged at a charging station of the vacuum robot. This enables the second separating unit to be cleaned via a transmission element of the charging station.
  • no separate drive device is required for the cleaning device in the vacuum robot.
  • the required drive device can be outsourced to a charging station of the vacuum robot.
  • the time that the vacuum robot spends charging its energy storage at the charging station can be used to clean the second separation unit.
  • a saturation value of the second separating unit can be determined, for example, via a pressure sensor system, which detects the differential pressure that occurs at the second separating unit during the cleaning operation. The resulting differential pressure correlates with the saturation value of the second separation unit.
  • a cleaning operation of the second separating unit takes place only if a definable Saturation value of the second separation unit is exceeded. As a result, the cleaning operation of the second separating unit can be configured as required.
  • the cleaning operation of the second separating unit can be restricted to states of the vacuum robot in which the cleaning operation of the second separating unit has no negative or disruptive influence.
  • FIG 1 shows the side sectional view of a vacuum robot 10, as is known from the prior art.
  • the robotic vacuum cleaner 10 has at least two wheels 36 on its underside 34 with which it can drive autonomously over floor surfaces to be cleaned. At least one of these wheels 36 is driven via a drive device (not shown in figure 1 ) motor-driven.
  • the robot vacuum 10 On the side 34 of the robot vacuum housing, which faces the floor surface to be cleaned, the robot vacuum 10 has a suction mouth 38.
  • the robot vacuum 10 is able to pick up dust and dirt particles from the floor surface via this suction mouth 38 and thereby clean them.
  • a brush roller 40 is arranged inside the suction mouth 38 of the vacuum robot 10 to increase the cleaning performance. During cleaning operation, the brush roller 40 sweeps dust and dirt particles into the suction mouth 38 of the vacuum robot 10 via a rotational movement.
  • the suction mouth 38 is connected to a dust cassette 16 via a suction channel. Via this suction channel 42, the dust and dirt particles that have been sucked in and swept in pass from the suction mouth 38 into the dust cassette 16, where they are separated and stored by the suction air flow.
  • the dust cassette thus functions as the first separating unit.
  • the separation of larger dust and dirt particles from the suction air flow in the dust cassette 16 takes place primarily via gravity.
  • a second separating unit 18 is arranged at the outlet of the fine dust cassette 16, where the suction air flow generated by the vacuum robot 10 emerges from the latter. The second separating unit 18 separates those dust and dirt particles from the suction air flow which were not separated by the first separating unit 16 .
  • the second separating unit 18 is formed by a multi-stage filter element 22 which is composed of a pre-filter 44 , a main filter 46 and a post-filter 48 .
  • the pre-filter 44 consists, for example, of a foam layer, the main filter 46 of a pleated filter material and the post-filter 48 of a fine dust filter material. Downstream of the second separating unit 18, the cleaned suction air flow then flows through the fan of the vacuum robot (not shown in Fig figure 1 ) before it is blown out of the housing of the vacuum robot 10 as exhaust air.
  • FIG 2 shows a side sectional view of a robotic vacuum cleaner 10 with a rod cleaning device 20 on the second separating unit 18.
  • the cleaning device 20 has two rod elements 24 which are in engagement with the pre-filter 44 and the main filter 46 of the filter element 22.
  • the rod elements 24 perform a translatory movement in and on the filter element 22 which loosens dust and dirt particles from the filter element 22 . This causes the filter element 22 to be cleaned and extends its service life for the cleaning operation to a significant extent.
  • the rod elements 24 of the cleaning device 20 are driven via a camshaft 50 which is connected to the drive device 12 of the vacuum robot 10 via a coupling device 30 .
  • the camshaft 50 converts the rotational movement of the drive device 12 into a translational movement of the rod elements 24. In this way, the drive device 12 is also used to operate the cleaning device 22.
  • FIG 3 shows a side sectional view of a vacuum robot 10 with a net cleaning device 20.
  • a three-stage filter element 22 acts as the second separating unit 18.
  • a net element 26 is arranged in this, which can be set in a translatory movement via a camshaft 50.
  • the net cleaning device 20 transmits a shaking movement to the filter element 22.
  • Fixed dust and dirt particles in the filter material of the filter element 22 are thereby solved.
  • the camshaft 50 is driven via a coupling device 30 which can be connected to the drive device 12 of the vacuum robot 10 . This allows continuous or partial operation of the cleaning device 20 while the robotic vacuum cleaner 10 moves autonomously over a floor surface.
  • FIG 4 shows a side sectional view of a robotic vacuum cleaner 10 with a cleaning device 20 which is driven by a second drive device 28 .
  • a second separate drive device 28 is arranged below the second separating unit 18 .
  • This second drive device 28 serves exclusively to drive the cleaning device 20.
  • the robotic vacuum cleaner 10 has a first drive device 12, which enables the robotic vacuum cleaner 10 to move over floor surfaces.
  • the second drive device 28 drives a rod element 24 which is arranged inside the filter element 22 and which functions as the second separating unit 18 .
  • the rod element 24 performs a translatory movement, which transfers kinetic energy to the filter element 22 .
  • dust and dirt particles stored in the filter material of the filter element 22 are mobilized and loosened.
  • a flywheel 52 is arranged between the second drive device 28 and the rod element 24 and converts the rotational movement generated by the drive device 28 into a translational movement of the rod element 24 .
  • FIG 5 shows a side sectional view of a robotic vacuum cleaner 10 with a cleaning device 20 which is driven by a second drive device 28 .
  • the second drive device 28 is arranged laterally next to the second separating unit 18 and drives a rod element 24 which is arranged within the second separating unit 18 .
  • a filter element 22 acts as a second separating unit 18 .
  • the rod element 24 is arranged axially along the transverse axis of the filter element 22 .
  • Mobilization elements 54 are arranged on the rod element 24 itself and extend radially outwards starting from the rod element 24 .
  • the mobilization elements 54 extend almost over the entire length of the rod element 24, which is arranged inside the filter element 22.
  • the mobilization elements 54 are in engagement with the filter material of the filter element 22. If the rod element 24 is caused to rotate by the second drive device 28, the mobilization elements 54 transmit this movement impulse to the filter material. As a result of this movement impulse, dust and dirt particles stored in the filter material are released from it.
  • FIG 6 shows a side sectional view of a robotic vacuum cleaner 10 on a charging station 56.
  • the charging station 56 is designed in such a way that the robotic vacuum cleaner 10 drives over it autonomously can.
  • the charging station 56 is designed in such a way that the robotic vacuum cleaner 10 aligns itself autonomously with respect to the charging station 56 when driving over it. Among other things, this results in electrical contact being made between the charging station 56 and the robotic vacuum cleaner 10, which initiates a charging process for the energy storage devices (not shown in Fig figure 6 ) of the robotic vacuum cleaner 10 via the charging station 56.
  • the charging station 56 forms a suction channel 58 which forms at least one suction mouth interface 60 .
  • This suction mouth interface 60 forms a largely fluid-tight connection to the suction mouth 38 of the vacuum robot 10 when it is on the charging station 56 .
  • the external blower is arranged inside the charging station 56 or inside another vacuum cleaner, which is connected to the suction channel 58 of the charging station 56 in a fluid-tight manner.
  • the charging station 56 has a drive device 62 for a cleaning device 20 of the second separating unit 18 of the vacuum robot 10 .
  • This drive device 62 is connected to an axle 64 which has an interface 66 .
  • this axis 64 together with the interface 66, enters the housing of the robotic vacuum cleaner 10 and establishes a connection with an axis 68 of the cleaning device 20 of the second separating unit 18.
  • a net element 26 which is arranged within the second separating unit 18 , acts as the cleaning device 20 .
  • the movement generated by the drive device 62 in the loading station 56 is transmitted to the axis 68 of the cleaning device 20 via the interface 66 of the axis 64 .
  • the net element 26 of the cleaning device 20 is set in a translational movement, which causes the second separating unit 18 to be cleaned of dust and dirt particles.

