EP3580770B1 - Trockentransformator mit luftkühlung - Google Patents

Trockentransformator mit luftkühlung Download PDF

Info

Publication number
EP3580770B1
EP3580770B1 EP18708595.6A EP18708595A EP3580770B1 EP 3580770 B1 EP3580770 B1 EP 3580770B1 EP 18708595 A EP18708595 A EP 18708595A EP 3580770 B1 EP3580770 B1 EP 3580770B1
Authority
EP
European Patent Office
Prior art keywords
ring
air
dry
cooling
type transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18708595.6A
Other languages
English (en)
French (fr)
Other versions
EP3580770A1 (de
Inventor
Jens Tepper
Yong Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Ltd
Original Assignee
Hitachi Energy Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Energy Switzerland AG filed Critical Hitachi Energy Switzerland AG
Publication of EP3580770A1 publication Critical patent/EP3580770A1/de
Application granted granted Critical
Publication of EP3580770B1 publication Critical patent/EP3580770B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases

Definitions

  • the present disclosure relates to methods and devices for cooling dry-type transformers using ring fans, in particular dry-type transformers in non-ventilated housings with forced air cooling inside the housing.
  • the fan can be set up under the coils to blow the air into the cooling ducts.
  • air baffles can be placed in close proximity to the coils, thereby making the flow resistance of the cooling channels smaller than the flow resistance of the area outside the coils.
  • blowing the air into the coils requires a relatively powerful fan, with much of the air still flowing around the coils.
  • the air baffles must be individually adapted to the contours of the coils, which involves a considerable amount of work. Because the air guide plates also generate significant additional resistance, the ventilation system works with a lower overall efficiency. Overall, it is also true that with improved cooling with conventional fans, there is a lot of noise, especially from the rotating blades.
  • the JP 2015228442 A shows in Fig. 2 (a) and Fig. 5 (a) a plate perforated by individual holes. Against this background, there is a need for the present invention.
  • the object of the invention is achieved by an air-cooled dry-type transformer according to claim 1, and a method for cooling a dry-type transformer according to claim 7.
  • the cooling ducts described in this disclosure generally include all types of ducts that, according to aspects and embodiments, can be used or are suitable for conducting cooling air through a dry-type transformer. These can also be channels, for example, which are originally intended or are used for the purpose of dielectric insulation or for monitoring/controlling the field.
  • the dry type transformer includes a housing; and a heat exchanger configured to remove heat from the housing; wherein the flow of cooling air generated by the at least one ring fan, after passing through the cooling duct of the dry-type transformer, hits the heat exchanger and is cooled there.
  • the method includes providing a ring fan and a dry-type transformer, directing a flow of cooling air from the ring fan at a mating substantially annular opening of a cooling duct of the dry-type transformer.
  • the ring fan is proposed for cooling the dry-type transformer, with a directed, essentially ring-shaped cooling air flow of a ring fan being directed onto a matching opening of a cooling channel of the dry-type transformer.
  • a ring fan as used in this disclosure includes an annular housing from which an annular flow of air emanates in the axial direction of the ring. In the center of the housing is a central opening through which, in exemplary embodiments, one leg of the transformer core passes or is located.
  • the term "ring fan" is to be considered as corresponding to the previous definition, thereby including the variants described below.
  • a ring fan can have a ring-shaped housing as a stator, with a likewise ring-shaped runner in it, on which blades are attached, which are visible to the outside like in a conventional fan.
  • the ring fan can be a bladeless fan in exemplary embodiments.
  • a bladeless fan blows the air out of a ring without directly involving rotating rotor blades, or they are typically encapsulated in a separate housing.
  • the air is drawn in by an internally installed rotor in the base or on the side of the bladeless fan through holes in it, and guided into a circumferential cavity of a ring.
  • the air is then accelerated through a slit, which is preferably provided on an inner side of the ring.
  • the core of the transformer is vertical in relation to the earth's surface. This is favorable in terms of flow technology, since the air flow generated by the fan is supported or intensified by the convection of the heated air.
  • the core can also have other orientations, for example horizontally to the earth's surface, so that the cooling air flow also flows horizontally.
  • cores or legs are positioned vertically, as is customary in technical terms.
  • Exemplary embodiments relate in particular to the following cases:
  • the transformer is typically cooled by an air flow directed from below upwards, which is generated by a ring or bladeless fan arranged in the lower region of the windings or directly under the windings.
  • the bottom-up air flow can be generated by a ring or bladeless fan located in the top portion of the coils.
