EP3563168B1 - Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation - Google Patents
Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation Download PDFInfo
- Publication number
- EP3563168B1 EP3563168B1 EP17825550.1A EP17825550A EP3563168B1 EP 3563168 B1 EP3563168 B1 EP 3563168B1 EP 17825550 A EP17825550 A EP 17825550A EP 3563168 B1 EP3563168 B1 EP 3563168B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- predicted
- sensor device
- reference point
- point
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000004088 simulation Methods 0.000 title claims description 30
- 230000005855 radiation Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4021—Means for monitoring or calibrating of parts of a radar system of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/5205—Means for monitoring or calibrating
- G01S7/52052—Means for monitoring or calibrating with simulation of echoes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
- G01S7/4082—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
- G01S7/4095—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder the external reference signals being modulated, e.g. rotating a dihedral reflector or modulating a transponder for simulation of a Doppler echo
Definitions
- the present invention relates to a method and a system for the simulation-assisted determination of an actual echo point of an object as well as a method and an emulation device for emulating a location target.
- test drives are usually carried out.
- the test effort can be reduced by using hardware-in-the-loop (HiL) test procedures, whereby the corresponding systems are connected to a HiL simulator via their inputs and outputs. This makes it easy to test these systems in a simulated environment, ie a virtual world.
- HiL hardware-in-the-loop
- the aim is to simulate the environment essentially in real time. It is a particular challenge to integrate radar sensors into such a HiL test procedure, since the propagation, i.e. transmission and reflection, of electromagnetic waves in the virtual world generally has to be simulated in a very complex, i.e. computationally intensive, way.
- a first aspect of the invention relates to a method for the simulation-supported determination of at least one actual echo point of an object, the method having the following working steps: Calculating a predicted object reference point of the Object and a predicted sensor device reference point of a, in particular radar-based, sensor device on the basis of an actual object reference point and an actual sensor device reference point; Determining a predicted echo point of the object on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point; Calculating a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point; Calculating, in particular at least essentially in real time, an updated actual object reference point; Determining, in particular at least essentially in real time, a simulated actual echo point of the object on the basis of the predicted relative relationship and the updated actual object reference point; and outputting the simulated actual echo point.
- An echo point within the meaning of the invention specifies in particular the point at which a signal, in particular electromagnetic waves, for example a radar signal, are reflected from an object.
- the reflections of signals on the object, in particular on several surfaces of the object are preferably combined in an echo point, and thus an idealization of reality is achieved.
- an echo point can always be assigned to an object reference point, i.e. a distance vector can be calculated which, starting from the object reference point, points in the direction of the echo point.
- a prediction in the sense of the invention is to be understood in particular as the prediction of the further development, in particular the interpolation, for example by simulation and / or modeling, of a variable, in particular of points or coordinates, for example reference points of an object.
- a reference point can be a center of gravity, for example.
- a signal within the meaning of the invention assigns a measurable physical variable such as B. an electrical voltage, a sound pressure or a field strength information.
- This information can come from the measurement of a physical process, for example a reflection on an echo target.
- the information can also be impressed on a signal using a technical modulation method in order to transmit any information to a suitable receiving device using a signal.
- signals change their magnitude as a function of time and another information-carrying variable.
- it is preferably a real signal, such as electromagnetic waves, which can be generated and received, in particular by an antenna.
- the invention is based in particular on the knowledge that a calculation of an echo point of a simulated object, for example by a ray tracing method, can be carried out for a predicted simulated situation in the future in such a way that the precalculated echo point of the situation that occurred later has essentially no time delay , in particular essentially in real time, can be assigned. If the simulation is carried out accordingly in real time, in addition to actual object reference points, actual echo points of individual simulation time steps (frames) can also be output in real time. In other words, the echo point of a simulated object can be calculated for a predetermined situation, for example a predicted object reference point, which develops from a current situation, for example an actual object reference point. This echo point, which is therefore designated as predicted, is then preferably assigned to the actual situation, for example the current actual object reference point, after it has been calculated.
- the assignment of the predicted echo point to the current actual object reference point is preferably carried out on the basis of a predicted relative relationship between the predicted echo point and the predicted object reference point.
- the predicted relative relationship preferably specifies the distance and / or the orientation between the predicted echo point and the predicted object reference point, in particular by means of a distance vector.
- the predicted echo point of the simulated object also corresponds to the actual echo point. If, on the other hand, the predicted development of the object reference point deviates from the actual development, a small deviation of the predicted echo point from the actual echo point can occur, depending on the situation. In particular, this deviation relates to the predicted relative relationship, so that, for example, the distance and / or the orientation from the predicted echo point to the current actual object reference point does not match the actual distance and / or the actual orientation. However, this deviation is small and therefore, especially in the context of a HiL test procedure, does not neglect any adverse effects.
