EP3577506B1 - Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique - Google Patents

Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique Download PDF

Info

Publication number
EP3577506B1
EP3577506B1 EP18707280.6A EP18707280A EP3577506B1 EP 3577506 B1 EP3577506 B1 EP 3577506B1 EP 18707280 A EP18707280 A EP 18707280A EP 3577506 B1 EP3577506 B1 EP 3577506B1
Authority
EP
European Patent Office
Prior art keywords
optical
electro
circuit
assembly
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18707280.6A
Other languages
German (de)
English (en)
Other versions
EP3577506A1 (fr
Inventor
Stefan Nerreter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3577506A1 publication Critical patent/EP3577506A1/fr
Application granted granted Critical
Publication of EP3577506B1 publication Critical patent/EP3577506B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4238Soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques

Definitions

  • the invention relates to an electro-optical circuit with an optical transmission link.
  • This has an electro-optical assembly with an optical transmission component and/or an optical reception component, which is mounted on a mounting surface of the carrier component.
  • the electro-optical circuit has a circuit carrier with a mounting side and with an embedded optical waveguide. H. that light can be coupled into the optical waveguide via the exposed end face.
  • the electro-optical circuit has an optical interface between the electro-optical assembly mounted on the circuit carrier and the optical waveguide integrated in the circuit carrier.
  • Part of the invention relates to an electro-optical assembly with an optical transmission component and/or an optical reception component, which is mounted on a mounting surface of a carrier component provided for this purpose.
  • This electro-optical assembly is suitable for incorporation into the electro-optical circuit described above.
  • the invention relates to a method for producing an optical interface in an electro-optical circuit.
  • a circuit carrier with a mounting side and with an embedded optical waveguide in a mounting side introduced recess is exposed with an end face provided.
  • an electro-optical assembly with an optical transmission component and/or an optical reception component, which is mounted on a mounting surface of a carrier component, is mounted on the circuit carrier.
  • a surface-mountable electro-optical assembly can be electrically contacted with an optical transmitting component or receiving component on a circuit carrier.
  • an interface between the optical transmission component or optical reception component and an optical waveguide integrated into the circuit carrier is produced by introducing a beam deflection into a depression in the circuit carrier.
  • Electro-optical devices can be soldered to a transparent substrate such as glass or a substrate comprising an optical waveguide in which electrically conductive traces are laid, thereby forming an electro-optical module.
  • a transparent substrate such as glass or a substrate comprising an optical waveguide in which electrically conductive traces are laid, thereby forming an electro-optical module.
  • the outer part of the substrate which includes electrically conductive traces and pads, called a flex cable, is bent down toward the mounting plane of the PCB, allowing electrical connections to be made between these pads and the PCB.
  • the substrate can be broken along a preformed groove and the outer part of the substrate can be removed leaving the flexible cable section in place.
  • the object of the invention is to specify an electro-optical circuit with an optical transmission path, an electro-optical assembly with an optical transmission component and/or an optical reception component, and a method for generating an optical interface in an electro-optical circuit, the formation of the optical interface with little Assembly effort should be possible and the production of the optical joining partners involved should be possible at low cost.
  • optical transmission component and/or the optical reception component is mounted on the carrier component with its respective optical axis aligned parallel to the mounting surface.
  • the optical assembly is also mounted with the mounting surface on the circuit carrier in such a way that the mounting surface faces the mounting side of the circuit carrier.
  • the optical transmission component and/or the optical reception component projects into the recess and forms a single optical axis with the exposed optical waveguide (this being subject to tolerances, as will be explained in more detail below).
  • optical transmission component and/or optical reception component is aligned with the optical axis defining the transmission direction in the direction of the optical waveguide, so that the optical interfaces are implemented without beam deflection be able. This means that a single optical axis is sufficient for the transmission line.
  • the configuration without deflection elements has the following advantages.
  • the component for beam deflection is saved, which means that the electronic assembly used with the optical transmission component and/or the optical reception component (hereinafter referred to as optical components for short, and these can be designed as optical transmission components and/or optical reception components) can be manufactured with less effort can be made.
  • arranging the optical components and the optical waveguide in a single optical axis results in an optical interface in which optical transmission can advantageously be made possible in a larger tolerance range.
  • This also simplifies the assembly of the optical assembly on the circuit carrier.
  • first contact surfaces are formed on the mounting surface of the carrier component, on which the optical transmission component and/or the optical reception component is electrically contacted.