  • the airflow can flow through both the lower and the upper area of the windings arranged ring or bladeless fans can be created, i.e. by a combination of the above two cases.
  • a fan can also be installed (in addition to the variants described above, or individually) between the upper coil or winding and the lower coil or winding.
  • the above variants can be made individually for each leg, or a single fan can be used with a ring, where the ring is not round but elongated and all three windings are on the covering three legs.
  • Embodiments have the following advantages over conventional ventilation techniques with conventional fans.
  • the air baffle plates described at the beginning and their holding device or connections can be omitted completely.
  • cooled air can be routed directly to the fan through a pipe and then blown into the cooling channels. This avoids unnecessary heat exchange between the cooling air and the environment outside the windings. Therefore, the cooled air in the inlet duct to the ringless fan stays cool. A large part of the air accelerated by the fan flows directly into and through the cooling channels in the windings, while at the same time this is achieved with little or reduced structural effort.
  • the bladeless fans in particular operate with a low noise level due to the absence of open rotating blades as in a conventional fan or blower.
  • FIG. 1 12 shows an air-cooled dry-type transformer 1 according to embodiments in cross section.
  • This comprises a core 10 with a leg 11 and a winding body 14 arranged around the core 10 or around the leg 11.
  • the winding body 14 can have a plurality of windings or winding parts.
  • a cooling channel 25 is located between an inner part 15 of the winding body 14 and an outer part 20 of the winding body 14. This has two openings 40, 42 at its two ends, typically at the bottom and at the top when the core 10 or leg 11 is vertical 25 has a substantially annular cross-section.
  • a top plan view is shown with the ring 32 shown in black.
  • the dry-type transformer 1 can also have several legs 11, for example two or three.
  • a ring fan 30a arranged under the dry-type transformer 1 comprises a ring 32 and a blower 34 (see also 3 ).
  • the blower 34 is configured to draw in air from the environment (eg, in embodiments, the air may be supplied through a tube) and blow the air out of a slot 33 in the ring 32 in a directed manner along a longitudinal axis of the ring 32 .
  • a flow of cooling air 35 is generated in the process.
  • the ring fan 30 is dimensioned and arranged in such a way that it generates an annular flow of cooling air 35 which geometrically matches the dimensions of the cooling channel 25 .
  • the cooling air flow 35 essentially corresponds in its cross-sectional profile and in its dimensions to the cross-sectional profile and the dimensions of one of the openings 40, 42, i.e. typically also the dimensions of the cooling air duct 25.
  • the cooling duct 25 typically has an inner cooling duct diameter d1 and an outer cooling duct -Diameter d2 on. These are essentially identical to the inner air flow diameter dks1 and the outer air flow diameter dks2 of the cooling air flow 31.
  • FIG. 2 an exemplary embodiment is shown in which a ring fan 30b is arranged above the winding body 14 . That is, the cooling air flow 35 is generated by sucking the air out of the cooling air duct 25 .
  • In 3 1 shows an exemplary, non-limiting example of a ring fan 30, 30a, 30b in the form of a bladeless fan.
  • the flow of cooling air 35 blown out of the slot 33 in the ring 32 is represented symbolically by arrows.
  • the supply of the cooling air to the blower 34 is shown on the right-hand side.
  • the flow of cooling air is routed through a pipe or duct to the fan 34 .
  • the ring or bladeless fan is not arranged on or around the core 10 as in the other examples, but is arranged outside and above the dry-type transformer 1 and the core 10 is.
  • the fan can be attached, for example, to the top or ceiling of a housing, i.e. without direct contact with the transformer 1 itself.
  • FIG 5 is a dry-type transformer 1 shown according to embodiments, which is a combination of the variants from the 1 and 2 represents.
  • the windings on the core or legs are divided here, so that another ring or bladeless fan 30c is arranged between the winding segments 70, 75. That is, the fan 30c is arranged between two winding segments 70, 75 arranged separately in the longitudinal direction of the core 10.
  • the winding segments 70 he works in the blowing mode, for the other winding segment 75 in the suction mode.
  • only the center ringless fan 30c may be used with such a transformer configuration.
  • FIG. 6 shows a transformer cooling system 100, with a dry transformer 1 according to one of the embodiments described above.
  • the dry-type transformer 1 is located in a (substantially or completely closed) housing 50.
  • the cooling air of the cooling air flow 35 is guided into a heat exchanger 60 after passing through the cooling duct 25. This is used to dissipate the waste heat from the housing 100, for example to the ambient air, or to a cooling circuit with a fluid such as water.
  • the cooling air flow 35 heated by the dry-type transformer 1 is thus guided into the heat exchanger 60 and cooled there.
  • the cooled air flow is then drawn back through the blower 34 of the (or more) ring or bladeless fan 30a via a tube 36 . This creates a closed cooling air circuit.
