EP1355043B1 - Laufschaufel für eine Turbomaschine - Google Patents

Laufschaufel für eine Turbomaschine Download PDF

Info

Publication number
EP1355043B1
EP1355043B1 EP03100770A EP03100770A EP1355043B1 EP 1355043 B1 EP1355043 B1 EP 1355043B1 EP 03100770 A EP03100770 A EP 03100770A EP 03100770 A EP03100770 A EP 03100770A EP 1355043 B1 EP1355043 B1 EP 1355043B1
Authority
EP
European Patent Office
Prior art keywords
fin
moving blade
circumferential direction
blade according
base portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03100770A
Other languages
English (en)
French (fr)
Other versions
EP1355043A1 (de
Inventor
Herbert Brandl
Alexander Hoffs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1355043A1 publication Critical patent/EP1355043A1/de
Application granted granted Critical
Publication of EP1355043B1 publication Critical patent/EP1355043B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/292Three-dimensional machined; miscellaneous tapered

Definitions

  • the invention relates to an integrally cast rotor blade for a turbomachine, in particular for a turbine or for a compressor.
  • Such a blade usually has an aerodynamically shaped profile body, which has at its radially outer end an integrally formed shroud, which protrudes in the circumferential direction over the profile body.
  • the terms “radial,” “axial,” and “circumferential direction” refer to the state of installation of the blade, with the axis of rotation of a rotor to which the blade is mounted extending axially in this sense, thus defining the blade's coordinate system
  • the cover sheet formed on the blade tip on the one hand, has a flow-guiding function in that it prevents undesired flow around the profile-body tips.
  • the shroud has a Stabilization function, since the dimensioning of the shroud is such that in operation shrouds of circumferentially adjacent blades mutually support each other and reduce vibration and vibration of the blades in this way.
  • the shroud does not bend in its circumferentially projecting portions in the operation of the blade in an undesirable manner, on the shroud radially outwardly a fin for reinforcement is formed, which extends in the circumferential direction along the shroud and this supports. In the area of the fin, the shroud is thus formed as a kind of T-beam.
  • the fin has a sealing function, as it impedes an axial flow around the shroud radially outward, in particular when the fin in the installed state engages in a complementary sealing contour in order, for example, to form a labyrinth seal.
  • such a fin can be composed of several sections.
  • the fin has at least in a region of the shroud, in which the profile body extends, a connected to the shroud base portion, a radially and / or circumferentially adjacent to the base portion transition portion and a radially and / or circumferentially adjoining the transition portion sealing portion ,
  • an axially measured wall thickness in the base section is significantly greater than in the sealing section. Accordingly, in the transition section from the base section to the sealing section, the wall thickness decreases.
  • Such blades are known for example from the publications US-B1-6241471 and JP (A) 11350902.
  • the fin is formed by tapping, i. the liquid alloy is filled into the mold not at the fin, but at some other suitable location, so that the molding region forming the fin is fed or supplied with molten alloy from the adjoining regions of the mold. Since the alloy shrinks on solidification, to avoid casting defects, e.g. porous structure or pores, can flow during the solidification liquid alloy. In the area of the base section of the fin, there are problems because the base section has a relatively large volume due to its greater wall thickness. This has the consequence that the base section, on the one hand, cools relatively slowly and, on the other hand, requires relatively much liquid alloy on cooling in order to avoid changes in shape.
  • the portions of the blade, ie shroud and indirectly the profiled body, adjacent to the fin generally have smaller wall thicknesses than the base portion, these thinner wall portions can generally solidify in front of the base portion of the fin, thereby further feeding material into the solidifying base portion is hampered.
  • casting defects occur relatively frequently in the area of the base portion of the fin.