  • the assembly of said optical component on the carrier component is thus also assembled with the tolerance requirements applicable to electronics assembly.
  • the optical component is fixed on the one hand and electrically contacted on the other hand in order to ensure a power supply or to output electrical signals.
  • the electro-optical assembly can be supplemented by components that support this function.
  • a driver circuit can be integrated into the electro-optical assembly for an optical transmission component.
  • An amplifier circuit can be integrated for an optical receiver component so that the electrical signals generated as a result of an optical-electrical conversion can be further processed (signal conditioning).
  • second contact surfaces are provided on the mounting surface, which are electrically connected to the first contact surfaces and are electrically connected to third contact surfaces on the mounting side of the circuit carrier.
  • the electro-optical assembly can thus communicate with the electro-optical circuit in terms of signals.
  • these electrical contacts can also be used to mechanically fix the electro-optical assembly on the circuit carrier, as already explained, due to the advantageously comparatively low tolerance requirements, the electro-optical assembly can be aligned with respect to the optical waveguide, forming the interface during the electrical assembly process, since the optics assembly usual higher tolerance requirements do not have to be met.
  • the second contact areas are distributed symmetrically around the optical transmission component and/or the optical reception component. This ensures that tolerances that occur during the production of the electrical connection can be kept as small as possible.
  • the electro-optical assembly sinks more evenly when the electrical connections are formed if the volume of the joining aid, for example a soldering material, decreases during the formation of the electrical connections. The danger of a relative to Mounting side of the circuit carrier obliquely aligned electro-optical assembly is advantageously reduced.
  • first additional contact surfaces to be provided on the mounting surface, which have no electrical connection to the circuit formed by the electro-optical assembly.
  • These first additional contact areas are each connected to second additional contact areas on the mounting side of the circuit carrier.
  • first and second additional contact areas are not used for electrical contacting of individual functional elements, but rather supplement the arrangement of the second and third contact areas, so that it is particularly advantageous for all of the second contact areas and the first additional contact areas to be symmetrical around the optical transmission component and/or the optical reception component can be distributed around. This is also possible if a meaningful symmetrical arrangement of the second contact surfaces would not be possible due to their number.
  • a plurality of optical transmission components and/or optical reception components are mounted on the carrier component.
  • the assembly process can be further simplified by the optical components required for forming a plurality of interfaces being combined on one carrier component.
  • the production outlay for such an electro-optical assembly can also advantageously be reduced.
  • the optical waveguide is designed as a glass waveguide, ie consists of an optical glass.
  • This material is particularly advantageous in Relatively temperature stable compared to optical plastics. Therefore, an electro-optical circuit, in the circuit carrier of which glass waveguides are used, can be thermally stressed to a comparatively high degree during a soldering process without the circuit carrier being damaged. In particular, it is therefore also possible to form the soldered connections using a reflow soldering process.
  • the optical waveguide has a cross-sectional area of at least 0.05 mm 2 and at most 1 mm 2 . In the case of a square cross section, this corresponds to an edge length of the cross section of approx. 225 ⁇ m to 1 mm.
  • the optical waveguide is round and has a diameter of at least 250 ⁇ m and at most 1000 ⁇ m. It has been shown that with these cross-sectional areas there is a sufficiently large tolerance range for the formation of the optical interface, with sufficient optical transmission quality being achieved within the tolerance range.
  • the optical transmitting component receives optical signals at a frequency of at least 1 kHz and at most 1 MHz and/or the optical receiving component receives optical signals at a frequency of at least 1 kHz and at most 1 MHz.
  • the requirements for the transmission quality are advantageously not too high, so that the transmission quality is possible in the range required for the intended installation.
  • the permissible positional tolerances between the electro-optical assembly and the circuit carrier in a direction perpendicular to the mounting side are at most half the height of the optical waveguide, preferably at most one third of the height Height of the optical waveguide, and in a direction parallel to the end face of the optical waveguide and parallel to the mounting side at most half the width of the optical waveguide, preferably at most one third of the width of the optical waveguide.
  • the height is measured perpendicularly to the mounting side and the width is measured parallel to the mounting side, since the cross-section of the waveguide is perpendicular to the mounting side of the circuit carrier. It has been shown that the optical losses associated with the said shift are advantageously not too high in order to still ensure the required transmission quality.
  • the carrier component has a spacer on which the optical transmission component and/or the optical reception component is/are mounted.