Description

  • Die Erfindung betrifft einen Saugroboter zum autonomen Reinigen von Bodenflächen, wobei der Saugroboter eine erste Antriebseinrichtung zum Verfahren über Bodenflächen aufweist, wobei der Saugroboter eine Gebläseeinheit zum Erzeugen eines Saugluftstroms aufweist, wobei der Saugroboter eine erste Abscheideeinheit zum Abscheiden von Partikeln aus dem Saugluftstrom aufweist, wobei der Saugroboter eine zweite Abscheideeinheit zum Abscheiden von Partikeln aus dem Saugluftstrom aufweist und wobei die zweite Abscheideeinheit saugluftstromabwärts der ersten Abscheideeinheit angeordnet ist.
  • Die aus dem Stand der Technik bekannten Saugroboter setzen Filterelemente ein, um während des Reinigungsbetriebs aufgenommene Staub- und Schmutzpartikel abzuscheiden und zu speichern. Oftmals wird hierzu eine erste Abscheideeinheit zum Beispiel in Form eines Zyklonabscheiders oder einer Staubkassette eingesetzt, welche größere Staub- und Schmutzpartikel durch Gravitationseinfluss vom Saugluftstrom abscheidet. Dieser ersten Abscheideeinheit wird in der Regel eine zweite Abscheideeinheit saugluftstromabwärts nachgeschaltet, welche Feinstaubpartikel aus dem Saugluftstrom abscheidet und speichert. Als zweite Abscheideeinheit kommen dabei ein- oder mehrstufige Filterelemente, beispielsweise aus einem Vliesmaterial, zum Einsatz. Problematisch bei allen bekannten Filterelementen ist ihre Neigung sich nach einer gewissen Reinigungsbetriebsdauer mit abgeschiedenen Staub- und Schmutzpartikeln zuzusetzen. Das Zusetzen der Filterelemente reduziert die zur Verfügung stehenden Volumenströme an Saugluft, wodurch die Reinigungsleistung der Saugroboter reduziert wird. Um dieser Reduktion an Reinigungsleistung entgegen zu wirken, muss der Benutzer eines solchen Saugroboters in regelmäßigen Abständen die zweite Abscheideeinheit entnehmen und manuell reinigen. Dies wird von den meisten Benutzern als äußerst störend und nicht hygienisch empfunden.
  • Aus der EP 2 862 490 A1 ist ein Saugroboter bekannt, welcher eine Antriebseinrichtung zum Verfahren über Bodenflächen und eine Gebläseeinheit aufweist. Weiterhin verfügt der Saugroboter über eine erste Abscheideeinheit zum Abscheiden von Partikeln und über eine zweite Abscheideeinheit zum Abscheiden von Partikeln aus dem Saugluftstrom. Die zweite Abscheideeinheit ist dabei saugluftstromabwärts der ersten Abscheideeinheit angeordnet ist. An der zweiten Abscheideeinheit ist eine Reinigungseinrichtung angeordnet, wobei die Reinigungseinrichtung die zweite Abscheideeinheit von abgeschiedenen Partikeln reinigt.
  • Der Erfindung stellt sich somit das Problem einen verbesserten Saugroboter zur Verfügung zu stellen, der eine ausreichende Reinigungsleistung generiert und dessen Filterelemente vom Benutzer nicht manuell gereinigt werden müssen. Zur Lösung dieser Problematik wird eine Vorrichtung gemäß Patentanspruch 1 und ein Verfahren gemäß Patentanspruch 10 zur Verfügung gestellt. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden Unteransprüchen.
  • Erfindungsgemäß ist vorgesehen, dass an der zweiten Abscheideeinheit eine Reinigungseinrichtung angeordnet ist, wobei die Reinigungseinrichtung die zweite Abscheideeinheit von abgeschiedenen Partikeln reinigt. Die erste Abscheideeinheit ist als Zyklonabscheider oder als Staubkassette ausgebildet, wobei die erste Abscheideeinheit größere Staub- und Schmutzpartikel vom Saugluftstrom abtrennt. Die zweite Abscheideeinheit ist als Filterelement ausgebildet, welches Staub- und Schmutzpartikel vom Saugluftstrom abtrennt. Die zweite Abscheideeinheit ist dabei saugluftstromabwärts der ersten Abscheideeinheit angeordnet, wodurch zumindest ein Teil des erzeugten Saugluftstroms zuerst die erste Abscheideeinheit passiert und anschließend die zweite Abscheideeinheit.
  • Die Reinigungseinrichtung ist dabei unmittelbar an oder benachbart zu der zweiten Abscheideeinheit im Saugroboter angeordnet. Die Reinigungseinrichtung ist dazu ausgebildet, Staub- und Schmutzpartikel, welche sich an oder in der zweiten Abscheideeinheit im Reinigungsbetrieb des Saugroboters abgelagert haben, zu entfernen.
  • Die Abreinigung der zweiten Abscheideeinheit durch die Reinigungseinrichtung verhindert ein Zusetzen der zweiten Abscheideeinheit mit abgeschiedenen Staub- und Schmutzpartikeln im Reinigungsbetrieb des Saugroboters. Die Abreinigung der zweiten Abscheideeinheit durch die Reinigungseinrichtung erfolgt dabei automatisch, ohne dass der Benutzer die zweite Abscheideeinheit aus dem Saugroboter entnehmen und manuell reinigen muss. Diese automatische Reinigung der zweiten Abscheideeinheit durch die Reinigungseinrichtung gewährleistet einerseits eine konstant hohe Saugleistung des Saugroboters während des gesamten Reinigungsbetriebs und reduziert gleichzeitig manuelle Wartungsarbeiten durch den Benutzer.
