EP3571411B1 - Pumpenlaufrad - Google Patents
Pumpenlaufrad Download PDFInfo
- Publication number
- EP3571411B1 EP3571411B1 EP18730640.2A EP18730640A EP3571411B1 EP 3571411 B1 EP3571411 B1 EP 3571411B1 EP 18730640 A EP18730640 A EP 18730640A EP 3571411 B1 EP3571411 B1 EP 3571411B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity
- pump impeller
- impeller
- blade
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 72
- 238000004519 manufacturing process Methods 0.000 claims description 45
- 239000000843 powder Substances 0.000 claims description 33
- 239000000654 additive Substances 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000010865 sewage Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 230000008719 thickening Effects 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000000110 selective laser sintering Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MTHLBYMFGWSRME-UHFFFAOYSA-N [Cr].[Co].[Mo] Chemical compound [Cr].[Co].[Mo] MTHLBYMFGWSRME-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- -1 aluminum-silicon-magnesium Chemical compound 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/026—Selection of particular materials especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/2238—Special flow patterns
- F04D29/225—Channel wheels, e.g. one blade or one flow channel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/669—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
- F04D7/04—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
Definitions
- the invention relates to an asymmetrical pump impeller for a pump unit for pumping a liquid, in particular one containing solids, and to a method for producing such a pump impeller.
- Asymmetric pump impellers have a geometry that is not rotationally symmetrical or cyclically rotationally symmetrical in relation to the axis of rotation of the pump impeller.
- Such pump impellers are, for example, semi-open impellers with a single blade, as are used in sewage pumps or submersible pumps for pumping liquids containing solids.
- Asymmetric pump impellers can only be converted into themselves by a full 360° rotation. Since the geometry of the pump impeller is primarily based on hydraulic aspects, it is usually designed without considering possible geometry-related imbalances. Such a wheel has an original asymmetrical weight distribution, and therefore an off-centre center of mass. The main axis of inertia is therefore not on the axis of rotation of the impeller, which creates a static imbalance. In addition, moments of deviation in the inertia of the pump impeller during rotation lead to an inclined position of the main axis of inertia in relation to the axis of rotation, so that there is also a dynamic imbalance. Static and dynamic imbalances can also be manufacturing-related, since tolerances, ie dimensional deviations from the designed design of the pump impeller, exist depending on the manufacturing process.
- the imbalances are removed after the impeller has been manufactured as part of a manual balancing process. This is done by partial material removal, i.e. partial savings of material (negative balancing) or by partial material addition through the installation of a balancing weight (positive balancing) which increases the weight of the impeller at its location.
- a sewage pump impeller with a balancing weight is known, for example, from Japanese patent JP 5133026 B2 known, in which case the balancing weight is formed in one piece with the support disk.
- Another asymmetric sewage pump impeller with a balancing weight is known, for example, from US patent application U.S. 2011/182734 A1 and the UK patent application UK687,514 known.
- the British patent application GB182,632 discloses a chamber in each of the two blades of the impeller, which is said to be balanced due to the use of two blades and, accordingly, two flow channels.
- an asymmetrical pump impeller for a pump unit for pumping a solids-laden liquid in particular is proposed, which is at least partially formed in layers by an additive manufacturing process and has at least one cavity in its material interior, which is layered fabrication and is closed to the outside entirely or except for an opening for removing unsolidified material from the cavity, the cavity being positioned and configured such that an axis of inertia of the pump impeller is offset from the axis of rotation of the pump impeller.
- the invention proposes a method for producing a pump impeller of the type mentioned from individual layers of a material by using an additive manufacturing method, in which in at least a part of successive layers a spatial area in the material interior of the pump impeller is completely formed on the outside to form at least one or except for one Opening is closed for removing unsolidified material from the cavity, wherein the cavity is positioned and formed such that an axis of inertia is shifted to the axis of rotation of the pump impeller.
- the core idea of the invention is therefore to shift the process of balancing an asymmetrical pump impeller to the design phase and to design and manufacture the pump impeller in such a way that it is almost imbalance-free.
- the invention provides for the use of cavities in asymmetric pump impellers, which are obtained by an additive manufacturing process.
- the cavity or cavities allow the blade geometry to be configured more freely, because otherwise the balancing would have to take place via the blade geometry.
- the aim is to use one or more closed or essentially closed cavities in the material interior of the impeller in order to achieve a local weight saving that contributes to or even causes the entire pump impeller to have a symmetrical weight distribution, so at least is statically balanced, the cavity being formed using an additive manufacturing process.
- the invention Independent of the aspect of local material savings and thus weight savings, the invention also includes the aspect of local weight addition for the purpose of balancing, as will be explained below.
- An additive manufacturing process also called generative manufacturing process, makes it possible to produce cavities in almost any position and with almost any complex geometry that cannot be produced in the same way by alternative processes, for example with lost cores or divided/moving cores or sliders.
- the at least one cavity also reduces the overall weight of the impeller, which also simplifies handling during manufacture and transport and reduces the overall weight of the pump assembly.
- the saving in material due to the at least one cavity leads to a cost advantage, which is all the more pronounced the higher the quality of the material used to manufacture the pump impeller.
- Another advantage of layered additive manufacturing is the cost-effective one-off production of customer-specific pump impellers, or the economical manufacture of smaller quantities of pump impellers. Because additive manufacturing from layers does not require a mold, and therefore no specially shaped cores.
- additive manufacturing eliminates work steps that are necessary with conventional manufacturing, e.g. turning of the outer diameter, turning on the suction side, balancing of the impeller.
- An alternative variant that is preferred according to the invention is the production of the individual layers from a powder.
- This can be melted locally, for example by means of a high-energy beam such as a laser beam or electron beam, which subsequently solidifies again.
- Another layer of powder is then applied to the solidified layer and this is then melted locally again with the jet.
- the powder does not melt in the area of a cavity to be formed.
- So-called selective laser sintering (SLS), laser melting or electron beam melting which are known per se, are particularly suitable for local melting. They enable the production of high-precision components.
- SLS selective laser sintering
- laser melting or electron beam melting which are known per se, are particularly suitable for local melting. They enable the production of high-precision components.
- As an alternative to melting the powder it can be bonded locally with a binder to solidify the powder and thus create the impeller in layers.
- binder jetting Such a generative manufacturing process is known under the name "binder jetting” and can also be used according
- a metal powder can preferably be used as the material, so that particularly stable pump impellers can be produced from metal, in particular for sewage pumps.
- the cavity In order to remove the unsolidified material, i.e. the powder, from the at least one cavity, the cavity must have an opening to the outside.
- this can be comparatively small, for example between 0.5 mm and 2 mm, so that the powder can trickle out or be blown out by itself.
- the impeller comprises only one blade which spirals around the axis of rotation.
- the distance between the blade and the center of the impeller or the axis of rotation thus increases with increasing angle of wrap, ie from the inside to the outside.
- the impeller is accordingly a centrifugal pump impeller or centrifugal impeller, which draws in the liquid centrally and pumps it out radially.
- the impeller is suitably designed without a cover disc, ie semi-open, ie it is open towards the suction opening of the pump.
- Such an impeller is particularly suitable for sewage pumps and submersible pumps, ie for pumping solids-laden sewage, since it is less prone to clogging than two- or multi-bladed impellers and covered impellers.
- the pump unit can thus preferably be a sewage pump or a submersible pump.
- the pump impeller according to the invention can be a worm impeller.
- a worm impeller is used, for example, in eccentric worm pumps, where it is also referred to as a rotor.
- eccentric worm pumps where it is also referred to as a rotor.
- it has a single-start thread with a large pitch, large thread depth and small core diameter. If necessary, the thread does not wind an integer multiple around the rotor axis. Both cause imbalances that can be avoided by the impeller according to the invention.
- the impeller can have a support disk on which the blade is attached or from which it rises.
- the support disk can be manufactured separately. This production can take place in a conventional manner, for example by means of casting. It can then be firmly mechanically connected to the blade produced in layers. This can be done, for example, by means of welding or screwing.
- the carrier disk is formed in one piece with the blade during the layered production. A subsequent welding or assembly step can thus be dispensed with.
- the at least one cavity can lie partially within the material forming the blade. Depending on the blade geometry, however, it can also be formed completely within the blade. Additionally or alternatively, the at least one cavity can be partially within the material forming the support disk. However, it can also be formed completely within the support disk. According to yet another embodiment variant, part of the cavity can lie within the blade and part of it can lie within the support disk.
- the impeller can have, within a central region bordered by the vane, a quantity of material over which the pumped liquid can flow, in which the at least one cavity can be completely or partially formed.
- the central area corresponds to the flow channel (blade channel) of the impeller delimited by the single blade, which is at least partially limited in the axial direction by the amount of material, if there is a support disk towards it. In the other axial direction, the central area forms the suction mouth, ie the suction side of the impeller.
- the quantity of material is materially integral with the blade and can thus be considered part of the blade.
- the amount of material ideally has a surface in the form of a ramp, which rises in the axial direction as the distance between the blade and the axis of rotation decreases, ie as the wrap angle of the blade decreases.
- the at least one cavity can be formed entirely in the amount of material. If the amount of material is viewed as part of the blade, the at least one cavity is then formed entirely in the blade. If the amount of material is considered to be a portion of the pump impeller independent of the vane, the at least one cavity may be partially located within the amount of material and another portion may extend into another portion of the pump impeller. According to one embodiment variant, it can be partly embedded in the quantity of material, and partly in the blade or in the support disk. According to yet another variant embodiment, the cavity can be located partly within the mass of material, partly within the blade and partly within the carrier disc.
- a channel leading from the cavity to the outside can be connected to the opening.
- the cavity can be emptied via this channel after the impeller has been manufactured, for example by blowing the unsolidified powder out of the free space through the channel.
- a hollow needle can be inserted into the channel and compressed air can be blown into the cavity through this needle.
- the unsolidified powder can also be sucked out.
- the channel can be designed to be open or permanently open. This means that pumped liquid can enter the cavity during operation of the pump unit. However, this carries the risk that Deposits can form inside the cavity, which in turn can affect the weight distribution, and are also difficult to take into account in advance when determining the center of gravity for each layer of material, so that the cavity, which is open to the outside, is always prone to imbalance.
- the channel can be closed later, i.e. after the removal of the unsolidified material, in particular the powder.
- the at least one cavity of the ready-to-operate pump impeller is completely closed to the outside again.
- the channel can, for example, be welded shut, in particular closed with a welding bead. Alternatively, it can also be glued shut with the help of an adhesive, screwed on using a screw such as a grub screw (requires an internal thread in the channel) or closed with a stopper via a press fit.
- the cavity can be free of right-angled and/or acute-angled inner edges and/or inner corners.
- powder residue sticks to such inner edges.