  • the feeding sections must be dimensioned correspondingly larger, which increases the mass of the blade tip, with the result that the blade is exposed to higher loads during operation.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem for a blade of the initially mentioned type to provide an improved embodiment, which reduces in particular the occurrence of casting defects in the production.
  • the invention is based on the general idea of reducing the wall thickness in the base section of the fin at least at a selected point. This is achieved according to the invention by at least one depression, which is already formed outside the base section during the casting of the blade.
  • the proposed construction reduces the volume of the base portion, whereby it can solidify faster during casting on the one hand and on the other hand, during solidification requires a lower make-up of liquid alloy in order to maintain the desired shape.
  • the fin can ensure its support function with reduced mass and / or with areas of reduced wall thickness with sufficient certainty.
  • At least two recesses may be provided, which are arranged opposite one another with respect to a circumferentially and radially extending plane. In this way, the reduction of the wall thickness is substantially symmetrical, which is for the manufacturability of the blade and for the strength of the fin advantage.
  • a wall section remaining between the opposite recesses can have substantially the same wall thickness as the sealing section of the fin. In this way, the solidification in the sealing area and in this wall section is substantially synchronous, which simplifies the manufacture of the blade.
  • a blade 1 according to the invention of a turbomachine in particular a turbine or a compressor, has a Profile body 2, which is aerodynamically shaped and flows around in operation.
  • a formed at the top of the profile body 2 tip profile is shown by a broken line and designated 3.
  • a present at the radially inner foot of the profile body foot profile is denoted by 4.
  • the radial direction is symbolized in Fig. 1 by an arrow 7.
  • a shroud 5 is integrally formed on its radially outer end, the one hand, the tip profile 3 completely covers and on the other hand approximately in the middle projects to the profile body 2 in the circumferential direction over the profile body 2.
  • the circumferential direction is symbolized in Fig. 2 by an arrow 6.
  • the axial direction is additionally represented in FIGS. 1 and 2 by an arrow 8.
  • the projecting portions of the shroud 5 are designated in Fig. 2 with 9 and 10 and are used in the operation of the blade 1 for flow guidance, by hindering unwanted Spitzenumströmung the profile body 2.
  • these areas 9,10 of the shroud 5 are dimensioned so that they interact during operation of the blade 1 with corresponding areas 9,10 adjacent blades 1 for stabilizing the blades 1.
  • the shrouds 5 of adjacent blades 1 come to rest against one another in the circumferentially projecting areas 9, 10, for which corresponding contact surfaces 11 are formed on the areas 9, 10.
  • the mutual support dampens the formation of vibrations or increases their frequency.
  • the shroud 5 is not deformed in operation in its projecting portions 9,10 not in an inadmissible manner, radially outside of the shroud 5, a fin 12 is formed.
  • This fin 12 extends in the circumferential direction 6 along the shroud 5, centrally to the profile body 2 over the entire extent of the shroud 5, that is also in the cantilevered areas 9,10.
  • a T-beam profile is formed in the region of the fin 12 on the shroud 5, which is visible in Fig. 1.
  • the fin 12 thus results in an intensive stiffening of the projecting portions 9,10, whereby the shroud 5 receives a sufficient stability.
  • the fin 12 has in a marked in Fig.
  • a brace area 13 in which the profile body 2 connects to the shroud 5, a base portion 14, which merges into the shroud 5.
  • a base portion 14 includes according to FIG. 1 in the radial direction 7 and according to FIG. 2 in the circumferential direction 6, a transition section 15 at.
  • a sealing portion 16 at this transition section 15 closes again according to FIG. 1 in the radial direction 7 and according to FIG. 2 in the circumferential direction 6, a sealing portion 16 at.
  • the fin 12 realizes its sealing function by obstructing a flow around the shroud 5 in the axial direction on its radially outer side.