  • Weiterhin bevorzugt ist, dass die zweite Abscheideeinheit ein Filterelement, insbesondere ein mehrstufiges Filterelement aufweist. Das Filterelement ist dazu ausgebildet Staub- und Schmutzpartikel aus einem Saugluftstrom abzuscheiden und/oder zu speichern. Das mehrstufige Filterelement weist dabei einen Vorfilter und/oder einen Hauptfilter und/oder einen Nachfilter auf. In einer alternativen Ausführungsform ist es aber auch denkbar, ein einstufiges Filterelement als zweite Abscheideeinheit eines Saugroboters vorzusehen. Das Filterelement ist aus einem Vliesmaterial und/oder einem Schaumstoffmaterial und/oder einem plissierten Filtermaterial ausgebildet. Mehrstufige Filterelemente weisen im Reinigungsbetrieb eine längere Standzeit als einstufige Filterelemente auf und können auch ohne Vorabscheidung durch eine erste Abscheideeinheit betrieben werden.
  • Es ist bevorzugt, dass die Reinigungseinrichtung durch eine translatorische Bewegung auf die zweite Abscheideeinheit einwirkt. Beim Einwirken der Reinigungseinrichtung auf die zweite Abscheideeinheit überträgt die Reinigungseinrichtung einen Bewegungsimpuls auf die zweite Abscheideeinheit. Die translatorische Bewegung der Reinigungseinrichtung erfolgt dabei in zyklischen Intervallen. Die translatorische Bewegung der Reinigungseinrichtung erfolgt dabei zwischen einer ersten und einer zweiten Position, wobei die Reinigungseinrichtung in der ersten Position keinen Kontakt mit der zweiten Abscheideeinheit aufweist und wobei die Reinigungseinrichtung in der zweiten Position in Kontakt mit der zweiten Abscheideeinheit steht. In einer alternativen Ausführungsform ist es aber auch denkbar, dass die Reinigungseinrichtung permanent in Kontakt mit der zweiten Abscheideeinheit steht, wobei die Reinigungseinrichtung durch eine Bewegung zwischen einer ersten und einer zweiten Position einen Bewegungsimpuls auf die zweite Abscheideeinheit überträgt.
  • Das Einwirken der Reinigungseinrichtung auf die Abscheideeinheit durch eine translatorische Bewegung führt in der Abscheideeinheit zu einer Mobilisation der dort gespeicherten Staubund Schmutzpartikel. In Folge dieser Mobilisation werden die gespeicherten Staub- und Schmutzpartikel aus dem Filterelement der zweiten Abscheideeinheit gelöst.
  • In einer weiteren Ausführungsform ist bevorzugt, dass die Reinigungseinrichtung durch eine rotatorische Bewegung auf die zweite Abscheideeinheit einwirkt. Die Reinigungseinrichtung oder Elemente der Reinigungseinrichtung befinden sich im Eingriff mit der zweiten Abscheideeinheit. Beim Einwirken der Reinigungseinrichtung auf die zweite Abscheideeinheit überträgt die Reinigungseinrichtung einen Bewegungsimpuls auf die zweite Abscheideeinheit. Die Reinigungseinrichtung oder Elemente der Reinigungseinrichtung führen dabei eine rotatorische Bewegung aus, wobei die zweite Abscheideeinheit eine stationäre Position einnimmt. In einer alternativen Ausführungsform ist es aber auch denkbar, dass die Reinigungseinrichtung eine stationäre Position einnimmt und die zweite Abscheideeinheit eine rotatorische Bewegung ausführt.
  • Das Einwirken der Reinigungseinrichtung auf die Abscheideeinheit durch eine rotatorische Bewegung führt in der Abscheideeinheit zu einer Mobilisation der dort gespeicherten Staubund Schmutzpartikel. In Folge dieser Mobilisation werden die gespeicherten Staub- und Schmutzpartikel aus dem Filterelement der zweiten Abscheideeinheit gelöst.
  • Zudem ist es bevorzugt, dass die Reinigungseinrichtung ein Stabelement aufweist, wobei das Stabelement auf die zweite Abscheideeinheit einwirkt. Das Stabelement weist dabei eine annähernd längliche Form auf. In einer alternativen Ausführungsform ist es aber auch denkbar, dass das Stabelement zumindest abschnittsweise Verbreiterungen aufweist. Beim Einwirken des Stabelementes auf die zweite Abscheideeinheit ergibt sich ein annähernd linienförmiger Kontakt zwischen dem Stabelement und dem Filterelement der zweite Abscheideeinheit. In der Ausführungsform in welcher das Stabelement zumindest abschnittsweise Verbreiterungen aufweist, resultiert beim Einwirken des Stabelementes auf die zweite Abscheideeinheit ein annähernd rechtecksförmiger Kontakt zwischen dem Stabelement und dem Filterelement der zweiten Abscheideeinheit. Der Einsatz eines Stabelementes für die Reinigungseinrichtung ermöglicht eine dosierbare Übertragung eines Bewegungsimpulses von der Reinigungseinrichtung auf die zweite Abscheideeinheit. Insbesondere ermöglicht ein Stabelement eine exakte Positionierung des Bewegungsimpulses in Bezug auf das Filterelement der zweiten Abscheideeinheit.
  • Die Reinigungseinrichtung weist ein Netzelement auf, wobei das Netzelement auf die zweite Abscheideeinheit einwirkt. Das Netzelement weist mindestens ein Agitationselement auf, welches in Kontakt mit einem Filterelement der zweiten Abscheideeinheit steht. In einer Ausführungsform in der das Netzelement eine Vielzahl an Agitationselementen aufweist, ist es bevorzugt, dass die Agitationselemente sich gleichmäßig über eine Grundfläche des Netzelementes verteilen. Das Netzelement weist eine Grundfläche auf, die annähernd einer Grundfläche der zweiten Abscheideeinheit entspricht. Das Netzelement ist zwischen einer ersten und einer zweiten Position beweglich.
  • Die Verwendung eines Netzelementes für die Reinigungseinrichtung ermöglicht einen flächig ausgeprägten Kontakt zwischen der Reinigungseinrichtung und dem Filterelement der zweiten Abscheideeinheit. Hierdurch wird der Bewegungsimpuls der Reinigungseinrichtung annähernd über eine gesamte Grundfläche des Filterelementes der zweiten Abscheideeinheit übertragen. Dies ermöglicht eine optimale Abreinigung der zweiten Abscheideeinheit von gespeicherten Staub- und Schmutzpartikeln.