  • FIG. 7 shows from below a dry-type transformer 1 with three legs 11, such as a three-phase transformer.
  • a dry-type transformer 1 with three legs 11, such as a three-phase transformer.
  • only one bladeless fan 30d is used, the ring 32b of which is designed to be elongated or elongated in order to cover all three winding bodies 14.
  • one or more separate fans can also be provided for each leg 11 or winding body 14, such as in the example 1 and figure 5 described.
  • the ring or bladeless fans 30, 30a, 30b, 30c described here can be used according to exemplary embodiments for cooling all types of dry-type transformers.
  • the ring 32a of the bladeless fan which is elongate or elongate here, can also assume shapes other than circular, e.g. elliptical, square or rectangular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Offenbarung betrifft Verfahren und Vorrichtungen zur Kühlung von Trockentransformatoren mittels Ring-Ventilatoren, dabei insbesondere von Trockentransformatoren in nicht-ventilierten Gehäusen mit forcierter Luftkühlung innerhalb des Gehäuses.
  • Hintergrund der Erfindung
  • Zur Verbesserung der Kühlung von Trockentransformatoren wurden verschiedene Techniken vorgeschlagen. Dazu gehören Kühlluft-Kanäle innerhalb des Kerns, um die Wärmeabfuhr zu verbessern. Allgemein wird mit einem Gebläse ein Überdruck im unteren Bereich des Gehäuses erzeugt, während ein Unterdruck durch Extraktion der Luft im oberen Bereich des Gehäuses erzeugt werden kann. Auf diese Weise wird ein Luftstrom erzeugt, der von unten nach oben strömt. Eine große Menge von Luft fließt dabei jedoch nicht wie erwünscht durch die Kühlkanäle der Wicklungen, sondern unerwünscht außen um die Spulen herum. Dies liegt unter anderem daran, dass die Querschnittsfläche der Kühlkanäle innerhalb der Wicklungen meist wesentlich kleiner als der Querschnittsbereich zwischen Gehäusewand und Spulen ist.
  • Dies kann im Allgemeinen durch die folgenden Verfahren vermieden werden: Zum einen kann der Lüfter unter den Spulen eingerichtet werden, um die Luft in die Kühlkanäle zu blasen. Zudem können Luftleitplatten in unmittelbarer Nähe zu den Spulen angeordnet werden, um auf diese Weise den Strömungswiderstand der Kühlkanäle kleiner als den Strömungswiderstand des Bereichs außerhalb der Spulen zu machen. Um in diesem Fall die Luft in die Spulen zu blasen, ist ein relativ leistungsstarker Lüfter erforderlich, wobei ein großer Teil der Luft immer noch um die Spulen fließt. Zudem müssen, damit sie ausreichend wirksam sind, die Luftleitplatten den Konturen der Spulen individuell angepasst werden, was einen erheblichen Arbeitsaufwand einschließt. Weil die Luftführungsplatten zudem einen erheblichen zusätzlichen Widerstand erzeugen, arbeitet das Lüftungssystem mit einem niedrigeren Gesamtwirkungsgrad. Insgesamt gilt auch, dass bei verbesserter Kühlung mit herkömmlichen Ventilatoren viel Lärm entsteht, insbesondere durch die sich drehenden Schaufeln.
  • Die JP 2015228442 A zeigt in Fig. 2 (a) und Fig. 5 (a) eine Platte, die durch einzelne Löcher perforiert ist. Vor diesem Hintergrund besteht Bedarf nach der vorliegenden Erfindung.
  • Zusammenfassung der Erfindung
  • Die Aufgabe der Erfindung wird gelöst durch einen luftgekühlten Trockentransformator gemäß Anspruch 1, und ein Verfahren zur Kühlung eines Trockentransformators gemäß Anspruch 7.
  • Die in dieser Offenbarung beschriebenen Kühlkanäle umfassen generell alle Arten von Kanälen, die gemäß Aspekten und Ausführungsformen zur Durchleitung von Kühlluft durch einen Trockentransformator genutzt werden können bzw. geeignet sind. Dies können zum Beispiel auch Kanäle sein, die ursprünglich zum Zweck der dielektrischen Isolierung bzw. der Kontrolle/Steuerung des Feldes vorgesehen sind bzw. dienen.
  • Bevorzugt umfasst der Trockentransformator ein Gehäuse; und einen Wärmetauscher, der zur Abführung von Wärme aus dem Gehäuse ausgelegt ist; wobei der von dem mindestens einen Ring-Ventilator erzeugte Kühlluftstrom nach Durchgang durch den Kühlkanal des Trockentransformators auf den Wärmetauscher trifft und dort gekühlt wird.
  • Das Verfahren umfasst das Bereitstellen eines Ring-Ventilators und eines Trockentransformators, das Richten eines Kühlluftstroms des Ring-Ventilators auf eine dazu passende, im Wesentlichen ringförmige Öffnung eines Kühlkanals des Trockentransformators.
  • In einem weiteren Aspekt wird der Ring-Ventilator zur Kühlung des Trocken-Transformators vorgeschlagen, wobei ein gerichteter, im Wesentlichen ringförmiger Kühlluftstrom eines Ring-Ventilators auf eine dazu passende Öffnung eines Kühlkanals des Trocken-Transformators gerichtet ist.
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden in der folgenden ausführlichen Beschreibung von bevorzugten Ausführungsformen vorgestellt.
  • Kurze Beschreibung der Figuren
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden für den Fachmann anhand der ausführlichen Beschreibung in Verbindung mit den angehängten Figuren ersichtlich. Dabei zeigen:
    • Fig. 1 zeigt einen Querschnitt durch einen Trockentransformator gemäß Ausführungsformen, sowie eine Oberansicht des Transformators;
    • Fig. 2 zeigt einen Querschnitt durch einen Trockentransformator gemäß weiteren Ausführungsformen;
    • Fig. 3 zeigt einen Ring-Ventilator gemäß Ausführungsformen;
    • Fig. 4 zeigt einen Querschnitt durch einen Trockentransformator gemäß weiteren Ausführungsformen;
    • Fig. 5 zeigt einen Querschnitt durch einen Trockentransformator gemäß weiteren Ausführungsformen;
