EP3575470B1 - Device for the manufacture of woven material from continuous filaments - Google Patents

Device for the manufacture of woven material from continuous filaments Download PDF

Info

Publication number
EP3575470B1
EP3575470B1 EP18174523.3A EP18174523A EP3575470B1 EP 3575470 B1 EP3575470 B1 EP 3575470B1 EP 18174523 A EP18174523 A EP 18174523A EP 3575470 B1 EP3575470 B1 EP 3575470B1
Authority
EP
European Patent Office
Prior art keywords
flow
straightener
cooling air
filaments
flow channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18174523.3A
Other languages
German (de)
French (fr)
Other versions
EP3575470A1 (en
Inventor
Michael Nitschke
Tristan Kretschmann
Martin Neuenhofer
Hans-Georg Geus
Detlef Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Original Assignee
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI201830170T priority Critical patent/SI3575470T1/en
Application filed by Reifenhaeuser GmbH and Co KG Maschinenenfabrik filed Critical Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority to EP18174523.3A priority patent/EP3575470B1/en
Priority to DK18174523.3T priority patent/DK3575470T3/en
Priority to ES18174523T priority patent/ES2841727T3/en
Priority to JP2019081747A priority patent/JP7168517B2/en
Priority to CA3041248A priority patent/CA3041248C/en
Priority to AU2019202944A priority patent/AU2019202944B2/en
Priority to MYPI2019002375A priority patent/MY193453A/en
Priority to PE2019000936A priority patent/PE20191854A1/en
Priority to CONC2019/0004689A priority patent/CO2019004689A1/en
Priority to ARP190101222A priority patent/AR114883A1/en
Priority to MX2019005374A priority patent/MX2019005374A/en
Priority to TNP/2019/000154A priority patent/TN2019000154A1/en
Priority to KR1020190057387A priority patent/KR102399905B1/en
Priority to BR102019010160A priority patent/BR102019010160A2/en
Priority to CL2019001363A priority patent/CL2019001363A1/en
Priority to IL266793A priority patent/IL266793B/en
Priority to RU2019116345A priority patent/RU2739285C2/en
Priority to US16/423,048 priority patent/US11001942B2/en
Priority to UAA201905798A priority patent/UA122948C2/en
Priority to CN201910448326.3A priority patent/CN110541242B/en
Priority to MA45970A priority patent/MA45970B1/en
Priority to JOP/2019/0119A priority patent/JOP20190119B1/en
Publication of EP3575470A1 publication Critical patent/EP3575470A1/en
Application granted granted Critical
Publication of EP3575470B1 publication Critical patent/EP3575470B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the invention relates to a device for the production of spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic material, a spinnerette being provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air, with one on opposite sides of the cooling chamber Air supply cabin is arranged and wherein cooling air can be introduced into the cooling chamber from the opposite air supply cabin, and flow straighteners are provided in the air supply cabin for rectifying the introduced cooling air.
  • - Spunbond nonwoven in the context of the invention means in particular a spunbond nonwoven produced by the spunbond process. Because of their quasi-endless length, continuous filaments differ from staple fibers, which have much shorter lengths of, for example, 10 mm to 60 mm.
  • the invention is based on the technical problem of specifying a device for producing spunbonded webs from continuous filaments with which very homogeneous spunbonded webs can be produced that are at least largely free of flaws or defects, in particular at higher throughputs of more than 200 kg / h / m and / or at high thread speeds.
  • the invention teaches a device for the production of spunbonded nonwovens from continuous filaments - in particular from continuous filaments made of thermoplastic material - wherein a spinnerette is provided for spinning the continuous filaments, a cooling chamber for cooling the spun filaments with cooling air being provided, with an two opposite sides of the cooling chamber each have an air supply cabin, and cooling air can be introduced into the cooling chamber from the opposite air supply cabin, wherein in at least one of the two air supply cabins, preferably in each of the two air supply cabins, at least one flow straightener is provided for rectifying the cooling air flow impinging on the filaments, one flow straightener having a plurality of transverse to the direction of movement the filaments or the filament stream has oriented flow channels, these flow channels being delimited by channel walls, wherein the open area of a flow straightener is greater than 85%, preferably greater than 90% and wherein the ratio of the length L of the flow channels to the inner diameter D i of the flow channels L / D i is 1 to 15,
  • the open area of a flow straightener is greater than 91%, preferably greater than 92% and particularly preferably greater than 92.5%.
  • the open area of the flow straightener refers in particular to the free flow cross section of the flow straightener, which is not limited by the duct walls or the thickness of the duct walls and / or spacers possibly arranged between the flow ducts or the duct walls.
  • no flow screens with their meshes that are arranged in the area of the flow straightener and above all are arranged in front of or behind the flow straightener. These flow screens or similar components are expediently disregarded when calculating the open area.
  • the open area of a flow straightener is only calculated by adding up the open partial areas of all flow channels in relation to the total area of the flow straightener.
  • the named open area and the total area of the flow straightener are arranged transversely, in particular perpendicular or essentially perpendicular to the flow channels and thus forms a cross-sectional area of the flow straightener.
  • D i means the inside diameter of the flow channels. It thus becomes opposite for a flow channel starting from one channel wall Channel wall measured. If a flow channel has different diameters with regard to its cross section, D i means in particular the smallest inside diameter of the flow channel. The smallest inner diameter D i therefore relates here and below to the smallest inner diameter measured in a flow channel if this flow channel has different inner diameters with regard to its cross section. The smallest inside diameter of a cross-section in the form of a regular hexagon is measured between two opposite sides and not between two opposite corners.
  • the ratio of the length L of the flow channels to the inner diameter D i of the flow channels L / D i is 2 to 8, preferably 2.5 to 7.5, preferably 2.5 to 7 and very preferably 3 to 6.5 .
  • the ratio L / D i is 4 to 6, in particular 4.5 to 5.5. If, with a plurality of flow channels, different lengths L of the flow channels and / or different inside diameters D i or smallest inside diameter D i of the flow channels should be present, L means the mean length and / or D i the mean inside diameter or smallest inside diameter.
  • Machine direction means, here and below, the direction in which the filaments or the fleece deposit placed on a depositing device or on a depositing screen belt are / will be transported away. It is within the scope of the invention that the two air supply cabins or the flow straighteners extend transversely to the machine direction (CD direction) and that the cooling air is thus introduced essentially in the machine direction (MD) or counter to the machine direction.
  • the flow straighteners according to the invention With the flow straighteners according to the invention, a uniform, homogeneous flow of cooling air over the width of the system or in CD direction can be achieved.
  • the invention is based on the knowledge that influencing the cooling or the cooling air flow in the cooling chamber and in particular the special design of the flow straighteners results in a very effective equalization of the filament deposition or fleece deposition. Due to the cooling according to the invention and in particular due to the design of the flow straightener, surprisingly homogeneous spunbonded nonwovens can be produced which are largely free of flaws or defects. This is especially true for higher throughputs and higher yarn speeds specified below.
  • the cooling air supply for the cooling chamber takes place by sucking in the cooling air due to the filament movement or the downward filament flow and / or by actively blowing in or introducing cooling air, for example by means of at least one fan.
  • the flow straighteners according to the invention are intended to effect a directed blowing on of the filaments, specifically expediently blowing transversely, preferably perpendicular to the filament axis or to the direction of flow of the filaments. It is also within the scope of the invention that the flow straighteners ensure a uniform or homogeneous flow of cooling air to the filaments.
  • a homogeneous flow of cooling air onto the filaments here preferably means a homogeneous or uniform flow over the width of the device transversely to the machine direction, that is to say over the CD direction.
  • the flow can differ fundamentally over the height of the cooling air chamber or the flow straightener. It is recommended that the flow straighteners according to the invention ensure, in particular, a uniform alignment of the air flow vectors, with the amount of the air velocity expediently remaining largely unchanged.
  • the inventive design of A flow straightener in particular fulfills the above-described effect of a uniform or directed blowing of cooling air onto the filaments in the cooling chamber.
  • the same or essentially the same volume flows of cooling air are introduced into the cooling chamber from both opposite air supply cabins. In principle, however, it is also within the scope of the invention that different volume flows of cooling air are introduced into the cooling chamber from both air supply cabins.
  • each air supply cabin is divided into at least two cabin sections, from which cooling air of different temperatures can be supplied. It is recommended that each air supply cabin has two cabin sections arranged one above the other or vertically one above the other, from which the cooling air of different temperatures is supplied. Cooling air of the same temperature is expediently introduced into the cooling chamber from two opposite cabin sections of two air supply cabins. According to a preferred embodiment of the invention, each air supply cabin is divided into only two cabin sections, from each of which cooling air of different temperatures can be supplied. According to another embodiment, an air supply cabin has three or more cabin sections from which cooling air of different temperatures can be introduced into the cooling chamber. - A flow straightener is preferably present in the area of each cabin section of the air supply cabin.
  • a flow straightener expediently extends over all cabin sections of an air supply cabin. According to a preferred embodiment, a flow straightener extends over the entire height and / or width of the associated air supply cabin or essentially over the entire height and / or width of the associated air supply cabin.
  • a particularly recommended embodiment of the invention is characterized in that at least one flow straightener has at least one flow screen on its cooling air inflow side and / or on its cooling air outflow side. It is within the scope of the invention that a flow screen or the surface of a flow screen is arranged transversely and preferably perpendicular or substantially perpendicular to the longitudinal direction of the flow channels of a flow straightener.
  • a flow straightener is recommended to have such a flow screen both on its cooling air inflow side and on its cooling air outflow side.
  • a flow sieve is expediently tensioned or held or fastened under prestress on the cooling air inflow side and / or on the cooling air outflow side of a flow straightener.
  • a flow screen is arranged or rests directly on the flow straightener on the cooling air inflow side and / or on the cooling air outflow side of the flow straightener.
  • the homogeneous flow onto the filaments with the cooling air should be supported with the preferably provided flow screens.
  • a flow screen have a mesh size or an average mesh size of 0.1 to 0.5 mm, expediently from 0.1 to 0.4 mm and preferably from 0.15 to 0.34 mm.
  • Mesh size means here in particular the distance between two opposing wires of the flow screen or the screen fabric of the flow screen.
  • the mesh size is in particular the smallest distance of two opposite ones Wires of a mesh meant. If a flow screen has rectangular meshes with rectangular sides of different lengths, the mesh size means the distance between the two longer rectangular sides.
  • a flow sieve is recommended to have a wire thickness or average wire thickness of 0.05 to 0.35 mm, preferably 0.05 to 0.32 mm, preferably 0.06 to 0.30 mm and very preferably 0.07 to 0 , 28 mm.
  • a flow screen has the same or the same size mesh or substantially the same or the same size mesh over its screen surface.
  • the open area of a flow screen is 15 to 55%, expediently 20 to 50% and preferably 25 to 45%.
  • the open area of the flow screen means in particular the open area of the flow screen not occupied by the wire mesh and thus the area of the flow screen through which the cooling air can flow.
  • a preferred embodiment of the invention is characterized in that a flow straightener and a flow screen arranged on its cooling air inflow side and / or a flow screen arranged on its cooling air outflow side are accommodated in a common frame.
  • Preferably at least one such frame with a flow straightener and at least one flow screen is arranged on both opposite sides of the cooling chamber or on both air supply cabins.
  • the flow channels of the flow straightener or the flow straightener are arranged transversely to the direction of flow of the filaments and expediently transversely to the longitudinal center line M of the device.
  • the flow channels are oriented perpendicular or substantially perpendicular to the flow direction of the filaments or to the longitudinal center axis M of the device. It is within the scope of the invention that the flow channels are oriented perpendicular or essentially perpendicular to a plane oriented orthogonally to the machine direction (MD) or to a vertical plane running through the longitudinal center axis M of the device. In principle, however, it is also possible for the flow channels to be arranged at an angle to the planes mentioned.
  • the angle of the oblique orientation of the flow channels of a flow straightener can be uniform or different.
  • a very preferred embodiment of the invention is characterized in that the flow channels of a flow straightener have a polygonal cross section, specifically preferably a square to octagonal cross section.
  • a highly recommended embodiment of the invention is characterized in that the flow channels of a flow straightener are equipped with a hexagonal cross section. For this preferred case, the flow channels are thus designed as it were honeycomb.
  • the flow channels of a flow straightener have a round cross section, the flow channels preferably being designed with a circular or oval cross section.
  • the circular cross section is preferred.
  • An additional embodiment of the invention is characterized in that the channel walls of the flow channels are wing-shaped or wing-shaped.
  • the airfoil-shaped duct walls in particular exercise a directional function with regard to the cooling air flowing through. Rectangular or substantially rectangular flow channels are expediently formed between the wing-shaped or airfoil-shaped channel walls. It is within the scope of the invention that the smallest distance between two adjacent wing-shaped or airfoil-shaped duct walls is 2 to 15 mm, preferably 3 to 12 mm and preferably 5 to 10 mm.
  • a highly recommended embodiment of the invention is characterized in that the inner surface of a flow straightener through which the cooling air flows is 5 to 50 m 2 , preferably 7.5 to 45 m 2 and preferably 10 to 40 m 2 per square meter of flow cross section of the flow straightener.
  • the inner surface through which the cooling air flows is calculated from the sum of the surfaces of the duct walls of the flow ducts through or against which flow per square meter of flow cross section of the flow straightener. It is within the scope of the invention that the flow sieves of the flow straightener are not taken into account when calculating this inner surface through which flow occurs.
  • the length L of the flow channels of a flow straightener is 15 to 65 mm, preferably 20 to 60 mm, preferably 20 to 55 mm and very preferably 25 to 50 mm.
  • the inside diameter or the smallest inside diameter D i of the flow channels is recommended to be 2 to 15 mm, preferably 3 to 12 mm, preferably 4 to 11 mm and very preferably 5 to 10 mm.
  • the flow channels in a flow straightener are arranged compact and close to one another. In a flow straightener, flow channel preferably adjoins flow channel and, according to one embodiment, only spacers can be present between the flow channels.
  • the mutual spacing of the flow channels or at least the majority of the flow channels is recommended to be smaller or significantly smaller than the smallest inner diameter D i of a flow channel.
  • the flow channels are expediently arranged in a flow straightener according to the principle of the closest packing.
  • At least one supply line for supplying the cooling air with a cross-sectional area Qz is connected to each air supply cabin, this cross-sectional area Qz of the supply line increasing to a cross-sectional area Q L of the air supply cabin when the cooling air passes into the supply cabin, whereby the cross-sectional area Q L is at least twice as large, preferably at least three times as large and preferably at least four times as large as the cross-sectional area Qz of the supply line.
  • the cross-sectional area Qz of the supply line expediently expands to 3 to 15 times the cross-sectional area Q L of the air supply cabin.
  • the cooling volume flow supplied to an air supply cabin is divided into a plurality of partial volume flows, which partial volume flows flow through separate partial supply lines and / or through the segments of a segmented supply line.
  • the cooling air volume flow can in particular be divided into two to five, preferably two to three partial volume flows. If each partial volume flow flows in through a separate partial supply line, the cross-sectional area Q Z of the partial supply line expands to the cross-sectional area Q L of the relevant cabin section of the air supply cabin.
  • the cross-sectional area Q L is preferably at least twice as large, preferably at least three times as large as the cross-sectional area Q Z of the partial feed line.
  • the cross-sectional area Q Z of a supply line or a partial supply line expand in steps - in particular in several stages - or continuously to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin.
  • At least one flat homogenizing element for homogenizing the cooling air flow introduced into the air supply cabin is arranged in the air supply cabin in the flow direction of the cooling air upstream of the flow straightener and at a distance from the flow straightener. It is within the scope of the invention that a flat homogenization element has a plurality of openings and that the free open area of the flat homogenization element is 1 to 20%, preferably 2 to 18% and preferably 2 to 15% of the total area of the flat homogenization element.
  • At least one homogenization element is designed as a perforated element, in particular as a perforated plate, with a plurality of perforated openings, the perforated openings preferably having an opening diameter of 1 to 10 mm, preferably 1.5 to 9 mm and very preferably 1.5 to 8 mm.
  • a homogenizing element is designed as a homogenizing sieve with a plurality or with a plurality of meshes, the homogenizing sieve preferably Mesh sizes from 0.1 to 0.5 mm, preferably from 0.12 to 0.4 mm and very preferably from 0.15 to 0.35 mm.
  • the at least one flat homogenization element is arranged at a distance a 1 of at least 50 mm, preferably of at least 80 mm and preferably of at least 100 mm in the flow direction of the cooling air in front of the flow straightener of the corresponding air supply cabin or in front of the flow screen of this flow straightener .
  • a plurality of homogenizing elements are expediently arranged at a distance from the flow straightener in the flow direction of the cooling air one behind the other and at a distance from one another in an air supply cabin.
  • the distance between two homogenizing elements arranged one behind the other in an air supply cabin in the direction of flow is at least 50 mm, preferably at least 80 mm and preferably at least 100 mm.
  • the continuous filaments are spun out by means of a spinnerette and fed to the cooling chamber with the air supply cabins and flow straighteners.
  • at least one spinning beam for spinning the filaments is arranged transversely to the machine direction (MD direction).
  • the spinning beam is oriented perpendicular or essentially perpendicular to the machine direction.
  • the spinning beam it is also possible for the spinning beam to be arranged at an angle to the machine direction.
  • at least one monomer suction device is provided between the spinnerette or the spinning beam and the cooling chamber.
  • the monomer suction device With the monomer suction device, air is sucked out of the filament formation space below the spinnerette. In this way, the gases such as monomers, oligomers, decomposition products and the like that escape in addition to the continuous filaments can be removed from the device according to the invention.
  • a The monomer suction device expediently has at least one suction chamber to which at least one suction fan is preferably connected. It is recommended that the cooling chamber according to the invention with the air supply cabins and flow straighteners adjoin the monomer suction device in the direction of flow of the filaments.
  • the filaments are introduced from the cooling chamber into a drawing device for drawing the filaments.
  • the cooling chamber is followed by an intermediate channel which connects the cooling chamber with a stretching shaft of the stretching device.
  • the unit from the cooling chamber and the stretching device or the unit from the cooling chamber, the intermediate channel and the stretching shaft is designed as a closed system.
  • a closed system means in particular that, apart from the supply of cooling air into the cooling chamber, no further air is supplied to this unit.
  • the flow straighteners used according to the invention are distinguished above all by special advantages in such a closed system. A particularly simple and effective equalization of the air flow or cooling air flow is possible here.
  • At least one diffuser preferably adjoins the stretching device in the direction of flow of the filaments, the filaments being guided through this diffuser.
  • the diffuser comprises a diffuser cross-section or a divergent diffuser section that widens in the direction in which the filaments are deposited.
  • the filaments are deposited on a depositing device for filament depositing or for depositing fleece.
  • the storage device is expediently around a storage screen belt or around an air-permeable storage screen belt.
  • the nonwoven web formed from the filaments is conveyed away in the machine direction (MD) with the depositing device or with the depositing screen belt.
  • process air is sucked through the depositing device or through the depositing screen belt or sucked in from below, at least in the deposit area of the filaments.
  • a particularly stable filament deposit or fleece deposit is achieved in this way. This suction is of advantageous importance within the scope of the invention in combination with the flow straighteners according to the invention.
  • the nonwoven web is expediently fed to further treatment measures, in particular calendering.
  • the device according to the invention is designed or set up with the proviso that it is possible to work with thread speeds or filament speeds above 2000 m / min, in particular with thread speeds above 2200 m / min or above 2500 m / min , for example with a thread speed in the range of 3000 m / min.
  • These filament speeds can be used in the context of the production of filaments or spunbonded nonwovens from polyolefins, in particular from polypropylene.
  • the figures show a device according to the invention for producing spunbonded nonwovens from continuous filaments 1, in particular from continuous filaments 1 made of thermoplastic material.
  • the device comprises a spinnerette 2 for spinning the endless filaments 1.
  • These spun endless filaments 1 are introduced into a cooling device 3 with a cooling chamber 4 and with air supply cabins 5, 6 arranged on two opposite sides of the cooling chamber 4.
  • the cooling chamber 4 and the air supply cabins 5, 6 extend transversely to the machine direction MD and thus in the CD direction of the device. Cooling air is introduced into the cooling chamber 4 from the opposite air supply cabins 5, 6.
  • a monomer suction device 7 is preferably arranged between the spinnerette 2 and the cooling device 3 and in the exemplary embodiment. With this monomer suction device 7 interfering gases occurring during the spinning process can be removed from the device. These gases can be, for example, monomers, oligomers or decomposition products and similar substances.
  • the cooling device 3 is followed by a drawing device 8 in which the filaments 1 are drawn.
  • the stretching device 8 preferably and in the exemplary embodiment has an intermediate channel 9 which connects the cooling device 3 to a stretching shaft 10 of the stretching device 8.
  • the unit from the cooling device 3 and the stretching device 8 or the unit from the cooling device 3, the intermediate channel 9 and the stretching shaft 10 is designed as a closed system.
  • a closed system means that apart from the supply of cooling air in the cooling device 3, no further air is supplied to this unit.
  • secondary air inlet gaps 12 for introducing secondary air into the diffuser 11 are provided between the stretching device 8 or between the stretching shaft 10 and the diffuser 11.
  • the filaments 1 are preferably and in the exemplary embodiment deposited on a depositing device designed as a depositing screen belt 13.
  • the filament deposit or the nonwoven web 14 is then expediently conveyed or transported away in the machine direction MD, and in the exemplary embodiment with the depositing screen belt 13.
  • a suction device is provided under the depositing device or below the depositing screen belt 13 for sucking off air or process air through the depositing device or through the depositing screen belt 13.
  • a suction area 15 is preferred and arranged in the exemplary embodiment below the diffuser outlet under the screen belt 13.
  • the extends Suction area 15 at least over the width B of the diffuser outlet.
  • the width b of the suction area 15 is greater than the width B of the diffuser outlet.
  • each air supply cabin 5, 6 is divided into two cabin sections 16, 17 from which cooling air of different temperatures can be supplied.
  • each cooling air having a temperature T 1 can be fed while from the two lower portions 17 each cabin cooling air a direction different from the temperature T 1 Temperature T can be fed to the second
  • a flow straightener 18 is arranged in each air supply cabin 5, 6 on the cooling chamber side, which flow straightener preferably extends over both cabin sections 16, 17 of each air supply cabin 5, 6 in the embodiment.
  • each flow straightener 18 serves to straighten the cooling air flow impinging on the filaments 1.
  • each flow straightener 18 preferably has a plurality of flow channels 19 oriented perpendicular to the filament flow direction FS. These flow channels 19 are each delimited by channel walls 20 and are preferably linear.
  • the open area of each flow straightener 18 is more than 90% of the total area of the flow straightener 18.
  • the ratio of the length L of the flow channels 19 to the smallest inner diameter D i of the flow channels 19 is in the range between 1 and 10, expediently in the range between 1 and 9.
  • each flow straightener 18 has a flow screen 21 both on its cooling air inflow side ES and on its cooling air outflow side AS.
  • the two flow screens 21 of each flow straightener 18 are arranged directly in front of or behind the flow straightener 18.
  • the two flow screens 21 of a flow straightener 18 or the surfaces of these flow screens 21 are oriented perpendicular to the longitudinal direction of the flow channels 19 of the flow straightener 18. It has been proven that a flow screen 21 has a mesh size w of 0.1 to 0.5 mm, preferably 0.1 to 0.4 mm and preferably 0.15 to 0.34 mm. Furthermore, it is advantageous if the flow screen has a wire thickness d of 0.05 to 0.35 mm, preferably 0.05 to 0.32 mm and preferably 0.07 to 0.28 mm. It is within the scope of the invention that the mesh size w of the flow screens 21 is significantly smaller than the smallest inner diameter D i of the flow channels 19 of the flow straightener 18.
  • the mesh size w of a flow screen 21 is preferably less than 1/6, very preferably less than 1 / 8 and particularly preferably less than 1/10 of the smallest inner diameter D i of the flow channels 19.
  • the open area of a flow screen 21 that is not occupied by wire is recommended to be 21 to 50% and preferably 25 to 45% of the total area of a flow screen 21.
  • the Figures 4 to 6 show typical cross sections of the flow channels 19 of a flow straightener 18 used according to the invention.
  • the flow channels 19 of a flow straightener 18 have a hexagonal or honeycomb-shaped cross section.
  • the smallest inner diameter D i is measured here between opposite sides of the hexagon (see Fig. Fig. 4 ).
  • the flow channels 19 of the flow straightener 18 have a circular cross section.
  • the Fig. 6 shows an embodiment of a flow straightener 18 according to the invention with airfoil-shaped channel walls 20.
  • airfoil-shaped channel walls 20 are expediently separated from one another in the exemplary embodiment by spacers 22, which spacers 22 also form channel walls of these flow channels.
  • the airfoil-shaped duct walls 20 are curved in cross section (see right side of FIG Fig. 6 ).
  • the airfoil-shaped duct walls 20 can also be designed in a straight line and in this case the flow straightener 18 is designed like a grating.