  • This spacer can be used to compensate for height differences between the optical axis of the optical waveguide and the optical component, which can occur due to the design due to the dimensions of the optical component and the position of the embedded optical waveguide in the circuit carrier.
  • the optical transmission component and/or the optical reception component can be equipped with collecting optics, in particular collimation optics.
  • collecting optics in particular collimation optics.
  • the incidence of light from a transmission component can be bundled onto the end face of the optical waveguide in order to keep the light losses as low as possible, particularly when tolerances occur.
  • the light signal coupled out of the optical waveguide can be bundled onto the receiving surface of the optical receiving component by means of collecting optics.
  • an electro-optical assembly in which the optical transmission component and/or the optical reception component is mounted on the carrier component with an alignment of its respective optical axis parallel to the mounting surface.
  • the mounting surface forms a mounting area, which extends around the optical transmission component and/or the optical reception component, for mounting on a circuit carrier having a recess for the electro-optical assembly.
  • an electro-optical subassembly can advantageously be mounted on the associated circuit carrier using electronics assembly means, the optical configuration being advantageously designed such that the tolerances occurring during electronics assembly ensure optical signal transmission of sufficient quality.
  • second contact surfaces and first additional contact surfaces can be formed on the mounting surface of the carrier component in order to enable electrical contacting on the associated circuit carrier on third contact surfaces and second additional contact surfaces.
  • the second contact areas or all of the second contact areas and first additional contact areas can in particular be distributed symmetrically around the optical transmission component and/or the optical reception component. Transmission frequencies for the optical components of the electro-optical assembly of at least 1 kHz and at most 1 MHz are particularly advantageous.
  • a spacer for mounting the optical components can be provided in the carrier component.
  • the optical components can also be equipped with collecting optics.
  • the object is also achieved by the method specified at the outset, in which, according to the invention, the optical interface between the interface mounted on the circuit board electro-optical assembly and the optical waveguide is produced by the optical transmission component and / or the optical reception component is mounted on the support component with a parallel to the mounting surface of the support component orientation of its respective optical axis.
  • the optical assembly is then mounted on the circuit carrier with the mounting surface facing the mounting side, with the optical transmission component and/or the optical reception component being guided into the recess and forming an optical axis with the exposed waveguide, i.e. the optical component or optical components and the optical waveguide (taking into account permissible tolerances between the optical components and the optical waveguide) lie on an optical axis.
  • a beam deflection between the optical axis of the respective optical component and the optical axis of the optical waveguide is therefore not necessary.
  • electro-optical circuits are realized with the method according to the invention, which have the advantages listed above.
  • the method can advantageously be carried out comparatively inexpensively, since comparatively large assembly tolerances can be accepted during assembly.
  • the electro-optical assembly is mounted on the circuit carrier by establishing an electrical connection between the carrier component and the circuit carrier.
  • the tolerances that are common in electronics assembly must be taken into account here, since these are also sufficient for aligning the optical components with respect to the optical waveguide.
  • the electro-optical assembly can be controlled via the generated electrical connections from the circuit carrier and supplied with electrical energy.
  • a further embodiment of the method according to the invention provides that during assembly the permissible positional tolerance between the electro-optical assembly and the circuit carrier in a direction perpendicular to the assembly side is at most half the height of the optical waveguide, preferably at most one third of the height of the optical waveguide, and in a Direction parallel to the end face of the optical waveguide and parallel to the mounting side at most half the width of the optical waveguide, preferably at most one third of the width B of the optical waveguide, is maintained. In this way, it can advantageously be ensured that a sufficiently high transmission quality is ensured in the interfaces between the optical waveguide and the optical components.
  • the cross-section of the optical waveguide that has to be embedded in the circuit carrier can also be determined on the basis of these, so that a sufficient transmission quality can be achieved in the optical interfaces when the tolerance field is exhausted.
  • FIG 1 an electro-optical circuit is shown. This consists of a circuit carrier 11, which provides a mounting page 12 is available. Electrical components 13 can be mounted on this mounting side 12 . In addition, two electro-optical assemblies 14 are mounted on the assembly side 12 .
  • the electro-optical assemblies 14 each have a carrier component 15 which has a mounting surface 16 for receiving an optical transmission component 17 or an optical reception component 18 .