    • Fig. 6 zeigt einen Querschnitt durch ein Kühlsystem für einen Trockentransformator gemäß Ausführungsformen;
    • Fig. 7 zeigt eine Draufsicht auf einen Trockentransformator gemäß weiteren Ausführungsformen.
    Detaillierte Beschreibung
  • Generell betreffen Ausführungsformen der Erfindung Trockentransformatoren, die mit mindestens einem elektrisch angetriebenen Ring-Ventilator gekühlt werden. Ein Ring-Ventilator, wie in dieser Offenbarung verwendet, umfasst ein ringförmiges Gehäuse, aus dem in axialer Richtung des Rings ein ringförmiger Luftstrom ausströmt. In der Mitte des Gehäuses befindet sich eine zentrale Öffnung, durch die in Ausführungsbeispielen ein Schenkel des Transformator-Kerns läuft bzw. sich darin befindet. Generell ist in dieser Offenbarung der Begriff "Ring-Ventilator" als der vorigen Definition entsprechend anzusehen, dabei umfassend die unten beschriebenen Varianten. Ein Ring-Ventilator kann ein ringförmiges Gehäuse als Stator, mit einem ebenfalls ringförmigen Läufer darin aufweisen, an dem Schaufeln angebracht sind, die wie bei einem konventionellen Ventilator nach außen sichtbar sind. In einer anderen, hierin verwendeten Form kann der Ring-Ventilator in Ausführungsbeispielen ein Blattlos-Ventilator sein. Ein blattloser Ventilator bläst die Luft aus einem Ring, ohne dass rotierende Rotorflügel direkt beteiligt sind, bzw. sind diese typischerweise in einem extra Gehäuse gekapselt. Die Luft wird dabei durch einen innen eingebauten Rotor in der Basis oder an der Seite des Blattlos-Ventilators durch darin befindliche Löcher angesaugt, und in einen umlaufenden Hohlraum eines Rings geführt. Nachfolgend wird die Luft durch einen Schlitz, der bevorzugt an einer Innenseite des Rings vorgesehen ist, beschleunigt.
  • So ergibt sich ein Luftstrahl, der nach Geometrie des Rings geformt ist. Um die Richtung des Luftstrahls zu kanalisieren, wird der Strahl über eine Schräge geblasen, die etwa wie eine Tragfläche geformt ist. Gleichzeitig kann die umgebende Luft als Nebenstrom angesaugt werden, wodurch der Gesamt-Luftstrom aus dem Ventilator verstärkt wird.
  • Durch verschiedene Maßnahmen ist gewährleistet, dass ein großer Teil der ventilierten Luft direkt durch Kühlkanäle des Trockentransformators geblasen wird, und nicht etwa auf der Außenseite der Spulen/Wicklungen vorbeiströmt. Im Folgenden wird allgemein davon ausgegangen, dass der Kern des Transformators bezogen auf die Erdoberfläche senkrecht steht. Dies ist strömungstechnisch günstig, da der vom Ventilator erzeugte Luftstrom durch die Konvektion der erwärmten Luft unterstützt bzw. verstärkt wird. In Ausführungsbeispielen kann der Kern jedoch auch andere Ausrichtungen haben, etwa horizontal zur Erdoberfläche, so dass auch der Kühlluftstrom waagrecht strömt. Im Folgenden wird jedoch durchgängig von technisch üblichen senkrecht stehenden Kernen bzw. Schenkeln ausgegangen.
  • Dabei betreffen Ausführungsbeispiele insbesondere die folgenden Fälle: Typischerweise wird der Transformator durch einen von unten nach oben gerichteten Luftstrom gekühlt, der durch einen im unteren Bereich der Wicklungen, bzw. direkt unter den Wicklungen angeordneten Ring- oder blattlosen Ventilator erzeugt wird. Alternativ kann der von unten nach oben gerichtete Luftstrom auch durch einen im oberen Bereich der Wicklungen angeordneten Ring- oder blattlosen Ventilator erzeugt werden. Schließlich kann der Luftstrom sowohl durch im unteren, als auch im oberen Bereich der Wicklungen angeordnete Ring- oder blattlose Ventilatoren erzeugt werden, das heißt durch eine Kombination der beiden oben genannten Fälle. Wenn die Wicklungen in senkrechter Richtung, d.h. entlang der Längsachse des Kerns, voneinander getrennt sind, kann auch (zusätzlich zu den oben geschilderten Varianten, oder einzeln) ein Ventilator zwischen der oberen Spule bzw. Wicklung und der unteren Spule bzw. Wicklung installiert sein. Für drei getrennte Wicklungen auf drei Schenkeln eines Drehstrom-Trockentransformators können die obigen Varianten für jeden Schenkel einzeln ausgeführt sein, oder es kann ein einzelner Ventilator mit einem Ring verwendet werden, wobei der Ring nicht rund, sondern länglich ausgeführt ist und alle drei Wicklungen auf den drei Schenkeln abdeckt.
  • Ausführungsformen haben folgende Vorteile gegenüber herkömmlichen Lüftungstechniken mit konventionellen Ventilatoren. Zum einen können die eingangs geschilderten Luftleitplatten und deren Haltevorrichtung bzw. Verbindungen komplett entfallen. Zudem kann, in Ausführungsformen etwa durch einen Wärmetauscher, abgekühlte Luft direkt an den Ventilator durch ein Rohr geführt und dann in die Kühlkanäle geblasen werden. Dies vermeidet unnötigen Wärmeaustausch zwischen der Kühlluft und der Umgebung außerhalb der Wicklungen. Daher bleibt die gekühlte Luft in dem Zuleitungsrohr zum Ring- bzw. blattlosen Ventilator kühl. Ein Großteil der durch den Ventilator beschleunigten Luft strömt direkt in und durch die Kühlkanäle in den Wicklungen, wobei dies gleichzeitig mit geringem bzw. verringertem baulichen Aufwand erzielt wird. Zudem arbeiten speziell die blattlosen Ventilatoren bzw. Lüfter mit einem geringen Geräusch- bzw. Rauschpegel wegen der Abwesenheit offener, sich drehender Schaufeln wie bei einem konventionellen Lüfter bzw. Gebläse.