- a mechanical impact or shaking is then required to loosen these residues.
- the at least one cavity is closed in the shape of a gable roof or funnel shape when viewed in one direction in cross section.
- the opening is sensibly in the top of the gabled roof or funnel. This geometry forms a kind of emptying funnel and simplifies the removal of the unconsolidated material and promotes complete emptying of the residue.
- a gabled roof geometry is particularly suited to a rectangular cross-sectional area or footprint of the cavity and has two to each other angular boundary walls that intersect in a line, the ridge, and on which the unconsolidated material can slide down.
- the gabled roof geometry does not necessarily have to be symmetrical.
- the boundary walls do not have to be plane, and the ridge does not have to be a straight line. They can also be arbitrarily curved surfaces, the line can be a correspondingly arbitrarily curved curve in which the two surfaces intersect.
- the opening is sensibly located in the middle of the line in the direction of extent, so that the unsolidified powder can trickle evenly from all sides to the opening. Accordingly, it is advantageous if the channel opens into the cavity in the center of the cavity in the circumferential direction
- a funnel-shaped roof geometry is particularly suitable for a square or round cross-sectional area or base area of the cavity.
- the roof of the cavity may thus conform to a quadrilateral pyramid, dome (hemisphere) or cone forming a funnel when inverted, allowing the unconsolidated material to slide down to the center of the funnel.
- the opening is sensibly in the center of the funnel.
- the channel opens out into the hollow space in the center of the hollow space in the radial direction, as viewed from the axis of rotation of the impeller. This also applies to the gabled roof geometry.
- the funnel-shaped roof geometry does not necessarily have to be symmetrical; asymmetrical funnel-shaped roof geometries are also possible.
- the cross-sectional shape of the cavity can be arbitrary, for example rectangular, square, round or oval.
- the geometry of the cavity in cross section can be adapted to this blade geometry, for example to the effect that a rectangular basic shape is bent in the direction of its longitudinal extension.
- the gable roof also has a curved contour, and the ridge corresponds to a curved line.
- the geometry can correspond, for example, to a segment of a perforated disc, for example to a quarter-circle segment, as will become clear below using the exemplary embodiment.
- the saddle roof or funnel-shaped formation of the cavity occurs in the direction of the additive layer structure.
- This turns out to be the disadvantage take advantage of the fact that, depending on the process used, no floating roof construction (cantilevered ceiling) can be formed, and therefore only slopes greater than 45° or greater than 50° can be produced in layers, because melted powder material would flow down like water and would displace unsolidified powder material.
- the cavity can have a support structure on the inside.
- a support structure may be required, for example, to produce a specific cavity geometry that cannot otherwise be realized with the additive manufacturing process.
- a support structure can also be provided for other reasons, for example to transmit forces or to provide material within the cavity again for the purpose of balancing.
- the support structure can extend, for example, between two or more boundary walls of the cavity. Ideally, it is generated during the layered construction of the pump impeller.
- the support structure can be embodied in the manner of a skeleton, so that it requires only a minimum of material.
- a skeletal support structure separates the at least one cavity into partial cavities, which are connected to one another via openings in the support structure.
- the support structure can preferably have a material thickening at least at one point for balancing purposes.
- an outer wall delimiting the cavity can have a material thickening at least at one point for balancing purposes. This increases the degree of freedom in the design and arrangement of the cavity or cavities in the pump impeller.
- thickening of the material ultimately means that the cavity volume is reduced compared to a variant without thickening of the material.
- the addition of material in or on the cavity also represents an adaptation of the cavity itself.
- the at least one cavity is designed in such a way that a Axis of inertia of the pump impeller is shifted to the axis of rotation of the pump impeller.
- the support structure can also be formed by a support wall, which is particularly solid.
- a support wall separates the at least one cavity into two cavities which are each closed to the outside or are closed except for an opening for emptying unsolidified powder.
- the pump impeller according to the invention thus has two cavities which are used for balancing.
- the support wall can take into account the aforementioned fact that the roof geometry of a cavity can only be designed with a slope greater than 45° or greater than 50° and the maximum width of the cavity is therefore also determined by the roof height.
- the cavity has to be made wider than the roof height allows due to the necessary shift of the axis of inertia to the axis of rotation, because the cavity would otherwise open to the outside, two cavities can be formed next to each other, preferably with a symmetrical geometry in cross section.
- the cavities can be located one behind the other in the radial direction in relation to the impeller axis.
- the support wall then extends in the circumferential direction and radially separates the two cavities from one another.
- the cavities are connected to one another by a connecting channel.
- This makes it possible to blow compressed air through one channel into the first cavity to empty the cavities in order to blow out the unsolidified material through the other channel of the second cavity.
- it can also be vacuumed. This can be done alternately in order to completely empty both cavities.
- This method can also be used with three or more cavities, especially when the cavities are not immediately adjacent. All or groups of the cavities can be connected to one another by appropriate connecting channels, so that the pressure can enter all the cavities or the cavities of a group. In the case of groups which are fluidically separated from one another, ie not connected, the process must be repeated accordingly for each group.
- the pump impeller has, in addition to the one inner cavity, an outwardly open recess or a further outwardly completely closed cavity or except for an opening for removing unsolidified material, the recess or the further cavity being offset axially to the one cavity is.
- the recess and the additional cavity allow the pump impeller to be balanced in a second radial plane.
- the axial offset relative to the axis of rotation causes the center of gravity of one inner cavity and the center of gravity of the recess or of the further inner cavity to lie in their own radial plane and the two radial planes to be spaced axially from one another. They allow dynamic balancing of the pump impeller.
- the recess can be formed on the rear side of the support disk facing away from the blade. This design also has the advantage that the recess does not affect the hydraulic efficiency since it faces away from the suction and pressure sides of the pump impeller.
- the individual layers are preferably built up in the axial direction of the pump impeller, ie transversely to the impeller axis or slightly inclined thereto, so that the direction of the layer structure is essentially parallel to the impeller axis. This has the advantage that as few support structures as possible are required and consequently as little material as possible has to be melted. This also reduces the effort involved in post-processing, since fewer support structures have to be removed.
- the support disk of the pump impeller is first formed in layers and then one blade is formed thereon. This avoids support structures that would be required due to the support disk projecting beyond the blade in the radial direction if the support disk were to be formed last. These support structures would have to be removed later, which lengthens and complicates the manufacturing process.
- the Figures 1 to 3 show a single-blade pump impeller 1 for a sewage pump unit for pumping solids-laden sewage according to the invention. It comprises a support disk 2 and a blade 3 which is designed in one piece with it and extends spirally around the impeller axis 15 and which rises from the support disk 2 in the axial direction. There is no cover disk, so that the pump impeller 1 forms a semi-open pump impeller. With regard to its geometry, the impeller 1 is asymmetrical in relation to the impeller axis 15 .
- the pump impeller 1 also has a central region 16 which is surrounded by the blade 3 and which forms the flow channel (blade channel) of the impeller 1 .
- the flow channel towards the support disk 2 is bounded by a quantity of material 18 (solid material), which in turn has a ramp-shaped surface towards the flow channel, ie a ramp 17, over which the pumped liquid flows during operation of the pump assembly.
- the Ramp 17 increasingly rises from the support disk 2 as the blade 3 radially approaches the impeller axis 15.
- two cavities 5, 6 are formed one behind the other in the radial direction, which are closed to the outside except for a channel 9, 10.
- the cavities 5, 6 are closed on all sides except for an opening 7, 8, which leads into the respective channel 9, 10, i.e. neither half-open nor merely a recess made of the material of the impeller.
- the cavities are thus located inside the material of the impeller 1.
- the two channels 9, 10 extend in the axial direction approximately parallel to the impeller axis 15 and each open into a separate opening 11, 12 on the surface of the ramp 17, which is open here.
- a radially outer partial area of the radially outer cavity 5 is partially formed in the blade 3, since the wall thickness of the blade 3 is thinner in the area of this outer cavity 5 than in the remaining area of the blade 3.
- the outer cavity is thus located 5 partially within the amount of material 18, partially within the blade 3.
- the cavity 5 does not extend into the support disk 2.
- the two cavities 5, 6 are positioned here together and are designed in terms of their size and geometry such that an axis of inertia of the pump impeller 1 is shifted towards the axis of rotation 15. Because the cavities 5, 6 achieve a local weight saving, which statically counteracts a radial displacement of the center of gravity axis due to the mass of the material quantity 18 and thus eliminates at least part of the imbalance.
- the two cavities 5, 6 are each formed by the contour of a house with a gable roof 24.
- the two cavities 5, 6 are delimited radially outwards by a boundary wall 20 on the blade side, radially inwards by a boundary wall 21 on the hub side and in the axial direction by a boundary wall 22 on the carrier disk side.
- the cavities 5, 6 are separated from one another by a supporting wall 23, on which the area of the quantity of material 18 between the two pitched roofs 24 is supported.
- the retaining wall 23 forms the hub-side boundary wall 21 for the radially outer cavity 5 and the blade-side boundary wall 20 for the radially inner cavity 6. It should be noted at this point, however, that the two cavities can also be formed by a single cavity.
- the support wall 23 is therefore not mandatory.
- the gable roofs 24 do not have to be symmetrical as in the exemplary embodiment.
- One of the two channels 9, 10 in the form of a "chimney” connects to the respective pitched roof 24, which begins at the ridge of the pitched roof, where the two openings 7, 8 are also located.
- the channels 9, 10 are thus based on the radial width of the cavities 5, 6 each arranged centrally. How in particular based on 3 As can be seen, the length of the two cavities 5, 6 extends in an arc in the circumferential direction along a quadrant, with their longitudinal ends being aligned with one another. Thus, the radially inner cavity 6 has a smaller longitudinal extension than the radially outer cavity 5.
- the channels 5, 6 are each arranged centrally in relation to the longitudinal extension of the cavities 5, 6, so that they lie on a radius to the axis of rotation 15.
- a hub 13 with a conical shaft receptacle 19 is also integrally formed on the support disk 2, into which a drive shaft of the pump unit for driving the impeller 1 can be inserted and screw-fastened.
- the pump impeller 1 according to the invention is manufactured by successively solidifying individual layers of a metal powder by using an additive manufacturing process in which the powder of the respective layer is melted by radiation, in particular a laser beam, where the impeller 1 is to become solid, and in which in at least part of the successive layers a region for forming the cavities 5, 6 in the material interior of the pump impeller 1 is exposed to the laser radiation is released.
- the two cavities 5, 6 are filled with unsolidified metal powder, which can be removed from the cavities 5, 6 through the openings 7, 8 or through the channels 9, 10. This can be done by blowing compressed air into the channels, for example by means of a hollow needle inserted into the respective channel 9, 10. This blows the powder out.
- the impeller can be vibrated at the same time in order to loosen powder adhering to the cavity 5, 6.