Description

Die Erfindung betrifft eine Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten, insbesondere aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei eine Spinnerette zum Ausspinnen der Endlosfilamente vorgesehen ist und wobei eine Kühlkammer zum Kühlen der ausgesponnenen Filamente mit Kühlluft vorhanden ist, wobei an gegenüberliegenden Seiten der Kühlkammer jeweils eine Luftzufuhrkabine angeordnet ist und wobei aus den gegenüberliegenden Luftzufuhrkabinen Kühlluft in die Kühlkammer einführbar ist und wobei in den Luftzufuhrkabinen Strömungsgleichrichter zum Gleichrichten der eingeführten Kühlluft vorgesehen sind. - Spinnvlies meint im Rahmen der Erfindung insbesondere ein nach dem Spunbond-Verfahren hergestelltes Spunbond-Vlies. Endlosfilamente unterscheiden sich aufgrund ihrer quasi endlosen Länge von Stapelfasern, die viel geringere Längen von beispielsweise 10 mm bis 60 mm aufweisen.The invention relates to a device for the production of spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic material, a spinnerette being provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air, with one on opposite sides of the cooling chamber Air supply cabin is arranged and wherein cooling air can be introduced into the cooling chamber from the opposite air supply cabin, and flow straighteners are provided in the air supply cabin for rectifying the introduced cooling air. - Spunbond nonwoven in the context of the invention means in particular a spunbond nonwoven produced by the spunbond process. Because of their quasi-endless length, continuous filaments differ from staple fibers, which have much shorter lengths of, for example, 10 mm to 60 mm.

Vorrichtungen der vorstehend beschriebenen Art sind aus der Praxis in unterschiedlichen Ausführungsformen bekannt. Viele dieser bekannten Vorrichtungen weisen den Nachteil auf, dass die damit hergestellten Spinnvliese über ihre Flächenausdehnung nicht immer ausreichend homogen ausgebildet sind. Viele damit hergestellten Spinnvliese weisen störende Inhomogenitäten in Form von Fehlstellen bzw. Defektstellen auf. Die Anzahl der Inhomogenitäten nimmt in der Regel mit dem Durchsatz bzw. mit Steigerung der Fadengeschwindigkeit zu. Eine typische Fehlstelle in solchen Spinnvliesen entsteht durch sogenannte "Tropfen". Diese entstehen durch Abreißen einer oder mehrerer weicher bzw. schmelzflüssiger Filamente, wodurch eine Schmelzeansammlung entsteht, die eine Fehlstelle im Spinnvlies bedingt. Solche Fehlstellen weisen in der Regel eine Größe von mehr als 2 mm mal 2 mm auf. - Fehlstellen in den Spinnvliesen können auch durch sogenannte "Hard Pieces" erzeugt werden. Diese entstehen wie folgt: Durch Spannungsverlust kann ein Filament relaxieren, zurückschnellen und ein Knäuel bilden, das die Defektstelle in der Spinnvliesfläche erzeugt. Derartige Fehlstellen sind normalerweise kleiner als 2 mm mal 2 mm. Viele nach bekannten Verfahren hergestellte Spinnvliese bzw. Spunbond-Vliese weisen solche Inhomogenitäten auf, vor allem wenn bei ihrer Herstellung mit hohen Durchsätzen gearbeitet wird.Devices of the type described above are known from practice in different embodiments. Many of these known devices have the disadvantage that the spunbonded nonwovens produced with them are not always sufficiently homogeneous over their surface area. Many spunbonded nonwovens produced therewith have disruptive inhomogeneities in the form of flaws or defects. The number of inhomogeneities generally increases with the throughput or with an increase in the thread speed. A typical flaw in such spunbonded fabrics is caused by so-called "drops". These are created by tearing off one or more soft or molten filaments, creating an accumulation of melt that causes a defect in the spunbonded nonwoven. Such defects are usually more than 2 mm in size 2 mm. - Defects in the spunbonded nonwovens can also be produced by so-called "hard pieces". These arise as follows: Due to the loss of tension, a filament can relax, snap back and form a tangle that creates the defect in the spunbonded surface. Such defects are usually smaller than 2 mm by 2 mm. Many spunbonded nonwovens or spunbond nonwovens produced by known processes have such inhomogeneities, especially when high throughputs are used in their production.