  • electrical components for signal conditioning of the optical components can also be mounted on the mounting side 16 of the carrier component 15 .
  • this can be driver electronics 19 for the optical transmission component and amplifier electronics 20 for the optical reception component 18 .
  • the electro-optical assemblies 14 are mounted on the circuit carrier 11 via electrical connections 21 .
  • the mounting surface 16 of the carrier component 14 faces the mounting side 12 of the circuit carrier 11, so that the optical transmission component 17, the optical reception component 18, the driver electronics 19 and the amplifier electronics 20 in recesses provided for this purpose 22 project into the mounting side 12 of the carrier component 11 .
  • These recesses 22 each expose end faces 23 of an optical waveguide 24 which is embedded between individual layers 25 of the circuit carrier 11 .
  • the exposed end faces 23 therefore form optical interfaces with the optical transmission component 17 and the optical reception component 18, so that an optical transmission path is created.
  • the optical axes of the transmitter component 17, the receiver component 18 and the optical waveguide 24 are aligned in such a way that a single optical axis 26 (although subject to tolerances) is formed.
  • figure 2 1 shows an electro-optical assembly 14 on which two optical components, namely the optical transmission component 17 and the optical reception component 18 are fastened on the mounting surface 16 . Therefore, these two optical components can be assembled simultaneously by placing the electro-optical assembly 14 in two recesses 22 provided for this purpose.
  • two recesses 22 instead of two recesses 22, as in figure 2 shown, a single recess can also be provided (not shown). In this case, it only has to be taken into account that the end faces 23 of the optical waveguides are far enough apart from one another so that the optical transmission of the signals is not disturbed.
  • the electro-optical assembly 14 is connected to the circuit carrier 11 by forming soldered connections.
  • Solder material 27 is provided on circuit carrier 11 for this purpose.
  • the brazing material 27 connects after assembly (in figure 2 not shown) second contact surfaces 28 of the carrier component 15 with third contact surfaces 29 of the circuit carrier 11.
  • the second contact surfaces 28 are in a manner not shown in each case with the optical transmitter component 17 or the optical receiver component 18 is connected, so that it can be connected, for example, via the electrical components 13 on the circuit carrier (cf. figure 1 ) can be controlled.
  • first additional contact areas 30 are provided on the carrier component 14 and second additional contact areas 31 are provided on the carrier component 11 , which are also intended to be connected to one another with the soldering material 27 . These do not assume any electrical function, but mechanically stabilize the connection between the electro-optical assembly 14 and the circuit carrier 11 .
  • the electro-optical assembly 14 is shown, which is equipped with the optical transmission component 17. This is located on a spacer 32, which is suitable for optical transmission component 17 to extend deeper into the recess provided for this purpose after assembly of electro-optical assembly 14, so that optical axis 26 of optical transmission component 17 is in the optical axis of the optical waveguide (not shown, cf. figure 1 ) lies.
  • the spacer 32 forms part of the mounting surface 16, on which first contact surfaces 33 are provided, on which the optical transmission element is attached (for example by means of a soldered connection or an electrically conductive adhesive).
  • the optical transmitter component can be an LED, for example.
  • This has collecting optics 34 which are mounted on an emission surface (not shown) and bundle the emitted light along the optical axis 23 .
  • a photodiode (not shown), for example, can serve as the electro-optical receiving component.
  • the first contact areas 33 are connected to the second contact areas 28 via conductor tracks 35, which, as in FIG figure 2 shown, for electrical contacting of the Transmission components 17 are used with the circuit carrier 11.
  • the carrier component 15 has first additional contact areas 30 which, together with the second contact areas 28 , are distributed symmetrically around the transmission component 17 within an annular mounting area 36 (indicated by dot-and-dash lines).
  • the electrical connections can therefore be produced, for example, by a reflow soldering process, with the risk of tolerances occurring due to an inclined position of the carrier component 15 in relation to the circuit carrier being reduced as far as possible because of the symmetrical arrangement of the soldered connections around the optical transmission component 17 .
  • figure 4 indicates how the occurrence of tolerances can affect the assembly of the electro-optical assembly on the circuit carrier 11.
  • a round optical waveguide 24 is used, which is laminated in between the layers 25 of the circuit carrier 11 .
  • This can be a glass optical waveguide. This provides the round face 23 in the recess 22 for generating the optical interface.
  • a radiating or receiving surface 37 (referred to below as surface for short) of an optical component 18, 19 (not shown) is indicated by a dot-dash line. Due to tolerances, an offset can occur during assembly of the optical component, so that the optical axis 26 is subject to tolerances.
  • the optical axis 26 according to figure 4 is defined by the optical waveguide 24, while the optical axis 26a of the not shown optical transmission component or optical reception component (represented by the surface 37) has a height offset upwards. Likewise, a downward vertical offset is conceivable, which is indicated by the optical axis 26b.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Claims (13)