- the channels 9, 10 are closed after the unsolidified powder has been removed, so that no conveyed liquid enters the cavities 5, 6.
- the cavities 5, 6 remain hollow during normal operation.
- the additive manufacturing process here is selective laser sintering, laser melting or electron beam melting, as is known per se in the prior art.
- pure titanium 99.9%
- an aluminum-silicon-magnesium alloy AlSi 10 Mg
- an alloy of cobalt-chromium-molybdenum CoCrMo
- the layers are built up in the axial direction of the pump impeller 1, approximately parallel to the axis of rotation, so that the individual layers extend approximately transversely to the axis of the impeller.
- the hub, then the carrier disk and then the blade are each formed in layers.
- the layered formation of a pump impeller in the colloquial manner of "3D printing" can take place on the basis of a 3-dimensional computer model of the pump impeller 1, which is calculated in such a way that the pump impeller produced is almost imbalance-free.
- the basic procedure for the design of a pump impeller according to the invention and the generation of its 3-dimensional computer model is explained below.
- the high manufacturing accuracy of additive manufacturing technologies enables a theoretical balancing of impellers in the CAD model and the transfer to the real component.
- the dynamic balancing (theoretical) of the semi-open pump impeller 1 takes place in two levels I and II (balancing levels). Under certain circumstances, small imbalance deviations in the manufactured impeller only need to be corrected statically so that a small residual dynamic imbalance can be accepted.
- the problem can be partly avoided by using one of the balancing planes (plane I in 4 ) represents blade 3 itself, while the other plane (plane II in 4 ) remains in the carrier disc 2.
- the plane distance L is thereby as large as possible, the volume of the recess 14 can be smaller and a significantly smaller support disk 2 can be selected, which reduces the use of material, which saves time and costs, especially when using additive manufacturing processes.
- a pump impeller is provided in which material has been removed from the blade body 3, 18 so that hollow chambers 5, 6 are formed.
- the hydraulically optimized impeller 1 has an eccentric center of mass (m s ⁇ r s ) and moments of deviation (J zy , J zx ) in its inertia. While the former defines the static imbalance, the moment of deviation is responsible for the dynamic imbalance and thus also for the inclination of the main axis of inertia to the axis of rotation 15.
- the position and the imbalance (product of mass and center of gravity radius) of the cavities 5, 6 are defined by the design of the impeller 1.
- the course of the blade is to be adapted in such a way that the cavities 5, 6 lie within the blade body 3, 18 and not the blade surface or the ramp 17 penetrate
- the cavities 5, 6 are then to be calculated so that they correspond to the previously determined imbalance. Iteratively adapting the cavity dimensions results in a very free cavity design. For example, rounded edges, supporting structures can be integrated without any problems, or the number of cavities can be changed.
- the pump impeller according to the invention and its manufacturing method can be modified in many obvious ways without deviating from the basic idea of the invention.
- the geometry, size, position and number of cavities 5, 6 can deviate from the variant shown in the figures, provided that an overall statically imbalance-free impeller is obtained.
- only one cavity can be present and/or one or more cavities with a round basic shape viewed in radial cross section.
- the roof geometry can be funnel-shaped.
- a plastic or ceramic powder can also be used.
- a polymer fiber can be melted (fused filament fabrication) in order to form the individual layers, so that cavities which are completely closed on the outside can be produced.
- the impeller 1 can be constructed in a different layer direction, for example radially to the impeller axis 15.
- the cavity or cavities can also first be flooded with water and then the channel or channels 9, 10 can be closed. The mass of the water must be taken into account for the positioning, dimensioning and shape of the cavity or cavities.
- the carrier disc 2 and/or the hub 13 can be produced independently of the blade 2, in particular separately by casting and subsequent assembly by welding or screw fastening.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
- Die Erfindung betrifft ein asymmetrisches Pumpenlaufrad für ein Pumpenaggregat zur Förderung einer insbesondere feststoffbeladenen Flüssigkeit, sowie ein Verfahren zur Herstellung eines solchen Pumpenlaufrads.
- Asymmetrische Pumpenlaufräder besitzen eine Geometrie, die bezogen auf die Rotationsachse des Pumpenlaufrades nicht rotationssymmetrisch bzw. nicht zyklisch rotationssymmetrisch ist. Derartige Pumpenlaufräder sind beispielsweise halboffene Laufräder mit einer einzigen Schaufel, wie sie bei Abwasserpumpen oder Tauchpumpen zum fördern feststoffhaltiger Flüssigkeiten eingesetzt werden.
- Asymmetrische Pumpenlaufräder sind nur durch eine volle 360° Drehung in sich selbst überführbar. Da sich die Geometrie des Pumpenlaufrades in erster Linie nach hydraulischen Aspekten richtet, wird sie in der Regel ohne Rücksicht auf mögliche geometriebedingte Unwuchten entworfen. Ein solches Laufrad besitzt eine originäre asymmetrische Gewichtsverteilung, mithin einen außermittigen Masseschwerpunkt. Die Hauptträgheitsachse liegt somit nicht auf der Rotationsachse des Laufrades, wodurch eine statische Unwucht erzeugt wird. Zudem führen Deviationsmomente in der Trägheit des Pumpenlaufrades bei Rotation zu einer Schräglage der Hauptträgheitsachse gegenüber zur Rotationsachse, so dass auch eine dynamische Unwucht vorliegt. Statische und dynamische Unwuchten können auch herstellungsbedingt sein, da je nach Herstellungsverfahren Toleranzen, d.h. Maßabweichungen vom entworfenen Design des Pumpenlaufrades vorliegen.
- Die Unwuchten werden nach der Herstellung des Laufrades im Rahmen eines manuellen Wuchtprozesses entfernt. Dies erfolgt durch partielle Materialabtragung, d.h. partielle Einsparungen von Material (negatives Auswuchten) oder durch partielle Materialhinzufügung durch die Montage eines Wuchtgewichtes (positives Auswuchten), welches das Gewicht des Laufrades am Ort seiner Anordnung erhöht.
- Ein Abwasserpumpenlaufrad mit einem Wuchtgewicht ist beispielsweise aus dem japanischen Patent
JP 5133026 B2 US 2011/182734 A1 und der britischen PatentanmeldungGB 687,514 GB 182,632 - Pumpenlaufräder für Abwasserpumpen werden in der Regel gegossen wie z.B. in der japanischen Patentanmeldung
JP 2013-64398 A - Es ist Aufgabe der vorliegenden Erfindung, ein asymmetrisches Pumpenlaufrad bereitzustellen, das Unwuchten bereits in seiner Geometrie berücksichtigt, ohne dabei einen hydraulischen Wirkungsgradeinbruch zu erfahren, und das bereits durch das Verfahren seiner Herstellung ausgewuchtet ist. Ferner ist es Aufgabe der Erfindung ein Verfahren zur Herstellung eines solchen Pumpenlaufrades bereit zu stellen.
- Diese Aufgaben werden durch die Merkmale der Ansprüche 1 und 16 gelöst.
- Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben und werden nachfolgend erläutert.
- Erfindungsgemäß wird ein asymmetrisches Pumpenlaufrad für ein Pumpenaggregat zur Förderung einer insbesondere feststoffbeladenen Flüssigkeit vorgeschlagen, das zumindest zum Teil schichtweise durch ein additives Herstellungsverfahren gebildet ist und zumindest einen Hohlraum in seinem Materialinneren aufweist, der bei der schichtweisen Herstellung ausgebildet wird und nach außen vollständig oder bis auf eine Öffnung zum Entfernen unverfestigten Materials aus dem Hohlraum geschlossen ist, wobei der Hohlraum derart positioniert und ausgebildet ist, dass eine Trägheitsachse des Pumpenlaufrads zur Rotationsachse des Pumpenlaufrads hin verschoben ist. Ferner wird erfindungsgemäß ein Verfahren zur Herstellung eines Pumpenlaufrads der genannten Art aus einzelnen Schichten eines Materials durch Anwendung eines additiven Herstellungsverfahrens vorgeschlagen, bei dem in zumindest einem Teil aufeinander folgender Schichten ein Raumbereich im Materialinneren des Pumpenlaufrads zur Ausbildung zumindest eines nach außen vollständig oder bis auf eine Öffnung zum Entfernen unverfestigten Materials aus dem Hohlraum geschlossen ist, wobei der Hohlraum derart positioniert und ausgebildet ist, dass eine Trägheitsachse zur Rotationsachse des Pumpenlaufrads hin verschoben ist.
- Kerngedanke der Erfindung ist es somit, den Vorgang des Auswuchtens eines asymmetrischen Pumpenlaufrades in die Entwurfsphase zu verlegen und das Pumpenlaufrad so zu entwerfen und herzustellen, dass es nahezu unwuchtfrei ist. Hierzu sieht die Erfindung die Verwendung von Hohlräumen in asymmetrischen Pumpenlaufrädern vor, die durch ein additives Herstellungsverfahren erhalten werden. Der oder die Hohlräume ermöglichen eine freiere Ausgestaltung der Schaufelgeometrie, weil das Auswuchten anderenfalls über die Schaufelgeometrie erfolgen müsste.
- Dabei ist es Ziel, einen oder mehrere geschlossene oder im Wesentlichen geschlossene Hohlräume im Materialinneren des Laufrades zu verwenden, um eine lokale Gewichtseinsparung zu erreichen, die einen Beitrag dazu leistet oder es sogar ganz bewirkt, dass das gesamte Pumpenlaufrad eine symmetrische Gewichtsverteilung erhält, mithin zumindest statisch ausgewuchtet ist, wobei der Hohlraum durch Anwendung eines additiven Herstellungsverfahrens ausgebildet wird. Unabhängigkeit von dem Aspekt der lokalen Materialeinsparung und damit Gewichtseinsparung umfasst die Erfindung auch den Aspekt der lokalen Gewichtshinzufügung zum Zwecke des Auswuchtens, wie nachstehend noch erläutert wird.
- Ein additives Herstellungsverfahren, auch generatives Herstellungsverfahren genannt, ermöglicht es, nahezu beliebig positionierte und nahezu beliebig komplex in ihrer Geometrie ausgebildete Hohlräume herzustellen, die nicht in gleicher Weise durch alternative Verfahren, beispielsweise mit verlorenen Kernen oder geteilten/ bewegten Kernen oder Schiebern hergestellt werden können.