Demgegenüber liegt der Erfindung das technische Problem zugrunde, eine Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten anzugeben, mit der sehr homogene Spinnvliese erzeugt werden können, die zumindest weitgehend fehlstellenfrei bzw. defektfrei ausgebildet sind und zwar insbesondere bei höheren Durchsätzen von mehr als 200 kg/h/m und/oder bei hohen Fadengeschwindigkeiten.In contrast, the invention is based on the technical problem of specifying a device for producing spunbonded webs from continuous filaments with which very homogeneous spunbonded webs can be produced that are at least largely free of flaws or defects, in particular at higher throughputs of more than 200 kg / h / m and / or at high thread speeds.

Zur Lösung dieses technischen Problems lehrt die Erfindung eine Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten - insbesondere aus Endlosfilamenten aus thermoplastischem Kunststoff -, wobei eine Spinnerette zum Ausspinnen der Endlosfilamente vorgesehen ist, wobei eine Kühlkammer zum Kühlen der ausgesponnenen Filamente mit Kühlluft vorhanden ist, wobei an zwei gegenüberliegenden Seiten der Kühlkammer jeweils eine Luftzufuhrkabine angeordnet ist und wobei aus den gegenüberliegenden Luftzufuhrkabinen Kühlluft in die Kühlkammer einführbar ist,
wobei in zumindest einer der beiden Luftzufuhrkabinen, vorzugsweise in jeder der beiden Luftzufuhrkabinen jeweils zumindest ein Strömungsgleichrichter zum Gleichrichten der auf die Filamente treffenden Kühlluftströmung vorgesehen ist, wobei ein Strömungsgleichrichter eine Mehrzahl von quer zur Bewegungsrichtung der Filamente bzw. des Filamentstroms orientierte Strömungskanäle aufweist, wobei diese Strömungskanäle durch Kanalwandungen begrenzt sind,
wobei die offene Fläche eines Strömungsgleichrichters größer als 85%, vorzugsweise größer als 90% ist und wobei das Verhältnis der Länge L der Strömungskanäle zum Innendurchmesser Di der Strömungskanäle L/Di 1 bis 15, vorzugsweise 1 bis 10 und bevorzugt 1,5 bis 9 beträgt.
To solve this technical problem, the invention teaches a device for the production of spunbonded nonwovens from continuous filaments - in particular from continuous filaments made of thermoplastic material - wherein a spinnerette is provided for spinning the continuous filaments, a cooling chamber for cooling the spun filaments with cooling air being provided, with an two opposite sides of the cooling chamber each have an air supply cabin, and cooling air can be introduced into the cooling chamber from the opposite air supply cabin,
wherein in at least one of the two air supply cabins, preferably in each of the two air supply cabins, at least one flow straightener is provided for rectifying the cooling air flow impinging on the filaments, one flow straightener having a plurality of transverse to the direction of movement the filaments or the filament stream has oriented flow channels, these flow channels being delimited by channel walls,
wherein the open area of a flow straightener is greater than 85%, preferably greater than 90% and wherein the ratio of the length L of the flow channels to the inner diameter D i of the flow channels L / D i is 1 to 15, preferably 1 to 10 and preferably 1.5 to 9 is.

Es empfiehlt sich, dass die offene Fläche eines Strömungsgleichrichters größer als 91%, vorzugsweise größer als 92% und besonders bevorzugt größer als 92,5% ist. Offene Fläche des Strömungsgleichrichters bezieht sich dabei insbesondere auf den freien Strömungsquerschnitt des Strömungsgleichrichters, der also nicht durch die Kanalwandungen bzw. die Dicke der Kanalwandungen und/oder eventuell zwischen den Strömungskanälen bzw. den Kanalwandungen angeordnete Abstandshalter begrenzt wird. In die Berechnung dieser offenen Fläche gehen insbesondere keine im Bereich des Strömungsgleichrichters angeordnete und vor allem vor bzw. hinter dem Strömungsgleichrichter angeordnete Strömungssiebe mit ihren Maschen ein. Zweckmäßigerweise bleiben diese Strömungssiebe oder dergleichen Komponenten bei der Berechnung der offenen Fläche außer Acht. Es empfiehlt sich, dass die offene Fläche eines Strömungsgleichrichters lediglich durch Summierung der offenen Teilflächen aller Strömungskanäle im Verhältnis zur Gesamtfläche des Strömungsgleichrichters berechnet wird. Die genannte offene Fläche sowie die Gesamtfläche des Strömungsgleichrichters ist quer, insbesondere senkrecht bzw. im Wesentlichen senkrecht zu den Strömungskanälen angeordnet und bildet somit eine Querschnittsfläche des Strömungsgleichrichters.It is recommended that the open area of a flow straightener is greater than 91%, preferably greater than 92% and particularly preferably greater than 92.5%. The open area of the flow straightener refers in particular to the free flow cross section of the flow straightener, which is not limited by the duct walls or the thickness of the duct walls and / or spacers possibly arranged between the flow ducts or the duct walls. In the calculation of this open area, in particular, no flow screens with their meshes that are arranged in the area of the flow straightener and above all are arranged in front of or behind the flow straightener. These flow screens or similar components are expediently disregarded when calculating the open area. It is recommended that the open area of a flow straightener is only calculated by adding up the open partial areas of all flow channels in relation to the total area of the flow straightener. The named open area and the total area of the flow straightener are arranged transversely, in particular perpendicular or essentially perpendicular to the flow channels and thus forms a cross-sectional area of the flow straightener.

Mit Di ist der Innendurchmesser der Strömungskanäle gemeint. Er wird somit für einen Strömungskanal von einer Kanalwandung ausgehend zu gegenüberliegenden Kanalwandung gemessen. Wenn ein Strömungskanal bezüglich seines Querschnittes unterschiedliche Durchmesser aufweist, meint Di insbesondere den kleinsten Innendurchmesser des Strömungskanals. Der kleinste Innendurchmesser Di bezieht sich hier und nachfolgend also auf den bei einem Strömungskanal gemessenen kleinsten Innendurchmesser, wenn dieser Strömungskanal bezüglich seines Querschnittes unterschiedliche Innendurchmesser aufweist. So wird der kleinste Innendurchmesser bei einem Querschnitt in Form eines regelmäßigen Sechseckes zwischen zwei gegenüberliegenden Seiten und nicht zwischen zwei gegenüberliegenden Ecken gemessen. Es empfiehlt sich, dass das Verhältnis der Länge L der Strömungskanäle zum Innendurchmesser Di der Strömungskanäle L/Di 2 bis 8, vorzugsweise 2,5 bis 7,5, bevorzugt 2,5 bis 7 und sehr bevorzugt 3 bis 6,5 beträgt. Gemäß einer besonders empfohlenen Ausführungsform beträgt das Verhältnis L/Di 4 bis 6, insbesondere 4,5 bis 5,5. Falls bei einer Mehrzahl von Strömungskanälen verschiedene Längen L der Strömungskanäle und/oder verschiedene Innendurchmesser Di bzw. kleinste Innendurchmesser Di der Strömungskanäle vorhanden sein sollten, meint L die mittlere Länge und/oder Di den mittleren Innendurchmesser bzw. kleinsten Innendurchmesser.D i means the inside diameter of the flow channels. It thus becomes opposite for a flow channel starting from one channel wall Channel wall measured. If a flow channel has different diameters with regard to its cross section, D i means in particular the smallest inside diameter of the flow channel. The smallest inner diameter D i therefore relates here and below to the smallest inner diameter measured in a flow channel if this flow channel has different inner diameters with regard to its cross section. The smallest inside diameter of a cross-section in the form of a regular hexagon is measured between two opposite sides and not between two opposite corners. It is recommended that the ratio of the length L of the flow channels to the inner diameter D i of the flow channels L / D i is 2 to 8, preferably 2.5 to 7.5, preferably 2.5 to 7 and very preferably 3 to 6.5 . According to a particularly recommended embodiment, the ratio L / D i is 4 to 6, in particular 4.5 to 5.5. If, with a plurality of flow channels, different lengths L of the flow channels and / or different inside diameters D i or smallest inside diameter D i of the flow channels should be present, L means the mean length and / or D i the mean inside diameter or smallest inside diameter.

Maschinenrichtung (MD) meint hier und nachfolgend die Richtung, in der die auf einer Ablageeinrichtung bzw. auf einem Ablagesiebband abgelegten Filamente bzw. die Vliesablage abtransportiert werden/wird. Es liegt im Rahmen der Erfindung, dass die beiden Luftzufuhrkabinen bzw. die Strömungsgleichrichter sich quer zur Maschinenrichtung (CD-Richtung) erstrecken und dass die Kühlluft somit im Wesentlichen in Maschinenrichtung (MD) bzw. entgegen der Maschinenrichtung eingeführt wird.Machine direction (MD) means, here and below, the direction in which the filaments or the fleece deposit placed on a depositing device or on a depositing screen belt are / will be transported away. It is within the scope of the invention that the two air supply cabins or the flow straighteners extend transversely to the machine direction (CD direction) and that the cooling air is thus introduced essentially in the machine direction (MD) or counter to the machine direction.

Mit den erfindungsgemäßen Strömungsgleichrichtern kann insbesondere eine gleichmäßige homogene Kühlluftanströmung über die Breite der Anlage bzw. in CD-Richtung erzielt werden. Der Erfindung liegt die Erkenntnis zugrunde, dass durch Einflussnahme auf die Kühlung bzw. auf die Kühlluftströmung in der Kühlkammer und insbesondere durch spezielle Ausgestaltung der Strömungsgleichrichter eine sehr effektive Vergleichmäßigung der Filamentablage bzw. Vliesablage resultiert. Aufgrund der erfindungsgemäßen Kühlung und insbesondere aufgrund der Ausgestaltung des Strömungsgleichrichters können überraschend homogene Spinnvliese erzeugt werden, die weitgehend fehlstellen- bzw. defektstellenfrei sind. Das gilt vor allem auch für höhere Durchsätze und weiter unten noch näher spezifizierte höhere Fadengeschwindigkeiten.With the flow straighteners according to the invention, a uniform, homogeneous flow of cooling air over the width of the system or in CD direction can be achieved. The invention is based on the knowledge that influencing the cooling or the cooling air flow in the cooling chamber and in particular the special design of the flow straighteners results in a very effective equalization of the filament deposition or fleece deposition. Due to the cooling according to the invention and in particular due to the design of the flow straightener, surprisingly homogeneous spunbonded nonwovens can be produced which are largely free of flaws or defects. This is especially true for higher throughputs and higher yarn speeds specified below.

Es liegt im Rahmen der Erfindung, dass die Kühlluftzufuhr für die Kühlkammer durch Ansaugen der Kühlluft aufgrund der Filamentbewegung bzw. der abwärtsgerichteten Filamentströmung erfolgt und/oder durch aktive Einblasung bzw. Einführung von Kühluft, beispielsweise mittels zumindest eines Gebläses. Die erfindungsgemäßen Strömungsgleichrichter sollen eine gerichtete Anblasung der Filamente bewirken und zwar zweckmäßigerweise eine Anblasung quer, vorzugsweise senkrecht zur Filamentachse bzw. zur Strömungsrichtung der Filamente. Es liegt weiterhin im Rahmen der Erfindung, dass die Strömungsgleichrichter eine gleichmäßige bzw. homogene Kühlluftanströmung der Filamente gewährleisten. Eine homogene Kühlluftanströmung der Filamente meint hier vorzugsweise eine homogene bzw. gleichmäßige Anströmung über die Breite der Vorrichtung quer zur Maschinenrichtung, das heißt über die CD-Richtung. Über die Höhe der Kühlluftkammer bzw. der Strömungsgleichrichter kann die Anströmung grundsätzlich unterschiedlich sein. Es empfiehlt sich, dass die erfindungsgemäßen Strömungsgleichrichter insbesondere für eine gleichmäßige Ausrichtung der Luftströmungsvektoren sorgen, wobei zweckmäßigerweise der Betrag der Luftgeschwindigkeit weitgehend unverändert bleibt. Die erfindungsgemäße Ausgestaltung der Strömungsgleichrichter erfüllt insbesondere den vorstehend beschriebenen Effekt einer gleichmäßigen bzw. gerichteten Kühlluftanblasung der Filamente in der Kühlkammer. - Nach einer bevorzugten Ausführungsform werden von beiden gegenüberliegenden Luftzufuhrkabinen jeweils gleiche bzw. im Wesentlichen gleiche Volumenströme an Kühlluft in die Kühlkammer eingeführt. Grundsätzlich liegt es aber auch im Rahmen der Erfindung, dass aus beiden Luftzufuhrkabinen jeweils unterschiedliche Volumenströme an Kühlluft in die Kühlkammer eingeführt werden.It is within the scope of the invention that the cooling air supply for the cooling chamber takes place by sucking in the cooling air due to the filament movement or the downward filament flow and / or by actively blowing in or introducing cooling air, for example by means of at least one fan. The flow straighteners according to the invention are intended to effect a directed blowing on of the filaments, specifically expediently blowing transversely, preferably perpendicular to the filament axis or to the direction of flow of the filaments. It is also within the scope of the invention that the flow straighteners ensure a uniform or homogeneous flow of cooling air to the filaments. A homogeneous flow of cooling air onto the filaments here preferably means a homogeneous or uniform flow over the width of the device transversely to the machine direction, that is to say over the CD direction. The flow can differ fundamentally over the height of the cooling air chamber or the flow straightener. It is recommended that the flow straighteners according to the invention ensure, in particular, a uniform alignment of the air flow vectors, with the amount of the air velocity expediently remaining largely unchanged. The inventive design of A flow straightener in particular fulfills the above-described effect of a uniform or directed blowing of cooling air onto the filaments in the cooling chamber. According to a preferred embodiment, the same or essentially the same volume flows of cooling air are introduced into the cooling chamber from both opposite air supply cabins. In principle, however, it is also within the scope of the invention that different volume flows of cooling air are introduced into the cooling chamber from both air supply cabins.

