EP3577706A1 - Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine - Google Patents

Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine

Info

Publication number
EP3577706A1
EP3577706A1 EP18748545.3A EP18748545A EP3577706A1 EP 3577706 A1 EP3577706 A1 EP 3577706A1 EP 18748545 A EP18748545 A EP 18748545A EP 3577706 A1 EP3577706 A1 EP 3577706A1
Authority
EP
European Patent Office
Prior art keywords
positive electrode
electrode material
binder
complex oxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18748545.3A
Other languages
German (de)
English (en)
Other versions
EP3577706A4 (fr
Inventor
Karim Zaghib
Michel Armand
Abdelbast Guerfi
Patrick Bouchard
Martin Dontigny
Julie HAMEL-PÂQUET
Pierre Hovington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of EP3577706A1 publication Critical patent/EP3577706A1/fr
Publication of EP3577706A4 publication Critical patent/EP3577706A4/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application refers to the field of electrochemical cells, more particularly to all-solid type batteries and to the use of charged olivine cathode.
  • a battery operates by reversibly circulating ions between a negative electrode and a positive electrode, through an electrolyte comprising a salt, for example lithium, sodium, or potassium, in solution in a liquid solvent, solid polymer or gel and / or solid ceramic type.
  • a salt for example lithium, sodium, or potassium
  • the negative electrode is generally constituted by a sheet of lithium, of lithium alloy or of a lithium-containing intermetallic compound.
  • the negative electrode may also consist of a material capable of reversibly inserting lithium ions such as, for example, graphite or an oxide of a metal, the insertion material being used alone or in the form of a composite material containing, for example, at least one binder and an agent conferring electronic conduction such as a carbon source.
  • complex oxides have been studied as active material for the positive electrode, acting as a reversible insertion material for lithium ions. Mention may in particular be made of compounds which have an olivine structure and which correspond to the formula L1MXO4, where M represents a transition metal or a transition metal mixture and X is a member selected from S, P, Si, B and Ge. These complex oxides are generally used in the form of particles coated with carbon and / or bound together by carbon-carbon bonds.
  • the use of a cathode comprising LiFePO4 makes the assembled battery is in the discharged state, which makes these batteries less safe after assembly.
  • the safety of a battery using this cathode in a cell configuration with lithium metal is of concern, the regulations for its transport are then more stringent.
  • the first charge induces a lithium plating on the metal anode, which involves the deposition of a thin layer of Li on an already passivated surface. This plating will affect the stability of the lithium layer depending on the cycling of the battery, resulting in a relatively limited reversibility.
  • the cost of this material could be further reduced.
  • the present application relates to a positive electrode material comprising at least one complex oxide of olivine structure, the complex oxide comprising a transition metal in the oxidation state III, for example a complex oxide of formula MXO4, where M is at least one oxidation transition metal III (such as Fe, Ni, Mn or Co or a combination of at least two thereof), and X is selected from S, P elements , Si, B and Ge, for example P or Si.
  • the complex oxide is iron phosphate (III) of olivine structure, where the iron (III) can be partly replaced by a a member selected from Ni, Mn, and Co, or a combination thereof, for example, the complex oxide is FePO4.
  • the complex oxide present in the electrode material is in the form of particles, for example, microparticles and / or nanoparticles.
  • the particles comprise microparticles.
  • the particles comprise nanoparticles.
  • the electrode material as defined herein may further comprise an electronically conductive material (such as a carbon source).
  • electronically conductive material include carbon black, Ketjen® carbon, Shawinigan carbon, graphite, graphene, carbon nanotubes, carbon fibers (such as gas-phase carbon fibers (VGCF) ), non-powdery carbon obtained by carbonization of an organic precursor, or a combination of two or more thereof.
  • the electronically conductive material comprises carbon black.
  • the electronically conductive material comprises carbon fibers.
  • the electronically conductive material comprises carbon black and carbon fibers.
  • the electrode material as defined herein optionally comprises a binder, this binder comprising, for example, a linear, branched and / or crosslinked linear polyether polymer binder, a water-soluble binder, a fluorinated polymer binder, or one of their combinations.
  • a binder comprising, for example, a linear, branched and / or crosslinked linear polyether polymer binder, a water-soluble binder, a fluorinated polymer binder, or one of their combinations.
  • the linear, branched and / or crosslinked polyether polymer binder can be chosen from polymers based on polyethylene oxide (PEO), on poly (propylene oxide) (PPO) or a mixture of the two , optionally comprising crosslinkable units.
  • the binder soluble in water may be selected from SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), HNBR (hydrogenated NBR), CHR (epichlorohydrin rubber), ACM (acrylate rubber), and their mixtures, optionally comprising CMC (carboxymethylcellulose).
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • HNBR hydrogenated NBR
  • CHR epichlorohydrin rubber
  • ACM acrylate rubber
  • CMC carboxymethylcellulose
  • the fluorinated polymer binder may be chosen from PVDF (polyvinylidene fluoride) and PTFE (polytetrafluoroethylene).
  • the positive electrode material comprises a crosslinked binder, the complex oxide FePO 4, a salt and an electronically conductive material as defined herein.
  • salt is a lithium salt.
  • the present application also relates to an electrode preparation method comprising an electrode material as described herein, and comprising the steps of: a) mixing the complex oxide and an electronically conductive material in the presence of a solvent ; b) spreading the mixture obtained in (a) on a support (such as a current collector); and c) drying the spread mixture.
  • step (a) of the process further comprises the addition of a binder or a precursor of polymeric binder (eg monomer or oligomer).