  • In einer alternativen Ausführungsform weist der Saugroboter eine zweite Antriebseinrichtung auf, wobei die zweite Antriebseinrichtung die Reinigungseinrichtung antreibt. Die Antriebseinrichtung weist dabei ein Motorelement und ein Getriebeelement auf, welche dazu eingerichtet sind die Reinigungseinrichtung anzutreiben. Eine zweite Antriebseinrichtung ermöglicht dabei einen unabhängigen Betrieb der Reinigungseinrichtung der zweiten Abscheideeinheit. Eine Reinigung der zweite Abscheideeinheit kann dadurch unabhängig von einem sonstigen Betriebsstatus des Saugroboters erfolgen.
  • In einer weiteren alternativen Ausführungsform ist es bevorzugt, dass die Reinigungseinrichtung durch die erste Antriebseinrichtung angetrieben wird. Die erste Antriebseinrichtung ist dazu eingerichtet, den Saugroboter autonom über die zu reinigende Fläche zu verfahren. Dabei ist es weiterhin bevorzugt, dass die erste Antriebseinrichtung die Reinigungseinrichtung über eine Kopplungseinrichtung antreibt. Die Kopplungseinrichtung weist dabei mindestens eine Mechanik-Komponente auf, welche die erste Antriebseinrichtung mit der Reinigungseinrichtung verbindet. In einer alternativen Ausführungsform ist es aber auch denkbar, dass die Mechanik-Komponente die Reinigungseinrichtung mit einem Antriebsrad des Saugroboters verbindet.
  • Die Koppeleinrichtung ermöglicht einen Betrieb der Reinigungseinrichtung über die Antriebsenergie, welche die erste Antriebseinrichtung erzeugt. Hierdurch ist eine gesonderte zweite Antriebseinrichtung für den Betrieb der Reinigungseinrichtung nicht erforderlich. Transfer- oder Navigationsfahrten des Saugroboters können dadurch für den Reinigungsbetrieb der zweiten Abscheideeinheit verwendet werden.
  • In einer weiteren alternativen Ausführungsform ist es bevorzugt, dass der Saugroboter eine Schnittstelleneinrichtung aufweist, wobei über die Schnittstelleneinrichtung die Reinigungseinrichtung antreibbar ist. Die Schnittstelleneinrichtung ist dazu ausgebildet, eine Verbindung mit einem externen Übertragungselement einzugehen, wobei über diese Verbindung die Reinigungseinrichtung antreibbar ist. An einer Ladestation des Saugroboters ist dabei beispielweise ein Übertragungselement angeordnet. Dies ermöglicht einen Reinigungsbetrieb der zweiten Abscheideeinheit über ein Übertragungselement der Ladestation. Hierdurch ist keine gesonderte Antriebseinrichtung für die Reinigungseinrichtung im Saugroboter erforderlich. So kann die erforderliche Antriebseinrichtung beispielsweise in eine Ladestation des Saugroboters ausgelagert werden. Zudem kann die Zeit, welche der Saugroboter zur Ladung seiner Energiespeicher an der Ladestation verbringt genutzt werden, um die zweite Abscheideeinheit zu reinigen.
  • Bevorzugt ist zudem ein Verfahren zum Reinigen einer zweiten Abscheideeinheit eines Saugroboters nach einem der vorhergehenden Ansprüche, wobei das Verfahren die folgenden Schritte aufweist:
    Bestimmen eines Sättigungswertes der zweiten Abscheideeineinheit; und
  • Erzeugen eines Steuerungssignals zur Steuerung der Reinigungseinrichtung der zweiten Abscheideeinheit unter Berücksichtigung des gemessenen Sättigungswertes der zweiten Abscheideeinheit.
  • Ein Sättigungswert der zweiten Abscheideeinheit lässt sich dabei beispielsweise über eine Drucksensorik bestimmen, welche den sich einstellenden Differenzdruck an der zweiten Abscheideeinheit während des Reinigungsbetriebes erfasst. Dabei korreliert der sich einstellende Differenzdruck mit dem Sättigungswert der zweiten Abscheideeinheit. Ein Reinigungsbetrieb der zweiten Abscheideeinheit erfolgt dann nur, wenn ein definierbarer Sättigungswert der zweite Abscheideeinheit überschritten wird. Dadurch lässt sich der Reinigungsbetrieb der zweiten Abscheideeinheit bedarfsabhängig gestalten.
  • In einer Ausführungsform des Verfahrens ist es bevorzugt, dass im Schritt des Erzeugens eines Steuerungssignals zur Steuerung der Reinigungseinrichtung der zweiten Abscheideeinheit eine Bewegungsinformation und/oder Statusinformation des Saugroboters berücksichtigt wird. Hierdurch lässt sich der Reinigungsbetrieb der zweiten Abscheideeinheit auf Zustände des Saugroboters beschränken in denen der Reinigungsbetrieb der zweiten Abscheideeinheit keinen negativen oder störenden Einfluss hat.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigen:
  • Figur 1
    Seitliche Schnittansicht eines Saugroboters aus dem Stand der Technik;
    Figur 2
    Seitliche Schnittansicht eines Saugroboters mit einer Stab-Reinigungseinrichtung;
    Figur 3
    Seitliche Schnittansicht eines Saugroboters mit einer Netz-Reinigungseinrichtung;
    Figur 4
    Seitliche Schnittansicht eines Saugroboters mit einer Reinigungseinrichtung, welche durch eine zweite Antriebseinrichtung angetrieben wird;
    Figur 5
    Seitliche Schnittansicht eines Saugroboters mit einer Reinigungseinrichtung, welche durch eine rotatorische Bewegung auf die Abscheideeinheit einwirkt;
    Figur 6
    Seitliche Schnittansicht eines Saugroboters auf einer Ladestation, wobei diese über eine Schnittstelle die Reinigungseinrichtung des Saugroboters antreibt.