Eine bewährte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass jede Luftzufuhrkabine in zumindest zwei Kabinenabschnitte unterteilt ist, aus denen jeweils Kühlluft unterschiedlicher Temperatur zuführbar ist. Empfohlenermaßen weist dabei jede Luftzufuhrkabine zwei übereinander bzw. vertikal übereinander angeordnete Kabinenabschnitte auf, aus denen die Kühlluft unterschiedlicher Temperatur zugeführt wird. Zweckmäßigerweise wird aus zwei gegenüberliegenden Kabinenabschnitten zweier Luftzufuhrkabinen Kühlluft gleicher Temperatur in die Kühlkammer eingeführt. Gemäß einer bevorzugten Ausführungsform der Erfindung ist jede Luftzufuhrkabine in lediglich zwei Kabinenabschnitte unterteilt, aus denen jeweils Kühlluft unterschiedlicher Temperatur zuführbar ist. Nach einer anderen Ausführungsform weist eine Luftzufuhrkabine drei oder mehr Kabinenabschnitte auf, aus denen Kühlluft unterschiedlicher Temperatur in die Kühlkammer eingeführt werden kann. - Vorzugsweise ist ein Strömungsgleichrichter im Bereich jedes Kabinenabschnittes der Luftzufuhrkabinen vorhanden. Zweckmäßigerweise erstreckt sich ein Strömungsgleichrichter über alle Kabinenabschnitte einer Luftzufuhrkabine. Gemäß einer bevorzugten Ausführungsform erstreckt sich ein Strömungsgleichrichter über die gesamte Höhe und/oder Breite der zugeordneten Luftzufuhrkabine bzw. im Wesentlichen über die gesamte Höhe und/oder Breite der zugeordneten Luftzufuhrkabine.A proven embodiment of the invention is characterized in that each air supply cabin is divided into at least two cabin sections, from which cooling air of different temperatures can be supplied. It is recommended that each air supply cabin has two cabin sections arranged one above the other or vertically one above the other, from which the cooling air of different temperatures is supplied. Cooling air of the same temperature is expediently introduced into the cooling chamber from two opposite cabin sections of two air supply cabins. According to a preferred embodiment of the invention, each air supply cabin is divided into only two cabin sections, from each of which cooling air of different temperatures can be supplied. According to another embodiment, an air supply cabin has three or more cabin sections from which cooling air of different temperatures can be introduced into the cooling chamber. - A flow straightener is preferably present in the area of each cabin section of the air supply cabin. A flow straightener expediently extends over all cabin sections of an air supply cabin. According to a preferred embodiment, a flow straightener extends over the entire height and / or width of the associated air supply cabin or essentially over the entire height and / or width of the associated air supply cabin.

Eine besonders empfohlene Ausführungsform der Erfindung zeichnet sich dadurch aus, dass zumindest ein Strömungsgleichrichter an seiner Kühlluft-Einströmseite und/oder an seiner Kühlluft-Ausströmseite zumindest ein Strömungssieb aufweist. Es liegt dabei im Rahmen der Erfindung, dass ein Strömungssieb bzw. die Fläche eines Strömungssiebes quer und bevorzugt senkrecht bzw. im Wesentlichen senkrecht zur Längsrichtung der Strömungskanäle eines Strömungsgleichrichters angeordnet ist. Empfohlenermaßen weist ein Strömungsgleichrichter sowohl an seiner Kühlluft-Einströmseite als auch an seiner Kühlluft-Ausströmseite ein solches Strömungssieb auf. Zweckmäßigerweise ist ein Strömungssieb an der Kühlluft-Einströmseite und/oder an der Kühlluft-Ausströmseite eines Strömungsgleichrichters gespannt bzw. unter Vorspannung gehalten bzw. befestigt. Es liegt im Rahmen der Erfindung, dass ein Strömungssieb an der Kühlluft-Einströmseite und/oder an der Kühlluft-Ausströmseite des Strömungsgleichrichters unmittelbar an dem Strömungsgleichrichter angeordnet ist bzw. anliegt. Mit den bevorzugt vorgesehenen Strömungssieben soll die homogene Anströmung der Filamente mit der Kühlluft unterstützt werden. - Es liegt im Rahmen der Erfindung, dass bei der Bestimmung der oben behandelten und im Patentanspruch 1 beanspruchten offenen Fläche des Strömungsgleichrichters die vor bzw. hinter dem Strömungsgleichrichter angeordneten Strömungssiebe unberücksichtigt bleiben.A particularly recommended embodiment of the invention is characterized in that at least one flow straightener has at least one flow screen on its cooling air inflow side and / or on its cooling air outflow side. It is within the scope of the invention that a flow screen or the surface of a flow screen is arranged transversely and preferably perpendicular or substantially perpendicular to the longitudinal direction of the flow channels of a flow straightener. A flow straightener is recommended to have such a flow screen both on its cooling air inflow side and on its cooling air outflow side. A flow sieve is expediently tensioned or held or fastened under prestress on the cooling air inflow side and / or on the cooling air outflow side of a flow straightener. It is within the scope of the invention that a flow screen is arranged or rests directly on the flow straightener on the cooling air inflow side and / or on the cooling air outflow side of the flow straightener. The homogeneous flow onto the filaments with the cooling air should be supported with the preferably provided flow screens. - It is within the scope of the invention that when determining the open area of the flow straightener dealt with above and claimed in claim 1, the flow screens arranged in front of or behind the flow straightener are not taken into account.

Es empfiehlt sich, dass ein Strömungssieb eine Maschenweite bzw. eine mittlere Maschenweite von 0,1 bis 0,5 mm, zweckmäßigerweise von 0,1 bis 0,4 mm und vorzugsweise von 0,15 bis 0,34 mm aufweist. Maschenweite meint hier insbesondere den Abstand von zwei gegenüberliegenden Drähten des Strömungssiebes bzw. des Siebgewebes des Strömungssiebes. Dabei ist mit Maschenweite insbesondere der kleinste Abstand von zwei gegenüberliegenden Drähten einer Masche gemeint. Wenn ein Strömungssieb rechteckförmige Maschen mit unterschiedlich langen Rechteckseiten aufweist, ist mit Maschenweite der Abstand zwischen den beiden längeren Rechteckseiten gemeint. Empfohlenermaßen weist ein Strömungssieb eine Drahtstärke bzw. mittlere Drahtstärke von 0,05 bis 0,35 mm, vorzugsweise von 0,05 bis 0,32 mm, bevorzugt von 0,06 bis 0,30 mm und sehr bevorzugt von 0,07 bis 0,28 mm auf. Es liegt im Rahmen der Erfindung, dass ein Strömungssieb über seine Siebfläche gleiche bzw. gleichgroße Maschen oder im Wesentlichen gleiche bzw. gleichgroße Maschen aufweist. Zweckmäßigerweise liegt eine homogene Verteilung von Maschen gleicher Geometrie bzw. von im Wesentlichen gleicher Geometrie über die Siebfläche vor.It is recommended that a flow screen have a mesh size or an average mesh size of 0.1 to 0.5 mm, expediently from 0.1 to 0.4 mm and preferably from 0.15 to 0.34 mm. Mesh size means here in particular the distance between two opposing wires of the flow screen or the screen fabric of the flow screen. The mesh size is in particular the smallest distance of two opposite ones Wires of a mesh meant. If a flow screen has rectangular meshes with rectangular sides of different lengths, the mesh size means the distance between the two longer rectangular sides. A flow sieve is recommended to have a wire thickness or average wire thickness of 0.05 to 0.35 mm, preferably 0.05 to 0.32 mm, preferably 0.06 to 0.30 mm and very preferably 0.07 to 0 , 28 mm. It is within the scope of the invention that a flow screen has the same or the same size mesh or substantially the same or the same size mesh over its screen surface. Appropriately, there is a homogeneous distribution of meshes of the same geometry or of essentially the same geometry over the sieve surface.

Gemäß empfohlener Ausführungsform der Erfindung beträgt die offene Fläche eines Strömungssiebes 15 bis 55%, zweckmäßigerweise 20 bis 50% und vorzugsweise 25 bis 45%. Offene Fläche des Strömungssiebes meint dabei insbesondere die nicht durch die Maschendrähte eingenommene offene Fläche des Strömungssiebes und somit die frei von der Kühlluft durchströmbare Fläche des Strömungssiebes.According to a recommended embodiment of the invention, the open area of a flow screen is 15 to 55%, expediently 20 to 50% and preferably 25 to 45%. The open area of the flow screen means in particular the open area of the flow screen not occupied by the wire mesh and thus the area of the flow screen through which the cooling air can flow.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass ein Strömungsgleichrichter und ein an seiner Kühlluft-Einströmseite und/oder ein an seiner Kühlluft-Ausströmseite angeordnetes Strömungssieb von einem gemeinsamen Rahmen aufgenommen werden. Dadurch entsteht gleichsam ein fester bzw. stabiler Verbund zwischen Strömungsgleichrichter und Strömungssieben, der als Ganzes in der Luftzufuhrkabine fixiert werden kann. Vorzugsweise wird an beiden gegenüberliegenden Seiten der Kühlkammer bzw. an beiden Luftzufuhrkabinen zumindest ein solcher Rahmen mit einem Strömungsgleichrichter und zumindest einem Strömungssieb angeordnet.A preferred embodiment of the invention is characterized in that a flow straightener and a flow screen arranged on its cooling air inflow side and / or a flow screen arranged on its cooling air outflow side are accommodated in a common frame. This creates a solid or stable connection between the flow straightener and the flow sieves, which can be fixed as a whole in the air supply cabin. Preferably at least one such frame with a flow straightener and at least one flow screen is arranged on both opposite sides of the cooling chamber or on both air supply cabins.

Erfindungsgemäß sind die Strömungskanäle des Strömungsgleichrichters bzw. der Strömungsgleichrichter quer zur Strömungsrichtung der Filamente und zweckmäßigerweise quer zur Längsmittelache M der Vorrichtung angeordnet. Gemäß einer bevorzugten Ausführungsform der Erfindung sind die Strömungskanäle senkrecht bzw. im Wesentlichen senkrecht zu der Strömungsrichtung der Filamente bzw. zur Längsmittelachse M der Vorrichtung orientiert. Es liegt im Rahmen der Erfindung, dass die Strömungskanäle senkrecht bzw. im Wesentlichen senkrecht zu einer orthogonal zur Maschinenrichtung (MD) ausgerichteten Ebene bzw. zu einer durch die Längsmittelachse M der Vorrichtung verlaufenden Vertikalebene ausgerichtet sind. Grundsätzlich ist es aber auch möglich, dass die Strömungskanäle schräg zu den genannten Ebenen angeordnet sein können. Die Winkel der Schrägorientierung der Strömungskanäle eines Strömungsgleichrichters kann dabei einheitlich sein oder auch unterschiedlich sein. Wenn hier von der Orientierung bzw. Anordnung der Strömungskanäle die Rede ist, meint dies insbesondere die Orientierung bzw. Anordnung der Längsachsen der Strömungskanäle. Es liegt im Rahmen der Erfindung, dass die Strömungskanäle eines Strömungsgleichrichters linear bzw. im Wesentlichen linear ausgebildet sind.According to the invention, the flow channels of the flow straightener or the flow straightener are arranged transversely to the direction of flow of the filaments and expediently transversely to the longitudinal center line M of the device. According to a preferred embodiment of the invention, the flow channels are oriented perpendicular or substantially perpendicular to the flow direction of the filaments or to the longitudinal center axis M of the device. It is within the scope of the invention that the flow channels are oriented perpendicular or essentially perpendicular to a plane oriented orthogonally to the machine direction (MD) or to a vertical plane running through the longitudinal center axis M of the device. In principle, however, it is also possible for the flow channels to be arranged at an angle to the planes mentioned. The angle of the oblique orientation of the flow channels of a flow straightener can be uniform or different. When the orientation or arrangement of the flow channels is mentioned here, this means in particular the orientation or arrangement of the longitudinal axes of the flow channels. It is within the scope of the invention that the flow channels of a flow straightener are linear or essentially linear.

Eine sehr bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Strömungskanäle eines Strömungsgleichrichters einen mehreckigen Querschnitt aufweisen und zwar vorzugsweise einen viereckigen bis achteckigen Querschnitt aufweisen. Eine sehr empfohlene Ausführungsform der Erfindung zeichnet sich dadurch aus, dass die Strömungskanäle eines Strömungsgleichrichters mit einem sechseckigen Querschnitt ausgestattet sind. Für diesen bevorzugten Fall sind die Strömungskanäle somit gleichsam wabenförmig ausgestaltet.A very preferred embodiment of the invention is characterized in that the flow channels of a flow straightener have a polygonal cross section, specifically preferably a square to octagonal cross section. A highly recommended embodiment of the invention is characterized in that the flow channels of a flow straightener are equipped with a hexagonal cross section. For this preferred case, the flow channels are thus designed as it were honeycomb.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weisen die Strömungskanäle eines Strömungsgleichrichters einen runden Querschnitt auf, wobei die Strömungskanäle vorzugsweise mit kreisrundem oder ovalem Querschnitt ausgebildet sind. Dabei ist der kreisrunde Querschnitt bevorzugt.According to a further preferred embodiment of the invention, the flow channels of a flow straightener have a round cross section, the flow channels preferably being designed with a circular or oval cross section. The circular cross section is preferred.

Eine zusätzliche Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Kanalwandungen der Strömungskanäle flügelförmig bzw. tragflügelförmig ausgebildet sind. Die tragflügelförmigen Kanalwandungen üben dabei insbesondere eine richtungsweisende Funktion bezüglich der durchströmenden Kühlluft aus. Zweckmäßigerweise sind zwischen den flügelförmigen bzw. tragflügelförmigen Kanalwandungen rechteckförmige bzw. im Wesentlichen rechteckförmige Strömungskanäle ausgebildet. Es liegt im Rahmen der Erfindung, dass der kleinste Abstand zweier benachbarter flügelförmiger bzw. tragflügelförmiger Kanalwandungen 2 bis 15 mm, vorzugsweise 3 bis 12 mm und bevorzugt 5 bis 10 mm beträgt.An additional embodiment of the invention is characterized in that the channel walls of the flow channels are wing-shaped or wing-shaped. The airfoil-shaped duct walls in particular exercise a directional function with regard to the cooling air flowing through. Rectangular or substantially rectangular flow channels are expediently formed between the wing-shaped or airfoil-shaped channel walls. It is within the scope of the invention that the smallest distance between two adjacent wing-shaped or airfoil-shaped duct walls is 2 to 15 mm, preferably 3 to 12 mm and preferably 5 to 10 mm.