  • step (a) may comprise the addition of a polymeric binder precursor based on a polyether polymer and a crosslinking agent, the process comprising a crosslinking step before, during or after the step ( vs).
  • Positive electrodes comprising an electrode material as defined herein or obtained by a method of the present application are also contemplated, as well as electrochemical cells comprising such a positive electrode, an electrolyte film, and a negative electrode compatible with the active material of the positive electrode, that is to say with the complex oxide.
  • the negative electrode of the electrochemical cell comprises an alkali metal film such as sodium or lithium or an alloy thereof, for example a metal lithium film or an alloy comprising at least 90 % by weight of lithium.
  • the negative electrode comprises an anode complex oxide compatible with the complex oxide such as a lithium titanate.
  • the electrolyte film of the electrochemical cell comprises a salt in solution in a solid, polar and solvating polymer.
  • the salt may be selected from LiTFSI, LiPF6, LiDCTA, LiBETI, LiFSI, LiBF 4 , LiBOB, and combinations thereof.
  • solid, polar and solvating polymers include linear, branched and / or crosslinked polyether polymers, such as those based on polyethylene oxide (PEO), poly (propylene oxide) (PPO), or on a mixture or a copolymer of both, optionally including crosslinkable units.
  • the binder of the positive electrode is composed of a polymer identical to that used in the composition of the electrolyte film.
  • FIGURES Figure 1 shows the variation of potential (V) versus time for a cell comprising LiFePO4 (LH6243C PT-945), in comparison with a cell comprising FeP0 4 (LH6243D PT-2276, LH6243E PT -2276, and LH6243F PT- 2276) according to some embodiments of the present technology (see Example 2).
  • Figure 2 demonstrates the potential versus time variation for a first charge for a battery comprising LiFePO4 (LH6243C PT-945), compared to a battery comprising FePO4 (LH6243E PT-2276) according to an embodiment of the present technology as described in Example 2.
  • Figure 3 illustrates the Ragone diagram, i.e. the change in capacity (mAh / g) versus discharge regime for a cell comprising LiFePO4 (LH6243C PT-945), compared with a stack comprising FePO4 (LH6243D PT-2276) according to an embodiment of the present technology as described in Example 2.
  • Figure 4 shows the capacity (solid symbols) and percentage efficiency (empty symbols) versus the cycle number for FeP04 (LH6243D PT-2276) according to an embodiment of the present technology as described in Example 2 in comparison with LiFePO4 (Reference).
  • the present application relates to the use of a complex oxide (for example of olivine structure), the complex oxide comprising a transition metal in the oxidation state III, as electrochemically active material in the preparation of positive electrodes of batteries.
  • a complex oxide for example of olivine structure
  • the complex oxide comprising a transition metal in the oxidation state III
  • the present application relates to a positive electrode material comprising at least one complex oxide of formula MXO4, wherein M is at least one oxidation transition metal III, for example Fe, Ni, Mn or Co or combinations thereof and X is selected from S, P, Si, B and Ge, for example, X is P or Si, preferably X is P.
  • the complex oxide is iron phosphate (III) of olivine structure.
  • the use of a complex oxide as defined in the present application makes it possible, inter alia, to obtain a safer battery assembled in the discharged state (for example Li / SPE / FeP04), the use of materials less expensive, the use of a non-lithiated cathode, and / or the removal of lithium plating on the pre-passivated lithium metal anode during the first charge.
  • the first electrochemical activity is a discharge, i.e. lithiation of olivine comprising an oxidation metal III (such as FePO4). This step allows to deposit a layer of lithium freshly dissolved lithium metal during the first charge of the battery.
  • the cost of the material can also be reduced by the removal of an atom (eg, Li) from the olivine structure normally used in manufacturing.
  • an atom eg, Li
  • Li an atom
  • the present application demonstrates that this atom is not necessary for the manufacture of a positive electrode material of a battery comprising a metal anode such as lithium.
  • the positive electrode material as described herein may comprise, in addition to the complex oxide particles (e.g., microparticles and / or nanoparticles) defined above, an electronically conductive material such as a carbon source, including, for example, carbon black, Ketjen ® carbon, Shawinigan carbon, graphite, graphene, carbon nanotubes, carbon fibers (such as gas-phase carbon fibers (VGCF)), non-powdery adherent carbon obtained by charring an organic precursor, or a combination of two or more thereof.
  • a carbon source may also be present as a carbon coating on the complex oxide particles.
  • the positive electrode material may also include a binder.
  • Non-limiting examples of binders include linear, branched and / or crosslinked polymeric polyether binders (e.g., polymers based on polyethylene oxide (PEO), or poly (propylene oxide) (PPO) or a mixture of both (including an EO / PO co-polymer), and optionally comprising cross-linkable), water-soluble binders (such as SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), HNBR (hydrogenated NBR), CHR (epichlorohydrin rubber), ACM (acrylate rubber) ), or fluoropolymer-type binders (such as PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene)), and combinations thereof).
  • Some binders, such as those soluble in water may also include an additive such as CMC (carboxymethylcellulose).
  • Additives may also be present in the positive electrode material, such as salts, for example lithium salts in the case of lithium or lithium-ion batteries (such as LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF 4 , LiBOB, etc.), or inorganic particles of ceramic or glass type, or other compatible active materials (for example, sulfur).
  • salts for example lithium salts in the case of lithium or lithium-ion batteries (such as LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF 4 , LiBOB, etc.), or inorganic particles of ceramic or glass type, or other compatible active materials (for example, sulfur).
  • the electrode material comprises between 50% and 95% by weight of the complex oxide, or between 60% and 80% by weight of the complex oxide.