  • Fig. 1 zeigt einen luftgekühlten Trockentransformator 1 gemäß Ausführungsformen im Querschnitt. Dieser umfasst einen Kern 10 mit einem Schenkel 11 sowie einen um den Kern 10 bzw. um den Schenkel 11 angeordneten Wicklungskörper 14. Der Wicklungskörper 14 kann mehrere Wicklungen bzw. Wicklungsteile aufweisen. Zwischen einem inneren Teil 15 des Wicklungskörpers 14 und einem äußeren Teil 20 des Wicklungskörpers 14 befindet sich ein Kühlkanal 25. Dieser hat an seinen beiden Enden, typischerweise unten und oben bei senkrechtem Kern 10 bzw. Schenkel 11, zwei Öffnungen 40, 42. Der Kühlkanal 25 weist einen im Wesentlichen ringförmigen Querschnitt auf. Im unteren Teil der Fig. 1 ist eine Draufsicht von oben dargestellt, wobei der Ring 32 schwarz dargestellt ist. Der Trockentransformator 1 kann auch mehrere Schenkel 11 aufweisen, etwa zwei oder drei.
  • Ein unter dem Trockentransformator 1 angeordneter Ring-Ventilator 30a umfasst einen Ring 32 und ein Gebläse 34 (siehe auch Fig. 3). Das Gebläse 34 ist dazu eingerichtet, Luft aus der Umgebung anzusaugen (in Ausführungsformen kann die Luft z.B. durch ein Rohr zugeführt werden) und die Luft aus einem Schlitz 33 in dem Ring 32 auf gerichtete Weise entlang einer Längsachse des Rings 32 auszublasen. Dabei wird ein Kühlluftstrom 35 erzeugt. Der Ring-Ventilator 30 ist dabei so dimensioniert und angeordnet, dass er einen ringförmigen Kühlluftstrom 35 erzeugt, der geometrisch zu den Abmessungen des Kühlkanals 25 passt.
  • Der Kühlluftstrom 35 entspricht dabei in seinem Querschnittsprofil und in seinen Abmessungen im Wesentlichen dem Querschnittsprofil und den Abmessungen einer der Öffnungen 40, 42, also typischerweise auch den Abmessungen des Kühlluftkanals 25. Der Kühlkanal 25 weist typischerweise einen inneren Kühlkanal-Durchmesser d1 und einen äußeren Kühlkanal-Durchmesser d2 auf. Diese sind im Wesentlichen identisch zum innerem Luftstrom-Durchmesser dks1 und dem äußeren Luftstrom-Durchmesser dks2 des Kühlluftstroms 31.
  • In Fig. 2 ist ein Ausführungsbeispiel dargestellt, bei dem ein Ring-Ventilator 30b oberhalb des Wicklungskörpers 14 angeordnet ist. Das heißt, der Kühlluftstrom 35 wird durch Saugen der Luft aus dem Kühlluftkanal 25 erzeugt.
  • In Fig. 3 ist ein exemplarisches, nicht-limitierendes Beispiel eines Ring-Ventilators 30, 30a, 30b in Form eines Blattlos-Ventilators gezeigt. Der aus dem Schlitz 33 im Ring 32 ausgeblasene Kühlluftstrom 35 ist durch Pfeile symbolisch dargestellt. Zudem ist auf der rechten Seite die Zufuhr der Kühlluft zu dem Gebläse 34 dargestellt. In Ausführungsbeispielen wird der Kühlluftstrom durch ein Rohr bzw. eine Leitung zu dem Gebläse 34 geleitet bzw. geführt.
  • In Fig. 4 ist eine weitere Ausführungsform gezeigt, bei der der Ring- bzw. blattlose Ventilator nicht wie in den anderen Beispielen am Kern 10 bzw. um diesen herum, sondern außerhalb und oberhalb des Trockentransformators 1 und des Kerns 10 angeordnet ist. Dabei kann der Ventilator z.B. an einer Oberseite bzw. Decke eines Gehäuses angebracht sein, also ohne direkten Kontakt zum Transformator 1 selbst.
  • In Fig. 5 ist ein Trockentransformator 1 gemäß Ausführungsbeispielen dargestellt, der eine Kombination der Varianten aus den Fig. 1 und Fig. 2 darstellt. Zusätzlich sind hier die Wicklungen auf dem Kern bzw. Schenkel geteilt, so dass zwischen den Wicklungssegmenten 70, 75 ein weiterer Ring- bzw. Blattlos-Ventilator 30c angeordnet ist. Das heißt, der Ventilator 30c ist zwischen zwei in Längsrichtung des Kerns 10 getrennt angeordneten Wicklungssegmenten 70, 75 angeordnet. Für eines der Wicklungssegmente 70 arbeitet er dabei im Blasebetrieb, für das andere Wicklungssegment 75 im Saugbetrieb. In anderen Ausführungsformen kann mit solch einer Transformator-Konfiguration auch lediglich der mittlere bzw. zentrale Ring- bzw. blattlose Ventilator 30c verwendet werden.
  • Fig. 6 zeigt ein Transformator-Kühlsystem 100, mit einem Trockentransformator 1 gemäß einem der oben beschriebenen Ausführungsbeispiele. Der Trockentransformator 1 befindet sich in einem (im Wesentlichen oder vollständig geschlossenen) Gehäuse 50. Die Kühlluft des Kühlluftstroms 35 wird nach Durchgang durch den Kühlkanal 25 in einen Wärmetauscher 60 geführt. Dieser dient zur Abführung der Abwärme aus dem Gehäuse 100 heraus, etwa an die Umgebungsluft, oder auch an einen Kühlkreislauf mit einem Fluid wie z.B. Wasser.
  • Der vom Trockentransformator 1 erwärmte Kühlluftstrom 35 wird also nach Durchgang durch den Kühlkanal 25 des Trockentransformators 1 in den Wärmetauscher 60 geführt und dort gekühlt. Der abgekühlte Luftstrom wird dann wieder durch das Gebläse 34 des (oder der mehreren) Ring- bzw. blattlosen Ventilators 30a mittels einer Rohrs 36 angesaugt. Somit besteht ein geschlossener Kühlluft-Kreislauf.
  • Fig. 7 zeigt von unten einen Trockentransformator 1 mit drei Schenkeln 11, etwa einen Dreiphasen-Transformator. Dabei kommt nur ein blattloser Ventilator 30d zum Einsatz, dessen Ring 32b länglich bzw. langgestreckt ausgeführt ist, um alle drei Windungskörper 14 abzudecken. Alternativ kann auch für jeden Schenkel 11 bzw. Windungskörper 14 ein oder mehrere eigene Ventilatoren vorgesehen sein, wie etwa am Beispiel Fig. 1 und Fig. 5 beschrieben.
  • Generell können die hier beschriebenen Ring- bzw. Blattlos-Ventilatoren 30, 30a, 30b, 30c gemäß Ausführungsbeispielen zur Kühlung von allen Arten von Trockentransformatoren verwendet werden Dazu ist der Trockentransformator mit einer zur Geometrie des Kühlluftstroms passenden Öffnung 40, 42 eines Kühlkanals 25 ausgestattet. Der hier langgestreckt bzw. länglich ausgeführte Ring 32a des Blattlos-Ventilators kann dabei auch andere Formen einnehmen als kreisförmig, z.B. ellipsenartig, quadratisch oder rechteckig.