- Durch den zumindest einen Hohlraum wird zudem das Gewicht des Laufrads insgesamt reduziert, was auch die Handhabung bei der Herstellung und dem Transport vereinfacht und das Gesamtgewicht des Pumpenaggregats reduziert. Zudem führt die Materialeinsparung durch den zumindest einen Hohlraum zu einem Kostenvorteil, der sich umso stärker ausprägt, je hochwertiger das zur Herstellung des Pumpenlaufrads verwendete Material ist. Ein weiterer Vorteil der schichtweisen additiven Herstellung ist die kostengünstige Einzelfertigung kundenspezifischer Pumpenlaufräder, bzw. der wirtschaftlichen Herstellung kleinerer Mengen von Pumpenlaufrädern. Denn das additive Herstellen aus Schichten benötigt keine Gießform, mithin keine speziell geformten Kerne. Außerdem entfallen durch die additive Fertigung Arbeitsschritte, die bei konventioneller Fertigung notwendig sind, z.B. Überdrehen des Außendurchmessers, saugseitiges Überdrehen, Auswuchten des Laufrades.
- Bei dem additiven Herstellungsverfahren können beispielsweise einzelne Schichten eines geschmolzenen Materials aus einer Düse nacheinander aufeinander aufgetragen werden und auf diese Weise Schicht für Schicht das Laufrad bzw. seine mechanische Tragstruktur bilden, wie dies an sich als sogenanntes "3D Drucken" bekannt ist. Dort, wo der zumindest eine Hohlraum auszubilden ist, fehlt es entsprechend an einem Materialauftrag. Auf diese Weise kann der zumindest eine Hohlraum nach außen vollständig geschlossen im Materialinneren des Laufrades ausgebildet werden. Als Materialen eignen sich hier vor allem Polymere und faserverstärkte Polymere, die eine vergleichsweise (gegenüber Metall) niedrige Schmelztemperatur aufweisen und im plastifizierten Zustand nicht zu flüssig sind
- Eine alternative und erfindungsgemäß bevorzugte Variante ist die Herstellung der einzelnen Schichten aus einem Pulver. Dieses kann lokal aufgeschmolzen werden, beispielsweise mittels eines hochenergetischen Strahls wie einem Laserstrahl oder Elektronenstrahl, wobei es sich anschließend wieder verfestigt. Auf die verfestigte Schicht wird dann eine weitere Pulverschicht aufgetragen und diese anschließend wieder lokal mit dem Strahl aufgeschmolzen. Im Bereich eines auszubildenden Hohlraums erfolgt kein Aufschmelzen des Pulvers. Besonders geeignet zur lokalen Aufschmelzung sind das sogenannte selektive Lasersintern (SLS), das Laserschmelzen oder das Elektronenstrahlschmelzen, die an sich bekannt sind. Sie ermöglichen die Herstellung hochpräziser Bauteile. Als Alternative zum Aufschmelzen des Pulvers kann dieses durch ein Bindemittel lokal verklebt werden, um das Pulver zu verfestigen und das Laufrad auf diese Weise schichtenweise zu erzeugen. Ein solches generatives Herstellungsverfahren ist unter der Bezeichnung "Binder Jetting" bekannt, und kann ebenfalls erfindungsgemäß verwendet werden.
- Als Material kann neben einem Polymer- oder Keramikpulver bevorzugt ein Metallpulver verwendet werden, so dass besonders stabile Pumpenlaufräder aus Metall insbesondere für Abwasserpumpen hergestellt werden können.
- Um das unverfestigte Material, d.h. das Pulver, aus dem zumindest einen Hohlraum zu entfernen, muss der Hohlraum eine Öffnung nach außen aufweisen. Diese kann jedoch im Hinblick auf die Korngröße des Pulvers vergleichsweise klein sein, beispielsweise zwischen 0,5mm und 2mm betragen, so dass das Pulver von selbst herausrieseln oder herausgeblasen werden kann.
- Vorzugsweise umfasst das Laufrad nur eine Schaufel auf, die sich spiralförmig um die Rotationsachse erstreckt. Der Abstand der Schaufel zur Mitte des Laufrades bzw. zur Rotationsachse wird somit mit zunehmendem Umschlingungswinkel, d.h. von innen nach außen größer. Das Laufrad ist demgemäß ein Kreiselpumpenlaufrad oder Zentrifugallaufrad, das die Flüssigkeit zentral ansaugt und radial herausfördert. Geeigneterweise ist das Laufrad ohne Deckscheibe, d.h. halboffen ausgeführt, d.h. zur Saugöffnung der Pumpe hin offen ist. Ein solches Laufrad ist besonders für Abwasserpumpen und Tauchpumpen, d.h. zur Förderung feststoffbeladener Abwässer geeignet, da es im Vergleich zu zwei- oder mehrschaufligen Laufrädern und gedeckten Laufrädern weniger anfällig gegen Verstopfung ist. Das Pumpenaggregat kann somit bevorzugt eine Abwasser- oder Tauchpumpe sein.
- Alternativ zum beschaufelten Laufrad kann es sich bei dem erfindungsgemäßen Pumpenlaufrad um ein Schneckenlaufrad handeln. Ein solches Schneckenlaufrad wird beispielsweise bei Exzenterschneckenpumpen eingesetzt und dort auch als Rotor bezeichnet. In asymmetrischer Bauweise besitzt es ein eingängiges Gewinde großer Steigung, großer Gangtiefe und kleinem Kerndurchmesser. Gegebenenfalls windet sich das Gewinde nicht ein ganzzahliges Vielfaches um die Rotorachse. Beides verursacht Unwuchten, die durch das erfindungsgemäße Laufrad vermieden werden können.
- Um der Schaufel eine höhere Stabilität zu verleihen, kann das Laufrad eine Tragscheibe aufweisen, auf der die Schaufel befestigt ist, bzw. von der sie sich erhebt. Gemäß einer Ausführungsvariante kann die Tragscheibe separat hergestellt werden. Diese Herstellung kann in herkömmlicher Art beispielsweise mittels Gießen erfolgen. Anschließend kann sie mit der schichtweise hergestellten Schaufel mechanisch fest verbunden werden. Dies kann beispielsweise mittels Schweißen oder Verschrauben erfolgen. Es ist jedoch von Vorteil, wenn die Tragscheibe sogleich bei der schichtweisen Herstellung einstückig mit der Schaufel ausgebildet wird. Auf einen nachfolgenden Schweiß- oder Montageschritt kann dadurch verzichtet werden.
- Der zumindest eine Hohlraum kann gemäß einer Ausführungsvariante teilweise innerhalb des die Schaufel bildenden Materials liegen. Je nach Schaufelgeometrie kann er aber auch vollständig innerhalb der Schaufel ausgebildet sein. Zusätzlich oder alternativ kann der zumindest eine Hohlraum teilweise innerhalb des die Tragscheibe bildenden Materials liegen. Er kann aber auch vollständig innerhalb der Tragscheibe ausgebildet sein. Gemäß einer wiederum anderen Ausführungsvariante kann der Hohlraum zu einem Teil innerhalb der Schaufel und zu einem anderen Teil innerhalb der Tragscheibe liegen.
- Gemäß einer bevorzugten Ausführungsvariante kann das Laufrad innerhalb eines von der Schaufel eingefassten Zentralbereichs eine von der geförderten Flüssigkeit überströmbare Materialmenge aufweisen, in der der zumindest eine Hohlraum ganz oder teilweise ausgebildet sein kann. Der Zentralbereich entspricht dabei dem von der einzigen Schaufel begrenzten Strömungskanal (Schaufelkanal) des Laufrades, der in axialer Richtung, im Falle der Existenz einer Tragscheibe zu dieser hin, durch die Materialmenge zumindest zum Teil begrenzt ist. In anderer Axialrichtung bildet der Zentralbereich den Saugmund, d.h. die Saugseite des Laufrades. Geeigneterweise ist die Materialmenge stofflich integral mit der Schaufel ausgebildet und kann somit als Teil der Schaufel betrachtet werden. Die Materialmenge besitzt idealerweise eine Oberfläche in Form einer Rampe, welche sich in axialer Richtung mit zunehmend kleiner werdendem Abstand der Schaufel zur Rotationsachse, d.h. mit kleiner werdendem Umschlingungswinkel der Schaufel erhebt.
- Wie bereits ausgeführt, kann der zumindest eine Hohlraum vollständig in der Materialmenge ausgebildet sein. Wird die Materialmenge als Teil der Schaufel betrachtet, so ist der zumindest eine Hohlraum dann vollständig in der Schaufel ausgebildet. Wird die Materialmenge als ein von der Schaufel unabhängiger Teilbereich des Pumpenlaufrades betrachtet, so kann der zumindest eine Hohlraum teilweise in der Materialmenge liegen und sich zu einem anderen Teil in einen anderen Teilbereich des Pumpenlaufrades erstrecken. Gemäß einer Ausführungsvariante kann er zum Teil in der Materialmenge einliegen, zu einem anderen Teil in der Schaufel oder in der Tragscheibe einliegen. Gemäß wieder einer anderen Ausführungsvarianten kann der Hohlraum zum Teil innerhalb der Materialmenge, zum Teil innerhalb der Schaufel und zum Teil innerhalb der Tragscheibe einliegen.
- Damit das unverfestigte Material aus dem Hohlraum entfernbar ist, kann sich an die Öffnung ein Kanal anschließen, der vom Hohlraum nach außen führt. Über diesen Kanal kann die Entleerung des Hohlraums nach der Herstellung des Laufrades erfolgen, beispielsweise indem das unverfestigte Pulver aus dem freigelassenen Raumbereich durch den Kanal herausgeblasen wird. Hierzu kann beispielsweise eine Hohlnadel in den Kanal eingeführt und durch diese Druckluft in den Hohlraum geblasen werden. Alternativ kann das unverfestigte Pulver auch herausgesaugt werden.
- Gemäß einer Ausführungsvariante kann der Kanal offen, bzw. dauerhaft offen ausgebildet sein. Dies bedeutet, dass im Betrieb des Pumpenaggregats Förderflüssigkeit in den Hohlraum eintreten kann. Dies birgt jedoch die Gefahr, dass sich innerhalb des Hohlraums Ablagerungen bilden können, welche wiederum die Gewichtsverteilung beeinflussen können, und ferner schwer im Vorhinein bei der Bestimmung des Schwerpunkts je Materialschicht berücksichtigbar sind, so dass der nach außen offene Hohlraum stets unwuchtanfällig ist.
- Um dies zu vermeiden, kann der Kanal nachträglich, d.h. nach dem Entfernen des unverfestigten Materials, insbesondere des Pulvers, geschlossen werden. Somit ist der zumindest eine Hohlraum des betriebsfertigen Pumpenlaufrads wieder nach außen vollständig geschlossen. Der Kanal kann beispielsweise zugeschweißt, insbesondere mit einer Schweißperle verschlossen werden. Alternativ kann er auch mit Hilfe eines Klebers zugeklebt, mittels einer Schraube wie einer Madenschraube zugeschraubt (setzt Innengewinde im Kanal voraus) oder über einer Presspassung mit einem Stopfen verschlossen werden.