  • the material may also comprise between 5% and 40% by weight of binder, or between 15% and 35% by weight of binder.
  • the electrode material may also comprise 10% by weight or less of a salt, for example, between 3% and 7% by weight of salt.
  • the material may comprise 10% by weight or less of an electronically conductive material or a mixture of electronic conductive materials, for example, between 3% and 7% of electronically conductive material or a mixture of electronic conductive materials.
  • the electronically conductive material mixture comprises carbon black and carbon fibers (such as VGCF), which mixture may comprise both conductive materials in any proportion, for example in a weight ratio of about 1: 1.
  • a complex oxide as defined herein may be mixed with an electronically conductive material in the presence of a solvent and spread on a support, for example a current collector, and then be dried.
  • This mixture may also include one of the binders described herein or a polymer binder precursor (eg, monomer or prepolymer before crosslinking).
  • the spreading mixture may also optionally include additional components such as inorganic particles, ceramics, salts, and the like.
  • the positive electrode can be used in a battery with any type of negative electrode electrochemically compatible with the active material of the positive electrode.
  • the negative electrode may comprise an alkali metal film (such as sodium or lithium), for example, a metal lithium film or an alloy comprising at least 90% by weight of lithium, or at least 95% lithium.
  • An example of a negative electrode comprises a bright lithium film prepared by rolling between rolls of a lithium strip. The produced film is then quickly combined with the other elements of the stack.
  • the lithium film comprises a thin layer (eg 50 ⁇ or less) and a passivation constant.
  • the lithium film is prepared according to the method used in PCT Application No.
  • WO2008 / 009107 may also include the use of a lubricating agent, as described in PCT Application No. WO 2015/149173, at its training.
  • Other negative electrode materials include complex anode oxides such as lithium titanates, or lithium vanadium oxides.
  • the electrolyte is preferably a solid polymer electrolyte (SPE) formed of a thin ion conductive polymer layer.
  • SPE solid polymer electrolyte
  • Examples of solid polymeric electrolytes may generally comprise one or more crosslinked or non-crosslinked polar solid polymers and alkali metal salts, for example, lithium salts such as LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF, LiBOB, etc. .
  • Polymers of the polyether type such as linear, branched and / or crosslinked polymers based on polyethylene oxide (PEO), poly (propylene oxide) (PPO), or a mixture of both ( polymer blend or co-polymer EO / PO) can be used, but several other polymers compatible with lithium are also known for the production of EPS.
  • polymers include star-shaped or comb multi-branched polymers such as those described in PCT Publication No. WO2003 / 063287 (Zaghib et al.).
  • Other additives may be present in the electrolyte such as glass particles, ceramics, for example nano-ceramics (such as Al 2 O 3, ⁇ 2, SiO 2, and other similar compounds) may be added to the matrix.
  • the binder used in the cathode material comprises the same polymer as that used in the solid polymer electrolyte and is of the polyether polymer type.
  • the electrochemical cells described herein and the batteries comprising them can be used, for example, in electric or hybrid vehicles, or in information technology apparatus.
  • the intended use includes nomadic devices, such as mobile phones, cameras, tablets or laptops, electric or hybrid vehicles, or in renewable energy storage.
  • a mixture is prepared with the following: FePO 4 (15g), PEO-based polymer comprising crosslinkable units (5.7 g) as described in Canadian Patent No. 2118047, a mixture of acetonitrile / toluene solvents in a ratio of 80:20 (14.1 g), a lithium salt (LiTFSI, 1.23 g), carbon black (0.56 g), carbon fibers (VGCF, 0.57 g) and a crosslinking agent ( MC 651 Irgacure, 0.079 g).
  • the mixture is deposited as a film by the Doctor blade method on a current collector made of aluminum, dried first at 75 ° C. for 15 min, then crosslinked for 2 min under UV, and finally dried at 75 ° C. during 18 hb LiFePO cathode (comparative)
  • a mixture is prepared with the following: LiFePO4 (21.7 g), PEO-based polymer comprising crosslinkable units (8.17 g) as described in Canadian Patent No. 2118047, a mixture of acetonitrile / toluene in a ratio of 80:20 (20.26g), a lithium salt (LiTFSI, 1.87g), carbon black (0.78g), carbon fibers (VGCF, 0.78g) and an agent crosslinking ( MC 651 Irgacure, 0.069 g).
  • the mixture is deposited as a film by the Doctor blade method on a current collector made of aluminum, dried first at 75 ° C. for 15 min, then crosslinked for 2 min under UV, and finally dried at 75 ° C. during 18 hours.
  • a polymer electrolyte is prepared by mixing a PEO-based polymer comprising crosslinkable units (20g) as described in Canadian Patent No. 2111477, a lithium salt (LiTFSI, 6.5g). and a crosslinking agent ( MC 651 Irgacure, 0.29 g) in 80:20 acetonitrile / toluene (49.6 g).
  • the polymer film is deposited by the Doctor blade method on a polypropylene (PP) film, dried first at 75 ° C. for 15 min and then crosslinked for 2 minutes under UV, and finally dried again at a temperature of 85 ° C. during 18 hours. The PP film is removed before assembling the stack.
  • PP polypropylene
  • the cells are manufactured by stacking the films in the following sequence: polymer electrolyte film on the cathode (FePO4 or LiFePO4 cathode) followed by a lithium film on the electrolyte film, all pressed at 80 ° C. 30 min.
  • the cells were tested and the comparative results are shown in Figures 1 to 4.
  • the PT-2276 cells represent FePO4 cathode cells prepared according to the method of Example 1 (a).
  • the PT-945 battery represents a battery with a LiFePO4 cathode prepared according to the method of Example 1 (b).
  • Figure 2 illustrates the first lithium dissolution for the FeP04 cell and the first veneer for the cell comprising LiFePO4.
  • Figure 3 demonstrates better power performance when using a FePO 4 cathode compared to a LiFePO 4 cathode.
  • Figure 4 demonstrates a higher reversible capacitance for a cell comprising the FePO 4 cathode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