Eine sehr empfohlene Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die von der Kühlluft durchströmte Innenfläche eines Strömungsgleichrichters 5 bis 50 m2, vorzugsweise 7,5 bis 45 m2 und bevorzugt 10 bis 40 m2 pro Quadratmeter Strömungsquerschnitt des Strömungsgleichrichters beträgt. Die von der Kühlluft durchströmte Innenfläche berechnet sich dabei aus der Summe der pro Quadratmeter Strömungsquerschnitt des Strömungsgleichrichters durchströmten bzw. angeströmten Flächen der Kanalwandungen der Strömungskanäle. Es liegt im Rahmen der Erfindung, dass bei der Berechnung dieser durchströmten Innenfläche die Strömungssiebe des Strömungsgleichrichters unberücksichtigt bleiben.A highly recommended embodiment of the invention is characterized in that the inner surface of a flow straightener through which the cooling air flows is 5 to 50 m 2 , preferably 7.5 to 45 m 2 and preferably 10 to 40 m 2 per square meter of flow cross section of the flow straightener. The inner surface through which the cooling air flows is calculated from the sum of the surfaces of the duct walls of the flow ducts through or against which flow per square meter of flow cross section of the flow straightener. It is within the scope of the invention that the flow sieves of the flow straightener are not taken into account when calculating this inner surface through which flow occurs.

Gemäß sehr bevorzugter Ausführungsform der Erfindung beträgt die Länge L der Strömungskanäle eines Strömungsgleichrichters 15 bis 65 mm, vorzugsweise 20 bis 60 mm, bevorzugt 20 bis 55 mm und sehr bevorzugt 25 bis 50 mm. - Empfohlenermaßen beträgt der Innendurchmesser bzw. der kleinste Innendurchmesser Di der Strömungskanäle 2 bis 15 mm, vorzugsweise 3 bis 12 mm, bevorzugt 4 bis 11 mm und sehr bevorzugt 5 bis 10 mm. - Es liegt im Rahmen der Erfindung, dass die Strömungskanäle in einem Strömungsgleichrichter kompakt und dicht aneinander angeordnet sind. Vorzugsweise grenzt in einem Strömungsgleichrichter Strömungskanal an Strömungskanal und nach einer Ausführungsform können lediglich Abstandshalter zwischen den Strömungskanälen vorhanden sein. Empfohlenermaßen ist der gegenseitige Abstand der Strömungskanäle bzw. zumindest des Großteils der Strömungskanäle kleiner bzw. deutlich kleiner als der kleinste Innendurchmesser Di eines Strömungskanals. Zweckmäßigerweise sind die Strömungskanäle in einem Strömungsgleichrichter nach dem Prinzip der dichtesten Packung angeordnet.According to a very preferred embodiment of the invention, the length L of the flow channels of a flow straightener is 15 to 65 mm, preferably 20 to 60 mm, preferably 20 to 55 mm and very preferably 25 to 50 mm. The inside diameter or the smallest inside diameter D i of the flow channels is recommended to be 2 to 15 mm, preferably 3 to 12 mm, preferably 4 to 11 mm and very preferably 5 to 10 mm. - It is within the scope of the invention that the flow channels in a flow straightener are arranged compact and close to one another. In a flow straightener, flow channel preferably adjoins flow channel and, according to one embodiment, only spacers can be present between the flow channels. The mutual spacing of the flow channels or at least the majority of the flow channels is recommended to be smaller or significantly smaller than the smallest inner diameter D i of a flow channel. The flow channels are expediently arranged in a flow straightener according to the principle of the closest packing.

Es liegt im Rahmen der Erfindung, dass an jede Luftzufuhrkabine zumindest eine Zuführungsleitung für die Zuführung der Kühlluft mit einer Querschnittsfläche Qz angeschlossen ist, wobei sich diese Querschnittsfläche Qz der Zuführungsleitung beim Übergang der Kühlluft in die Zufuhrkabine auf eine Querschnittsfläche QL der Luftzufuhrkabine vergrößert, wobei die Querschnittsfläche QL mindestens doppelt so groß, vorzugsweise mindestens dreimal so groß und bevorzugt mindestens viermal so groß ist wie die Querschnittsfläche Qz der Zuführungsleitung. Zweckmäßigerweise erweitert sich die Querschnittsfläche Qz der Zuführungsleitung auf das 3- bis 15-Fache zur Querschnittsfläche QL der Luftzufuhrkabine. Gemäß einer Ausführungsform der Erfindung ist der einer Luftzufuhrkabine zugeführte Kühlvolumenstrom in eine Mehrzahl von Teilvolumenströme aufgeteilt, welche Teilvolumenströme durch separate Teil-Zuführungsleitungen und/oder durch die Segmente einer segmentierten Zuführungsleitung zuströmen. Der Kühlluftvolumenstrom kann dabei insbesondere in zwei bis fünf, vorzugsweise in zwei bis drei Teilvolumenströme aufgeteilt sein. Wenn jeder Teilvolumenstrom durch eine separate Teil-Zuführungsleitung zuströmt, erweitert sich die Querschnittsfläche QZ der Teil-Zuführungsleitung auf die Querschnittsfläche QL des betreffenden Kabinenabschnittes der Luftzufuhrkabine. Dabei ist die Querschnittsfläche QL bevorzugt mindestens doppelt so groß, vorzugsweise mindestens dreimal so groß wie die Querschnittsfläche QZ der Teil-Zuführungsleitung. Es empfiehlt sich, dass sich die Querschnittsfläche QZ einer Zuführungsleitung bzw. einer Teil-Zuführungsleitung stufenförmig - insbesondere in mehreren Stufen - oder kontinuierlich auf die Querschnittsfläche QL der Luftzufuhrkabine bzw. auf die Querschnittsfläche eines Kabinenabschnittes der Luftzufuhrkabine erweitert.It is within the scope of the invention that at least one supply line for supplying the cooling air with a cross-sectional area Qz is connected to each air supply cabin, this cross-sectional area Qz of the supply line increasing to a cross-sectional area Q L of the air supply cabin when the cooling air passes into the supply cabin, whereby the cross-sectional area Q L is at least twice as large, preferably at least three times as large and preferably at least four times as large as the cross-sectional area Qz of the supply line. The cross-sectional area Qz of the supply line expediently expands to 3 to 15 times the cross-sectional area Q L of the air supply cabin. According to one embodiment of the invention, the cooling volume flow supplied to an air supply cabin is divided into a plurality of partial volume flows, which partial volume flows flow through separate partial supply lines and / or through the segments of a segmented supply line. The cooling air volume flow can in particular be divided into two to five, preferably two to three partial volume flows. If each partial volume flow flows in through a separate partial supply line, the cross-sectional area Q Z of the partial supply line expands to the cross-sectional area Q L of the relevant cabin section of the air supply cabin. In this case, the cross-sectional area Q L is preferably at least twice as large, preferably at least three times as large as the cross-sectional area Q Z of the partial feed line. It is recommended that the cross-sectional area Q Z of a supply line or a partial supply line expand in steps - in particular in several stages - or continuously to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin.

Nach einer besonders empfohlenen Ausführungsform der Erfindung ist in der Luftzufuhrkabine in Strömungsrichtung der Kühlluft vor dem Strömungsgleichrichter und mit Abstand zu dem Strömungsgleichrichter zumindest ein flächiges Homogenisierungselement zur Homogenisierung des in die Luftzufuhrkabine eingeführten Kühlluftstromes angeordnet. Es liegt im Rahmen der Erfindung, dass ein flächiges Homogenisierungselement eine Mehrzahl von Öffnungen aufweist und dass die freie geöffnete Fläche des flächigen Homogenisierungselementes 1 bis 20%, vorzugsweise 2 bis 18% und bevorzugt 2 bis 15% der gesamten Fläche des flächigen Homogenisierungselementes beträgt. Nach einer Ausführungsvariante ist zumindest ein Homogenisierungselement als Lochelement, insbesondere als Lochblech, mit einer Mehrzahl von Lochöffnungen ausgebildet, wobei die Lochöffnungen vorzugsweise einen Öffnungsdurchmesser von 1 bis 10 mm, bevorzugt von 1,5 bis 9 mm und sehr bevorzugt von 1,5 bis 8 mm aufweisen. Nach einer anderen bevorzugten Ausführungsform der Erfindung ist ein Homogenisierungselement als Homogenisierungssieb mit einer Mehrzahl bzw. mit einer Vielzahl von Maschen ausgebildet, wobei das Homogenisierungssieb vorzugsweise Maschenweiten von 0,1 bis 0,5 mm, bevorzugt von 0,12 bis 0,4 mm und sehr bevorzugt von 0,15 bis 0,35 mm aufweist. Es empfiehlt sich, dass das zumindest eine flächige Homogenisierungselement in einem Abstand a1 von mindestens 50 mm, vorzugsweise von mindestens 80 mm und bevorzugt von mindestens 100 mm in Strömungsrichtung der Kühlluft vor dem Strömungsgleichrichter der entsprechenden Luftzufuhrkabine bzw. vor dem Strömungssieb dieses Strömungsgleichrichters angeordnet ist. Zweckmäßigerweise ist eine Mehrzahl von Homogenisierungselementen mit Abstand zu dem Strömungsgleichrichter in Strömungsrichtung der Kühlluft hintereinander und beabstandet voneinander in einer Luftzufuhrkabine angeordnet. Dabei beträgt der Abstand zwischen zwei in einer Luftzufuhrkabine in Strömungsrichtung hintereinander angeordneten Homogenisierungselementen mindestens 50 mm, vorzugsweise mindestens 80 mm und bevorzugt mindestens 100 mm.According to a particularly recommended embodiment of the invention, at least one flat homogenizing element for homogenizing the cooling air flow introduced into the air supply cabin is arranged in the air supply cabin in the flow direction of the cooling air upstream of the flow straightener and at a distance from the flow straightener. It is within the scope of the invention that a flat homogenization element has a plurality of openings and that the free open area of the flat homogenization element is 1 to 20%, preferably 2 to 18% and preferably 2 to 15% of the total area of the flat homogenization element. According to one embodiment, at least one homogenization element is designed as a perforated element, in particular as a perforated plate, with a plurality of perforated openings, the perforated openings preferably having an opening diameter of 1 to 10 mm, preferably 1.5 to 9 mm and very preferably 1.5 to 8 mm. According to another preferred embodiment of the invention, a homogenizing element is designed as a homogenizing sieve with a plurality or with a plurality of meshes, the homogenizing sieve preferably Mesh sizes from 0.1 to 0.5 mm, preferably from 0.12 to 0.4 mm and very preferably from 0.15 to 0.35 mm. It is recommended that the at least one flat homogenization element is arranged at a distance a 1 of at least 50 mm, preferably of at least 80 mm and preferably of at least 100 mm in the flow direction of the cooling air in front of the flow straightener of the corresponding air supply cabin or in front of the flow screen of this flow straightener . A plurality of homogenizing elements are expediently arranged at a distance from the flow straightener in the flow direction of the cooling air one behind the other and at a distance from one another in an air supply cabin. The distance between two homogenizing elements arranged one behind the other in an air supply cabin in the direction of flow is at least 50 mm, preferably at least 80 mm and preferably at least 100 mm.

In der erfindungsgemäßen Vorrichtung werden die Endlosfilamente mittels einer Spinnerette ausgesponnen und der Kühlkammer mit den Luftzufuhrkabinen und Strömungsgleichrichtern zugeführt. Es liegt im Rahmen der Erfindung, dass zumindest ein Spinnbalken zum Erspinnen der Filamente quer zur Maschinenrichtung (MD-Richtung) angeordnet ist. Nach einer sehr bevorzugten Ausführungsform der Erfindung ist der Spinnbalken dabei senkrecht bzw. im Wesentlichen senkrecht zur Maschinenrichtung orientiert. Es ist im Rahmen der Erfindung aber auch möglich, dass der Spinnbalken schräg zur Maschinenrichtung angeordnet ist. Nach einer sehr bevorzugten Ausführungsform der Erfindung ist zwischen der Spinnerette bzw. dem Spinnbalken und der Kühlkammer zumindest eine Monomer-Absaugungseinrichtung vorgesehen. Mit der Monomer-Absaugungseinrichtung wird Luft aus dem Filamentbildungsraum unterhalb der Spinnerette abgesaugt. Dadurch können die neben den Endlosfilamenten austretenden Gase wie Monomere, Oligomere, Zersetzungsprodukte und dergleichen aus der erfindungsgemäßen Vorrichtung entfernt werden. Eine Monomer-Absaugungseinrichtung weist zweckmäßigerweise zumindest eine Absaugungskammer auf, an die bevorzugt zumindest ein Absaugungsgebläse angeschlossen ist. Es empfiehlt sich, dass in Strömungsrichtung der Filamente an die Monomer-Absaugungseinrichtung die erfindungsgemäße Kühlkammer mit den Luftzufuhrkabinen und Strömungsgleichrichtern anschließt.In the device according to the invention, the continuous filaments are spun out by means of a spinnerette and fed to the cooling chamber with the air supply cabins and flow straighteners. It is within the scope of the invention that at least one spinning beam for spinning the filaments is arranged transversely to the machine direction (MD direction). According to a very preferred embodiment of the invention, the spinning beam is oriented perpendicular or essentially perpendicular to the machine direction. However, within the scope of the invention it is also possible for the spinning beam to be arranged at an angle to the machine direction. According to a very preferred embodiment of the invention, at least one monomer suction device is provided between the spinnerette or the spinning beam and the cooling chamber. With the monomer suction device, air is sucked out of the filament formation space below the spinnerette. In this way, the gases such as monomers, oligomers, decomposition products and the like that escape in addition to the continuous filaments can be removed from the device according to the invention. A The monomer suction device expediently has at least one suction chamber to which at least one suction fan is preferably connected. It is recommended that the cooling chamber according to the invention with the air supply cabins and flow straighteners adjoin the monomer suction device in the direction of flow of the filaments.

Es liegt im Rahmen der Erfindung, dass die Filamente aus der Kühlkammer in eine Verstreckvorrichtung zum Verstrecken der Filamente eingeführt werden. Zweckmäßigerweise schließt an die Kühlkammer ein Zwischenkanal an, der die Kühlkammer mit einem Verstreckschacht der Verstreckvorrichtung verbindet.It is within the scope of the invention that the filaments are introduced from the cooling chamber into a drawing device for drawing the filaments. Appropriately, the cooling chamber is followed by an intermediate channel which connects the cooling chamber with a stretching shaft of the stretching device.