- Um zu vermeiden, dass Materialreste, insbesondere Pulverreste in dem zumindest einen Hohlraum verbleiben, kann der Hohlraum frei von recht- und/ oder spitzwinkligen Innenkanten und/ oder Innenecken sein. Erfahrungen haben gezeigt, dass gerade bei derartigen Innenkanten Pulverreste kleben bleiben. Ein mechanischer Schlag oder Rütteln ist dann erforderlich, um diese Reste zu lösen. Vorzugsweise kann vorgesehen sein, dass zwei winklig zueinander liegende Begrenzungswände des zumindest einen Hohlraums unter Ausbildung einer Hohlkehle ineinander übergehen. Der Übergang dieser beiden Begrenzungswände ist somit durch eine konkave Ausrundung der Innenkante gebildet. Dies reduziert das Risiko eines Anhaftens von Pulverresten im Übergang der Begrenzungswände.
- Von besonderem Vorteil ist es, wenn der zumindest eine Hohlraum in eine Richtung im Querschnitt betrachtet satteldachförmig oder trichterförmig geschlossen ist. Die Öffnung liegt dabei sinnvollerweise in der Spitze des Satteldachs oder Trichters. Diese Geometrie bildet quasi einen Entleerungstrichter und vereinfacht die Entfernung des unverfestigten Materials und begünstigt eine vollständige Restentleerung.
- Eine satteldachförmige Dach-Geometrie ist für eine rechteckige Querschnittsfläche oder Grundfläche des Hohlraums besonders geeignet und besitzt zwei zueinander winklig liegende Begrenzungswände, die sich in einer Linie, dem First, schneiden, und auf denen das unverfestigte Material herabgleiten kann. Die satteldachförmige Dach-Geometrie muss dabei aber nicht zwingend symmetrisch sein. Ferner müssen die Begrenzungswände keine Ebenen, der First keine Gerade sein. Sie können auch beliebig gebogene Flächen, die Linie eine entsprechend beliebig gebogene Kurve sein, in der sich die beiden Flächen schneiden. Die Öffnung liegt sinnvollerweise mittig in Erstreckungsrichtung auf der Linie, damit das unverfestigte Pulver von allen Seiten gleichmäßig zur Öffnung rieseln kann. Entsprechend ist es von Vorteil, wenn der Kanal in Umfangsrichtung mittig zum Hohlraum in diesen mündet
- Eine trichterförmige Dach-Geometrie eignet sich besonders für eine quadratische oder runde Querschnittsfläche oder Grundfläche des Hohlraums. Das Dach des Hohlraums kann somit einer vierseitigen Pyramide, einer Kuppel (Halbkugel) oder einem Kegel entsprechen, die bzw. der auf dem Kopf stehend einen Trichter bildet, so dass das unverfestigte Material zum Zentrum des Trichters herabgleiten kann. Die Öffnung liegt dabei sinnvollerweise im Zentrum des Trichters. Entsprechend ist es von Vorteil, wenn der Kanal aus Sicht der Rotationsachse des Laufrades in radialer Richtung mittig zum Hohlraum in diesen mündet. Dies gilt auch für die satteldachförmige Geometrie. Auch bei der trichterförmigen Dach-Geometrie sei angemerkt, dass diese nicht unbedingt symmetrisch sein muss sondern auch unsymmetrische trichterförmige Dach-Geometrien möglich sind.
- Somit kann die Form des Hohlraums im Querschnitt beliebig sein, beispielsweise rechteckig, quadratisch, rund oder oval. Um der gewundenen Form der Schaufelgeometrie gerecht zu werden, kann die Geometrie des Hohlraums im Querschnitt an diese Schaufelgeometrie angepasst sein, beispielsweise dahingehend, dass eine rechteckige Grundform in Richtung ihrer Längserstreckung gebogen ist. Somit besitzt auch das Satteldach eine gebogene Kontur, und der First entspricht einer gebogenen Linie. Die Geometrie kann im Querschnitt z.B. einem Segment einer Lochscheibe, beispielsweise einem Viertelkreissegment entsprechen, wie nachfolgend anhand des Ausführungsbeispiels noch deutlich wird.
- Idealerweise erfolgt die satteldachförmige oder trichterförmige Ausbildung des Hohlraums in Richtung des additiven Schichtaufbaus. Dies macht sich den Nachteil zunutze, dass je nach verwendetem Verfahren keine Schwebedachkonstruktion (freitragende Decke) ausgebildet werden kann, mithin nur Schrägen größer 45° oder größer 50° schichtweise hergestellt werden können, weil aufgeschmolzenes Pulvermaterial wie Wasser nach unten fließen und unverfestigtes Pulvermaterial verdrängen würde.
- In einer Ausführungsvariante kann der Hohlraum im inneren eine Stützstruktur aufweisen. Eine Stützstruktur kann beispielsweise erforderlich sein, um eine bestimmte Geometrien des Hohlraums herzustellen, die mit dem additiven Herstellungsverfahren anderenfalls nicht realisiert werden kann. Eine Stützstruktur kann aber auch aus anderen Gründen vorgesehen werden, beispielsweise um Kräfte zu übertragen oder zum Zwecke des Auswuchtens wiederum Material innerhalb des Hohlraums vorzusehen.
- Die Stützstruktur kann sich beispielsweise zwischen zwei oder mehr Begrenzungswänden des Hohlraums erstrecken. Idealerweise wird sie beim schichtweisen Aufbau des Pumpenlaufrades mit erzeugt.
- Die Stützstruktur kann in einer Ausführungsvariante skelettartig ausgebildet sein, so dass sie nur ein Minimum an Material erfordert. Eine skelettartige Stützstruktur trennt den zumindest einen Hohlraum in Teilhohlräume, die über Öffnungen in der Stützstruktur miteinander verbunden sind.
- Vorzugsweise kann die Stützstruktur an wenigstens einer Stelle eine dem Auswuchten dienende Materialverdickung aufweisen. Alternativ oder zusätzlich kann eine den Hohlraum begrenzende Außenwand an wenigstens einer Stelle eine dem Auswuchten dienende Materialverdickung aufweisen. Dies erhöht den Freiheitsgrad bei der Gestaltung und Anordnung des Hohlraums oder der Hohlräume im Pumpenlaufrad. An dieser Stelle sei darauf hingewiesen, dass eine Materialverdickung letztendlich bedeutet, dass das Hohlraumvolumen gegenüber einer Variante ohne Materialverdickung verringert ist. Dies zeigt, dass auch eine Hinzunahme von Material im oder am Hohlraum gleichzeitig eine Anpassung des Hohlraums selbst darstellt. Somit ist auch bei einer Materialverdickung im oder am Hohlraum der zumindest eine Hohlraum derart ausgebildet, dass eine Trägheitsachse des Pumpenlaufrads zur Rotationsachse des Pumpenlaufrads hin verschoben ist.
- Alternativ zu einer skelettartigen Struktur kann die Stützstruktur auch durch eine insbesondere massive Stützwand gebildet sein. Eine solche Stützwand trennt den zumindest einen Hohlraum in zwei Hohlräume, die jeweils nach außen geschlossen oder bis auf eine Öffnung zur Entleerung unverfestigten Pulvers geschlossen sind. Das erfindungsgemäße Pumpenlaufrad weist somit in dieser Ausführungsvariante zwei Hohlräume auf, die dem Auswuchten dienen.
- Die Stützwand kann in einer Ausführungsvariante dem bereits vorerwähnten Umstand Rechnung tragen, dass die Dachgeometrie eines Hohlraums nur mit einer Schräge größer 45° oder größer 50° ausgebildet werden kann und somit durch die Dachhöhe auch die maximale Breite des Hohlraums festgelegt ist. Muss der Hohlraum aufgrund der notwendigen Verschiebung der Trägheitsachse zur Rotationsachse aber breiter ausgebildet werden, als es die Dachhöhe zulässt, weil sich der Hohlraum anderenfalls nach außen öffnen würde, so können zwei Hohlräume nebeneinander ausgebildet werden, vorzugsweise mit im Querschnitt symmetrischer Geometrie. Beispielsweise können die Hohlräume bezogen auf die Laufradachse in radialer Richtung hintereinanderliegen. Die Stützwand erstreckt sich dann in Umfangsrichtung und trennt die beiden Hohlräume radial voneinander.
- Von besonderem Vorteil ist es, wenn die Hohlräume durch einen Verbindungskanal miteinander verbunden sind. Dies ermöglicht es, zur Entleerung der Hohlräume durch den einen Kanal in den ersten Hohlraum hinein Druckluft zu blasen, um das unverfestigte Material durch den anderen Kanal des zweiten Hohlraums herauszublasen. Alternativ kann auch gesaugt werden. Dies kann wechselseitig erfolgen, um beide Hohlräume restlos zu entleeren. Dieses Verfahren kann auch bei drei oder mehr Hohlräumen angewendet werden, insbesondere auch dann, wenn die Hohlräume nicht unmittelbar benachbart liegen. Es können alle oder Gruppen der Hohlräume miteinander durch entsprechende Verbindungskanäle verbunden sein, damit die Drucklauft in alle Hohlräume oder in die Hohlräume einer Gruppe hineingelangen kann. Bei voneinander fluidisch getrennten, d.h. nicht verbundenen Gruppen ist das Verfahren entsprechend pro Gruppe zu wiederholen.
- In einer bevorzugten Ausführungsvariante, weist das Pumpenlaufrad zusätzlich zu dem einen inneren Hohlraum eine nach außen offene Ausnehmung oder einen weiteren nach außen vollständig oder bis auf eine Öffnung zum Entfernen unverfestigten Materials geschlossenen Hohlraum auf, wobei die Ausnehmung oder der weitere Hohlraum axial zum einen Hohlraum versetzt ist. Die Ausnehmung und der weitere Hohlraum ermöglichen das Auswuchten des Pumpenlaufrades in einer zweiten Radialebene. Der bezogen auf die Rotationsachse axiale Versatz bewirkt, dass der Schwerpunkt des einen inneren Hohlraums und der Schwerpunkt der Ausnehmung bzw. des weiteren inneren Hohlraums in jeweils einer eigenen Radialebene liegt und die beiden Radialebene axial zueinander beabstandet sind. Sie ermöglichen, das Pumpenlaufrad dynamisch auszuwuchten.
- Es ist sinnvoll, wenn die Ausnehmung oder der weitere Hohlraum in der Tragscheibe ausgebildet ist. In Kombination mit dem in der Schaufel oder im Materialbereich ausgebildeten einen Hohlraum wird durch die Ausnehmung oder den weiteren Hohlraum in der Tragscheibe ein besonders großer Abstand zwischen den beiden Radialebenen erreicht. Dies wiederum hat den Vorteil, dass eine geringere Ausgleichsmasse bzw. ein geringeres Hohlvolumen zur Beseitigung der dynamischen Unwucht erforderlich ist.