Des matériaux d'électrode positive comprenant au moins un oxyde complexe de structure olivine, l'oxyde complexe comprenant un métal de transition à l'état d'oxydation III, les électrodes positives les comprenant et leurs procédés de fabrication sont décrits. Les cellules électrochimiques comprenant ces électrodes, un électrolyte polymère et une électrode négative sont aussi envisagés.

Description

MATÉRIAU D'ÉLECTRODE, ÉLECTRODE ET BATTERIE TOUT SOLIDE COMPRENANT UN OXYDE COMPLEXE DE STRUCTURE OLIVINE
DEMANDE RELIÉE
La présente demande revendique la priorité, sous la loi applicable, de la demande de brevet canadienne no 2,956,857 déposée le 2 février 2017, le contenu de laquelle est incorporé ici par référence dans son intégralité et à toutes fins.
DOMAINE TECHNIQUE
La présente demande se réfère au domaine des cellules électrochimiques, plus particulièrement aux batteries de type tout solide et à l'utilisation de cathode d'olivine chargée.
ÉTAT DE LA TECHNIQUE
Une batterie fonctionne par circulation réversible d'ions entre une électrode négative et une électrode positive, à travers un électrolyte comprenant un sel, par exemple de lithium, sodium, ou potassium, en solution dans un solvant liquide, polymère solide ou gel et/ou solide de type céramique.
Dans le cas d'une batterie au lithium ou lithium-ion, l'électrode négative est généralement constituée par une feuille de lithium, d'alliage de lithium ou par un composé intermétallique contenant du lithium. L'électrode négative peut aussi être constituée d'un matériau capable d'insérer réversiblement des ions lithium tel que, par exemple, du graphite ou un oxyde d'un métal, le matériau d'insertion étant utilisé seul ou sous forme de matériau composite contenant, par exemple, au moins un liant et un agent conférant une conduction électronique tel une source de carbone.
Des oxydes complexes divers ont été étudiés comme matière active pour l'électrode positive, agissant comme matériau d'insertion réversible d'ions lithium. On peut citer notamment les composés qui ont une structure olivine et qui répondent à la formule L1MXO4, où M représente un métal de transition ou un mélange de métaux de transition et X est un élément choisi parmi S, P, Si, B et Ge. Ces oxydes complexes sont généralement utilisés sous forme de particules enrobées de carbone et/ou liées entre elles par des liaisons carbone-carbone.
Parmi les oxydes mentionnés précédemment, ceux où M représente Fe, Mn ou Co sont d'intérêt étant donné leur coût relativement faible en raison de la grande disponibilité de ces métaux. Par exemple, des particules de phosphate de lithium et de fer (LiFeP04) enrobées de carbone peuvent généralement être obtenues de manière relativement facile, mais la densité d'énergie de ce type de matériau est plutôt faible à cause de son voltage relativement bas (de l'ordre de 3,5 V vs Li/Li+). L'atome de fer dans ce type de composé est à l'état d'oxydation 2 (II).
Étant donné la présence de l'ion lithium dans l'oxyde de départ, l'utilisation d'une cathode comprenant du LiFeP04 fait que la batterie assemblée est à l'état déchargé, ce qui rend ces batteries moins sécuritaires après leur assemblage. De plus, la sécurité d'une batterie utilisant cette cathode dans une configuration de cellule avec du lithium métallique étant préoccupante, les règlements pour son transport sont alors plus stricts. De plus, dans une telle configuration, la première charge induit un placage de lithium sur l'anode métallique, ce qui implique la déposition d'une couche mince de Li sur une surface déjà passivée. Ce placage nuira à la stabilité de la couche de lithium en fonction du cyclage de la pile, d'où une réversibilité relativement limitée. Malgré le coût relativement bas des matériaux à base de fer, le coût de ce matériau pourrait être réduit davantage.
Il existe donc un besoin dans le développement de matériau excluant ou réduisant au moins un désavantage(s) des autres matériaux connus, ou possédant des propriétés améliorées en comparaison de ceux-ci. SOMMAIRE
La présente demande concerne un matériau d'électrode positive comprenant au moins un oxyde complexe de structure olivine, l'oxyde complexe comprenant un métal de transition à l'état d'oxydation III, par exemple, un oxyde complexe de formule MXO4, où M est au moins un métal de transition d'oxydation III (tel que Fe, Ni, Mn ou Co ou une combinaison d'au moins deux de ceux-ci), et X est choisi parmi les éléments S, P, Si, B et Ge, par exemple P ou Si. Selon un mode de réalisation, l'oxyde complexe est le phosphate de fer(lll) de structure olivine, où le fer(lll) peut être, en partie, remplacé par un élément choisi parmi Ni, Mn, et Co, ou une combinaison de ceux-ci, par exemple, l'oxyde complexe est FeP04.
Selon un mode de réalisation, l'oxyde complexe présent dans le matériau d'électrode est sous forme de particules, par exemple, de microparticules et/ou nanoparticules. Selon un mode de réalisation, les particules comprennent des microparticules. Selon un autre mode de réalisation, les particules comprennent des nanoparticules.
Le matériau d'électrode tel qu'ici défini peut comprendre en outre un matériau conducteur électronique (comme une source de carbone). Des exemples de matériau conducteur électronique comprennent du noir de carbone, du carbone Ketjen®, du carbone Shawinigan, du graphite, du graphène, des nanotubes de carbone, des fibres de carbone (tels que les fibres de carbone formées en phase gazeuse (VGCF)), du carbone non-poudreux obtenu par carbonisation d'un précurseur organique, ou une combinaison de deux ou plus de ceux-ci. Selon un mode de réalisation, le matériau conducteur électronique comprend du noir de carbone. Selon un autre mode de réalisation, le matériau conducteur électronique comprend des fibres de carbone. Dans l'alternative, le matériau conducteur électronique comprend du noir de carbone et des fibres de carbone.
Le matériau d'électrode tel qu'ici défini comprend éventuellement un liant, ce liant comprenant, par exemple, un liant polymère polyéther linéaire, ramifié et/ou réticulé, un liant soluble dans l'eau, un liant polymère fluoré, ou une de leurs combinaisons. Par exemple, le liant polymère polyéther linéaire, ramifié et/ou réticulé peut être choisi parmi les polymères basés sur le poly(oxyde d'éthylène) (PEO), sur le poly(oxyde de propylène) (PPO) ou un mélange des deux, comprenant éventuellement des unités réticulables. Le liant soluble dans l'eau peut être choisi parmi le SBR (caoutchouc styrène-butadiène), le NBR (caoutchouc acrylonitrile-butadiène), le HNBR (NBR hydrogéné), le CHR (caoutchouc d'épichlorohydrine), l'ACM (caoutchouc d'acrylate), et leurs mélanges, comprenant éventuellement du CMC (carboxyméthylcellulose). Le liant polymère fluoré peut être choisi parmi le PVDF (fluorure de polyvinylidène) et le PTFE (polytétrafluoroéthylène).
Selon un exemple, le matériau d'électrode positive comprend un liant réticulé, l'oxyde complexe FeP04, un sel et un matériau conducteur électronique tels qu'ici définis. Par exemple, le sel est un sel de lithium. La présente demande concerne aussi un procédé de préparation d'électrode comprenant un matériau d'électrode tel que décrit ici, et comprenant les étapes de : a) mélange de l'oxyde complexe et d'un matériau conducteur électronique en présence d'un solvant; b) épandage du mélange obtenu en (a) sur un support (tel qu'un collecteur de courant); et c) séchage du mélange épandu.
Selon un mode de réalisation, l'étape (a) du procédé comprend en outre l'ajout d'un liant ou d'un précurseur de liant polymère (ex : monomère ou oligomère). Par exemple, l'étape (a) peut comprendre l'ajout d'un précurseur de liant polymère à base de polymère polyéther et d'un agent de réticulation, le procédé comprenant une étape de réticulation avant, pendant ou après l'étape (c).