  1. Circuit électro-optique ayant un chemin optique de transmission, comportant
    • un module (14) électro-optique ayant un module (17) optique d'émission et/ou un composant (18) optique de réception, qui est monté sur une surface (16) de montage d'une pièce (15) support,
    • un support (11) de circuit ayant une face (12) de montage et ayant un guide (24) d'ondes lumineuses incorporé, qui, dans un évidement (22) ménagé dans la face (12) de montage, est à découvert par une face (23) frontale et
    • une interface optique entre le module (14) électro-optique monté sur le support (11) de circuit et le guide (24) d'ondes lumineuses, dans lequel
    le composant (17) optique d'émission et/ou le composant (18) optique de réception est monté sur la pièce (15) de support, en ayant une orientation parallèle à la surface (16) de montage, de son axe optique respectif, dans lequel
    le module (14) optique est monté par sa surface (16) de montage tournée vers la face (12) de montage sur le support (11) de circuit, dans lequel le composant (17) optique d'émission et/ou le composant (18) optique de réception pénètre dans l'évidement (22) et forme un axe optique avec le guide d'ondes lumineux à découvert, dans lequel,
    sur la surface (16) de montage de la pièce (15) support sont constituées des premières surfaces (33) de contact, sur lesquelles le composant (17) optique d'émission et/ou le composant (18) optique de réception est mis en contact électriquement, dans lequel,
    sur la surface (16) de montage sont prévues des deuxièmes surfaces (28) de contact, qui sont reliées électriquement aux premières surfaces (33) de contact et qui sont reliées électriquement à des troisièmes surfaces (29) de contact sur la face (12) de montage du support (11) du circuit, et dans lequel
    les deuxièmes surfaces (28) de contact sont réparties symétriquement autour du composant (17) optique d'émission et/ou du composant (18) optique de réception.
  2. Circuit électro-optique suivant la revendication 1, caractérisé
    en ce que sur la surface (16) de montage sont prévues des premières surfaces (30) supplémentaires de contact, qui n'ont pas de liaison électrique avec le circuit formé par le module électro-optique et qui sont reliées à des deuxièmes surfaces (31) supplémentaires de contact sur la face (12) de montage du support (11) du circuit.
  3. Circuit électro-optique suivant la revendication 2, caractérisé
    en ce que la totalité des deuxièmes surfaces (28) de contact et des premières surfaces (28) supplémentaires de contact sont réparties symétriquement autour du composant (17) optique d'émission et/ou du composant (18) optique de réception.
  4. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que plusieurs composants (17) optique d'émission et/ou composants (18) optique de réception sont montés sur la pièce (15) de support.
  5. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que le guide (24) d'ondes lumineuses est constitué sous la forme d'une fibre optique en verre.
  6. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que le guide (24) d'ondes lumineuses a une surface de section transversale d'au moins 0, 05 mm2 et d'au plus 1 mm2.
  7. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que le guide (24) d'ondes lumineuses est de section transversale circulaire et a un diamètre d'au moins 250 µm et d'au plus 1 000 µm.
  8. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que le composant (17) optique d'émission envoie des signaux optiques d'une fréquence d'au moins d'1 kHz et d'au plus 1 MHz et/ou le composant (18) optique de réception reçoit des signaux optiques d'une fréquence d'au moins 1 kHz et d'au plus 1 MHz.