- this deviation only occurs situationally, for example only when the direction of movement of the object reference point changes. If, on the other hand, the object reference point moves towards the sensor device reference point, for example in the case of simulated vehicles driving one behind the other or oncoming traffic, the distance between the object reference point and the sensor device reference point does not matter for the relative relationship between the echo point and the object reference point. As a result, an actual echo point of the actual object reference point is determined without errors in this case even if the object reference point is incorrectly predicted.
- the deviation between the predicted echo point of the simulated object and the actual echo point is preferably estimated and / or corrected.
- the deviation between the orientation of the predicted echo point to the predicted object reference point and the orientation of the predicted echo point to the current actual object reference point can be recorded, for example by comparing the respective relative relationships, and from this a corresponding correction factor for correcting the predicted echo point can be calculated .
- the simulated actual echo point is preferably not dependent on the prediction algorithm and is updated in real time.
- a Doppler frequency deviation can also preferably be updated in real time.
- the invention enables the reliable determination of an actual echo point, in particular essentially in real time.
- the predicted object reference point of the object and the predicted sensor device reference point of a sensor device are preferably calculated on the basis of an actual object reference point and an actual sensor device reference point with data from a traffic simulation, in particular CarMaker® and / or VIRES®.
- the traffic simulation preferably supplies the actual data; another simulation is used for the prediction.
- the predicted echo point of the object is preferably determined on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point by means of a ray tracing method, in particular OptiX®.
- the method can preferably also be used to determine actual echo points of virtual signals, i.e. signals emitted by a simulated sensor device.
- the method can also be used to test simulated sensor devices by calculating, in particular modeling, the propagation of the virtual, in particular simulated, signals taking into account predicted object reference points, also simulated objects and a predicted sensor device reference point of the sensor device, in particular in a simulated traffic situation, for example by means of a ray tracing method.
- the method according to the invention has the further, following working step: calculating, in particular at least essentially in real time, an updated actual sensor device reference point; wherein the actual echo point is further determined based on the updated actual sensor device reference point of the sensor device.
- This takes into account the fact that the, in particular radar-based, sensor device is not stationary, but can in particular move linearly or in an accelerated manner. This plays a role, for example, if the object is an at least essentially immobile object, for example a pedestrian or a building, relative to which the sensor device changes the direction of movement or speed.
- a Doppler deviation of a signal which would be reflected on a simulated object, in particular in its echo point, can thereby be taken into account particularly reliably.
- the work steps of the method according to the invention are repeated periodically.
- the prediction horizon is preferably as wide as is required to determine the predicted echo point of the object.
- the prediction horizon is preferably less than one second, preferably less than approximately 500 ms, particularly preferably less than approximately 200 ms, in particular at least approximately 100 ms. This ensures that the predicted echo point reliably corresponds to an actual echo point of the current actual object reference point.
- the determination of a simulated actual echo point on the basis of a previously predicted relative relationship between a previously predicted echo point and a previously predicted object reference point on the one hand and the determined updated actual object reference point of the current simulation time step on the other hand.
- the actual echo points are preferably determined based on the non-current predicted relative relationship until a current predicted relative relationship has been calculated.
- the working steps of the method are repeated periodically.
- the determination of a simulated actual echo point is preferably repeated after approximately 10 ms, preferably after approximately 5 ms, preferably after approximately 2 ms, in particular after approximately 1 ms.
- the actual echo point can preferably also be determined based on the non-current predicted relative relationship between a previously determined predicted echo point and a previously calculated predicted object reference point. This ensures that the simulated actual echo point is determined at least essentially in real time and thus, in particular, HiL test methods can be carried out reliably.
- an arrangement of the object, in particular its orientation, relative to the sensor device and / or object dimensions, in particular the shape of the object are also taken into account. This ensures that the predicted echo point reproduces the reflection of a signal on the object, in particular back in the direction of the sensor device, particularly reliably, in particular realistically.
- a second aspect of the invention relates to a method for simulating a location target, having the following working steps: Checking whether a signal which is transmitted by a, in particular radar-based, sensor device is received; Determining and outputting at least one simulated actual echo point according to the first aspect of the invention, in particular when a signal is received; Modulating the received signal based on the at least one simulated actual echo point; and sending the modulated signal to the sensor device.
- Sending within the meaning of the invention means in particular sending back.
- the signal is preferably only modulated and sent back.
- the emitted modulated signal acts, in particular directly, on a transducer, in particular a measured variable transducer, preferably in the sense of DIN 1319-1, the sensor device. This ensures that the emitted modulated signal is not disturbed, in particular falsified, so that the sensor device can reliably detect one or more simulated objects, in particular a simulated environment.