Nach besonders bevorzugter Ausführungsform der Erfindung ist das Aggregat aus der Kühlkammer und der Verstreckvorrichtung bzw. das Aggregat aus der Kühlkammer, dem Zwischenkanal und dem Verstreckschacht als geschlossenes System ausgebildet. Geschlossenes System meint dabei insbesondere, dass außer der Zufuhr von Kühlluft in die Kühlkammer keine weitere Luftzufuhr in dieses Aggregat erfolgt. Die erfindungsgemäß eingesetzten Strömungsgleichrichter zeichnen sich vor allem durch besondere Vorteile in einem solchen geschlossenen System aus. Hier ist eine besonders einfache und effektive Vergleichmäßigung der Luftströmung bzw. Kühlluftströmung möglich.According to a particularly preferred embodiment of the invention, the unit from the cooling chamber and the stretching device or the unit from the cooling chamber, the intermediate channel and the stretching shaft is designed as a closed system. In this context, a closed system means in particular that, apart from the supply of cooling air into the cooling chamber, no further air is supplied to this unit. The flow straighteners used according to the invention are distinguished above all by special advantages in such a closed system. A particularly simple and effective equalization of the air flow or cooling air flow is possible here.

Vorzugsweise schließt in Strömungsrichtung der Filamente an die Verstreckvorrichtung zumindest ein Diffusor an, wobei die Filamente durch diesen Diffusor geführt werden. Es empfiehlt sich, dass der Diffusor einen in Richtung der Ablage der Filamente sich aufweitenden Diffusorquerschnitt bzw. einen divergenten Diffusorabschnitt umfasst. Es liegt im Rahmen der Erfindung, dass die Filamente auf einer Ablageeinrichtung zur Filamentablage bzw. zur Vliesablage abgelegt werden. Bei der Ablageeinrichtung handelt es sich zweckmäßigerweise um ein Ablagesiebband bzw. um ein luftdurchlässiges Ablagesiebband. Mit der Ablageeinrichtung bzw. mit dem Ablagesiebband wird die aus den Filamenten gebildete Vliesbahn in Maschinenrichtung (MD) abgefördert.At least one diffuser preferably adjoins the stretching device in the direction of flow of the filaments, the filaments being guided through this diffuser. It is recommended that the diffuser comprises a diffuser cross-section or a divergent diffuser section that widens in the direction in which the filaments are deposited. It is within the scope of the invention that the filaments are deposited on a depositing device for filament depositing or for depositing fleece. The storage device is expediently around a storage screen belt or around an air-permeable storage screen belt. The nonwoven web formed from the filaments is conveyed away in the machine direction (MD) with the depositing device or with the depositing screen belt.

Nach bevorzugter Ausführungsform der Erfindung wird zumindest im Ablagebereich der Filamente Prozessluft durch die Ablageeinrichtung bzw. durch das Ablagesiebband gesaugt bzw. von unten gesaugt. Dadurch wird eine besonders stabile Filamentablage bzw. Vliesablage erzielt. Dieser Absaugung kommt im Rahmen der Erfindung in Kombination mit den erfindungsgemäßen Strömungsgleichrichtern vorteilhafte Bedeutung zu. - Nach der Ablage auf der Ablageeinrichtung wird die Vliesbahn zweckmäßigerweise weiteren Behandlungsmaßnahmen - insbesondere einer Kalandrierung - zugeführt.According to a preferred embodiment of the invention, process air is sucked through the depositing device or through the depositing screen belt or sucked in from below, at least in the deposit area of the filaments. A particularly stable filament deposit or fleece deposit is achieved in this way. This suction is of advantageous importance within the scope of the invention in combination with the flow straighteners according to the invention. - After being deposited on the depositing device, the nonwoven web is expediently fed to further treatment measures, in particular calendering.

Es liegt im Rahmen der Erfindung, dass die erfindungsgemäße Vorrichtung so ausgestaltet bzw. mit der Maßgabe eingerichtet ist, dass mit Fadengeschwindigkeiten bzw. Filamentgeschwindigkeiten über 2000 m/min, insbesondere mit Fadengeschwindigkeiten über 2200 m/min oder über 2500 m/min gearbeitet werden kann, beispielsweise mit einer Fadengeschwindigkeit im Bereich von 3000 m/min. Mit diesen Filamentgeschwindigkeiten kann im Rahmen der Erzeugung von Filamenten bzw. Spinnvliesen aus Polyolefinen, insbesondere aus Polypropylen, gearbeitet werden. Im Zuge der Herstellung von Filamenten bzw. Spinnvliesen aus Polyestern, insbesondere aus Polyethylenterephthalat (PET), können mit der erfindungsgemäßen Vorrichtung auch Fadengeschwindigkeiten bzw. Filamentgeschwindigkeiten von über 4000 m/min und sogar von über 5000 m/min realisiert werden. Für die vorstehend aufgeführten hohen Fadengeschwindigkeiten - sowohl bezüglich Polyolefinen als auch in Bezug auf Polyester - hat sich die erfindungsgemäße Ausgestaltung der Luftzufuhrkabinen mit den Strömungsgleichrichtern besonders bewährt. Der Erfindung liegt die Erkenntnis zugrunde, dass mit der erfindungsgemäßen Vorrichtung Spinnvliese von optimaler Qualität und vor allem mit homogenen Eigenschaften über ihre Flächenausdehnung erzielt werden können. Fehlstellen bzw. Defektstellen in den Vliesen bzw. in den Vliesoberflächen können vollständig verhindert oder zumindest weitgehend minimiert werden. Diese Vorteile können insbesondere auch bei hohen Durchsätzen der Vorrichtung von mehr als 150 kg/h/m oder mehr als 200 kg/h/m erzielt werden. Aufgrund der erfindungsgemäßen Ausgestaltung der Luftzufuhrkabinen bzw. der Strömungsgleichrichter wird eine optimale Kühlluftzufuhr in die Kühlkammer gewährleistet, die letztendlich zu den vorteilhaften Eigenschaften der Spinnvliesbahn führt. Es kann im Rahmen der Erfindung eine sehr gleichmäßige bzw. homogene Kühlluftzufuhr realisiert werden und aufgrund dieser vorteilhaften Zufuhr von Kühlluft werden die Filamente insoweit positiv beeinflusst, dass unerwünschte Fehlstellen in der Vliesbahn verhindert oder weitgehend minimiert werden können. Die erfindungsgemäße Vorrichtung kann nichtsdestoweniger mit relativ einfachen und wenig aufwendigen Maßnahmen verwirklicht werden. Sie zeichnet sich somit auch durch Kostengünstigkeit aus.It is within the scope of the invention that the device according to the invention is designed or set up with the proviso that it is possible to work with thread speeds or filament speeds above 2000 m / min, in particular with thread speeds above 2200 m / min or above 2500 m / min , for example with a thread speed in the range of 3000 m / min. These filament speeds can be used in the context of the production of filaments or spunbonded nonwovens from polyolefins, in particular from polypropylene. In the course of the production of filaments or spunbonded nonwovens from polyesters, in particular from polyethylene terephthalate (PET), thread speeds or filament speeds of over 4000 m / min and even over 5000 m / min can be achieved with the device according to the invention. For the high thread speeds listed above - both with regard to polyolefins and with regard to polyester - the configuration of the air supply cabins with the flow straighteners according to the invention has proven particularly useful. The invention is based on the knowledge that with the device according to the invention, spunbonded nonwovens of optimum quality and, above all, with homogeneous properties can be achieved over their surface area. Defects or defects in the webs or in the web surfaces can be completely prevented or at least largely minimized. These advantages can in particular also be achieved with high throughputs of the device of more than 150 kg / h / m or more than 200 kg / h / m. Due to the design of the air supply cabins or the flow straightener according to the invention, an optimal supply of cooling air into the cooling chamber is ensured, which ultimately leads to the advantageous properties of the spunbonded nonwoven web. Within the scope of the invention, a very uniform or homogeneous supply of cooling air can be implemented, and because of this advantageous supply of cooling air, the filaments are positively influenced to the extent that undesired defects in the nonwoven web can be prevented or largely minimized. The device according to the invention can nonetheless be implemented with relatively simple and inexpensive measures. It is therefore also characterized by its low cost.

Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:

Fig. 1
einen Vertikalschnitt durch die erfindungsgemäße Vorrichtung,
Fig. 2
einen vergrößerten Ausschnitt aus der Fig. 1 mit der Kühlvorrichtung aus der Kühlkammer und den Luftzufuhrkabinen,
Fig. 3
eine perspektivische Ansicht eines Aggregates aus einem Strömungsgleichrichter mit vor- und nachgeschaltetem Strömungssieb,
Fig. 4
einen Querschnitt durch einen Strömungsgleichrichterabschnitt mit im Querschnitt sechseckförmigen bzw. wabenförmigen Strömungskanälen,
Fig. 5
den Gegenstand nach Fig. 4 mit im Querschnitt kreisrunden Strömungskanälen und
Fig. 6
den Gegenstand gemäß Fig. 4 mit tragflügelförmigen Kanalwandungen der Strömungskanäle des Strömungsgleichrichters.
The invention is explained in more detail below with reference to a drawing showing only one embodiment. It shows in a schematic representation:
Fig. 1
a vertical section through the device according to the invention,
Fig. 2
an enlarged section from the Fig. 1 with the cooling device from the cooling chamber and the air supply cabins,
Fig. 3
a perspective view of an assembly consisting of a flow straightener with upstream and downstream flow screen,
Fig. 4
a cross section through a flow straightener section with hexagonal or honeycomb flow channels in cross section,
Fig. 5
the subject Fig. 4 with circular cross-section flow channels and
Fig. 6
the subject according to Fig. 4 with airfoil-shaped channel walls of the flow channels of the flow straightener.

Die Figuren zeigen eine erfindungsgemäße Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten 1, insbesondere aus Endlosfilamenten 1 aus thermoplastischem Kunststoff. Die Vorrichtung umfasst eine Spinnerette 2 zum Erspinnen der Endlosfilamente 1. Diese ersponnenen Endlosfilamente 1 werden in eine Kühlvorrichtung 3 mit einer Kühlkammer 4 und mit an zwei gegenüberliegenden Seiten der Kühlkammer 4 angeordneten Luftzufuhrkabinen 5, 6 eingeführt. Die Kühlkammer 4 und die Luftzufuhrkabinen 5, 6 erstrecken sich quer zur Maschinenrichtung MD und somit in CD-Richtung der Vorrichtung. Aus den gegenüberliegenden Luftzufuhrkabinen 5, 6 wird Kühlluft in die Kühlkammer 4 eingeführt. Zwischen der Spinnerette 2 und der Kühlvorrichtung 3 ist bevorzugt und im Ausführungsbeispiel eine Monomer-Absaugungseinrichtung 7 angeordnet. Mit dieser Monomer-Absaugungseinrichtung 7 können beim Spinnprozess auftretende störende Gase aus der Vorrichtung entfernt werden. Bei diesen Gasen kann es sich beispielsweise um Monomere, Oligomere bzw. Zersetzungsprodukte und dergleichen Substanzen handeln.The figures show a device according to the invention for producing spunbonded nonwovens from continuous filaments 1, in particular from continuous filaments 1 made of thermoplastic material. The device comprises a spinnerette 2 for spinning the endless filaments 1. These spun endless filaments 1 are introduced into a cooling device 3 with a cooling chamber 4 and with air supply cabins 5, 6 arranged on two opposite sides of the cooling chamber 4. The cooling chamber 4 and the air supply cabins 5, 6 extend transversely to the machine direction MD and thus in the CD direction of the device. Cooling air is introduced into the cooling chamber 4 from the opposite air supply cabins 5, 6. A monomer suction device 7 is preferably arranged between the spinnerette 2 and the cooling device 3 and in the exemplary embodiment. With this monomer suction device 7 interfering gases occurring during the spinning process can be removed from the device. These gases can be, for example, monomers, oligomers or decomposition products and similar substances.

In Filamentströmungsrichtung FS ist der Kühlvorrichtung 3 eine Verstreckvorrichtung 8 nachgeschaltet, in der die Filamente 1 verstreckt werden. Die Verstreckvorrichtung 8 weist vorzugsweise und im Ausführungsbeispiel einen Zwischenkanal 9 auf, der die Kühlvorrichtung 3 mit einem Verstreckschacht 10 der Verstreckvorrichtung 8 verbindet. Nach besonders bevorzugter Ausführungsform und im Ausführungsbeispiel ist das Aggregat aus der Kühlvorrichtung 3 und der Verstreckvorrichtung 8 bzw. das Aggregat aus der Kühlvorrichtung 3, dem Zwischenkanal 9 und dem Verstreckschacht 10 als geschlossenes System ausgebildet. Geschlossenes System meint dabei, dass außer der Zufuhr von Kühlluft in der Kühlvorrichtung 3 keine weitere Luftzufuhr in dieses Aggregat erfolgt.In the filament flow direction FS, the cooling device 3 is followed by a drawing device 8 in which the filaments 1 are drawn. The stretching device 8 preferably and in the exemplary embodiment has an intermediate channel 9 which connects the cooling device 3 to a stretching shaft 10 of the stretching device 8. According to a particularly preferred embodiment and in the exemplary embodiment, the unit from the cooling device 3 and the stretching device 8 or the unit from the cooling device 3, the intermediate channel 9 and the stretching shaft 10 is designed as a closed system. A closed system means that apart from the supply of cooling air in the cooling device 3, no further air is supplied to this unit.