- Um den Abstand zu maximieren, kann die Ausnehmung auf der der Schaufel abgewandten Rückseite der Tragscheibe ausgebildet ist. Diese Ausführung hat zudem den Vorteil, dass die Ausnehmung den hydraulischen Wirkungsgrad nicht beeinflusst, da sie von der Saug- und Druckseite des Pumpenlaufrades abgewandt ist.
- Vorzugsweise erfolgt der Aufbau der einzelnen Schichten in axialer Richtung des Pumpenlaufrades, d.h. quer zur Laufradachse oder leicht geneigt dazu, so dass die Richtung des Schichtaufbaus im Wesentlichen parallel zur Laufradachse liegt. Dies hat den Vorteil, dass so wenig Stützstrukturen wie möglich benötigt und folgemäßig so wenig Material wie möglich aufgeschmolzen werden muss. Dies reduziert zudem den Aufwand bei der Nachbearbeitung, da weniger Stützstrukturen entfernt werden müssen.
- Von Vorteil ist es zudem, wenn bei der Herstellung zunächst die Tragscheibe des Pumpenlaufrads und darauf anschließend die eine Schaufel schichtweise ausgebildet wird. Hierdurch werden Stützstrukturen vermieden, die aufgrund der in radialer Richtung über die Schaufel hinaus vorstehenden Tragscheibe erforderlich wären, wenn die Tragscheibe zuletzt ausgebildet werden würde. Diese Stützstrukturen müssten nachträglich wieder entfernt werden, was den Herstellungsprozess verlängert und verkompliziert.
- Weitere Merkmale und Vorteile der Erfindung werden nachfolgend anhand eines Ausführungsbeispiels und der beigefügten Figuren erläutert. Es zeigen:
-
Fig. 1 : eine perspektivische Ansicht eines erfindungsgemäßen Pumpenlaufrads -
Fig. 2 : eine perspektivische Ansicht des axial geschnittenen Laufrads ausFig. 1 -
Fig. 3 : eine perspektivische Ansicht des radial geschnittenen Laufrads ausFig. 1 -
Fig. 4 : Position der zwei Wuchtebenen für das Pumpenlaufrad nachFig. 1 -
Fig. 5 : Schnitt durch Ebene II gemäßFig. 4 - Die
Figuren 1 bis 3 zeigen ein einschaufliges Pumpenlaufrad 1 für ein Abwasserpumpenaggregat zur Förderung feststoffbeladener Abwässer gemäß der Erfindung. Es umfasst eine Tragscheibe 2 und eine damit einstückig ausgebildete, sich spiralförmige um die Laufradachse 15 erstreckende Schaufel 3, die sich von der Tragscheibe 2 in axialer Richtung erhebt. Eine Deckscheibe ist nicht vorhanden, so dass das Pumpenlaufrad 1 ein halboffenes Pumpenlaufrad bildet. Hinsichtlich seiner Geometrie ist das Laufrad 1 bezogen auf die Laufradachse 15 asymmetrisch. - Wie insbesondere anhand von
Fig. 2 zu erkennen ist, weist das Pumpenlaufrad 1 ferner einen von der Schaufel 3 eingefassten Zentralbereich 16 auf, der den Strömungskanal (Schaufelkanal) des Laufrads 1 bildet. Innerhalb dieses Zentralbereichs 16 ist der Strömungskanal zur Tragscheibe 2 hin durch eine Materialmenge 18 (Vollmaterial) begrenzt, die wiederum zum Strömungskanal hin eine rampenförmige Oberfläche, d.h. eine Rampe 17 aufweist, die von der geförderten Flüssigkeit im Betrieb des Pumpenaggregats überströmt wird. Die Rampe 17 erhebt sich mit zunehmender radialer Annäherung der Schaufel 3 an die Laufradachse 15 zunehmend von der Tragscheibe 2. - In der Materialmenge 18 sind zwei in radialer Richtung hintereinanderliegende Hohlräume 5, 6 ausgebildet, die bis auf einen Kanal 9, 10 nach außen hin geschlossen sind. Die Hohlräume 5, 6 sind bis auf eine Öffnung 7, 8, die in den jeweiligen Kanal 9, 10 hineinführt, allseitig geschlossen, d.h. weder halboffen noch lediglich eine Ausnehmung aus dem Material des Laufrades. Somit befinden sich die Hohlräume im Materialinneren des Laufrades 1. Die beiden Kanäle 9, 10 erstrecken sich in axialer Richtung annährend parallel zur Laufradachse 15 und münden jeweils in einer eigenen Öffnung 11, 12 an der Oberfläche der Rampe 17, die hier jeweils offen ist.
- In der hier dargestellten Ausführungsvariante ist ein radial äußerer Teilbereich des radial äußeren Hohlraums 5 teilweise in der Schaufel 3 ausgebildet, da die Wandstärke der Schaufel 3 im Bereich dieses äußeren Hohlraums 5 dünner ist, als im übrigen Bereich der Schaufel 3. Somit liegt der äußere Hohlraum 5 teilweise innerhalb der Materialmenge 18, teilweise innerhalb der Schaufel 3. Der Hohlraum 5 erstreckt sich jedoch nicht bis in die Tragscheibe 2 hinein.
- Die beiden Hohlräume 5, 6 sind hier gemeinsam derart positioniert und hinsichtlich ihrer Größe und Geometrie derart ausgebildet ist, dass eine Trägheitsachse des Pumpenlaufrads 1 zur Rotationsachse 15 hin verschoben ist. Denn durch die Hohlräume 5, 6 wird eine lokale Gewichtseinsparung erreicht, die einer radialen Verlagerung der Schwerpunktsachse infolge der Masse der Materialmenge 18 statisch entgegenwirkt und damit zumindest einen Teil der Unwucht beseitigt.
- Im axialen Querschnitt betrachtet, sind die beiden Hohlräume 5, 6 jeweils durch die Kontur eines Hauses mit einem Satteldach 24 gebildet. Radial nach außen sind die beiden Hohlräume 5, 6 durch eine schaufelseitige Begrenzungswand 20, radial nach innen durch eine nabenseitige Begrenzungswand 21 und in axialer Richtung durch eine tragscheibenseitige Begrenzungswand 22 begrenzt. Die Hohlräume 5, 6 sind voneinander durch eine Stützwand 23 getrennt, auf der sich der Bereich der Materialmenge 18 zwischen den beiden Satteldächern 24 abstützt. Die Stützwand 23 bildet für den radial außen liegenden Hohlraum 5 die nabenseitige Begrenzungswand 21 und für den radial innen liegenden Hohlraum 6 die schaufelseitige Begrenzungswand 20. Es sei an dieser Stelle jedoch angemerkt, dass die beiden Hohlräume auch durch einen einzigen Hohlraum gebildet sein können. Die Stützwand 23 ist somit nicht zwingend. Ferner müssen die Satteldächer 24 nicht wie in dem Ausführungsbeispiel symmetrisch sein.
- An das jeweilige Satteldach 24 schließt sich einer der beiden Kanäle 9, 10 in Gestalt je eines "Kamins" an, der am First des Satteldachs beginnt, wo auch die beiden Öffnungen 7, 8 liegen. Die Kanäle 9, 10 sind also bezogen auf die radiale Breite der Hohlräume 5, 6 jeweils mittig angeordnet. Wie insbesondere anhand von
Fig. 3 zu erkennen ist, erstrecken sich die beiden Hohlräume 5, 6 in ihrer Länge bogenförmig in Umfangsrichtung jeweils entlang eines Viertelkreises, wobei ihre Längsenden jeweils miteinander fluchten. Somit besitzt der radial innere Hohlraum 6 eine geringere Längserstreckung als der radial außenliegende Hohlraum 5. Die Kanäle 5, 6 sind bezogen auf die Längserstreckung der Hohlräume 5, 6 jeweils mittig angeordnet, so dass sie auf einem Radius zur Rotationsachse 15 liegen. - Zusätzlich zu den im wesentlichen geschlossenen Hohlräumen 5, 6 ist auf der der Schaufel 3 abgewandten Rückseite der Tragscheibe 2 eine Ausnehmung 14 (Tragscheibentasche) vorhanden, die ebenfalls eine lokale Gewichtsreduzierung bewirkt und der Verschiebung der Trägheitsachse zur Rotationsachse hin dient. Durch die Kombination der beiden Hohlräume 5, 6 und der Ausnehmung 14 wird die Trägheitsachse auf die Rotationsachse 15 verschoben, so dass das Laufrad 1 insgesamt ausgewuchtet ist.
- An die Tragscheibe 2 ist ferner eine Nabe 13 mit einer konischen Wellenaufnahme 19 (Wellenanschluss) einstückig angeformt, in die eine Antriebswelle des Pumpenaggregats zum Antreiben des Laufrads 1 eingesetzt und schraubbefestigt werden kann.
- Die Herstellung des erfindungsgemäßen Pumpenlaufrads 1 erfolgt durch aufeinanderfolgendes Verfestigen einzelner Schichten eines Metallpulvers durch Anwendung eines additiven Herstellungsverfahrens, bei dem das Pulver der jeweiligen Schicht durch eine Strahlung, insbesondere einen Laserstrahl dort aufgeschmolzen wird, wo das Laufrad 1 massiv werden soll, und bei dem in zumindest einem Teil der aufeinander folgenden Schichten jeweils ein Bereich zur Ausbildung der Hohlräume 5, 6 im Materialinneren des Pumpenlaufrads 1 von der Laserbestrahlung freigelassen wird.
- Nach der derartigen Herstellung des Pumpenlaufrades 1 sind die beiden Hohlräume 5, 6 mit unverfestigtem Metallpulver gefüllt, das durch die Öffnungen 7, 8 bzw. durch die Kanäle 9, 10 aus den Hohlräumen 5, 6 entfernt werden kann. Dies kann dadurch erfolgen dadurch, dass in die Kanäle Druckluft geblasen wird, beispielsweise mittels einer in den jeweiligen Kanal 9, 10 eingeführten Hohlnadel. Das Pulver wird dadurch herausgeblasen. Zusätzlich kann das Laufrad gleichzeitig gerüttelt werden, um anhaftendes Pulver im Hohlraum 5, 6 zu lösen. Die Kanäle 9, 10 werden nach dem Entfernen des unverfestigten Pulvers geschlossen, damit keine geförderte Flüssigkeit in die Hohlräume 5, 6 hineingelangt. Somit bleiben die Hohlräume 5, 6 im bestimmungsgemäßen Betrieb hohl.