  • a wall thickness of the fin 12 measured in the axial direction 8 decreases in the transition section 15 from the base section 14 to the sealing section 16.
  • the fin 12 has increased strength in the region of the transition section 15 and of the base section 14 in order to be able to ensure the required rigidity of the cover strip 5.
  • At least one recess 17, which locally adjusts the wall thickness of the base section 14, is now formed on the outside of the base section 14 reduced.
  • two such recesses 17 are formed.
  • the two recesses 17 are arranged opposite one another with respect to a circumferential direction 6 and in the radial direction 7 extending unspecified plane of the fin 12.
  • the recesses 17 are each formed so that they have a parallel to the plane of the fin 12 opening cross-section, which is indicated in the figures by an arrow 20 and extends in the axial direction 8 with respect to the fin 12 to the outside.
  • the recesses 17 may be formed frusto-conical. This geometric shape of the recesses 17 serves to optimize the stress distribution in the fin 12 during operation and facilitates the removal of the model.
  • Each of the depressions 17 has a flat bottom 18. These bottoms 18 delimit a wall portion 19 which remains through the molding of the recesses 17 and has a smaller wall thickness than the remaining area of the base portion 14 or the transition area 15.
  • the floors 18 expediently extend
  • the recesses 17 extend substantially parallel to the sealing portion 16 of the fin 12, that is substantially parallel to the radial direction 7 and parallel to the circumferential direction 6.
  • the wall thickness of the base portion 14 in the region of the recesses 17, ie in the wall portion 19 so greatly reduced so that it substantially corresponds to the wall thickness of the sealing portion 16.
  • the same wall thicknesses are indicated in FIGS. 1 and 2 by dimensioning arrows and denoted by D.
  • the two recesses 17 are formed so far symmetrical that the remaining between the recesses 17 wall portion 19 with the sealing portion 16 of the fin 12 of FIG. 1 in the radial direction 7 and 2 in the circumferential direction 6 is aligned. This measure also leads to an optimization with regard to the stress distribution in the fin 12 and its load capacity.
  • the blade 1 including the recesses 17 is formed or manufactured as a one-piece or one-piece cast component.
  • the inherently massive base portion 14 is reduced in terms of its volume to be poured out.
  • the fin 12 in the base section 14 can cool faster and on the other during the solidification process less inflowing melt needed to avoid shrinkage.
  • the formation of porous structures can be reduced or avoided. The strength and the life of the blade 1 are thus increased.
  • the weight of the fin 12 can be reduced so as to reduce the load on the blade 1 during operation.
  • the positioning and the geometrical shaping as well as the number of recesses 17 are expediently chosen such that an optimum results for the stiffening function and sealing function of the fin 12 on the one hand and the manufacturability and durability of the blade 1 on the other hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine einstückig gegossene Laufschaufel für eine Turbomaschine, insbesondere für eine Turbine oder für einen Verdichter.
  • Stand der Technik
  • Eine derartige Laufschaufel besitzt üblicherweise einen aerodynamisch geformten Profilkörper, der an seinem radial außen liegenden Ende ein angeformtes Deckband aufweist, das in Umfangsrichtung über den Profilkörper auskragt. In der vorliegenden Patentanmeldung beziehen sich die Bezeichnungen "radial", "axial" und "Umfangsrichtung" auf den Einbauzustand der Laufschaufel, wobei die Rotationsachse eines Rotors, an dem die Laufschaufel befestigt ist, in diesem Sinne axial verläuft und so das Koordinatensystem der Laufschaufel definiert.
  • Das an der Laufschaufelspitze ausgebildete Deckblatt hat einerseits eine Strömungsleitfunktion, indem es eine unerwünschte Umströmung der Profilkörperspitzen verhindert. Andererseits besitzt das Deckband eine Stabilisierungsfunktion, da die Dimensionierung des Deckbands so erfolgt, dass sich im Betrieb Deckbänder von in Umfangsrichtung benachbarten Laufschaufeln gegenseitig aneinander abstützen und auf diese Weise Schwingungen und Vibrationen der Laufschaufeln reduzieren.