Zweckmäßigerweise und im Ausführungsbeispiel schließt in Filamentströmungsrichtung FS an die Verstreckvorrichtung 8 ein Diffusor 11 an, durch den die Filamente 1 geführt werden. Nach einer Ausführungsform und im Ausführungsbeispiel sind zwischen der Verstreckvorrichung 8 bzw. zwischen dem Verstreckschacht 10 und dem Diffusor 11 Sekundärluft-Eintrittsspalte 12 für die Einführung von Sekundärluft in den Diffusor 11 vorgesehen. Nach Durchlaufen des Diffusors 11 werden die Filamente 1 vorzugsweise und im Ausführungsbeispiel auf einer als Ablagesiebband 13 ausgebildeten Ablageeinrichtung abgelegt. Die Filamentablage bzw. die Vliesbahn 14 wird dann zweckmäßigerweise und im Ausführungsbeispiel mit dem Ablagesiebband 13 in Maschinenrichtung MD abgefördert bzw. abtransportiert. Empfohlenermaßen und im Ausführungsbeispiel ist unter der Ablageeinrichtung bzw. unter dem Ablagesiebband 13 eine Absaugungseinrichtung zum Absaugen von Luft bzw. Prozessluft durch die Ablageeinrichtung bzw. durch das Ablagesiebband 13 vorgesehen. Dazu ist bevorzugt und im Ausführungsbeispiel unterhalb des Diffusoraustrittes ein Absaugbereich 15 unter dem Ablagesiebband 13 angeordnet. Zweckmäßigerweise und im Ausführungsbeispiel erstreckt sich der Absaugbereich 15 zumindest über die Breite B des Diffusoraustrittes. Bevorzugt und im Ausführungsbeispiel ist die Breite b des Absaugbereiches 15 größer als die Breite B des Diffusoraustrittes.Appropriately and in the exemplary embodiment, a diffuser 11, through which the filaments 1 are guided, adjoins the stretching device 8 in the filament flow direction FS. According to one embodiment and in the exemplary embodiment, secondary air inlet gaps 12 for introducing secondary air into the diffuser 11 are provided between the stretching device 8 or between the stretching shaft 10 and the diffuser 11. After passing through the diffuser 11, the filaments 1 are preferably and in the exemplary embodiment deposited on a depositing device designed as a depositing screen belt 13. The filament deposit or the nonwoven web 14 is then expediently conveyed or transported away in the machine direction MD, and in the exemplary embodiment with the depositing screen belt 13. Recommended and in the exemplary embodiment, a suction device is provided under the depositing device or below the depositing screen belt 13 for sucking off air or process air through the depositing device or through the depositing screen belt 13. For this purpose, a suction area 15 is preferred and arranged in the exemplary embodiment below the diffuser outlet under the screen belt 13. Appropriately and in the exemplary embodiment, the extends Suction area 15 at least over the width B of the diffuser outlet. Preferably, and in the exemplary embodiment, the width b of the suction area 15 is greater than the width B of the diffuser outlet.

Nach bevorzugter Ausführungsform und im Ausführungsbeispiel ist jede Luftzufuhrkabine 5, 6 in zwei Kabinenabschnitte 16, 17 unterteilt, aus denen jeweils Kühlluft unterschiedlicher Temperatur zuführbar ist. So ist vorzugsweise und im Ausführungsbeispiel aus den oberen Kabinenabschnitten 16 jeweils Kühlluft mit einer Temperatur T1 zuführbar, während aus den beiden unteren Kabinenabschnitten 17 jeweils Kühlluft einer von der Temperatur T1 unterschiedlichen Temperatur T2 zuführbar ist. Nach einer Ausführungsform und im Ausführungsbeispiel ist in jeder Luftzufuhrkabine 5, 6 kühlkammerseitig jeweils ein Strömungsgleichrichter 18 angeordnet, der sich bevorzugt und im Ausführungsbeispiel über beide Kabinenabschnitte 16, 17 jeder Luftzufuhrkabine 5, 6 erstreckt.According to the preferred embodiment and in the exemplary embodiment, each air supply cabin 5, 6 is divided into two cabin sections 16, 17 from which cooling air of different temperatures can be supplied. Thus, preferably and in the embodiment of the upper cabin sections 16 each cooling air having a temperature T 1 can be fed while from the two lower portions 17 each cabin cooling air a direction different from the temperature T 1 Temperature T can be fed to the second According to one embodiment and in the embodiment, a flow straightener 18 is arranged in each air supply cabin 5, 6 on the cooling chamber side, which flow straightener preferably extends over both cabin sections 16, 17 of each air supply cabin 5, 6 in the embodiment.

Die beiden Strömungsgleichrichter 18 dienen zum Gleichrichten der auf die Filamente 1 treffenden Kühlluftströmung. Dabei weist bevorzugt und im Ausführungsbeispiel jeder Strömungsgleichrichter 18 eine Mehrzahl von senkrecht zur Filamentströmungsrichtung FS orientierte Strömungskanäle 19 auf. Diese Strömungskanäle 19 sind jeweils durch Kanalwandungen 20 begrenzt und sind vorzugsweise linear ausgebildet.The two flow straighteners 18 serve to straighten the cooling air flow impinging on the filaments 1. In this case, and in the exemplary embodiment, each flow straightener 18 preferably has a plurality of flow channels 19 oriented perpendicular to the filament flow direction FS. These flow channels 19 are each delimited by channel walls 20 and are preferably linear.

Nach bevorzugter Ausführungsform und im Ausführungsbeispiel beträgt die offene Fläche jedes Strömungsgleichrichters 18 mehr als 90% der gesamten Fläche des Strömungsgleichrichters 18. Empfohlenermaßen und im Ausführungsbeispiel liegt das Verhältnis der Länge L der Strömungskanäle 19 zum kleinsten Innendurchmesser Di der Strömungskanäle 19 im Bereich zwischen 1 und 10, zweckmäßigerweise im Bereich zwischen 1 und 9.According to the preferred embodiment and in the exemplary embodiment, the open area of each flow straightener 18 is more than 90% of the total area of the flow straightener 18. Recommended and in the exemplary embodiment, the ratio of the length L of the flow channels 19 to the smallest inner diameter D i of the flow channels 19 is in the range between 1 and 10, expediently in the range between 1 and 9.

Gemäß sehr bewährter Ausführungsform und im Ausführungsbeispiel weist jeder Strömungsgleichrichter 18 sowohl an seiner Kühlluft-Einströmseite ES als auch an seiner Kühlluft-Ausströmseite AS ein Strömungssieb 21 auf. Vorzugsweise und im Ausführungsbeispiel sind die beiden Strömungssiebe 21 jedes Strömungsgleichrichters 18 unmittelbar vor bzw. hinter dem Strömungsgleichrichter 18 angeordnet.According to the very well-proven embodiment and in the embodiment, each flow straightener 18 has a flow screen 21 both on its cooling air inflow side ES and on its cooling air outflow side AS. Preferably, and in the exemplary embodiment, the two flow screens 21 of each flow straightener 18 are arranged directly in front of or behind the flow straightener 18.

Empfohlenermaßen und im Ausführungsbeispiel sind die beiden Strömungssiebe 21 eines Strömungsgleichrichters 18 bzw. die Flächen dieser Strömungssiebe 21 senkrecht zur Längsrichtung der Strömungskanäle 19 des Strömungsgleichrichters 18 ausgerichtet. Es hat sich bewährt, dass ein Strömungssieb 21 eine Maschenweite w von 0,1 bis 0,5 mm, vorzugsweise von 0,1 bis 0,4 mm und bevorzugt von 0,15 bis 0,34 mm aufweist. Fernerhin ist es vorteilhaft, wenn das Strömungssieb eine Drahtstärke d von 0,05 bis 0,35 mm, vorzugsweise von 0,05 bis 0,32 mm und bevorzugt von 0,07 bis 0,28 mm aufweist. Es liegt im Rahmen der Erfindung, dass die Maschenweite w der Strömungssiebe 21 wesentlich kleiner ist als der kleinste Innendurchmesser Di der Strömungskanäle 19 des Strömungsgleichrichters 18. Die Maschenweite w eines Strömungssiebes 21 beträgt bevorzugt weniger als 1/6, sehr bevorzugt weniger als 1/8 und besonders bevorzugt weniger als 1/10 des kleinsten Innendurchmessers Di der Strömungskanäle 19. Empfohlenermaßen beträgt die offene und nicht durch Draht eingenommene Fläche eines Strömungssiebes 21 bis 50% und vorzugsweise 25 bis 45% der Gesamtfläche eines Strömungssiebes 21.Recommended and in the exemplary embodiment, the two flow screens 21 of a flow straightener 18 or the surfaces of these flow screens 21 are oriented perpendicular to the longitudinal direction of the flow channels 19 of the flow straightener 18. It has been proven that a flow screen 21 has a mesh size w of 0.1 to 0.5 mm, preferably 0.1 to 0.4 mm and preferably 0.15 to 0.34 mm. Furthermore, it is advantageous if the flow screen has a wire thickness d of 0.05 to 0.35 mm, preferably 0.05 to 0.32 mm and preferably 0.07 to 0.28 mm. It is within the scope of the invention that the mesh size w of the flow screens 21 is significantly smaller than the smallest inner diameter D i of the flow channels 19 of the flow straightener 18. The mesh size w of a flow screen 21 is preferably less than 1/6, very preferably less than 1 / 8 and particularly preferably less than 1/10 of the smallest inner diameter D i of the flow channels 19. The open area of a flow screen 21 that is not occupied by wire is recommended to be 21 to 50% and preferably 25 to 45% of the total area of a flow screen 21.

Die Fig. 4 bis 6 zeigen typische Querschnitte der Strömungskanäle 19 eines erfindungsgemäß eingesetzten Strömungsgleichrichters 18. Nach einer empfohlenen Ausführungsform und im Ausführungsbeispiel gemäß Fig. 4 weisen die Strömungskanäle 19 eines Strömungsgleichrichters 18 einen sechseckförmigen bzw. wabenförmigen Querschnitt auf. Der kleinste Innendurchmesser Di wird hier zwischen gegenüberliegenden Seiten des Sechseckes gemessen (s. Fig. 4). - Im Ausführungsbeispiel gemäß Fig. 5 weisen die Strömungskanäle 19 des Strömungsgleichrichters 18 einen kreisrunden Querschnitt auf. - Die Fig. 6 zeigt eine Ausführungsform eines erfindungsgemäßen Strömungsgleichrichters 18 mit tragflügelförmigen Kanalwandungen 20. Diese tragflügelförmigen Kanalwandungen 20 sind zweckmäßigerweise und im Ausführungsbeispiel durch Abstandshalter 22 voneinander getrennt, welche Abstandshalter 22 ebenfalls Kanalwandungen dieser Strömungskanäle bilden. Die tragflügelförmigen Kanalwandungen 20 sind im Querschnitt bogenförmig gekrümmt ausgebildet (s. rechte Seite der Fig. 6). Grundsätzlich können die tragflügelförmigen Kanalwandungen 20 auch geradlinig ausgebildet sein und in diesem Fall ist der Strömungsgleichrichter 18 wie ein Gitterrost ausgeführt.The Figures 4 to 6 show typical cross sections of the flow channels 19 of a flow straightener 18 used according to the invention. According to a recommended embodiment and in the embodiment according to FIG Fig. 4 the flow channels 19 of a flow straightener 18 have a hexagonal or honeycomb-shaped cross section. The smallest inner diameter D i is measured here between opposite sides of the hexagon (see Fig. Fig. 4 ). - In the embodiment according to Fig. 5 the flow channels 19 of the flow straightener 18 have a circular cross section. - The Fig. 6 shows an embodiment of a flow straightener 18 according to the invention with airfoil-shaped channel walls 20. These airfoil-shaped channel walls 20 are expediently separated from one another in the exemplary embodiment by spacers 22, which spacers 22 also form channel walls of these flow channels. The airfoil-shaped duct walls 20 are curved in cross section (see right side of FIG Fig. 6 ). In principle, the airfoil-shaped duct walls 20 can also be designed in a straight line and in this case the flow straightener 18 is designed like a grating.

Claims (15)