Les électrodes positives comprenant un matériau d'électrode tel qu'ici défini ou obtenues par un procédé de la présente demande sont aussi envisagées, ainsi que les cellules électrochimiques comprenant une telle électrode positive, un film d'électrolyte, et une électrode négative compatible avec le matériau actif de l'électrode positive, c'est-à-dire avec l'oxyde complexe. Selon un mode de réalisation, l'électrode négative de la cellule électrochimique comprend un film de métal alcalin tel que sodium ou lithium ou d'un de leurs alliages, par exemple, un film de lithium métallique ou d'un alliage comprenant au moins 90% en poids de lithium. Selon un autre mode de réalisation, l'électrode négative comprend un oxyde complexe d'anode compatible avec l'oxyde complexe comme un titanate de lithium.
Selon un autre mode de réalisation, le film d'électrolyte de la cellule électrochimique comprend un sel en solution dans un polymère solide, polaire et solvatant. Par exemple, le sel peut être choisi parmi LiTFSI, LiPF6, LiDCTA, LiBETI, LiFSI, LiBF4, LiBOB, et leurs combinaisons. Des exemples de polymères solides, polaires et solvatants comprennent les polymères polyéthers linéaires, ramifiés et/ou réticulés, tels que ceux basés sur le poly(oxyde d'éthylène) (PEO), le poly(oxyde de propylène) (PPO), ou sur un mélange ou un copolymère des deux, incluant éventuellement des unités réticulables. D'autres additifs peuvent être présents dans l'électrolyte comme des particules de verre, des céramiques, par exemple des nano-céramiques (tel que AI2O3, ΤΊΟ2, S1O2, et d'autres composés similaires) peuvent être ajoutés dans la matrice de l'électrolyte polymère, par exemple, pour renforcer ses propriétés mécaniques et ainsi limiter la croissance dendritique du sel (Li, Na, etc.) plaqué durant la charge. Selon un mode de réalisation, le liant de l'électrode positive est composé d'un polymère identique à celui entrant dans la composition du film d'électrolyte.
D'autres caractéristiques de la technologie actuelle seront mieux comprises à la lecture de la description ci-dessous en références aux figures.
DESCRIPTION BRÈVE DES FIGURES La Figure 1 démontre la variation de potentiel (V) en fonction du temps pour une pile comprenant du LiFeP04 (LH6243C PT-945), en comparaison d'une pile comprenant du FeP04 (LH6243D PT-2276, LH6243E PT-2276, et LH6243F PT- 2276) selon certains modes de réalisation de la présente technologie (voir Exemple 2).
La Figure 2 démontre la variation de potentiel en fonction du temps pour une première charge pour une pile comprenant du LiFeP04 (LH6243C PT-945), en comparaison d'une pile comprenant du FeP04 (LH6243E PT-2276) selon un mode de réalisation de la présente technologie tel que décrit à l'Exemple 2.
La Figure 3 illustre le diagramme de Ragone, c'est-à-dire la variation de la capacité (mAh/g) en fonction du régime de décharge pour une pile comprenant du LiFeP04 (LH6243C PT-945), en comparaison d'une pile comprenant du FePÛ4 (LH6243D PT-2276) selon un mode de réalisation de la présente technologie tel que décrit à l'Exemple 2.
La Figure 4 présente la capacité (symboles pleins) et le pourcentage d'efficacité (symboles vides) en fonction du nombre de cycle pour FeP04 (LH6243D PT-2276) selon un mode de réalisation de la présente technologie tel que décrit à l'Exemple 2 en comparaison de LiFeP04 (Référence).
DESCRIPTION DÉTAILLÉE
La présente demande concerne l'utilisation d'un oxyde complexe (par exemple de structure olivine), l'oxyde complexe comprenant un métal de transition à l'état d'oxydation III, comme matériau électrochimiquement actif dans la préparation d'électrodes positives de batteries.
Plus particulièrement, la présente demande concerne un matériau d'électrode positive comprenant au moins un oxyde complexe de formule MXO4, où M est au moins un métal de transition d'oxydation III, par exemple, Fe, Ni, Mn ou Co ou leurs combinaisons, et X est choisi parmi les éléments S, P, Si, B et Ge, par exemple, X est P ou Si, de préférence X est P. Selon un exemple, l'oxyde complexe est du phosphate de fer(lll) de structure olivine. L'utilisation d'un oxyde complexe tel que défini dans la présente demande permet, entre autres, l'obtention d'une batterie plus sécuritaire assemblée à l'état déchargé (par exemple Li/SPE/FeP04), l'utilisation de matériaux moins coûteux, l'utilisation d'une cathode non lithiée, et/ou l'élimination du placage du lithium sur l'anode de lithium métallique pré-passivé lors de la première charge. Dans une configuration de batterie telle qu'ici décrite, la première activité électrochimique est une décharge, c'est-à-dire une lithiation de l'olivine comprenant un métal d'oxydation III (tel le FePÛ4). Cette étape permet de déposer une couche de lithium fraîchement dissoute du lithium métallique durant la première charge de la batterie. Le coût du matériau peut être aussi réduit de par l'élimination d'un atome (par exemple, Li) de la structure de l'olivine normalement utilisée dans la fabrication. La présente demande démontre que cet atome n'est pas nécessaire à la fabrication d'un matériau d'électrode positive d'une batterie comprenant une anode métallique comme le lithium. Le matériau d'électrode positive tel que décrit ici peut comprendre, outre les particules (par exemple, microparticules et/ou nanoparticules) d'oxyde complexe définies ci-dessus, un matériau conducteur électronique comme une source de carbone, incluant, par exemple, du noir de carbone, du carbone Ketjen®, du carbone Shawinigan, du graphite, du graphène, des nanotubes de carbone, des fibres de carbone (tels les fibres de carbone formées en phase gazeuse (VGCF)), du carbone adhérent non-poudreux obtenu par carbonisation d'un précurseur organique, ou une combinaison de deux ou plus de ceux-ci. Une source de carbone peut aussi être présente sous forme d'enrobage de carbone sur les particules d'oxyde complexe. Le matériau d'électrode positive peut aussi comprendre un liant. Des exemples non-limitatifs de liants comprennent les liants polymères polyéthers linéaires, ramifiés et/ou réticulés (par exemple, des polymères basés sur le poly(oxyde d'éthylène) (PEO), ou le poly(oxyde de propylène) (PPO) ou d'un mélange des deux (incluant un co-polymère EO/PO), et comprenant éventuellement des unités réticulables), des liants solubles dans l'eau (tels que SBR (caoutchouc styrène- butadiène), NBR (caoutchouc acrylonitrile-butadiène), HNBR (NBR hydrogéné), CHR (caoutchouc d'épichlorohydrine), ACM (caoutchouc d'acrylate)), ou des liants de type polymères fluorés (tels que PVDF (fluorure de polyvinylidène), PTFE (polytétrafluoroéthylène)), et leurs combinaisons). Certains liants, comme ceux solubles dans l'eau, peuvent aussi comprendre un additif comme le CMC (carboxyméthylcellulose).
Des additifs peuvent aussi être présents dans le matériau d'électrode positive, comme des sels, par exemple des sels de lithium dans le cas de batteries au lithium ou lithium-ion (tels que LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF4, LiBOB, etc.), ou des particules inorganiques de type céramique ou verre, ou encore d'autres matériaux actifs compatibles (par exemple, du soufre).
Selon un exemple, le matériau d'électrode comprend entre 50% et 95% en poids de l'oxyde complexe, ou entre 60% et 80% en poids de l'oxyde complexe. Le matériau peut aussi comprendre entre 5% et 40% en poids de liant, ou entre 15% et 35% en poids de liant. Le matériau d'électrode peut aussi comprendre 10% en poids ou moins d'un sel, par exemple, entre 3% et 7% en poids de sel. Finalement, le matériau peut comprendre 10% en poids ou moins d'un matériau conducteur électronique ou d'un mélange de matériaux conducteurs électroniques, par exemple, entre 3% et 7% de matériau conducteur électronique ou d'un mélange de matériaux conducteurs électroniques. Par exemple, le mélange de matériau conducteurs électronique comprend du noir de carbone et des fibres de carbone (tel que VGCF), ce mélange pouvant comprendre les deux matériaux conducteurs dans n'importe quelle proportion, par exemple dans un ratio en poids d'environ 1 : 1 .