  • Damit sich das Deckband in seinen in Umfangsrichtung auskragenden Abschnitten im Betrieb der Laufschaufel nicht in unerwünschter Weise durchbiegt, ist am Deckband radial außen eine Finne zur Verstärkung angeformt, die sich in Umfangsrichtung entlang des Deckbands erstreckt und dieses stützt. Im Bereich der Finne ist das Deckband dadurch quasi als T-Träger ausgebildet.
  • Die Finne hat zusätzlich eine Dichtungsfunktion, da sie eine axiale Umströmung des Deckbands radial außen behindert, insbesondere dann, wenn die Finne im Einbauzustand in eine komplementäre Dichtungskontur eingreift, um beispielsweise eine Labyrinthdichtung auszubilden.
  • Da im Betrieb der Laufschaufel relativ große Fliehkräfte auftreten, wird versucht, das Deckband und die Finne möglichst leicht, d.h. mit relativ kleinen Wanddicken auszubilden. Dementsprechend kann eine solche Finne aus mehreren Abschnitten aufgebaut sein. Insbesondere weist die Finne zumindest in einem Bereich des Deckbands, in dem der Profilkörper verläuft, einen mit dem Deckband verbundenen Basisabschnitt, einen radial und/oder in Umfangsrichtung an den Basisabschnitt anschließenden Übergangsabschnitt sowie einen radial und/oder in Umfangsrichtung an den Übergangsabschnitt anschließenden Dichtungsabschnitt auf. Um eine hinreichende Festigkeit und Formstabilität für die Finne und das Deckband gewährleisten zu können, ist eine axial gemessene Wanddicke im Basisabschnitt deutlich größer als im Dichtungsabschnitt. Dementsprechend nimmt im Übergangsabschnitt vom Basisabschnitt zum Dichtungsabschnitt die Wanddicke ab.
  • Derartige Laufschaufeln sind beispielsweise aus den Druckschriften US-B1-6241471 und JP(A) 11350902 bekannt.
  • Beim Gießen der Laufschaufel wird die Finne durch Anspeisen ausgeformt, d.h. die flüssige Legierung wird nicht an der Finne, sondern an einer anderen geeigneten Stelle in die Gußform eingefüllt, so dass der die Finne ausbildende Formbereich aus den daran anschließenden Bereichen der Form mit flüssiger Legierung gespiesen oder versorgt wird. Da die Legierung beim Erstarren schrumpft, muß zur Vermeidung von Gußfehlern, z.B. poröse Struktur oder Poren, während des Erstarrungsvorgangs flüssige Legierung nachfließen können. Im Bereich des Basisabschnitts der Finne kommt es dabei zu Problemen, da der Basisabschnitt durch seine größere Wanddicke ein relativ großes Volumen besitzt. Dies hat zur Folge, dass der Basisabschnitt einerseits relativ langsam abkühlt und andererseits beim Abkühlen relativ viel flüssige Legierung benötigt, um Formänderungen zu vermeiden. Da aber die an die Finne angrenzenden Abschnitte der Laufschaufel, also Deckband und indirekt der Profilkörper, in der Regel kleinere Wanddicken besitzen als der Basisabschnitt, können diese dünneren Wandabschnitte in der Regel vor dem Basisabschnitt der Finne erstarren, wodurch eine weitere Materialeinspeisung in den erstarrenden Basisabschnitt behindert ist. Dementsprechend kommt es bei der Herstellung einer derartigen Laufschaufel relativ häufig zu Gußfehlern im Bereich des Basisabschnitts der Finne. Um dem Rechnung zu tragen, müssen die speisenden Abschnitte entsprechend größer dimensioniert werden, wodurch sich die Masse der Schaufelspitze erhöht, mit der Folge, dass die Laufschaufel im Betrieb höheren Belastungen ausgesetzt ist.
  • Darstellung der Erfindung
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Laufschaufel der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere das Auftreten von Gießfehlern bei der Herstellung reduziert.
  • Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, im Basisabschnitt der Finne wenigstens an einer ausgewählten Stelle die Wanddicke zu reduzieren. Erreicht wird dies erfindungsgemäß durch wenigstens eine Vertiefung, die bereits beim Gießen der Laufschaufel außen am Basisabschnitt eingeformt wird. Die vorgeschlagene Bauweise reduziert das Volumen des Basisabschnitts, wodurch dieser beim Gießen einerseits schneller erstarren kann und andererseits beim Erstarren eine geringere Nachspeisung an flüssiger Legierung benötigt, um die gewünschte Form beizuhalten.
  • Durch eine Optimierung der Form und Position sowie gegebenenfalls der Anzahl derartiger Vertiefungen kann die Finne ihre Tragfunktion bei reduzierter Masse und/oder mit Bereichen reduzierter Wanddicke hinreichend sicher gewährleisten.
  • Dementsprechend reduziert sich die Gefahr von Gußfehlern im Bereich des Basisabschnitts der Finne.