- Das additive Herstellungsverfahren ist hier ein selektives Lasersintern, Laserschmelzen oder Elektronenstrahlschmelzen, wie es im Stand der Technik an sich bekannt ist. Als Metallpulver kann beispielsweise reines Titan (99,9%), eine Legierung aus Aluminium-Silizium-Magnesium (AlSi10Mg) oder eine Legierung aus Kobalt-Chrom-Molybdän (CoCrMo) verwendet werden. Die Schichten werden erfindungsgemäß in axialer Richtung des Pumpenlaufrades 1 aufgebaut, etwa parallel zur Rotationsachse, so dass sich die einzelnen Schichten etwa quer zur Laufradachse erstrecken. Dabei wird zunächst die Nabe, anschließend die Tragscheibe und dann die Schaufel jeweils schichtweise gebildet.
- Die schichtweise Bildung eines Pumpenlaufrades in der umgangssprachlichen Art eines "3D-Druckens" kann aufgrund eines 3-dimensionalen Computermodells des Pumpenlaufrades 1 erfolgen, das gerade so berechnet ist, dass das hergestellte Pumpenlaufrad nahezu unwuchtfrei ist. Das prinzipielle Vorgehen für den Entwurf eines erfindungsgemäßen Pumpenlaufrades respektive die Erzeugung dessen 3-dimensionalen Computermodells wird nachfolgend erläutert.
- Die hohe Fertigungsgenauigkeit additiver Fertigungstechnologien ermöglicht ein theoretisches Auswuchten von Laufrädern im CAD-Modell und die Übertragung auf das reale Bauteil. Das dynamische Auswuchten (theoretisch) des halboffenen Pumpenlaufrades 1 erfolgt dabei in zwei Ebenen I und II (Wuchtebenen). Kleine Abweichungen der Unwucht im gefertigten Laufrad brauchen unter Umständen nur noch statisch korrigiert zu werden, so dass eine kleine dynamische Restunwucht akzeptiert werden kann.
- Aufgrund der fehlenden Deckscheibe bei halboffenen Laufrädern steht nur ein kleiner axiale Abstand L der beiden Wuchtebenen innerhalb der Tragscheibe für den Auswuchtvorgang zur Verfügung. Dies bedingt eine sehr hohe Tragscheibe als auch große Hohlräume! Ausnehmung, was wiederum die Strömung nachteilig beeinflusst. Je kleiner der Ebenenabstand L, umso größer ist die benötigte Ausgleichsunwucht.
- Das Problem kann zum Teil umgangen werden, indem eine der Wuchtebenen (Ebene I in
Fig. 4 ) die Schaufel 3 selbst darstellt, während die andere Ebene (Ebene II inFig. 4 ) in der Tragscheibe 2 liegt verbleibt. Der Ebenenabstand L wird dadurch möglichst groß, das Volumen der Ausnehmung 14 kann geringer ausfallen und es kann eine deutlich kleinere Tragscheibe 2 gewählt werden, wodurch sich der Materialeinsatz reduziert, was vor allem beim Einsatz additiver Fertigungsverfahren Zeit und Kosten einspart. - Bei dem erfindungsgemäßen Verfahren wird ein Pumpenlaufrad bereitgestellt, bei dem Material aus dem Schaufelkörper 3, 18 entfernt ist, so dass Hohlkammern 5, 6 entstehen. Das hydraulisch optimierte Laufrad 1 besitzt vor dem theoretischen Auswuchten einen außermittigen Masseschwerpunkt (ms·rs) sowie Deviationsmomente (Jzy, Jzx) in seiner Trägheit. Während das erstere die statische Unwucht definiert, ist das Deviationsmoment für die dynamische Unwucht zuständig und damit auch für die Schräglage der Hauptträgheitsachse zur Rotationsachse 15.
- Die Position und die Unwucht (Produkt aus Masse und Schwerpunktradius) der Hohlräume 5, 6 werden von der Gestaltung des Laufrades 1 definiert. Der Schaufelverlauf ist derart anzupassen, dass die Hohlräume 5, 6 innerhalb des Schaufelkörpers 3, 18 liegen und nicht die Schaufeloberfläche bzw. die Rampe 17 durchdringen. Anschließend sind die Hohlräume 5, 6 zu berechnen, so dass sie der zuvor ermittelten Unwucht entsprechen. Durch ein iteratives Anpassen der Hohlraumabmaße ergibt sich ein sehr freies Hohlraumdesign. So können z.B. problemlos abgerundete Kanten, Stützstrukturen eingebunden, oder auch die Anzahl der Hohlräume geändert werden.
- Der Schutzumfang wird nur durch die beigefügten Ansprüche definiert und die Erfindung ist daher auch nicht auf die beschriebene konkrete Ausführungsvariante beschränkt. Dem Fachmann ist vielmehr klar, dass das erfindungsgemäße Pumpenlaufrad und sein Herstellungsverfahren auf vielfache, naheliegende Weise abgewandelt werden kann, ohne vom Grundgedanken der Erfindung abzugehen. So kann beispielsweise die Geometrie, Größe, Position und Anzahl der Hohlräume 5, 6 von der in den Figuren gezeigten Variante abweichen, sofern dadurch ein insgesamt statisch unwuchtfreies Laufrad erhalten wird. Beispielsweise kann auch nur ein Hohlraum vorhanden sein, und/ oder ein oder mehrere Hohlräume mit einer im radialen Querschnitt betrachtet runden Grundform. Zudem kann die Dachgeometrie trichterförmig sein. Alternativ zur Herstellung aus einem Metallpulver kann auch ein Kunststoff- oder Keramikpulver verwendet werden. Ferner kann anstelle der Herstellung durch selektives Lasersintern, Laserschmelzen oder Elektronenstrahlschmelzen eine Polymerfaser geschmolzen werden (Fused Filament Fabrication), um die einzelnen Schichten auszubilden, so dass nach außen vollständig geschlossene Hohlräume herstellbar sind. Ferner kann das Laufrad 1 in einer anderen Schichtrichtung aufgebaut werden, beispielweise radial zur Laufradachse 15. Ferner kann der oder können die Hohlräume auch zunächst mit Wasser geflutet und anschließend der Kanal bzw. die Kanäle 9, 10 geschlossen werden. Die Masse des Wassers ist dabei für die Positionierung, Dimensionierung und Form des oder der Hohlräume zu berücksichtigen. Schließlich kann die Herstellung der Tragscheibe 2 und/ oder der Nabe 13 unabhängig von der Schaufel 2 erfolgen, insbesondere separat durch Gießen und anschließender Montage durch Schweißen oder Schraubbefestigung.
-
- 1
- Pumpenlaufrad
- 2
- Tragescheibe
- 3
- Schaufel
- 5
- Äußerer Hohlraum
- 6
- Innerer Hohlraum
- 7
- Öffnung des äußeren Hohlraums
- 8
- Öffnung des inneren Hohlraums
- 9
- Kanal
- 10
- Kanal
- 11
- Mündungsöffnung
- 12
- Mündungsöffnung
- 13
- Laufradnabe
- 14
- Ausnehmung, Tragscheibentasche
- 15
- Laufradachse
- 16
- Zentralbereich, Strömungskanal, Schaufelkanal
- 17
- Rampe
- 18
- Materialmenge, Vollmaterial
- 19
- Wellenaufnahme, Wellenanschluss
- 20
- Schaufelseitige Begrenzungswand
- 21
- Nabenseitige Begrenzungswand
- 22
- Tragscheibenseitige Begrenzungswand
- 23
- Stützstruktur, Stützwand
- 24
- Satteldach/ Entleerungstrichter
Claims (18)
- Asymmetrisches Pumpenlaufrad (1) für ein Pumpenaggregat zur Förderung einer insbesondere feststoffbeladenen Flüssigkeit, das zumindest einen Hohlraum (5, 6) in seinem Materialinneren aufweist, der nach außen vollständig oder bis auf eine Öffnung (7, 8) zum Entfernen unverfestigten Materials aus dem Hohlraum (5, 6) geschlossen ist, wobei der Hohlraum (5, 6) derart positioniert und ausgebildet ist, dass eine Trägheitsachse des Pumpenlaufrads (1) zur Rotationsachse (15) des Pumpenlaufrads (1) hin verschoben ist, sodass das Pumpenlaufrad nahezu unwuchtfrei ist,
dadurch gekennzeichnet, dass das Pumpenlaufrad (1) zumindest zum Teil schichtweise durch ein additives Herstellungsverfahren gebildet ist und der Hohlraum (5, 6) bei der schichtweisen Herstellung ausgebildet wird. - Pumpenlaufrad (1) nach Anspruch 1, dadurch gekennzeichnet, dass es nur eine Schaufel (3) aufweist, die sich spiralförmig um die Rotationsachse (15) erstreckt.
- Pumpenlaufrad (1) nach Anspruch 2, dadurch gekennzeichnet, dass es eine Tragscheibe (2) aufweist, die bei der schichtweisen Herstellung einstückig mit der Schaufel (3) ausgebildet wird.
- Pumpenlaufrad (1) zumindest nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der zumindest eine Hohlraum (5, 6) zumindest teilweise innerhalb des die Schaufel (3) oder die Tragscheibe (2) bildenden Materials liegt.
- Pumpenlaufrad (1) zumindest nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass es innerhalb eines von der Schaufel (3) eingefassten Zentralbereichs (16) eine von der geförderten Flüssigkeit überströmbare Materialmenge (18) aufweist, in der der zumindest eine Hohlraum (5, 6) ganz oder zumindest teilweise ausgebildet ist.
- Pumpenlaufrad (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sich an die Öffnung (7, 8) ein offener oder nachträglich geschlossener Kanal (9, 10) anschließt, der vom Hohlraum (5, 6) nach außen führt.
- Pumpenlaufrad (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hohlraum (5, 6) frei von recht- und/ oder spitzwinkligen Innenkanten und/ oder Innenecken ist, insbesondere zwei winklig zueinander liegende Begrenzungswände (20, 21, 22) des zumindest einen Hohlraums (5, 6) unter Ausbildung einer Hohlkehle ineinander übergehen.
- Pumpenlaufrad (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Hohlraum (5, 6) in eine Richtung (S), insbesondere in Richtung (S) des additiven Schichtaufbaus, im Querschnitt betrachtet satteldachförmig oder trichterförmig geschlossen ist.
- Pumpenlaufrad (1) zumindest nach Anspruch 6, dadurch gekennzeichnet, dass der Kanal (9, 10) in radialer Richtung und/ oder in Umfangsrichtung mittig zum Hohlraum (5, 6) in diesen mündet.
- Pumpenlaufrad (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hohlraum (5, 6) im Inneren eine insbesondere skelettartige Stützstruktur (23) aufweist.
- Pumpenlaufrad (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Stützstruktur (23) an wenigstens einer Stelle eine dem Auswuchten dienende Materialverdickung aufweist.