Le procédé utilisé pour la préparation du matériau d'électrode dépend des éléments combinés. Par exemple, un oxyde complexe tel que défini ici peut être mélangé à un matériau conducteur électronique en présence d'un solvant et être épandu sur un support, par exemple un collecteur de courant, et être ensuite séché. Ce mélange peut aussi inclure l'un des liants décrits ici ou un précurseur de liant polymère (ex : monomère ou pré-polymère avant réticulation).
Le mélange pour épandage peut aussi inclure, de façon optionnelle, des composants additionnels comme des particules inorganiques, des céramiques, des sels, etc.
L'électrode positive peut être utilisée dans une pile avec tout type d'électrode négative électrochimiquement compatible avec le matériau actif de l'électrode positive. Par exemple, l'électrode négative peut comprendre un film d'un métal alcalin (tel que sodium ou lithium), par exemple, un film de lithium métallique ou d'un alliage comprenant au moins 90% en poids de lithium, ou au moins 95% de lithium. Un exemple d'électrode négative comprend un film de lithium vif préparé par laminage, entre des rouleaux, d'un feuillard de lithium. Le film produit est ensuite rapidement combiné aux autres éléments de la pile. Selon un procédé, le film de lithium comprend une couche mince (ex : 50Â ou moins) et constante de passivation. Par exemple, le film de lithium est préparé selon la méthode utilisée dans la demande PCT No WO2008/009107 et peut aussi comprendre l'utilisation d'un agent lubrifiant, tel que décrit dans la demande PCT No WO 2015/149173, lors de sa formation. D'autres matériaux d'électrode négative incluent des oxydes complexes d'anode comme les titanates de lithium, ou les oxydes de lithium- vanadium.
L'électrolyte est, de préférence, un électrolyte polymère solide (SPE) formé d'une couche polymère mince et conductrice d'ion. Des exemples d'électrolytes polymère solides peuvent généralement comprendre un ou des polymères solides polaires réticulés ou non et des sels de métal alcalin, par exemple, des sels de lithium tels que LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF , LiBOB, etc. Des polymères de type polyéther, tels que les polymères linéaires, ramifiés et/ou réticulés basés sur le poly(oxyde d'éthylène) (PEO), le poly(oxyde de propylène) (PPO), ou d'un mélange des deux (mélange de polymères ou co-polymère EO/PO) peuvent être utilisés, mais plusieurs autres polymères compatibles avec le lithium sont aussi connus pour la production de SPE. Des exemples de tels polymères incluent les polymères multi-branche en forme d'étoile ou de peigne comme ceux décrits dans la demande PCT publiée sous le no WO2003/063287 (Zaghib et al.). D'autres additifs peuvent être présents dans l'électrolyte comme des particules de verre, des céramiques, par exemple des nano-céramiques (tels que AI2O3, ΤΊΟ2, S1O2, et d'autres composés similaires) peuvent être ajoutés dans la matrice d'un électrolyte polymère. Par exemple, de tels additifs peuvent permettre de renforcer les propriétés mécaniques, augmenter la conductivité ionique, et/ou limiter la croissance dendritique du sel (de Li, Na, ... ) plaqué durant la charge. Selon un exemple, le liant utilisé dans le matériau de cathode comprend le même polymère que celui utilisé dans l'électrolyte polymère solide et est de type polymère polyéther.
Les cellules électrochimiques décrites ici et les batteries les comprenant peuvent être utilisées, par exemple, dans les véhicules électriques ou hybrides, ou dans des appareils de technologie de l'information. Par exemple, l'utilisation envisagée inclut les appareils nomades, par exemple les téléphones portables, les appareils photos, les tablettes ou les ordinateurs portables, les véhicules électriques ou hybrides, ou dans le stockage d'énergie renouvelable.
Les exemples qui suivent illustrent l'invention et ne doivent pas être interprétées comme limitant la portée de l'invention telle que décrite.
EXEMPLES
Exemple 1 - Préparation de cathodes a. Cathode de FePO 4
Un mélange est préparé avec les éléments suivants : FeP04 (15g), polymère à base de PEO comprenant des unités réticulables (5,7g) tel que décrit dans le brevet canadien no 2 1 1 1 047, un mélange de solvants acétonitrile / toluène dans un ratio de 80:20 (14, 1 g), un sel de lithium (LiTFSI, 1 ,23g), du noir de carbone (0,56g), des fibres de carbone (VGCF, 0,57g) et un agent de réticulation (lrgacureMC 651 , 0,079g). Le mélange est déposé sous forme de film par la méthode Doctor blade sur un collecteur de courant fait d'aluminium, séché en premier lieu à 75°C durant 15 min, puis réticulé pour 2 min sous UV, et enfin séché à 75°C durant 18 h. b. Cathode de LiFePO (comparatif)
Un mélange est préparé avec les éléments suivants : LiFeP04 (21 ,7g), polymère à base de PEO comprenant des unités réticulables (8, 17g) tel que décrit dans le brevet canadien no 2 1 1 1 047, un mélange de solvants acétonitrile/toluène dans un ratio de 80:20 (20,26g), un sel de lithium (LiTFSI, 1 ,87g), du noir de carbone (0,78g), des fibres de carbone (VGCF, 0,78g) et un agent de réticulation (lrgacureMC 651 , 0,069g). Le mélange est déposé sous forme de film par la méthode Doctor blade sur un collecteur de courant fait d'aluminium, séché en premier lieu à 75°C durant 15 min, puis réticulé pour 2 min sous UV, et enfin séché à 75°C durant 18 h.
Exemple 2 - Préparation de cellules
Un électrolyte polymère est préparé par le mélange d'un polymère à base de PEO comprenant des unités réticulables (20g) tel que décrit dans le brevet canadien no 2 1 1 1 047, d'un sel de lithium (LiTFSI, 6,5g) et d'un agent de réticulation (lrgacureMC 651 , 0,29g) dans un mélange acétonitrile/toluène 80:20 (49,6g). Le film polymère est déposé par la méthode Doctor blade sur un film de polypropylène (PP), séché d'abord à 75°C durant 15 min puis réticulé pendant 2 minutes sous UV, et enfin séché à nouveau à une température de 85°C durant 18 h. Le film de PP est retiré avant l'assemblage de la pile. La fabrication des cellules se fait par empilement des films suivant la séquence : film d'électrolyte polymère sur la cathode (cathode FePÛ4 ou LiFeP04) suivi d'un film de lithium sur le film d'électrolyte, le tout pressé à 80°C durant 30 min. Les cellules ont été testées et les résultats comparatifs sont illustrés aux Figures 1 à 4. Les piles PT-2276 représentent des piles avec cathode de FeP04 préparée selon la méthode de l'Exemple 1 (a). La pile PT-945 représente une pile avec une cathode de LiFeP04 préparée selon la méthode de l'Exemple 1 (b). La Figure 2 illustre la première dissolution de lithium pour la pile FeP04 et le premier placage pour la pile comprenant du LiFeP04. La Figure 3 démontre une meilleure performance en puissance lors de l'utilisation d'une cathode de FeP04 en comparaison d'une cathode de LiFeP04. La Figure 4 démontre une capacité réversible plus élevée pour une pile comprenant la cathode de FeP04. Plusieurs modifications pourraient être apportées à l'un ou l'autre des modes de réalisations décrits ci-dessus sans sortir du cadre de l'invention telle qu'envisagée. Les références, brevets ou documents de littérature scientifique mentionnés dans le présent document sont incorporés ici par référence dans leur intégralité et à toutes fins.