  • Bei einer Weiterbildung können wenigstens zwei Vertiefungen vorgesehen sein, die bezüglich einer sich in Umfangsrichtung und radial erstreckenden Ebene einander gegenüberliegend angeordnet sind. Auf diese Weise erfolgt die Reduzierung der Wanddicke im wesentlichen symmetrisch, was für die Herstellbarkeit der Schaufel sowie für die Festigkeit der Finne von Vorteil ist.
  • Entsprechend einer Weiterbildung kann ein zwischen den gegenüberliegenden Vertiefungen verbleibender Wandabschnitt im wesentlichen dieselbe Wanddicke aufweisen wie der Dichtungsabschnitt der Finne. Auf diese Weise erfolgt die Erstarrung im Dichtbereich und in diesem Wandabschnitt im wesentlichen synchron, was die Herstellung der Schaufel vereinfacht.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Kurze Beschreibung der Zeichnungen
  • Ein bevorzugtes Ausführungsbeispiel der Erfindung ist den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen. Es zeigen, jeweils schematisch,
  • Fig. 1
    einen axialen Schnitt durch eine Laufschaufel nach der Erfindung im Bereich einer Finne entsprechend den Schnittlinien I in Fig. 2,
    Fig. 2
    einen Schnitt in Umfangsrichtung durch die Finne entsprechend den Schnittlinien II in Fig. 1.
    Wege zur Ausführung der Erfindung
  • Entsprechend den Fig. 1 und 2 besitzt eine erfindungsgemäße Laufschaufel 1 einer Turbomaschine, insbesondere einer Turbine oder eines Verdichters, einen Profilkörper 2, der aerodynamisch geformt und im Betrieb umströmt ist. In Fig. 2 ist ein an der Spitze des Profilkörpers 2 ausgebildete Spitzenprofil durch eine unterbrochene Linie dargestellt und mit 3 bezeichnet. Ein am radial innen liegenden Fuß des Profilkörpers vorliegende Fußprofil ist mit 4 bezeichnet. Wie aus dem Profilverlauf entlang des Profilkörpers 2 hervorgeht, ist dieser verwunden. Die radiale Richtung ist dabei in Fig. 1 durch einen Pfeil 7 symbolisiert.
  • Am Profilkörper 2 ist an seinem radial außen liegenden Ende ein Deckband 5 angeformt, das einerseits das Spitzenprofil 3 vollständig abdeckt und andererseits etwa mittig zum Profilkörper 2 in Umfangsrichtung über den Profilkörper 2 auskragt. Die Umfangsrichtung ist dabei in Fig. 2 durch einen Pfeil 6 symbolisiert. Zur Vervollständigung des Bezugssystems ist in den Fig. 1 und 2 zusätzlich die axiale Richtung durch einen Pfeil 8 dargestellt.
  • Die auskragenden Bereiche des Deckbands 5 sind in Fig. 2 mit 9 und 10 bezeichnet und dienen im Betrieb der Laufschaufel 1 zur Strömungsführung, indem sie eine unerwünschte Spitzenumströmung des Profilkörpers 2 behindern. Darüber hinaus sind diese Bereiche 9,10 des Deckbands 5 so dimensioniert, dass sie im Betrieb der Laufschaufel 1 mit korrespondierenden Bereichen 9,10 benachbarter Laufschaufeln 1 zur Stabilisierung der Laufschaufeln 1 zusammenwirken. Spätestens im Betrieb der Laufschaufeln 1, also bei rotierendem Turbinenrotor oder Verdichterrotor, kommen die Deckbänder 5 benachbarter Laufschaufeln 1 an dem in Umfangsrichtung abstehenden Bereichen 9,10 aneinander zur Anlage, wozu entsprechende Anlageflächen 11 an den Bereichen 9,10 ausgebildet sind. Hierdurch wird einerseits eine zusätzliche Verwindung des Profilkörpers 2 im Betrieb begrenzt. Andererseits dämpft die gegenseitige Abstützung die Ausbildung von Schwingungen bzw. erhöht deren Frequenz.
  • Damit sich das Deckband 5 im Betrieb in seinen auskragenden Bereichen 9,10 nicht in unzulässiger Weise verformt, ist radial außen am Deckband 5 eine Finne 12 angeformt. Diese Finne 12 erstreckt sich in Umfangsrichtung 6 entlang des Deckbands 5, mittig zum Profilkörper 2 über die gesamte Erstreckung des Deckbands 5, also auch in den auskragenden Bereichen 9,10. Auf diese Weise wird im Bereich der Finne 12 am Deckband 5 ein T-Träger-Profil ausgebildet, das in Fig. 1 erkennbar ist. Durch die Finne 12 ergibt sich somit eine intensive Versteifung der auskragenden Bereiche 9,10, wodurch das Deckband 5 eine hinreichende Stabilität erhält. Die Finne 12 besitzt in einem in Fig. 2 durch eine geschweifte Klammer gekennzeichneten Bereich 13, in dem der Profilkörper 2 an das Deckband 5 anschließt, einen Basisabschnitt 14, der in das Deckband 5 übergeht. An diesen Basisabschnitt 14 schließt gemäß Fig. 1 in radialer Richtung 7 und gemäß Fig. 2 in Umfangsrichtung 6 ein Übergangsabschnitt 15 an. An diesen Übergangsabschnitt 15 schließt wieder gemäß Fig. 1 in radialer Richtung 7 und gemäß Fig. 2 in Umfangsrichtung 6 ein Dichtungsabschnitt 16 an. Mit Hilfe dieses Dichtungsabschnitts 16 realisiert die Finne 12 ihre Dichtfunktion, indem sie eine Umströmung des Deckbands 5 in axialer Richtung an dessen radial außen liegender Seite behindert.