  • Figur 1 zeigt die seitliche Schnittansicht eines Saugroboters 10, wie dieser aus dem Stand der Technik bekannt ist. Der Saugroboter 10 verfügt an seiner Unterseite 34 über mindestens zwei Räder 36 mit denen dieser autonom über zu reinigenden Bodenflächen fahren kann. Dabei wird mindestens eines dieser Räder 36 über eine Antriebseinrichtung (nicht dargestellt in Figur 1) motorisch angetrieben. Auf der Seite 34 des Saugrobotergehäuses, welche der zu reinigenden Bodenfläche zugewandt ist, verfügt der Saugroboter 10 über einen Saugmund 38. Über diesen Saugmund 38 ist der Saugroboter 10 in der Lage Staub- und Schmutzpartikel von der Bodenfläche aufzunehmen und dadurch diese zu reinigen. Zur Verstärkung der Reinigungsleistung ist innerhalb des Saugmundes 38 des Saugroboters 10 eine Borstenwalze 40 angeordnet. Im Reinigungsbetrieb kehrt die Borstenwalze 40 über eine Rotationsbewegung Staub- und Schmutzpartikel in den Saugmund 38 des Saugroboters 10. Zusätzlich mobilisiert die Borstenwalze 40 Staub- und Schmutzpartikel, welche sich im Bodenbelag festgesetzt haben und erleichtert dadurch deren Absaugung.
  • Im Gehäuse des Saugroboters 10 ist der Saugmund 38 über einen Saugkanal mit einer Staubkassette 16 verbunden. Über diesen Saugkanal 42 gelangen die eingesaugten und eingekehrten Staub- und Schmutzpartikel vom Saugmund 38 in die Staubkassette 16, wo diese vom Saugluftstrom abgeschieden und gespeichert werden. Somit fungiert die Staubkassette als erste Abscheideeinheit. Die Abscheidung größerer Staub- und Schmutzpartikel vom Saugluftstrom in der Staubkassette 16 erfolgt dabei primär über die Schwerkraft. Am Auslass der Feinstaubkassette 16, wo der vom Saugroboter 10 erzeugte Saugluftstrom aus dieser austritt, ist eine zweite Abscheideeinheit 18 angeordnet. Durch die zweite Abscheideeinheit 18 werden solche Staub- und Schmutzpartikel vom Saugluftstrom abgeschieden, welche von der ersten Abscheideeinheit 16 nicht abgeschieden wurden. Hierbei handelt es sich primär um besonders feine und leichte Staub- und Schmutzpartikel. Die zweite Abscheideeinheit 18 wird durch ein mehrstufiges Filterelement 22 gebildet, welches sich aus einem Vorfilter 44, einem Hauptfilter 46 und einem Nachfilter 48 zusammensetzt. Dabei besteht der Vorfilter 44 beispielsweise aus einer Schaumstofflage, der Hauptfilter 46 aus einem plissierten Filtermaterial und der Nachfilter 48 aus einem Feinstaubfiltermaterial. Saugluftstromabwärts der zweiten Abscheideeinheit 18 durchströmt der gereinigte Saugluftstrom anschließend das Gebläse des Saugroboters (nicht dargestellt in Figur 1) bevor dieser als Abluft aus dem Gehäuse des Saugroboters 10 herausgeblasen wird.
  • Figur 2 zeigt eine seitliche Schnittansicht eines Saugroboters 10 mit einer Stab-Reinigungseinrichtung 20 an der zweiten Abscheideeinheit 18. Die Reinigungseinrichtung 20 verfügt dabei über zwei Stabelemente 24, welche sich im Eingriff mit dem Vorfilter 44 und dem Hauptfilter 46 des Filterelements 22 befinden. Die Stabelemente 24 führen dabei eine translatorische Bewegung im und am Filterelement 22 aus, welche festgesetzte Staub und Schmutzpartikel aus dem Filterelement 22 löst. Dies bewirkt eine Reinigung des Filterelements 22 und verlängert dessen Standzeit für den Reinigungsbetrieb im signifikanten Umfang. Angetrieben werden die Stabelemente 24 der Reinigungseinrichtung 20 dabei über eine Nockenwelle 50, welche über eine Kopplungseinrichtung 30 mit der Antriebseinrichtung 12 des Saugroboters 10 verbunden ist. Die Nockenwelle 50 wandelt die Rotationsbewegung der Antriebseinrichtung 12 in eine Translationsbewegung der Stabelemente 24. Auf diese Weise wird die Antriebseinrichtung 12 zusätzlich auch zum Betrieb der Reinigungseinrichtung 22 genutzt.
  • Figur 3 zeigt eine seitliche Schnittansicht eines Saugroboters 10 mit einer Netz-Reinigungseinrichtung 20. Auch hier fungiert als zweite Abscheideeinheit 18 ein dreistufiges Filterelement 22. Dabei ist in diesem ein Netzelement 26 angeordnet, welches über eine Nockenwelle 50 in eine translatorische Bewegung versetzt werden kann. In Folge dieser Bewegung überträgt die Netz-Reinigungseinrichtung 20 eine Rüttelbewegung auf das Filterelement 22. Festgesetzte Staub- und Schmutzpartikel im Filtermaterial des Filterelements 22 werden hierdurch gelöst. Der Antrieb der Nockenwelle 50 erfolgt dabei über eine Kopplungseinrichtung 30, welche mit der Antriebseinrichtung 12 des Saugroboters 10 verbindbar ist. Diese erlaubt einen kontinuierlichen oder partiellen Betrieb der Reinigungseinrichtung 20 während der Saugroboter 10 autonom über eine Bodenfläche fährt.