Claims

REVENDICATIONS
1 . Matériau d'électrode positive comprenant au moins un oxyde complexe de structure olivine, l'oxyde complexe comprenant un métal de transition à l'état d'oxydation III.
2. Matériau d'électrode positive selon la revendication 1 , dans lequel l'oxyde complexe est de formule MXO4, où M est au moins un métal de transition d'oxydation III, et X est choisi parmi les éléments S, P, Si, B et Ge.
3. Matériau d'électrode positive selon la revendication 2, dans lequel M est Fe, Ni, Mn ou Co ou une combinaison d'au moins deux de ceux-ci.
4. Matériau d'électrode positive selon la revendication 2 ou 3, dans lequel X est P ou Si, de préférence X est P.
5. Matériau d'électrode positive selon la revendication 4, dans lequel X est P.
6. Matériau d'électrode positive selon l'une quelconque des revendications 1 à 5, dans lequel l'oxyde complexe est du phosphate de fer(lll) de structure olivine, où le fer(lll) est éventuellement en partie remplacé par un élément choisi parmi Ni, Mn, et Co, ou une combinaison de ceux-ci.
7. Matériau d'électrode positive selon la revendication 6, dans lequel l'oxyde complexe est FeP04.
8. Matériau d'électrode positive selon l'une quelconque des revendications 1 à 7, dans lequel l'oxyde complexe est sous forme de particules.
9. Matériau d'électrode positive selon la revendication 8, dans lequel les particules comprennent des microparticules.
10. Matériau d'électrode positive selon la revendication 8, dans lequel les particules comprennent des nanoparticules.
1 1 . Matériau d'électrode positive selon l'une quelconque des revendications 1 à 10, lequel comprend en outre, un matériau conducteur électronique.
12. Matériau d'électrode positive selon la revendication 1 1 , dans lequel le matériau conducteur électronique comprend du noir de carbone, du carbone Ketjen®, du carbone Shawinigan, du graphite, du graphène, des nanotubes de carbone, des fibres de carbone (telles les fibres de carbone formées en phase gazeuse (VGCF)), du carbone non-poudreux obtenu par carbonisation d'un précurseur organique, ou une combinaison d'au moins deux de ceux-ci.
13. Matériau d'électrode positive selon la revendication 12, dans lequel le matériau conducteur électronique comprend du noir de carbone.
14. Matériau d'électrode positive selon la revendication 12 ou 13, dans lequel le matériau conducteur électronique comprend des fibres de carbone.
15. Matériau d'électrode positive selon l'une quelconque des revendications 1 à 14, lequel comprend en outre un liant.
16. Matériau d'électrode positive selon la revendication 15, dans lequel le liant comprend un liant polymère polyéther linéaire, ramifié et/ou réticulé, un liant soluble dans l'eau, un liant polymère fluoré, ou une de leurs combinaisons.
17. Matériau d'électrode positive selon la revendication 16, dans lequel le liant polymère polyéther linéaire, ramifié et/ou réticulé est choisi parmi les polymères basés sur le poly(oxyde d'éthylène) (PEO), sur le poly(oxyde de propylène) (PPO) ou un mélange des deux, comprenant éventuellement des unités réticulables.
18. Matériau d'électrode positive selon la revendication 16, dans lequel le liant soluble dans l'eau est choisi parmi SBR (caoutchouc styrène-butadiène), NBR (caoutchouc acrylonitrile-butadiène), HNBR (NBR hydrogéné), CHR (caoutchouc d'épichlorohydrine), ACM (caoutchouc d'acrylate), et leurs mélanges, et comprenant éventuellement du CMC (carboxyméthylcellulose).
19. Matériau d'électrode positive selon la revendication 16, dans lequel le liant polymère fluoré est choisi parmi le PVDF (fluorure de polyvinylidène) et le PTFE (polytétrafluoroéthylène).
20. Matériau d'électrode positive selon la revendication 17, dans lequel le liant est réticulé, l'oxyde complexe est le FeP04, ledit matériau comprenant en outre un sel et un matériau conducteur électronique.
21 . Procédé de préparation d'une électrode positive comprenant un matériau d'électrode positive tel que défini à l'une quelconque des revendications 1 à 20, le procédé comprenant les étapes de : a) mélange de l'oxyde complexe et d'un matériau conducteur électronique en présence d'un solvant; b) épandage du mélange obtenu en (a) sur un support; et c) séchage du mélange épandu en (b).
22. Procédé selon la revendication 21 , dans lequel le support est un collecteur de courant.
23. Procédé selon la revendication 21 ou 22, dans lequel l'étape (a) comprend en outre l'ajout d'un liant ou d'un précurseur de liant polymère (ex : monomère ou oligomère).
24. Procédé selon la revendication 23, dans lequel l'étape (a) comprend l'ajout du précurseur de liant polymère à base de polymère polyéther et d'un agent de réticulation, le procédé comprenant une étape de réticulation avant, pendant et/ou après l'étape (c).
25. Électrode positive comprenant un matériau d'électrode positive tel que défini aux revendications 1 à 20 ou obtenue par un procédé tel que défini aux revendications 21 à 24.
26. Cellule électrochimique comprenant une électrode positive telle que définie à la revendication 25, un électrolyte, et une électrode négative.
27. Cellule électrochimique selon la revendication 26, dans laquelle l'électrode négative comprend un film de lithium métallique ou d'un alliage comprenant au moins 90% en poids de lithium.
28. Cellule électrochimique selon la revendication 26, dans laquelle l'électrode négative comprend un oxyde complexe électrochimiquement compatible avec l'oxyde complexe de l'électrode positive (par exemple, un titanate de lithium).
29. Cellule électrochimique selon l'une quelconque des revendications 26 à 28, dans laquelle l'électrolyte est un film comprenant un sel en solution dans un polymère solide, polaire et solvatant.
30. Cellule électrochimique selon la revendication 29, dans laquelle le sel est choisi parmi LiTFSI, LiPFe, LiDCTA, LiBETI, LiFSI, LiBF4, LiBOB, et leurs combinaisons.
31 . Cellule électrochimique selon la revendication 29 ou 30, dans laquelle le polymère solide, polaire et solvatant est un polymère polyéther linéaire, ramifié et/ou réticulé.
32. Cellule électrochimique selon la revendication 31 , dans laquelle le polymère polyéther linéaire, ramifié et/ou réticulé est basé sur le poly(oxyde d'éthylène) (PEO), le poly(oxyde de propylène) (PPO), ou d'un mélange des deux, et éventuellement des unités réticulables.
33. Cellule électrochimique selon l'une quelconque des revendications 26 à 32, dans laquelle l'électrode positive comprend un liant, ledit liant étant composé d'un polymère identique à un polymère entrant dans la composition du film d'électrolyte.
EP18748545.3A 2017-02-02 2018-02-02 Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine Pending EP3577706A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2956857A CA2956857A1 (fr) 2017-02-02 2017-02-02 Materiau d'electrode, electrode et batterie tout solide comprenant un oxyde complexe de structure olivine
PCT/CA2018/050117 WO2018141062A1 (fr) 2017-02-02 2018-02-02 Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine

Publications (2)

Publication Number Publication Date
EP3577706A1 true EP3577706A1 (fr) 2019-12-11
EP3577706A4 EP3577706A4 (fr) 2020-11-25

Family

ID=63036954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18748545.3A Pending EP3577706A4 (fr) 2017-02-02 2018-02-02 Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine

Country Status (7)

Country Link
US (1) US20190363363A1 (fr)
EP (1) EP3577706A4 (fr)
JP (1) JP7121738B2 (fr)
KR (1) KR20190112796A (fr)
CN (1) CN110249460B (fr)
CA (2) CA2956857A1 (fr)
WO (1) WO2018141062A1 (fr)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514640B1 (en) * 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
US7498098B2 (en) * 2002-10-18 2009-03-03 Japan As Represented By President Of The University Of Kyusyu Method for producing positive cathode material for lithium battery, and lithium battery
JP4483253B2 (ja) * 2003-09-30 2010-06-16 三菱化学株式会社 リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
US20070077496A1 (en) * 2005-10-05 2007-04-05 Medtronic, Inc. Lithium-ion battery
KR101071336B1 (ko) * 2008-03-25 2011-10-07 주식회사 에너세라믹 리튬 전지용 올리빈형 양극 활물질 전구체, 및 이의 제조 방법
CN100583506C (zh) * 2008-10-22 2010-01-20 昆明理工大学 一种制备多孔锂离子电池正极材料的方法
JP2011071019A (ja) * 2009-09-28 2011-04-07 Sumitomo Osaka Cement Co Ltd リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP5626531B2 (ja) * 2011-04-19 2014-11-19 ダイソー株式会社 非水電解質二次電池
CN103172041B (zh) * 2011-12-20 2014-12-10 中国科学院物理研究所 一种制备纳米孔磷酸铁的方法、纳米孔磷酸铁及其应用
JP5928302B2 (ja) * 2012-11-02 2016-06-01 日立金属株式会社 リチウム二次電池用正極活物質の製造方法
CN103022484B (zh) * 2012-12-15 2014-08-27 华中科技大学 锂离子导电络合物改性的磷酸铁锂正极材料及其制备方法
KR101439427B1 (ko) * 2013-03-14 2014-09-11 한국과학기술연구원 리튬이차전지용 올리빈계 양극소재의 재활용 방법, 이에 의하여 제조된 양극소재, 이를 포함하는 리튬이차전지용 양극 및 리튬이차전지
CN103400989A (zh) * 2013-07-31 2013-11-20 东莞新能源科技有限公司 锂离子电池负极材料用粘接剂及包含该粘接剂的电极的制备方法
JP6605917B2 (ja) * 2015-10-29 2019-11-13 太陽誘電株式会社 全固体二次電池
JP2016048698A (ja) * 2016-01-04 2016-04-07 日立化成株式会社 リチウムイオン二次電池正極用導電剤並びにこれを用いたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN106099104B (zh) * 2016-08-26 2019-07-26 常开军 一种用于二次电池制造的无锂正极材料及其制造方法

Also Published As

Publication number Publication date
KR20190112796A (ko) 2019-10-07
WO2018141062A1 (fr) 2018-08-09
CA3048730A1 (fr) 2018-08-09
JP2020509529A (ja) 2020-03-26
CN110249460B (zh) 2022-11-25
CN110249460A (zh) 2019-09-17
CA2956857A1 (fr) 2018-08-02
EP3577706A4 (fr) 2020-11-25
US20190363363A1 (en) 2019-11-28
JP7121738B2 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
EP3011615B1 (fr) Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication
US10573879B2 (en) Electrolytes and methods for using the same
US9859554B2 (en) Negative electrode material for lithium-based batteries
US20160172711A1 (en) Electrolyte and lithium based batteries
EP2409350A1 (fr) Materiaux composites a base de liants fluores et nanotubes de carbone pour electrodes positives de batteries lithium
EP3973587A1 (fr) Composition d'electrolyte comprenant un mélange de sels de lithium
CA2967918A1 (fr) Batterie lithium organique
WO2018163127A1 (fr) Composition d'électrolyte et son utilisation dans des batteries lithium-ion
EP2583333B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire specifique
WO2018185422A1 (fr) Mélange de sels de lithium et ses utilisations comme electrolyte de batterie
WO2021237335A1 (fr) Cellules électrochimiques à l'état solide, procédés pour leur préparation et leurs utilisations
WO2020206552A1 (fr) Électrolytes céramiques, leurs procédés de préparation et les cellules électrochimiques les comprenant
WO2019030440A1 (fr) Melange de sels de lithium et ses utilisations comme electrolyte de batterie
WO2017097766A1 (fr) Cellule electrochimique pour batterie au lithium comprenant un electrolyte specifique
EP3179550B1 (fr) Cellule électrochimique pour batterie au lithium comprenant une électrode à base d'un matériau composite silicium-graphite et un électrolyte spécifique
EP3714498A1 (fr) Utilisation d'un melange de sels a titre d'additif dans une batterie au lithium gelifiee
EP3577706A1 (fr) Matériau d'électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine
CA3081892A1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gelifiee
FR3090213A1 (fr) Matériau actif d’électrode négative à base d’hydroxysulfure de fer et de lithium
CA2960489A1 (fr) Composition d'electrolyte et son utilisation dans des batteries lithium-ion
FR3091623A1 (fr) Cellule electrochimique pour accumulateur au lithium comprenant une electrode negative specifique en lithium metallique et une electrode positive sur collecteur en aluminium
FR3063836A1 (fr) Composition d'electrolyte et son utilisation dans des batteries lithium-ion
FR3023070A1 (fr) Procede de cyclage de batterie lithium-ion comprenant un materiau pour cathode a base d'oxyde lamellaire surlithie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20201028

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 4/02 20060101ALI20201022BHEP

Ipc: H01M 10/052 20100101ALI20201022BHEP

Ipc: H01M 4/58 20100101ALI20201022BHEP

Ipc: H01M 4/62 20060101ALI20201022BHEP

Ipc: H01M 4/04 20060101ALI20201022BHEP

Ipc: H01M 4/136 20100101AFI20201022BHEP

Ipc: H01M 10/0565 20100101ALI20201022BHEP

Ipc: H01M 4/1397 20100101ALI20201022BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221021