Claims (7)

  1. Ein luftgekühlter Trockentransformator (1), umfassend:
    einen Kern (10), umfassend einen Schenkel (11),
    einen um den Schenkel (11) angeordneten Wicklungskörper (14);
    einen in Richtung der Längsachse des Wicklungskörpers (14) verlaufenden Kühlkanal (25), der zwischen einem inneren Teil (15) des Wicklungskörpers (14) und einem äußeren Teil (20) des Wicklungskörpers (14) angeordnet ist, wobei der Kühlkanal (25) an seinen beiden Enden im Wesentlichen ringförmige Öffnungen (40, 42) aufweist und einen im Wesentlichen ringartigen Querschnitt mit runder, ovaler oder polygonaler Grundform aufweist;
    mindestens einen Ring-Ventilator (30, 30a, 30b, 30c), umfassend einen Ring (32) und ein Gebläse (34), wobei das Gebläse (34) eingerichtet ist, Luft anzusaugen und die Luft aus dem Ring (32) gerichtet entlang einer Längsachse des Rings (32) auszublasen, wobei ein Luftstrom (31) erzeugt wird; wobei der Ring-Ventilator (30, 30a, 30b, 30c) derart dimensioniert und angeordnet ist, dass der Luftstrom (31) einen Kühlluftstrom (35) in dem Kühlkanal (25) erzeugt,
    gekennzeichnet durch
    einen ersten Ring-Ventilator (30a), der so eingerichtet ist, dass er durch eine erste der Öffnungen (40, 42) Luft in den Kühlkanal (25) bläst, und einen zweiten Ring-Ventilator (30b), der so eingerichtet ist, dass er durch eine zweite der Öffnungen (40, 42) Luft aus dem Kühlkanal (25) heraussaugt und/oder
    dadurch gekennzeichnet, dass der Ring einen Schlitz aufweist, der so eingerichtet ist, dass die Luft durch den Schlitz (33) in dem Ring (32) auf gerichtete Weise entlang einer Längsachse des Rings (32) ausgeblasen werden kann.
  2. Trockentransformator (1) nach Anspruch 1, wobei der Luftstrom (31) in seinem Querschnittsprofil im Wesentlichen dem Querschnittsprofil mindestens einer der Öffnungen (40, 42) des Kühlkanals (25) entspricht.
  3. Trockentransformator (1) nach Anspruch 1 oder 2, wobei der Kühlkanal (25) einen inneren Kühlkanal-Durchmesser d1 und einen äußeren Kühlkanal-Durchmesser d2 aufweist, die im Wesentlichen identisch zum inneren Luftstrom-Durchmesser dks1 und dem äußeren Luftstrom-Durchmesser dks2 des Luftstroms (31) sind.
  4. Trockentransformator nach einem der vorhergehenden Ansprüche, umfassend mindestens einen weiteren Ring-Ventilator (30c), der zwischen zwei in Längsrichtung des Schenkels (11) getrennt angeordneten Wicklungskörper-Segmenten (70, 75), die jeweils einen inneren Teil (15, 15a) des Wicklungskörper-Segments (70, 75) und einen äußeren Teil (20, 20a) des Wicklungskörper-Segments (70, 75) aufweisen, an dem Schenkel (11) angeordnet ist, und für eines der Wicklungskörper-Segmente (70, 75) im Blasebetrieb, für das andere Wicklungskörper-Segment (70, 75) im Saugbetrieb arbeitet.
  5. Trockentransformator (1) nach einem der vorhergehenden Ansprüche, der ein Dreiphasentransformator ist und drei Schenkel (11) mit drei Wicklungskörpern (14) jeweils gemäß einem der vorhergehenden Ansprüche umfasst, wobei entweder:
    - an jedem Schenkel (11) des Transformators ein Ring-Ventilator (30, 30a, 30b, 30c) angebracht ist, oder
    - ein gemeinsamer Ring-Ventilator (30d) bereitgestellt ist, dessen länglich geformter Ring (32a) sich über alle drei Wicklungskörper (14) erstreckt und Luft jeweils in die Kühlkanäle (25) der einzelnen Wicklungskörper (14) bläst.
  6. Transformator-Kühlsystem (100), umfassend:
    a. einen Trockentransformator (1) gemäß einem der vorhergehenden Ansprüche; und
    b. ein Gehäuse (50) für den Trockentransformator (1); und
    c. einen Wärmetauscher (60), der zur Abführung von Wärme aus dem Gehäuse ausgelegt ist, sodass der von dem mindestens einen Ring-Ventilator (30, 30a, 30b, 30c) erzeugte Kühlluftstrom (35) nach Durchgang durch den Kühlkanal (25) des Trockentransformators (1) auf den Wärmetauscher (60) trifft und dort gekühlt wird.
  7. Verfahren zur Kühlung eines Trockentransformators (1) nach einem der voranstehenden Ansprüche, umfassend:
    - Bereitstellen des Trockentransformators (1),
    - Richten des Kühlluftstroms (31) des mindestens einen Ring-Ventilators auf die im Wesentlichen ringförmige Öffnung (40, 42) des Kühlkanals (25) des Trockentransformators (1), wobei die im Wesentlichen ringförmige Öffnung an die Geometrie des Kühlkanals angepasst wurde.
EP18708595.6A 2017-02-08 2018-02-08 Trockentransformator mit luftkühlung Active EP3580770B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017102436.0A DE102017102436A1 (de) 2017-02-08 2017-02-08 Trockentransformator mit Luftkühlung
PCT/EP2018/053180 WO2018146196A1 (de) 2017-02-08 2018-02-08 Trockentransformator mit luftkühlung