  • Wie aus den Fig. 1 und 2 hervorgeht, nimmt eine in axialer Richtung 8 gemessene Wanddicke der Finne 12 im Übergangsabschnitt 15 vom Basisabschnitt 14 zum Dichtungsabschnitt 16 ab. Durch diese Bauweise besitzt die Finne 12 im Bereich des Übergangsabschnitts 15 sowie des Basisabschnitts 14 eine erhöhte Festigkeit, um die erforderliche Steifigkeit des Deckbands 5 gewährleisten zu können.
  • Erfindungsgemäß ist nun außen am Basisabschnitt 14 wenigstens eine Vertiefung 17 eingeformt, welche die Wanddicke des Basisabschnitts 14 lokal reduziert. Bei der hier gezeigten bevorzugten Ausführungsform sind zwei derartige Vertiefungen 17 ausgebildet. Die beiden Vertiefungen 17 sind dabei bezüglich einer sich in Umfangsrichtung 6 und in radialer Richtung 7 erstreckenden nicht näher bezeichneten Ebene der Finne 12 einander gegenüberliegend angeordnet. Die Vertiefungen 17 sind jeweils so ausgebildet, dass sie einen parallel zur Ebene der Finne 12 liegenden Öffnungsquerschnitt aufweisen, der in den Figuren durch einen Pfeil 20 angedeutet ist und sich in axialer Richtung 8 bezüglich der Finne 12 nach außen hin erweitert. Insbesondere können die Vertiefungen 17 kegelstumpfförmig ausgebildet sein. Diese geometrische Formgebung der Vertiefungen 17 dient zur Optimierung der Spannungsverteilung in der Finne 12 im Betrieb und erleichtert das Entformen des Models.
  • Jede der Vertiefungen 17 besitzt einen ebenen Boden 18. Diese Böden 18 begrenzen einen Wandabschnitt 19, der durch das Einformen der Vertiefungen 17 verbleibt und eine kleinere Wanddicke aufweist als der übrige Bereich des Basisabschnitts 14 bzw. als der Übergangsbereich 15. Zweckmäßig verlaufen die Böden 18 der Vertiefungen 17 verlaufen im wesentlichen parallel zum Dichtungsabschnitt 16 der Finne 12, also im wesentlichen parallel zur radialen Richtung 7 sowie parallel zur Umfangsrichtung 6. Bei der hier gezeigten Ausführungsform ist die Wanddicke des Basisabschnitts 14 im Bereich der Vertiefungen 17, also im Wandabschnitt 19 so weit reduziert, dass sie im wesentlichen der Wanddicke des Dichtungsabschnitts 16 entspricht. Die gleichen Wanddicken sind in den Fig. 1 und 2 durch Bemaßungspfeile gekennzeichnet und mit D bezeichnet.
  • Zweckmäßig sind die beiden Vertiefungen 17 so weit symmetrisch ausgebildet, dass der zwischen den Vertiefungen 17 verbleibende Wandabschnitt 19 mit dem Dichtungsabschnitt 16 der Finne 12 gemäß Fig. 1 in radialer Richtung 7 und gemäß Fig. 2 in Umfangsrichtung 6 fluchtet. Auch diese Maßnahme führt zu einer Optimierung hinsichtlich der Spannungsverteilung in der Finne 12 und deren Belastbarkeit.
  • Von besonderer Bedeutung ist hierbei, dass die Laufschaufel 1 einschließlich der Vertiefungen 17 als einteiliges bzw. einstückiges Gußbauteil ausgebildet bzw. hergestellt ist. Durch die Berücksichtigung einer oder mehrerer derartiger Vertiefungen 17 in der für die Herstellung der Laufschaufel 1 verwendeten Gußform wird erreicht, dass der an sich massive Basisabschnitt 14 hinsichtlich seines auszugießenden Volumens reduziert ist. Dies hat zur Folge, dass zum einen beim Gießen der Laufschaufel 1 die Finne 12 im Basisabschnitt 14 schneller abkühlen kann und zum anderen beim Erstarrungsprozess weniger nachfließende Schmelze benötigt, um ein Einschrumpfen zu vermeiden. Dementsprechend kann bei der erfindungsgemäß ausgestalteten Laufschaufel 1 die Ausbildung poröser Strukturen reduziert bzw. vermieden werden. Die Festigkeit und die Lebensdauer der Laufschaufel 1 werden somit erhöht. Darüber hinaus kann durch diese Maßnahme das Gewicht der Finne 12 reduziert werden, um so die Belastung der Laufschaufel 1 im Betrieb zu reduzieren.
  • Die Positionierung und die geometrische Formgebung sowie die Anzahl der Vertiefungen 17 werden zweckmäßig so gewählt, dass sich für die Versteifungsfunktion und Dichtungsfunktion der Finne 12 einerseits und die Herstellbarkeit sowie Dauerhaltbarkeit der Laufschaufel 1 andererseits ein Optimum ergibt.
  • Bezugszeichenliste
  • 1
    Laufschaufel
    2
    Profilkörper
    3
    Spitzenprofil von 2
    4
    Fußprofil von 2
    5
    Deckband
    6
    Umfangsrichtung
    7
    radiale Richtung
    8
    axiale Richtung
    9
    auskragender Bereich von 5
    10
    auskragender Bereich von 5
    11
    Kontaktfläche
    12
    Finne
    13
    Bereich von 12
    14
    Basisabschnitt von 12
    15
    Übergangsabschnitt 12
    16
    Dichtungsabschnitt von 12
    17
    Vertiefung in 14
    18
    Boden von 17
    19
    Wandabschnitt