- Pumpenlaufrad (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es zwei oder mehr voneinander durch eine Stützwand (23) getrennte Hohlräume (5, 6) aufweist.
- Pumpenlaufrad (1) nach Anspruch 12, dadurch gekennzeichnet, dass die Hohlräume (5, 6) bezogen auf die Laufradachse (4) in radialer Richtung hintereinanderliegen.
- Pumpenlaufrad (1) zumindest nach Anspruch 3, dadurch gekennzeichnet, dass es eine nach außen offene Ausnehmung (14) oder einen weiteren nach außen vollständig oder bis auf eine Öffnung zum Entfernen unverfestigten Materials geschlossenen Hohlraum aufweist, wobei die Ausnehmung (14) oder der weitere Hohlraum axial zum einen Hohlraum (5, 6) versetzt ist.
- Pumpenlaufrad (1) nach Anspruch 14, dadurch gekennzeichnet, dass die Ausnehmung (14) oder der weitere Hohlraum in der Tragscheibe (2), und insbesondere die Ausnehmung auf der der Schaufel (3) abgewandten Rückseite der Tragscheibe (2) ausgebildet ist.
- Verfahren zur Herstellung eines Pumpenlaufrads (1) nach einem der vorherigen Ansprüche, mit zumindest einem Hohlraum (5, 6) im Materialinneren des Pumpenlaufrads (1), der nach außen vollständig oder bis auf eine Öffnung (7, 8) zum Entfernen unverfestigten Materials aus dem Hohlraum (5, 6) geschlossen ist, wobei der Hohlraum (5, 6) derart positioniert und ausgebildet ist, dass eine Trägheitsachse zur Rotationsachse (15) des Pumpenlaufrads (1) hin verschoben ist, sodass das Pumpenlaufrad nahezu unwuchtfrei ist, dadurch gekennzeichnet, dass das Pumpenlaufrad (1) aus einzelnen Schichten eines Materials durch Anwendung eines additiven Herstellungsverfahrens hergestellt wird, bei dem in zumindest einem Teil aufeinander folgender Schichten ein Raumbereich zur Ausbildung des Hohlraums (5, 6) freigelassen wird.
- Verfahren zumindest nach Anspruch 16, dadurch gekennzeichnet, dass das Material ein Pulver, insbesondere ein Metallpulver ist und unverfestigtes Pulver aus dem freigelassenen Raumbereich durch einen Kanal (9, 10) entfernt, insbesondere herausgeblasen wird.
- Verfahren zumindest nach Anspruch 17, dadurch gekennzeichnet, dass der Kanal nach dem Entfernen des unverfestigten Pulvers geschlossen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017005283.2A DE102017005283B4 (de) | 2017-06-02 | 2017-06-02 | Pumpenlaufrad |
PCT/EP2018/000273 WO2018219496A1 (de) | 2017-06-02 | 2018-05-25 | Pumpenlaufrad |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3571411A1 EP3571411A1 (de) | 2019-11-27 |
EP3571411B1 true EP3571411B1 (de) | 2023-05-10 |
Family
ID=62597422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18730640.2A Active EP3571411B1 (de) | 2017-06-02 | 2018-05-25 | Pumpenlaufrad |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3571411B1 (de) |
DE (1) | DE102017005283B4 (de) |
WO (1) | WO2018219496A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110454433B (zh) * | 2019-08-27 | 2024-04-05 | 陕西科技大学 | 一种潜水泵用叶轮结构 |
DE102019006665A1 (de) * | 2019-09-23 | 2021-03-25 | KSB SE & Co. KGaA | Einschaufelrad |
CN116921692B (zh) * | 2023-07-26 | 2024-03-26 | 烟台龙港泵业股份有限公司 | 一种离心泵叶轮制造工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9217331B1 (en) * | 2015-02-27 | 2015-12-22 | Borgwarner Inc. | Impeller balancing using additive process |
WO2016127225A1 (en) * | 2015-02-09 | 2016-08-18 | Atlas Copco Airpower, Naamloze Vennootschap | Impeller and method for manufacturing such an impeller |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB182632A (en) * | 1921-05-13 | 1922-07-13 | John Stanley Hazell | Improvements in and relating to centrifugal pumps |
GB687514A (en) * | 1950-08-15 | 1953-02-18 | Fairbanks Morse & Co | Improvements in impellers for centrifugal pumps |
JPS5133026B2 (de) | 1971-09-06 | 1976-09-17 | ||
JP4713066B2 (ja) * | 2003-07-18 | 2011-06-29 | 新明和工業株式会社 | 羽根車及びそれを備えた汚水処理用ポンプ |
JP2008232121A (ja) * | 2007-03-23 | 2008-10-02 | Kubota Corp | 遠心ポンプ |
JP5133026B2 (ja) | 2007-10-24 | 2013-01-30 | 株式会社荏原製作所 | 汚水用ポンプ羽根車、汚水用ポンプ |
JP2009103077A (ja) * | 2007-10-24 | 2009-05-14 | Ebara Corp | 汚水用ポンプ羽根車、汚水用ポンプ |
JP2010014047A (ja) | 2008-07-04 | 2010-01-21 | Shinmaywa Industries Ltd | 遠心ポンプ用羽根車 |
JP2010121543A (ja) * | 2008-11-20 | 2010-06-03 | Kubota Corp | ポンプの羽根車、ポンプ装置、ポンプの羽根車のバランス調整方法 |
JP6017820B2 (ja) * | 2011-08-30 | 2016-11-02 | 株式会社川本製作所 | 羽根車及び水中ポンプ |
EP2570674A1 (de) * | 2011-09-15 | 2013-03-20 | Sandvik Intellectual Property AB | Erosionsbeständige Laufradschaufel bestehend aus einem metallischen Laminat |
JP5964576B2 (ja) * | 2011-12-15 | 2016-08-03 | 株式会社川本製作所 | 羽根車及び水中ポンプ |
US20140140835A1 (en) | 2012-11-20 | 2014-05-22 | Caterpillar Inc. | Component with cladding surface and method of applying same |
RU2688985C2 (ru) | 2014-05-26 | 2019-05-23 | Нуово Пиньоне СРЛ | Способ изготовления компонента турбомашины |
US20160312789A1 (en) * | 2015-04-22 | 2016-10-27 | SYNCRUDE CANADA LTD. in trust for the owners of the Syncrude Project as such owners exist now a | Composite impeller for a centrifugal slurry pump |
DE102015117463A1 (de) * | 2015-10-14 | 2017-04-20 | Atlas Copco Energas Gmbh | Turbinenlaufrad für eine Radialturbine |
-
2017
- 2017-06-02 DE DE102017005283.2A patent/DE102017005283B4/de active Active
-
2018
- 2018-05-25 EP EP18730640.2A patent/EP3571411B1/de active Active
- 2018-05-25 WO PCT/EP2018/000273 patent/WO2018219496A1/de unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016127225A1 (en) * | 2015-02-09 | 2016-08-18 | Atlas Copco Airpower, Naamloze Vennootschap | Impeller and method for manufacturing such an impeller |
US9217331B1 (en) * | 2015-02-27 | 2015-12-22 | Borgwarner Inc. | Impeller balancing using additive process |
Also Published As
Publication number | Publication date |
---|---|
EP3571411A1 (de) | 2019-11-27 |
DE102017005283A1 (de) | 2018-12-06 |
WO2018219496A1 (de) | 2018-12-06 |
DE102017005283B4 (de) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3571411B1 (de) | Pumpenlaufrad | |
EP2663414B1 (de) | Verfahren zum generativen herstellen eines bauelementes mit einer integrierten dämpfung für eine strömungsmaschine und generativ hergestelltes bauelement mit einer integrierten dämpfung für eine strömungsmaschine | |
EP1355043B1 (de) | Laufschaufel für eine Turbomaschine | |
EP3191690A1 (de) | Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel | |
EP1777439A1 (de) | Zahnrad und Verfahren zum Herstellen eines Zahnrads | |
EP3018342B2 (de) | Verfahren zum herstellen eines rotorblatts einer windenergieanlage | |
EP1815145A1 (de) | Vakuumpumpen-laufrad | |
EP2366870B1 (de) | Rotor für einen Abgasturbolader | |
WO2012072384A1 (de) | Strömungsmaschine mit dichtstruktur zwischen drehenden und ortsfesten teilen sowie verfahren zur herstellung dieser dichtstruktur | |
EP2344298B1 (de) | Verfahren zum austausch eines inneren scheibenelements einer integral beschaufelten scheibe | |
EP2522810A1 (de) | Verfahren zum generativen Herstellen eines Bauteils, insbesondere eines Verdichterschaufelelements, sowie ein derartiges Bauteil | |
EP2307169A1 (de) | Verfahren zum austauschen einer schaufel eines rotors mit integrierter beschaufelung und ein derartiger rotor | |
WO2019180095A1 (de) | Verfahren zur herstellung einer gussform zum einfüllen von schmelze sowie gussform | |
EP2851146A1 (de) | Verfahren zur Herstellung einer Turbinenschaufel und zugehörige Turbinenschaufel | |
DE2055761A1 (de) | Verfahren zum Herstellen hohler Schaufeln | |
DE112020000801T5 (de) | Schraubenrotor und Verfahren zur Herstellung eines solchen Schraubenrotors | |
EP3092094B2 (de) | Mehrteilige gussform, herstellungsverfahren, rotornabe und windenergieanlage | |
EP3704386A1 (de) | Generativ gefertigter zwischenkanal zur anordnung zwischen einem niederdruckverdichter und einem hochdruckverdichter, sowie entsprechendes fertigungsverfahren | |
EP3527789A1 (de) | Lagerkammergehäuse für eine strömungsmaschine | |
WO2019120804A1 (de) | Verfahren zum herstellen eines formteils sowie speisereinsatz zur verwendung in einem solchen verfahren | |
EP2860352A1 (de) | Rotor, zugehöriges Herstellungsverfahren und Laufschaufel | |
EP1524407A2 (de) | Hohlfanschaufel für Flugzeugtriebwerke und Verfahren zu deren Herstellung | |
EP3915763A1 (de) | 3d-druck-bauteil sowie ein herstellungsverfahren dafür | |
EP3365185B1 (de) | Verfahren zur herstellung eines rads, gussform zur herstellung eines rads und rad | |
EP3015702B1 (de) | Rotorblatt für eine windkraftanlage und verfahren zum herstellen eines rotorblatts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190823 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210506 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WILO SE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1566919 Country of ref document: AT Kind code of ref document: T Effective date: 20230515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018012128 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230911 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230810 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230910 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230525 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018012128 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230525 |
|
26N | No opposition filed |
Effective date: 20240213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230510 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1566919 Country of ref document: AT Kind code of ref document: T Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240418 Year of fee payment: 7 Ref country code: FR Payment date: 20240418 Year of fee payment: 7 |