Publications (2)

Publication Number Publication Date
EP3580770A1 EP3580770A1 (de) 2019-12-18
EP3580770B1 true EP3580770B1 (de) 2023-04-12

Family

ID=61563343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18708595.6A Active EP3580770B1 (de) 2017-02-08 2018-02-08 Trockentransformator mit luftkühlung

Country Status (9)

Country Link
US (1) US12014856B2 (de)
EP (1) EP3580770B1 (de)
KR (1) KR102518571B1 (de)
CN (2) CN110249397A (de)
DE (1) DE102017102436A1 (de)
DK (1) DK3580770T3 (de)
ES (1) ES2946190T3 (de)
PL (1) PL3580770T3 (de)
WO (1) WO2018146196A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287178A (zh) * 2018-11-29 2021-08-20 Abb电网瑞士股份公司 变压器冷却系统和变压器安装装置
EP3770929A1 (de) * 2019-07-26 2021-01-27 ABB Power Grids Switzerland AG Transformatorkühlsystem
GB2611596B (en) * 2021-01-15 2023-11-01 Zhongbian Group Shanghai Transf Co Ltd Dry-type transformer with elliptical iron core
EP4145079A1 (de) * 2021-09-06 2023-03-08 Hitachi Energy Switzerland AG Kühlanordnung und verfahren zur kühlung von mindestens einem externen öl-luft-wärmetauscher
SE2151206A1 (en) 2021-10-01 2023-02-28 Bombardier Transp Gmbh Converter system with improved cooling of magnetic components and a railway vehicle
CN114141478B (zh) * 2021-11-04 2022-09-27 汇网电气有限公司 一种智能干式电力变压器
CN114203397A (zh) * 2021-12-18 2022-03-18 陈琳 一种直流换流变压器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150084214A1 (en) * 2013-09-26 2015-03-26 Dyson Technology Limited Fan assembly
US20160153673A1 (en) * 2011-07-27 2016-06-02 Dyson Technology Limited Fan assembly