  9. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce qu'une tolérance admissible de position entre le module (14) électro-optique et le support (11) du circuit se monte à
    • dans une direction perpendiculaire à la face (12) de montage, au plus à la demi hauteur h du guide d'ondes lumineuses, de préférence au plus à un tiers de la hauteur h du guide d'ondes lumineuses et
    • dans une direction parallèle à la face (23) frontale du guide d'ondes (24) lumineuses, ainsi que parallèlement à la face (12) de montage, au plus à la demi largeur b du guide d'ondes lumineuses, de préférence au plus à un tiers de la largeur b du guide d'ondes lumineuses.
  10. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que la pièce (15) de support a une pièce (32) de mise à distance, sur laquelle le composant (17) optique d'émission et/ou le composant (18) optique de réception est monté.
  11. Circuit électro-optique suivant l'une des revendications précédentes,
    caractérisé
    en ce que le composant (17) optique d'émission et/ou le composant (18) optique de réception est équipé d'une optique convergente.
  12. Procédé de production d'une interface optique d'un circuit électro-optique, dans lequel
    • on se procure un support (11) de circuit ayant une face (12) de montage et ayant un guide (24) d'ondes lumineuses incorporé, qui, dans un évidemment (22) ménagé dans la face (12) de montage, est à découvert par une face (23) frontale,
    • on monte, sur le support du circuit, un module (14) électro-optique ayant un composant (17) optique d'émission et/ou un composant (18) optique de réception, qui est monté sur une surface (16) de montage d'une pièce (15) support,
    on produit l'interface optique entre le guide (24) d'ondes lumineuses et le module (14) électro-optique monté sur le support (11) du circuit, en
    • montant le composant (17) optique d'émission et/ou le composant (18) optique de réception sur la pièce (15) support, on donnant à son axe optique respectif une orientation parallèle à la surface (16) de montage et
    • on monte, sur le support (11) du circuit, le module (14) optique ayant sa surface (16) de montage tournée vers la face (12) de montage, dans lequel on introduit le composant (17) optique d'émission et/ou le composant (18) optique de réception, dans l'évidement (22) et il forme un axe (26) optique avec le guide (24) d'ondes lumineuses à découvert, dans lequel
    on monte le module (14) électro-optique sur le support (11) du circuit, en produisant une liaison électrique entre la pièce (15) support et le support (11) du circuit.
  13. Procédé suivant la revendication 12,
    caractérisé
    en ce que, lors du montage, on maintient comme tolérance admissible de position entre le module (14) électro-optique et le support (11) du circuit
    • dans une direction perpendiculaire à la face (12) de montage, au plus la demi hauteur h du guide d'ondes lumineuses, de préférence au plus un tiers de la hauteur h du guide d'ondes lumineuses et
    • dans une direction parallèlement à la face (23) frontale du guide (24) d'ondes lumineuses, ainsi que parallèlement à la face (12) de montage au plus la demi largeur b du guide d'ondes lumineuses, de préférence au plus un tiers de la largeur b du guide d'ondes lumineuses.
EP18707280.6A 2017-03-10 2018-02-13 Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique Active EP3577506B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17160347.5A EP3373055A1 (fr) 2017-03-10 2017-03-10 Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique
PCT/EP2018/053498 WO2018162179A1 (fr) 2017-03-10 2018-02-13 Circuit électro-optique avec une voie de transmission optique, assemblage électro-optique pour le montage dans un tel circuit électro-optique et procédé pour la génération d'une interface optique d'un circuit électro-optique