Claims (8)

  1. Einstückig gegossene Laufschaufel für eine Turbomaschine, insbesondere Turbine oder Verdichter,
    - mit einem aerodynamisch geformten Profilkörper (2), der an seinem radial außen liegenden Ende ein angeformtes Deckband (5) aufweist, das in Umfangsrichtung (6) über den Profilkörper (2) auskragt und radial außen eine angeformte Finne (12) aufweist, die sich in Umfangsrichtung (6) entlang des Deckbands (5) erstreckt und die zumindest in einem Bereich (13) des Deckbands (5), in dem der Profilkörper (2) verläuft, einen mit dem Deckband (5) verbundenen Basisabschnitt (14), einen radial und/oder in Umfangsrichtung (6) an den Basisabschnitt (14) anschließenden Übergangsabschnitt (15) sowie einen radial und/oder in Umfangsrichtung (6) an den Übergangsabschnitt (15) anschließenden Dichtungsabschnitt (16) aufweist,
    - wobei eine axial gemessene Wanddicke im Übergangsabschnitt (15) vom Basisabschnitt (14) zum Dichtungsabschnitt (16) abnimmt,
    dadurch gekennzeichnet, dass
    wenigstens eine die Wanddicke des Basisabschnitts (14) reduzierende Vertiefung (17) außen am Basisabschnitt (14) eingeformt ist.
  2. Laufschaufel nach Anspruch 1,
    dadurch gekennzeichnet,
    dass wenigstens zwei Vertiefungen (17) vorgesehen sind, die bezüglich einer sich in Umfangsrichtung (6) und radial erstreckenden Ebene einander gegenüberliegend angeordnet sind.
  3. Laufschaufel nach Anspruch 2,
    dadurch gekennzeichnet,
    dass ein zwischen den gegenüberliegenden Vertiefungen (17) verbleibender Wandabschnitt (19) mit dem Dichtungsabschnitt (16) der Finne (12) fluchtet.
  4. Laufschaufel nach Anspruch 2 oder 3,
    dadurch gekennzeichnet,
    dass ein zwischen den gegenüberliegenden Vertiefungen (17) verbleibender Wandabschnitt (19) im wesentlichen dieselbe Wanddicke (D) aufweist wie der Dichtungsabschnitt (16) der Finne (12).
  5. Laufschaufel nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass im Bereich der Vertiefung (17) oder der Vertiefungen (17) die Wanddicke (D) des Basisabschnitts (14) im wesentlichen der Wanddicke (D) des Dichtungsabschnitts (16) entspricht.
  6. Laufschaufel nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Vertiefung (17) einen ebenen Boden (18) aufweist, der sich im wesentlichen parallel zum Dichtungsabschnitt (16) erstreckt.
  7. Laufschaufel nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Vertiefung (17) im wesentlichen kegelstumpfförmig ausgebildet ist.
  8. Laufschaufel nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die Vertiefung (17) einen sich in axialer Richtung (8) nach außen hin erweiternden Öffnungsquerschnitt (20) aufweist, der parallel zu einer sich in Umfangsrichtung (6) und in radialer Richtung (7) erstreckenden Ebene der Finne (12) verläuft.
EP03100770A 2002-04-16 2003-03-25 Laufschaufel für eine Turbomaschine Expired - Fee Related EP1355043B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6362002 2002-04-16
CH6362002 2002-04-16