  • Figur 4 zeigt eine seitliche Schnittansicht eines Saugroboters 10 mit einer Reinigungseinrichtung 20, welche durch eine zweite Antriebseinrichtung 28 angetrieben wird. Dabei ist unterhalb der zweiten Abscheideeinheit 18 eine zweite separate Antriebseinrichtung 28 angeordnet. Diese zweite Antriebseinrichtung 28 dient ausschließlich zum Antrieb der Reinigungseinrichtung 20. Zusätzlich verfügt der Saugroboter 10 über eine erste Antriebseinrichtung 12, welche eine Fortbewegung des Saugroboters 10 über Bodenflächen ermöglicht. Die zweite Antriebseinrichtung 28 treibt dabei ein Stabelement 24 an, welches innerhalb des Filterelements 22 angeordnet ist, welches als zweite Abscheideeinheit 18 fungiert. Infolge der zweiten Antriebseinrichtung 28 führt das Stabelement 24 eine translatorische Bewegung aus, welche Bewegungsenergie auf das Filterelement 22 überträgt. Hierdurch werden im Filtermaterial des Filterelementes 22 gespeicherte Staub- und Schmutzpartikel mobilisiert und gelöst. Zwischen der zweiten Antriebseinrichtung 28 und dem Stabelement 24 ist ein Schwungrad 52 angeordnet, welches die von der Antriebseinrichtung 28 erzeugte Rotationsbewegung in eine Translationsbewegung des Stabelementes 24 wandelt.
  • Figur 5 zeigt eine seitliche Schnittansicht eines Saugroboters 10 mit einer Reinigungseinrichtung 20, welche durch eine zweite Antriebseinrichtung 28 angetrieben wird. Die zweite Antriebseinrichtung 28 ist dabei seitlich neben der zweiten Abscheideeinheit 18 angeordnet und treibt ein Stabelement 24 an, welches innerhalb der zweiten Abscheideeinheit 18 angeordnet ist. Dabei fungiert ein Filterelement 22 als zweite Abscheideeinheit 18. Das Stabelement 24 ist dabei axial entlang der Querachse des Filterelements 22 angeordnet. Am Stabelement 24 selbst sind Mobilisationselemente 54 angeordnet, welche sich ausgehend vom Stabelement 24 radial nach außen erstrecken. Die Mobilisationselemente 54 erstrecken sich annähernd über die gesamte Länge des Stabelementes 24, welches innerhalb des Filterelementes 22 angeordnet ist. Dabei befinden sich die Mobilisationselemente 54 im Eingriff mit dem Filtermaterial des Filterelements 22. Wird das Stabelement 24 durch die zweite Antriebseinrichtung 28 in eine Rotationsbewegung versetzt, übertragen die Mobilisationselemente 54 diesen Bewegungsimpuls auf das Filtermaterial. Infolge dieses Bewegungsimpulses werden im Filtermaterial gespeicherte Staub- und Schmutzpartikel aus diesem gelöst.
  • Figur 6 zeigt eine seitliche Schnittansicht eines Saugroboters 10 auf einer Ladestation 56. Die Ladestation 56 ist so ausgebildet, dass sie autonom vom Saugroboter 10 befahren werden kann. Zudem ist die Ladestation 56 so ausgebildet, dass sich der Saugroboter 10 beim Befahren der Ladestation 56 autonom zu dieser ausrichtet. Hierdurch erfolgt unter anderem eine elektrische Kontaktierung zwischen der Ladestation 56 und dem Saugroboter 10, welche einen Ladevorgang der Energiespeicher (nicht dargestellt in Figur 6) des Saugroboters 10 über die Ladestation 56 erlaubt. Zusätzlich bildet die Ladestation 56 einen Saugkanal 58 aus, welcher mindestens eine Saugmundschnittstelle 60 ausbildet. Diese Saugmundschnittstelle 60 bildet eine weitestgehend fluiddichte Verbindung zum Saugmund 38 des Saugroboters 10, wenn sich dieser auf der Ladestation 56 befindet. Dies ermöglicht ein Aussagen der Staubkassette 16 des Saugroboter 10 über dessen Saugmundes 38 mittels eines Saugluftstromes, welcher durch ein externes Gebläse erzeugt wird. Das externe Gebläse ist dabei innerhalb der Ladestation 56 angeordnet oder innerhalb eines weiteren Staubsaugers, welcher in fluiddichter Verbindung mit dem Saugkanal 58 der Ladestation 56 gebracht wird.
  • Darüber hinaus weist die Ladestation 56 eine Antriebseinrichtung 62 für eine Reinigungseinrichtung 20 der zweiten Abscheideeinheit 18 des Saugroboters 10 auf. Diese Antriebseinrichtung 62 ist mit einer Achse 64 verbunden, welche eine Schnittstelle 66 aufweist. Wenn der Saugroboter 10 auf der Ladestation 56 angeordnet ist, taucht diese Achse 64 mitsamt der Schnittstelle 66 in das Gehäuse des Saugroboters 10 ein und stellt eine Verbindung mit einer Achse 68 der Reinigungseinrichtung 20 der zweiten Abscheideeinheit 18 her. Als Reinigungseinrichtung 20 fungiert hierbei ein Netzelement 26, welches innerhalb der zweiten Abscheideeinheit 18 angeordnet ist. Die von der Antriebseinrichtung 62 in der Ladestation 56 erzeugte Bewegung wird über die Schnittstelle 66 der Achse 64 auf die Achse 68 der Reinigungseinrichtung 20 übertragen. Hierdurch wird das Netzelement 26 der Reinigungseinrichtung 20 in eine translatorische Bewegung versetzt, welche eine Reinigung der zweiten Abscheideeinheit 18 von Staub- und Schmutzpartikeln bewirkt.
  • In einer weiteren nicht dargestellten Ausführungsform wäre es denkbar, ein Reinigungselement vorzusehen, welches ortsfest innerhalb des Saugroboters angeordnet ist. Zur Abreinigung der zweite Abscheideeinheit führt diese eine Bewegung relativ zum Reinigungselement aus.
  • Bezugszeichenliste
  • 10
    Saugroboter
    12
    erste Antriebseinrichtung
    16
    erste Abscheideeinheit
    18
    zweite Abscheideeinheit
    20
    Reinigungseinrichtung
    22
    Filterelement
    24
    Stabelement
    26
    Netzelement
    28
    zweite Antriebseinrichtung
    30
    Kopplungseinrichtung
    34
    Unterseite Saugroboter
    36
    Räder
    38
    Saugmund
    40
    Borstenwalze
    42
    Saugkanal
    44
    Vorfilter
    46
    Hauptfilter
    48
    Nachfilter
    50
    Nockenwelle
    52
    Schwungrad
    54
    Mobilisationselemente
    56
    Ladestation
    58
    Saugkanal der Ladestation
    60
    Saugmundschnittstelle
    62
    Antriebseinrichtung Ladestation
    64
    Achse
    66
    Schnittstelle
    68
    Achse Reinigungseinrichtung