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249216U (de) * 1985-09-17 1987-03-26
AU2005287891C1 (en) * 2004-09-23 2009-07-16 Csr Building Products Limited Hybrid ventilator
EP2319056B1 (de) * 2009-06-05 2012-10-10 ABB Technology AG Transformatorspule und transformator mit passiver kühlung
US9478347B2 (en) * 2009-06-30 2016-10-25 Abb Technology Ag Dry type transformer with improved cooling
EP2290662A1 (de) * 2009-09-01 2011-03-02 ABB Technology AG Trockentransformator
BRPI1100186B1 (pt) * 2011-02-02 2020-03-31 Siemens Aktiengesellschaft Transformador de distribuição a seco
EP2549495B1 (de) * 2011-07-18 2018-05-23 ABB Schweiz AG Trockentransformator
CN103999173A (zh) 2011-12-19 2014-08-20 Abb技术有限公司 用于冷却具有非线性芯的变压器的设备和方法
CN203036728U (zh) * 2013-01-05 2013-07-03 周松林 无叶抽油烟机
KR200466697Y1 (ko) * 2013-02-13 2013-05-07 이양원 부스바 도체의 균등분할 및 냉각수단을 구비한 대전류 변압기
CN103711681A (zh) * 2013-12-18 2014-04-09 重庆巨康建材有限公司 厂房用无叶废气换气扇
JP6416504B2 (ja) * 2014-05-26 2018-10-31 東芝産業機器システム株式会社 モールド形静止誘導機器およびその製造方法
JP2015228442A (ja) * 2014-06-02 2015-12-17 株式会社東芝 ガス絶縁静止器
CN104575959A (zh) * 2015-01-29 2015-04-29 国家电网公司 具有光伏转换功能的干式变压器无风叶冷却风机及其方法
EP3051546A1 (de) * 2015-02-02 2016-08-03 Starkstrom-gerätebau GmbH Brandfeste elektrische Spule und Leistungstransformator damit
KR101678003B1 (ko) * 2015-05-04 2016-11-21 엘에스산전 주식회사 몰드 변압기의 냉각장치
CN205159040U (zh) * 2015-12-04 2016-04-13 福州福变电气有限公司 一种防潮干式变压器
MX2019015008A (es) * 2017-06-13 2020-02-26 Radyne Corp Ensamble de autotransformador portatil toroidal.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160153673A1 (en) * 2011-07-27 2016-06-02 Dyson Technology Limited Fan assembly
US20150084214A1 (en) * 2013-09-26 2015-03-26 Dyson Technology Limited Fan assembly

Also Published As

Publication number Publication date
WO2018146196A1 (de) 2018-08-16
EP3580770A1 (de) 2019-12-18
CN117766264A (zh) 2024-03-26
US12014856B2 (en) 2024-06-18
KR20190112061A (ko) 2019-10-02
ES2946190T3 (es) 2023-07-13
KR102518571B1 (ko) 2023-04-05
PL3580770T3 (pl) 2023-08-14
DE102017102436A1 (de) 2018-08-09
DK3580770T3 (da) 2023-07-24
US20190362879A1 (en) 2019-11-28
CN110249397A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
EP3580770B1 (de) Trockentransformator mit luftkühlung
EP3582841B1 (de) Vorrichtung zur beatmung mit einem gebläse-lagerelement und leitstruktur
DE102012107107B4 (de) Aktive Kühlung eines Motors
DE102018105029B4 (de) Drosselspule
DE102013200105A1 (de) Kühlung für Stirnräume einer geschlossenen elektrischen Maschine
DE10246690A1 (de) Belüftungssystem für Generatoren in Windkraftanlagen
DE102015012487A1 (de) Kraftbetätigte Luftpropeller-Arbeitsvorrichtung
DE102013110662B4 (de) Motor mit hocheffizientem Luftkühlungsaufbau
DE102014205739B4 (de) CT-System
DE102018102944A1 (de) Drosselspule mit Eisenkerneinheit und Spulen, Motorantriebsvorrichtung, Power Conditioner, und Maschine
EP2930827A1 (de) Elektrische Maschine mit Strömungskühlung
DE102014106455A1 (de) Elektromaschine für den Einsatz im KFZ-Bereich
EP3560081A1 (de) Statorträger für einen stator eines windenergieanlagengenerators, sowie stator, generatof und windenergieanlage mit diesem statorträger
DE102008044502A1 (de) Generator mit einem Kühlstromverzweigungselement und Verfahren zur Steuerung einer Kühlströmung
WO2012159998A2 (de) Gehäuseeinheit und elektrische maschine mit einer gehäuseeinheit
EP3099983B1 (de) Wärmepumpe
DE102010026682A1 (de) Elektrische Maschine
DE102011050323B3 (de) Kühlvorrichtung zur Klimatisierung einer Datenverarbeitungsanlage
DE102017101206A1 (de) Kühlanordnung und Luftdeflektor
DE4222131A1 (de) Belüftungseinrichtung für die Druckbelüftung von oberflächenbelüfteten elektrischen Maschinen
DE102015200347A1 (de) Windkraftanlage
DE102017126599A1 (de) Induktivität
EP3164931B1 (de) Elektrodynamische maschine mit kühlströmungskanal
EP2888804A1 (de) Elektrische maschine und verfahren zum kühlen einer elektrischen maschine
DE202014101348U1 (de) Elektronische Baugruppen, die Luftklappen zum Bereitstellen selektiver Kühlung für auf Hauptplatinen verbaute Bauelemente einsetzen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB POWER GRIDS SWITZERLAND AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200722

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI ENERGY SWITZERLAND AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220329

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011943

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1560245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2946190

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230713

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HITACHI ENERGY LTD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018011943

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 7

Ref country code: GB

Payment date: 20240219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240125

Year of fee payment: 7

Ref country code: IT

Payment date: 20240228

Year of fee payment: 7

Ref country code: DK

Payment date: 20240223

Year of fee payment: 7