  1. Apparatus for manufacturing spunbonded nonwovens from continuous filaments (1), in particular from continuous filaments (1) of thermoplastic material, wherein a spinneret (2) is provided for spinning out the continuous filaments (1) and wherein a cooling chamber (4) is provided for cooling the spun-out filaments (1) with cooling air, wherein respectively one air supply manifold (5, 6) is arranged on two opposite sides of the cooling chamber (4) and wherein cooling air can be introduced into the cooling chamber (4) from the opposite air supply manifolds (5, 6), wherein in each of the two air supply manifolds (5, 6) respectively at least one flow straightener (18) is provided for rectifying the cooling air flow impinging upon the filaments (1), wherein a flow straightener (18) comprises a plurality of flow channels (19) oriented transversely to the direction of movement of the filaments (1) or the filament flow, wherein the flow channels (19) are delimited by channel walls (20),
    wherein the open area of a flow straightener (18) is greater than 85%, preferably greater than 90% and wherein the ratio of the length L of the flow channels (19) to the diameter Di of the flow channels (19) L/Di is 1 to 15, preferably 1 to 10 and preferably 1.5 to 9.
  2. Apparatus according to Claim 1, wherein a monomer extraction device (7) is disposed between spinneret (2) and cooling chamber (4).
  3. Apparatus according to one of Claims 1 or 2, wherein each air supply manifold (5, 6) is divided into at least two, preferably into two manifold sections (16, 17) from which cooling air at different temperature can be supplied in each case.
  4. Apparatus according to one of Claims 1 to 3, wherein at least one flow straightener (18) has at least one flow screen (21) on its cooling air inflow side ES and/or on its cooling air outflow side AS, wherein the flow screen (21) is preferably arranged transversely, preferably perpendicularly to the longitudinal direction of the flow channels (19).
  5. Apparatus according to Claim 4, wherein the at least one flow screen (21) has a mesh width of 0.1 to 0.4 mm, preferably of 0.15 to 0.34 mm and wherein the at least one flow screen (21) preferably has a wire thickness of 0.05 to 0.32 mm, preferably of 0.07 to 0.28 mm.
  6. Apparatus according to one of Claims 4 or 5, wherein the open area of the at least one flow screen (21) is 20 to 50%, preferably 25 to 45%.
  7. Apparatus according to one of Claims 1 to 6, wherein the open area of a flow straightener (18) is greater than 91%, preferably greater than 92%.
  8. Apparatus according to one of Claims 1 to 7, wherein the ratio L/Di is 2 to 8, preferably 2.5 to 7.5, preferably 2.5 to 7 and very preferably 3 to 6.5.
  9. Apparatus according to one of Claims 1 to 8, wherein the flow channels (19) of a flow straightener (18) have a polygonal cross-section, preferably a quadrangular to octagonal cross-section and particularly preferably a hexagonal cross-section.
  10. Apparatus according to one of Claims 1 to 9, wherein the flow channels (19) of a flow straightener (18) have a round cross-section, preferably a circular or oval cross-section.
  11. Apparatus according to one of Claims 1 to 8, wherein the channel walls (20) of the flow channels (19) are configured to be wing-shaped or aerofoil-shaped and wherein preferably the spacing between two adjacent wing-shaped channel walls (20) is 3 to 12 mm, preferably 5 to 10 mm.
  12. Apparatus according to one of Claims 1 to 11, wherein the inner surface of a flow straightener (18) through which the cooling air flows is 5 to 50 m2, preferably 7.5 to 45 m2 and preferably 10 to 40 m2 per m2 of flow cross-section of the flow straightener (18).
  13. Apparatus according to one of Claims 1 to 12, wherein the length L of the flow channels (19) of the flow straightener (18) is 15 to 65 mm, preferably 20 to 60 mm, preferably 20 to 55 mm and very preferably 25 to 50 mm.
  14. Apparatus according to one of Claims 1 to 13, wherein the internal diameter Di or the smallest internal diameter Di of the flow channels (19) is 2 to 15 mm, preferably 3 to 12 mm, preferably 4 to 11 mm and very preferably 5 to 10 mm.
  15. Apparatus according to one of Claims 1 to 14, wherein the apparatus is designed with the proviso that the filaments (1) flow through the apparatus at a filament speed greater than 2000 m/min, preferably greater than 2200 m/min or flow through the apparatus at a filament speed greater than 4000 m/min, in particular greater than 5000 m/min.
EP18174523.3A 2018-05-28 2018-05-28 Device for the manufacture of woven material from continuous filaments Active EP3575470B1 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
EP18174523.3A EP3575470B1 (en) 2018-05-28 2018-05-28 Device for the manufacture of woven material from continuous filaments
DK18174523.3T DK3575470T3 (en) 2018-05-28 2018-05-28 Device for making filter cloth from endless filaments
ES18174523T ES2841727T3 (en) 2018-05-28 2018-05-28 Continuous filament-based spinning veil manufacturing device
SI201830170T SI3575470T1 (en) 2018-05-28 2018-05-28 Device for the manufacture of woven material from continuous filaments
JP2019081747A JP7168517B2 (en) 2018-05-28 2019-04-23 Apparatus for producing spun fleece from endless filaments
CA3041248A CA3041248C (en) 2018-05-28 2019-04-25 Apparatus for making spunbonded nonwovens from continuous filaments
AU2019202944A AU2019202944B2 (en) 2018-05-28 2019-04-26 Apparatus for making spunbonded nonwovens from continuous filaments
MYPI2019002375A MY193453A (en) 2018-05-28 2019-04-26 Apparatus for making spunbonded nonwovens from continuous filaments
CONC2019/0004689A CO2019004689A1 (en) 2018-05-28 2019-05-08 Apparatus for the manufacture of spunbonded nonwovens from continuous filaments
ARP190101222A AR114883A1 (en) 2018-05-28 2019-05-08 APPARATUS FOR THE MANUFACTURE OF NON-WOVEN FABRICS JOINTED BY YARN FROM CONTINUOUS FILAMENTS
MX2019005374A MX2019005374A (en) 2018-05-28 2019-05-08 Apparatus for making spunbonded nonwoven from continuous filaments.
PE2019000936A PE20191854A1 (en) 2018-05-28 2019-05-08 APPARATUS FOR THE MANUFACTURE OF NON-WOVEN FABRICS JOINTED BY YARN FROM CONTINUOUS FILAMENTS
TNP/2019/000154A TN2019000154A1 (en) 2018-05-28 2019-05-10 Apparatus for making spunbonded nonwovens from continuous filaments
KR1020190057387A KR102399905B1 (en) 2018-05-28 2019-05-16 Apparatus for making spunbonded nonwovens from continuous filaments
BR102019010160A BR102019010160A2 (en) 2018-05-28 2019-05-17 apparatus for producing nonwoven fabrics made from continuous spinning from continuous filaments
CL2019001363A CL2019001363A1 (en) 2018-05-28 2019-05-20 Apparatus for manufacturing spunbonded nonwoven fabrics from continuous filaments
IL266793A IL266793B (en) 2018-05-28 2019-05-21 Apparatus for making spunbonded nonwovens from continuous filaments
US16/423,048 US11001942B2 (en) 2018-05-28 2019-05-27 Apparatus for making spunbonded nonwoven from continuous filaments
RU2019116345A RU2739285C2 (en) 2018-05-28 2019-05-27 Device for producing spun non-woven fabrics from filaments
UAA201905798A UA122948C2 (en) 2018-05-28 2019-05-27 Vorrichtung zur herstellung von spinnvliesen aus endlosfilamenten
CN201910448326.3A CN110541242B (en) 2018-05-28 2019-05-28 Apparatus for producing spunbonded nonwoven fabrics from continuous filaments
MA45970A MA45970B1 (en) 2018-05-28 2019-05-28 Apparatus for the production of nonwoven type strand-bonded by continuous filaments
JOP/2019/0119A JOP20190119B1 (en) 2018-05-28 2019-05-28 Device for the manufacture of woven material from continuous filaments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18174523.3A EP3575470B1 (en) 2018-05-28 2018-05-28 Device for the manufacture of woven material from continuous filaments

Publications (2)

Publication Number Publication Date
EP3575470A1 EP3575470A1 (en) 2019-12-04
EP3575470B1 true EP3575470B1 (en) 2020-10-21

Family

ID=62386229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18174523.3A Active EP3575470B1 (en) 2018-05-28 2018-05-28 Device for the manufacture of woven material from continuous filaments

Country Status (23)

Country Link
US (1) US11001942B2 (en)
EP (1) EP3575470B1 (en)
JP (1) JP7168517B2 (en)
KR (1) KR102399905B1 (en)
CN (1) CN110541242B (en)
AR (1) AR114883A1 (en)
AU (1) AU2019202944B2 (en)
BR (1) BR102019010160A2 (en)
CA (1) CA3041248C (en)
CL (1) CL2019001363A1 (en)
CO (1) CO2019004689A1 (en)
DK (1) DK3575470T3 (en)
ES (1) ES2841727T3 (en)
IL (1) IL266793B (en)
JO (1) JOP20190119B1 (en)
MA (1) MA45970B1 (en)
MX (1) MX2019005374A (en)
MY (1) MY193453A (en)
PE (1) PE20191854A1 (en)
RU (1) RU2739285C2 (en)
SI (1) SI3575470T1 (en)
TN (1) TN2019000154A1 (en)
UA (1) UA122948C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021002945A1 (en) 2021-06-09 2022-12-15 Oerlikon Textile Gmbh & Co. Kg Device for cooling a running thread

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663249B (en) * 2020-06-20 2020-12-22 东阳市奥隆新材料科技有限公司 Production and manufacturing process of environment-friendly melt-blown fabric

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982994A (en) * 1958-10-15 1961-05-09 Du Pont Process and apparatus for quenching and steam-conditioning yarn
US3320343A (en) * 1962-08-23 1967-05-16 Schwarza Chemiefaser Process for melt-spinning of synthetic linear high polymers
DE1281629B (en) * 1965-12-07 1968-10-31 Trox Gmbh Geb Blow shaft for cooling synthetic threads produced in the melt spinning process
JPS5696908A (en) * 1980-01-04 1981-08-05 Teijin Ltd Melt spinning method
JPS5735013A (en) * 1980-08-04 1982-02-25 Toray Ind Inc Cooling method of extruded polyamide filament
JPS617579U (en) * 1984-06-14 1986-01-17 東レ株式会社 Yarn cooling device
US4631018A (en) * 1984-11-01 1986-12-23 E. I. Du Pont De Nemours And Company Plate, foam and screen filament quenching apparatus
DE4014413A1 (en) * 1990-05-04 1991-11-07 Reifenhaeuser Masch Drawn filament wadding layer - has cooling and process air chambers in filaments path with controlled suction drawing
DE19535143B4 (en) * 1994-09-30 2006-02-16 Saurer Gmbh & Co. Kg Apparatus and method for the thermal treatment of fibers
KR960023281A (en) * 1994-12-08 1996-07-18 이웅열 Sedodo polyester yarn manufacturing method
US5672415A (en) * 1995-11-30 1997-09-30 Kimberly-Clark Worldwide, Inc. Low density microfiber nonwoven fabric
JP3554659B2 (en) * 1997-07-31 2004-08-18 帝人ファイバー株式会社 Spinning device for ultra-fine multifilament yarn
US6014791A (en) * 1998-02-09 2000-01-18 Soundesign, L.L.C. Quiet vacuum cleaner using a vacuum pump with a lobed chamber
US6168406B1 (en) * 1998-11-25 2001-01-02 Ching-Kun Tseng Yarn-forming filament cooling apparatus
ATE381630T1 (en) * 2002-02-28 2008-01-15 Reifenhaeuser Gmbh & Co Kg SYSTEM FOR THE CONTINUOUS PRODUCTION OF A SPUNNOVED WEB
EP1510603A4 (en) * 2002-06-03 2006-12-13 Toray Industries Device and method for manufacturing thread line
EP1710329B1 (en) * 2005-04-07 2009-08-19 Oerlikon Textile GmbH & Co. KG Process and apparatus for meltspinning and cooling filaments
EP1936017B1 (en) * 2006-12-22 2013-08-21 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method and device for manufacturing a spunbonding fabric made of cellulose filaments
JP5210575B2 (en) * 2007-09-10 2013-06-12 三菱レイヨン株式会社 Plastic optical fiber manufacturing equipment
PL2738297T3 (en) * 2012-12-03 2016-08-31 Reifenhaeuser Masch Method and device for the manufacture of a spunbonded web made from filaments
CN203546223U (en) * 2013-10-18 2014-04-16 王振海 Air supplier for cooling synthetic tows
ES2744919T3 (en) * 2016-01-27 2020-02-26 Reifenhaeuser Masch Device and procedure for manufacturing woven material from continuous filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021002945A1 (en) 2021-06-09 2022-12-15 Oerlikon Textile Gmbh & Co. Kg Device for cooling a running thread

Also Published As

Publication number Publication date
BR102019010160A2 (en) 2019-12-10
IL266793B (en) 2021-02-28
AR114883A1 (en) 2020-10-28
CN110541242B (en) 2022-12-02
SI3575470T1 (en) 2021-01-29
TN2019000154A1 (en) 2020-10-05
MY193453A (en) 2022-10-13
CA3041248A1 (en) 2019-11-28
RU2739285C2 (en) 2020-12-22
MX2019005374A (en) 2019-11-29
CL2019001363A1 (en) 2019-07-19
CN110541242A (en) 2019-12-06
IL266793A (en) 2019-08-29
AU2019202944A1 (en) 2019-12-12
RU2019116345A3 (en) 2020-11-27
EP3575470A1 (en) 2019-12-04
RU2019116345A (en) 2020-11-27
KR102399905B1 (en) 2022-05-18
KR20190135409A (en) 2019-12-06
PE20191854A1 (en) 2019-12-31
JP7168517B2 (en) 2022-11-09
MA45970A1 (en) 2020-10-28
CO2019004689A1 (en) 2020-05-15
AU2019202944B2 (en) 2024-03-28
ES2841727T3 (en) 2021-07-09
JP2019206791A (en) 2019-12-05
US20190360123A1 (en) 2019-11-28
JOP20190119A1 (en) 2019-11-28
DK3575470T3 (en) 2020-12-14
US11001942B2 (en) 2021-05-11
MA45970B1 (en) 2021-02-26
UA122948C2 (en) 2021-01-20
CA3041248C (en) 2022-11-29
JOP20190119B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
EP3199672B1 (en) Device and method for the manufacture of woven material from continuous filaments
EP1340842B2 (en) Apparatus for the continued production of a spunbonded web
EP1323852B1 (en) Device for making a spunbond web
EP3575469B1 (en) Device and method for the manufacture of woven material from continuous filaments
DE102011075924B4 (en) Melt spinning process
AT406386B (en) METHOD AND DEVICE FOR PRODUCING CELLULOSIC MOLDED BODIES
DE19521466A1 (en) Diffuser for air laying of direct melt spun non=woven batt
EP1340843A1 (en) Apparatus for the continuous production of a spunbonded web
DE4036734C1 (en)
EP0598463B1 (en) Process and apparatus for conveying and for laying continuous filaments bundle with air force
EP1630265B1 (en) Apparatus for the continuous production of a spunbonded web
DE102011087350A1 (en) Melt spinning device and melt spinning process
EP3382081B1 (en) Device for the manufacture of woven material from continuous filaments
EP3575470B1 (en) Device for the manufacture of woven material from continuous filaments
DE19504953C2 (en) Plant for the production of a spunbonded nonwoven web from thermoplastic continuous filaments
DE2532900A1 (en) METHOD FOR PRODUCING SPINNED FIBERS
EP3771763A1 (en) Device and method for producing nonwoven fabric from crimped fibers
EP2665849B1 (en) Device for cooling down a plurality of synthetic threads
EP0558718A1 (en) Air-conditioning process and device for mechanical weaving looms
EP3199671B1 (en) Device for manufacturing non-woven material
EP4123063A1 (en) Nozzle head for producing filaments
EP3575468B1 (en) Device and method for the manufacture of woven material from continuous filaments
DE112021005673T5 (en) MELBLOW SYSTEM
EP3771762B1 (en) Device and method for producing a fibre web
DE1635515B2 (en) Process for the production of a thread fleece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: D01D 5/098 20060101ALI20200120BHEP

Ipc: D01D 5/092 20060101ALI20200120BHEP

Ipc: D04H 3/16 20060101AFI20200120BHEP

Ipc: D01D 5/088 20060101ALI20200120BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200605

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FREY, DETLEF

Inventor name: NEUENHOFER, MARTIN

Inventor name: GEUS, HANS-GEORG

Inventor name: KRETSCHMANN, TRISTAN

Inventor name: NITSCHKE, MICHAEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002774

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1325970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER SCHNEIDER PATENT- UND MARKENANWAELTE AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36134

Country of ref document: SK

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210400067

Country of ref document: GR

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2841727

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002774

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210722

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230502

Year of fee payment: 6

Ref country code: NL

Payment date: 20230525

Year of fee payment: 6

Ref country code: IT

Payment date: 20230529

Year of fee payment: 6

Ref country code: FR

Payment date: 20230523

Year of fee payment: 6

Ref country code: ES

Payment date: 20230601

Year of fee payment: 6

Ref country code: DK

Payment date: 20230523

Year of fee payment: 6

Ref country code: DE

Payment date: 20230525

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230426

Year of fee payment: 6

Ref country code: CH

Payment date: 20230602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230525

Year of fee payment: 6

Ref country code: SK

Payment date: 20230426

Year of fee payment: 6

Ref country code: SI

Payment date: 20230503

Year of fee payment: 6

Ref country code: SE

Payment date: 20230525

Year of fee payment: 6

Ref country code: PL

Payment date: 20230420

Year of fee payment: 6

Ref country code: GR

Payment date: 20230526

Year of fee payment: 6

Ref country code: AT

Payment date: 20230524

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230525

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230526

Year of fee payment: 6