Claims (11)

  1. Saugroboter (10) zum autonomen Reinigen von Bodenflächen, wobei der Saugroboter eine erste Antriebseinrichtung (12) zum Verfahren über Bodenflächen aufweist, wobei der Saugroboter (10) eine Gebläseeinheit zum Erzeugen eines Saugluftstroms aufweist, wobei der Saugroboter (10) eine erste Abscheideeinheit (16) zum Abscheiden von Partikeln aus dem Saugluftstrom aufweist, wobei der Saugroboter (10) eine zweite Abscheideeinheit (18) zum Abscheiden von Partikeln aus dem Saugluftstrom aufweist, wobei die zweite Abscheideeinheit (18) saugluftstromabwärts der ersten Abscheideeinheit (16) angeordnet ist, wobei an der zweiten Abscheideeinheit (18) eine Reinigungseinrichtung (20) angeordnet ist, wobei die Reinigungseinrichtung (20) die zweite Abscheideeinheit (18) von abgeschiedenen Partikeln reinigt,
    dadurch gekennzeichnet,
    dass die Reinigungseinrichtung (20) ein Netzelement (26) aufweist, wobei das Netzelement (26) auf die zweite Abscheideeinheit (18) einwirkt.
  2. Saugroboter (10) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die zweite Abscheideeinheit (18) ein Filterelement (20) , insbesondere ein mehrstufiges Filterelement aufweist.
  3. Saugroboter (10) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Reinigungseinrichtung (20) durch eine translatorische Bewegung auf die zweite Abscheideeinheit (18) einwirkt.
  4. Saugroboter (10) nach einem der vorgehenden Ansprüche;
    dadurch gekennzeichnet,
    dass die Reinigungseinrichtung (20) durch eine rotatorische Bewegung auf die zweite Abscheideeinheit (18) einwirkt.
  5. Saugroboter (10) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Reinigungseinrichtung (20) ein Stabelement (24) aufweist, wobei das Stabelement (24) auf die zweite Abscheideeinheit (18) einwirkt.
  6. Saugroboter (10) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Saugroboter (10) eine zweite Antriebseinrichtung (28) aufweist, wobei die zweite Antriebseinrichtung (28) die Reinigungseinrichtung (20) antreibt.
  7. Saugroboter (10) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Reinigungseinrichtung (20) durch die erste Antriebseinrichtung (12) angetrieben wird.
  8. Saugroboter (10) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die erste Antriebseinrichtung (12) die Reinigungseinrichtung (20) über eine Kopplungseinrichtung (30) antreibt.
  9. Saugroboter (10) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Saugroboter (10) eine Schnittstelleneinrichtung (32) aufweist, wobei über die Schnittstelleneinrichtung die Reinigungseinrichtung (20) antreibar ist.
  10. Verfahren zum Reinigen einer zweiten Abscheideeinheit (18) eines Saugroboters (10) nach einem der vorhergehenden Ansprüche, wobei das Verfahren die folgenden Schritte aufweist:
    Messen eines Sättigungswertes der zweiten Abscheideeinheit (18); und
    Erzeugen eines Steuerungssignals zur Steuerung der Reinigungseinrichtung (20) der zweiten Abscheideeinheit (18) unter Berücksichtigung des gemessenen Sättigungswertes der zweiten Abscheideeinheit (18).
  11. Verfahren gemäß Anspruch 10
    dadurch gekennzeichnet,
    dass im Schritt des Erzeugens eines Steuerungssignals zur Steuerung der Reinigungseinrichtung (20) der zweiten Abscheideeinheit (18) eine Bewegungsinformation und/oder Statusinformation des Saugroboters (10) berücksichtigt wird.
EP19175820.0A 2018-06-14 2019-05-22 Saugroboter und verfahren zur steuerung eines saugroboters Active EP3581082B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018114212.9A DE102018114212A1 (de) 2018-06-14 2018-06-14 Saugroboter und Verfahren zur Steuerung eines Saugroboters