Publications (2)

Publication Number Publication Date
EP3577506A1 EP3577506A1 (fr) 2019-12-11
EP3577506B1 true EP3577506B1 (fr) 2022-08-10

Family

ID=58266503

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17160347.5A Withdrawn EP3373055A1 (fr) 2017-03-10 2017-03-10 Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique
EP18707280.6A Active EP3577506B1 (fr) 2017-03-10 2018-02-13 Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17160347.5A Withdrawn EP3373055A1 (fr) 2017-03-10 2017-03-10 Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique

Country Status (4)

Country Link
US (1) US11169336B2 (fr)
EP (2) EP3373055A1 (fr)
CN (1) CN110392855B (fr)
WO (1) WO2018162179A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373055A1 (fr) 2017-03-10 2018-09-12 Siemens Aktiengesellschaft Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique
JPWO2023162846A1 (fr) * 2022-02-25 2023-08-31

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795872B1 (fr) * 1999-06-29 2003-05-30 Commissariat Energie Atomique Connexion optique pour circuit electronique integre et application aux interconnexions de tels circuits
JP4450965B2 (ja) * 2000-09-29 2010-04-14 日本碍子株式会社 光学部品の接着構造
GB0201969D0 (en) * 2002-01-29 2002-03-13 Qinetiq Ltd Integrated optics devices
US7463364B2 (en) * 2003-07-31 2008-12-09 Ler Technologies, Inc. Electro-optic sensor
US7389012B2 (en) * 2003-12-30 2008-06-17 International Business Machines Corporation Electro-optical module comprising flexible connection cable and method of making the same
DE102004034332B3 (de) 2004-07-09 2005-05-25 Siemens Ag Oberflächenmontierbare Baugruppe mit optischer Schittstelle sowie Substrat mit eingebettetem Lichtleiter und auf die Baugruppe angepasster optischer Schnittstelle
KR100637929B1 (ko) * 2004-11-03 2006-10-24 한국전자통신연구원 하이브리드형 광소자
CN100458484C (zh) 2005-12-23 2009-02-04 国际商业机器公司 光电板及其制造方法
WO2007114384A1 (fr) * 2006-04-03 2007-10-11 The University Of Tokyo Emetteur de signal
JP2009192818A (ja) 2008-02-14 2009-08-27 Nitto Denko Corp 光電気混載基板の製法およびそれによって得られる光電気混載基板
JP5467826B2 (ja) * 2009-09-16 2014-04-09 日東電工株式会社 光電気混載モジュールおよびその製造方法
EP2856231A1 (fr) * 2012-05-29 2015-04-08 3M Innovative Properties Company Interconnexion optique
US10209464B2 (en) * 2014-10-17 2019-02-19 Cisco Technology, Inc. Direct printed circuit routing to stacked opto-electrical IC packages
EP3373055A1 (fr) 2017-03-10 2018-09-12 Siemens Aktiengesellschaft Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique

Also Published As

Publication number Publication date
EP3577506A1 (fr) 2019-12-11
US20210132307A1 (en) 2021-05-06
US11169336B2 (en) 2021-11-09
CN110392855B (zh) 2021-05-18
EP3373055A1 (fr) 2018-09-12
CN110392855A (zh) 2019-10-29
WO2018162179A1 (fr) 2018-09-13

Similar Documents

Publication Publication Date Title
EP1174745B1 (fr) Module optoélectronique montable en surface
DE69214593T2 (de) Optisches Verbindungssystem für Elektronikplatinen
DE10238741A1 (de) Planare optische Komponente und Kopplungsvorrichtung zur Kopplung von Licht zwischen einer planaren optischen Komponente und einem optischen Bauteil
EP0335104A2 (fr) Dispositif pour relier optiquement un ou plusieurs émetteurs optiques d'un ou plusieurs circuits intégrés
DE60303140T2 (de) Optische verbindungsanordnung
EP3577506B1 (fr) Circuit électro-optique comprenant un guide de transmission optique, module électro-optique destiné à être intégré dans un tel circuit électro-optique et procédé de fabrication d'une interface optique d'un circuit électro-optique
DE102019210750B4 (de) Verfahren zur herstellung einer anordnung mit einem substrat und zwei bauelementen mit lichtwellenleitern
DE19826658A1 (de) Schaltungsträger mit integrierten, aktiven, optischen Funktionen
EP1168022A2 (fr) Module opto-électronique avec substat à connexions traversantes
EP2583540B1 (fr) Procédé de fabrication d'une connection électrique et connecteur électrique
DE102015201998A1 (de) Kameramodul sowie Verfahren zur Herstellung
DE69213778T2 (de) Verfahren zur Herstellung eines opto-elektronischen Bauteils
DE19917554C2 (de) Positionsfixierung in Leiterplatten
EP1330670B1 (fr) Agencement et procede pour bloquer des composants en position dans des cartes de circuits
DE69816581T2 (de) Gegossenes Kunststoffgehäuse für ein Halbleiterbauelement
EP2695492A1 (fr) Module électronique et procédé pour sa fabrication
DE102013217270A1 (de) Leiterplattenvorrichtung mit einem Steckkontakt
DE102010031023B9 (de) Parallele optische Kommunikationsvorrichtungen mit schweißbaren Einsätzen, sowie zugehörige Verfahren zum Festmachen
DE102016202765A1 (de) Schaltkreisanordnung und Verfahren zum Herstellen einer Schaltkreisanordnung
DE102016216811A1 (de) Optokoppler mit einer optischen Übertragungsstrecke und elektrischen Anschlüssen und elektronische Baugruppe, in der ein solcher Optokoppler eingebaut ist
DE3813566A1 (de) Elektrische verbindung zwischen einer hybridbaugruppe und einer leiterplatte sowie verfahren zur deren herstellung
DE10214223B4 (de) Anordnung mit einem Steckverbindungselement für opto-elektrische Bauelemente oder Baugruppen und einer Leiterplatte
DE10346376B4 (de) Substratbauteil mit optischer Schnittstelle, optischer Steckverbinder und Verfahren zum Erzeugen einer optischen Steckverbindung
EP2192420A1 (fr) Unité d'émission et de réception optique et capteur doté de celle-ci
EP2166825A1 (fr) Module électronique pouvant être soudé et doté d'une carte de circuit imprimé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210312

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20220323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018010348

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018010348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

26N No opposition filed

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1510974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 7