Publications (2)

Publication Number Publication Date
EP1355043A1 EP1355043A1 (de) 2003-10-22
EP1355043B1 true EP1355043B1 (de) 2006-07-26

Family

ID=28458275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03100770A Expired - Fee Related EP1355043B1 (de) 2002-04-16 2003-03-25 Laufschaufel für eine Turbomaschine

Country Status (4)

Country Link
US (1) US6962484B2 (de)
EP (1) EP1355043B1 (de)
JP (1) JP2003314201A (de)
DE (1) DE50304325D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255531B2 (en) * 2003-12-17 2007-08-14 Watson Cogeneration Company Gas turbine tip shroud rails
JP2005214205A (ja) * 2004-01-31 2005-08-11 United Technol Corp <Utc> 回転機械用のロータブレード
DE102004025321A1 (de) * 2004-05-19 2005-12-08 Alstom Technology Ltd Strömungsmaschinenschaufel
JP5228311B2 (ja) * 2006-11-08 2013-07-03 株式会社Ihi 圧縮機静翼
US7753652B2 (en) * 2006-12-15 2010-07-13 Siemens Energy, Inc. Aero-mixing of rotating blade structures
US8257035B2 (en) * 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine
EP2385215A1 (de) * 2010-05-05 2011-11-09 Alstom Technology Ltd Leichte Deckband-Dichtrippe für eine Rotorschaufel
US9151166B2 (en) 2010-06-07 2015-10-06 Rolls-Royce North American Technologies, Inc. Composite gas turbine engine component
WO2014189875A1 (en) * 2013-05-21 2014-11-27 Siemens Energy, Inc. Turbine blade tip shroud
US9464530B2 (en) * 2014-02-20 2016-10-11 General Electric Company Turbine bucket and method for balancing a tip shroud of a turbine bucket
US9650914B2 (en) 2014-02-28 2017-05-16 Pratt & Whitney Canada Corp. Turbine blade for a gas turbine engine
EP2924240A1 (de) * 2014-03-25 2015-09-30 Siemens Aktiengesellschaft Turbinenlaufschaufel
US20180230819A1 (en) * 2017-02-14 2018-08-16 General Electric Company Turbine blade having tip shroud rail features
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
DE102018210513A1 (de) 2018-06-27 2020-01-02 MTU Aero Engines AG Rotor für eine Strömungsmaschine und Strömungsmaschine mit einem solchen Rotor
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
JP2021110291A (ja) * 2020-01-10 2021-08-02 三菱重工業株式会社 動翼、及び軸流回転機械
CA3109675A1 (en) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CA3188122A1 (en) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867060A (en) * 1973-09-27 1975-02-18 Gen Electric Shroud assembly
US4643645A (en) * 1984-07-30 1987-02-17 General Electric Company Stage for a steam turbine
JPH10266804A (ja) * 1997-03-26 1998-10-06 Mitsubishi Heavy Ind Ltd チップシュラウド翼キャビティ
JP4106744B2 (ja) * 1998-06-10 2008-06-25 株式会社Ihi タービンの動翼
US6241471B1 (en) * 1999-08-26 2001-06-05 General Electric Co. Turbine bucket tip shroud reinforcement
JP2001193405A (ja) * 2000-01-17 2001-07-17 Mitsubishi Heavy Ind Ltd シニング付チップシュラウド及びタービン設備

Also Published As

Publication number Publication date
US20030194322A1 (en) 2003-10-16
US6962484B2 (en) 2005-11-08
JP2003314201A (ja) 2003-11-06
DE50304325D1 (de) 2006-09-07
EP1355043A1 (de) 2003-10-22

Similar Documents

Publication Publication Date Title
EP1355043B1 (de) Laufschaufel für eine Turbomaschine
EP2017433B1 (de) Gasturbinenschaufel mit modularem Aufbau
DE3045224C2 (de)
EP1922479B1 (de) Kolben für eine brennkraftmaschine
EP2877701B1 (de) Laufrad eines abgasturboladers
EP1707745A2 (de) Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine
DE102009043928A1 (de) Zylinderbuchse, Zylinderblock und Verfahren zur Herstellung einer Zylinderbuchse
DE102017218886A1 (de) Schaufel und Rotor für eine Strömungsmaschine sowie Strömungsmaschine
WO2011151231A1 (de) Abgasturbolader mit gleitlager zur verminderung von fluidwirbeln
DE19941133C1 (de) Gebauter Leitkranz für eine Gasturbine, insbesondere ein Flugtriebwerk
EP2394028B1 (de) Abdichtvorrichtung an dem Schaufelschaft einer Rotorstufe einer axialen Strömungsmaschine und ihre Verwendung
EP3092094B2 (de) Mehrteilige gussform, herstellungsverfahren, rotornabe und windenergieanlage
DE10253299B4 (de) Laufrad
EP3527789A1 (de) Lagerkammergehäuse für eine strömungsmaschine
WO2016134699A1 (de) Radträger
EP3704386B1 (de) Generativ gefertigter zwischenkanal zur anordnung zwischen einem niederdruckverdichter und einem hochdruckverdichter, sowie entsprechendes fertigungsverfahren
EP3425170A2 (de) Turbomaschinen-dichtungselement
DE102006013905A1 (de) Kolben für einen Verbrennungsmotor
DE112017004889T5 (de) Lagerstruktur und Turbolader
EP3293369B1 (de) Verkleidungselement für ein turbinenzwischengehäuse
EP1355041B1 (de) Turbinenschaufel
EP2860352A1 (de) Rotor, zugehöriges Herstellungsverfahren und Laufschaufel
EP1524407B1 (de) Hohlfanschaufel für Flugzeugtriebwerke und Verfahren zu deren Herstellung
EP3460187B1 (de) Schaufel für eine strömungsmaschine
DE102016122321B4 (de) Bremsscheibe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040410

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20040820

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRANDL, HERBERT

Inventor name: HOFFS, ALEXANDER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304325

Country of ref document: DE

Date of ref document: 20060907

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110221

Year of fee payment: 9

Ref country code: DE

Payment date: 20110331

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304325

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002