Publications (2)

Publication Number Publication Date
EP3581082A1 EP3581082A1 (de) 2019-12-18
EP3581082B1 true EP3581082B1 (de) 2022-03-02

Family

ID=66630175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19175820.0A Active EP3581082B1 (de) 2018-06-14 2019-05-22 Saugroboter und verfahren zur steuerung eines saugroboters

Country Status (2)

Country Link
EP (1) EP3581082B1 (de)
DE (1) DE102018114212A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020109656A1 (de) 2020-04-07 2021-10-07 Alfred Kärcher SE & Co. KG Filtereinheit für eine Reinigungsmaschine, Boden-Reinigungsmaschine und Verfahren zum Betreiben einer Boden-Reinigungsmaschine
DE102020115217A1 (de) * 2020-06-09 2021-12-09 Miele & Cie. Kg Saugroboter und Reinigungsstation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255132B2 (ja) * 2006-10-18 2009-04-15 株式会社東芝 電気掃除機
JP5798496B2 (ja) * 2012-01-16 2015-10-21 シャープ株式会社 集塵装置、および掃除機
KR101495191B1 (ko) * 2013-10-21 2015-02-24 엘지전자 주식회사 로봇 청소기 및 이의 먼지 감지 방법
GB2539934B (en) * 2015-07-01 2017-10-11 Dyson Technology Ltd A separating apparatus

Also Published As

Publication number Publication date
EP3581082A1 (de) 2019-12-18
DE102018114212A1 (de) 2019-12-19

Similar Documents

Publication Publication Date Title
EP3033983B1 (de) Basisstation für einen staubsauger
DE10302525B4 (de) Saugvorrichtung eines Reinigers
EP2974640B2 (de) Saugroboter mit rotierender borstwalze und reinigungsverfahren für eine borstwalze eines saugroboters
EP2612582B1 (de) Staubsauger und Verfahren zum Betrieb eines Staubsaugers
EP1380246A2 (de) Sauggeräte für Reinigungszwecke
EP3581082B1 (de) Saugroboter und verfahren zur steuerung eines saugroboters
EP1626647A1 (de) Staubsauger mit einer durch druckluft wirkenden reinigungsvorrichtung für keramikfilter
DE102010017213A1 (de) Entleerungsstation für einen Schmutzsammelbehälter eines Reinigungsgerätes sowie Verfahren hierzu
EP2893860B1 (de) Bodenpflegegerät mit einer angetriebenen Bürstenwalze
WO2016116223A1 (de) Staubsaugerroboter
DE102016118806A1 (de) Staubsauger sowie System aus einem Staubsauger und einer Basisstation
WO2016116220A1 (de) Staubsaugerroboter
DE102008011723B4 (de) Staubsauger, insbesondere Haushalts-Staubsauger, sowie Verfahren zum Betreiben eines Staubsaugers
DE4330233C2 (de) Kehrmaschine
DE102019125002A1 (de) Saugroboter und Verfahren zum Betrieb eines Saugroboters
EP4167820A1 (de) Staubsammelvorrichtung für eine werkzeugmaschine
EP4216784A1 (de) Filtereinrichtung und verfahren zu deren abreinigung
EP3485783B1 (de) Bodensauggerät, sowie verfahren zum steuern eines bodensauggeräts
WO2019042570A1 (de) Staubfilter für eine reinigungsmaschine mit einer filter-abreinigungseinrichtung, reinigungsmaschine, und verfahren zur herstellung eines staubfilters
DE102020212045B4 (de) Staubsauger mit Bearbeitungskopf
WO2021254818A1 (de) Staubsammelvorrichtung für eine werkzeugmaschine
EP4216786A1 (de) Filtereinrichtung für einen staubsauger und filterabreinigungsverfahren
DE102016105171A1 (de) Verfahren zum Fahrbetrieb eines selbstfahrenden Bodenreinigungsgeräts
EP4285799A1 (de) Basisstation für ein reinigungsgerät, reinigungsvorrichtung und system
DE102022109665A1 (de) Reinigungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: A47L 9/28 20060101ALI20210916BHEP

Ipc: A47L 9/20 20060101ALI20210916BHEP

Ipc: A47L 9/12 20060101AFI20210916BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211021

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502019003525

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1471572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003525

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20220513

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220702

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003525

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220522

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

26N No opposition filed

Effective date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230525

Year of fee payment: 5

Ref country code: FR

Payment date: 20230523

Year of fee payment: 5

Ref country code: DE

Payment date: 20230531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 5