- a third aspect of the invention relates to a system for the simulation-based determination of at least one actual echo point of an object, having a means for calculating a predicted object reference point of the object and a predicted sensor device reference point of a, in particular radar-based, sensor device on the basis of an actual object reference point and an actual Sensor device reference point and a means for determining a predicted echo point of the object on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point.
- the system has a means for calculating a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point and a means for calculating, in particular at least essentially in real time, an updated actual object reference point.
- the system has a means for determining, in particular at least essentially in real time, a simulated actual echo point of the object on the basis of the predicted relative relationship and the updated actual object reference point and a means for outputting the simulated actual echo point.
- the system preferably has one or more computing units, in particular main processors (CPU) and / or graphics processors (GPU), which are set up to carry out one or more work steps of the method according to the first aspect of the invention.
- the computing units are preferably controlled by a control unit.
- the control unit is set up to adapt the prediction horizon when calculating a predicted object reference point and a predicted sensor device reference point to the time required to determine the predicted echo point of the object.
- the means for calculating a predicted object reference point and a predicted sensor device reference point is designed as a computing unit which is set up to carry out a traffic simulation, in particular CarMaker® and / or VIRES®, and the results of the simulation, in particular object reference points and sensor device reference points, in a given temporal object cycle, ie a predetermined temporal sequence of simulation time steps, preferably faster than about 10 ms, preferably faster than about 5 ms, in particular faster than about 1 ms.
- the means for determining a predicted echo point is designed as a computing unit, which is set up to execute a ray tracing method, in particular OptiX®, and the results of the simulation, in particular echo points, in a predetermined time echo rate, preferably faster than about 1 Second, preferably faster than about 500 ms, preferably faster than about 200 ms, in particular faster than about 100 ms.
- the system can preferably output actual echo points from simulated participants in any, in particular predetermined, simulated traffic situation.
- a fourth aspect of the invention relates to an emulation device for emulating a location target, having a receiving module which is set up to receive a signal sent by a sensor device, in particular a radar signal, and a computing module which comprises a system according to the third aspect of the invention.
- the emulation device has a modulation module which is set up to modulate a signal received by the receiving module on the basis of the at least one simulated actual echo point, and a control module which is set up to generate a control signal for an antenna, in particular at least partially based on the at least one simulated actual echo point and / or the modulated signal.
- the emulation device also has a transmission module which is set up to transmit the modulated signal to the sensor device.
- a receiving module in the context of the invention is to be understood in particular as an antenna for receiving electromagnetic waves.
- the receiving module preferably converts a signal characterized by the electromagnetic waves into an electrical, in particular analog, signal which can be modulated.
- the receiving module preferably provides / modulates a received signal with the characteristics determined by a simulation and then sends it back in a modified manner.
- the emulation device is preferably designed at least as part of a HiL test system, the sensor device being a radar-based sensor direction of a vehicle.
- the emulation device is designed at least as part of a test stand for highly automated vehicles.
- the transmission module is set up, in particular to act directly on a transducer, in particular a measurement variable transducer, preferably within the meaning of DIN 1319-1, of the sensor device. This ensures that the emitted modulated signal is not disturbed, in particular falsified, so that the sensor device can reliably detect one or more simulated objects, in particular a simulated environment.
- Figure 1 shows an embodiment of a method 1 according to the invention.
- a first work step S1 based on coordinates of road users and a sensor device, which are preferably generated by a traffic simulation, the development of a, in particular predetermined, traffic situation is predicted, for example by simulating the various road users and sensor device, in particular their kinematics.
- a predicted object reference point is calculated for each of the road users.
- a predicted sensor device reference point is also calculated for a sensor device which is intended to detect signals, in particular reflected electromagnetic waves, from the road users.
- a second work step S2 the coordinates of points at which signals emitted by the sensor device, in particular from each road user, would be reflected according to the simulated traffic situation, are determined.
- the signals in particular radar signals
- signals which the sensor device emits for detecting objects in reality are simulated and their propagation in the virtual environment of the simulated traffic situation is calculated. This results in particular in the coordinates of the reflection points of each object, so-called echo points.
- the sensor device is not moving or that the object is moving in an inertial system of the sensor device.
- the sensor device is at rest in this inertial system and only the relative movement of the object in relation to the sensor device is calculated.
- the echo points depend on the radiation characteristics of the sensor device, the predicted object reference point and the predicted sensor device point, ie in particular on the coordinates of the road users and the sensor device.
- the echo points can also depend on the arrangements, for example orientations, of the road users in relation to the sensor device and / or the dimensions of the road users, in particular their shapes. Because these coordinates depend on coordinates of objects predicted in step S1, they become referred to as predicted echo points.
- a relative relationship is, for example, a distance and / or an orientation, preferably a distance vector, which, starting from a predicted object reference point, is directed to a predicted echo point.
- updated coordinates of the road users i.e. object reference points
- This calculation is preferably carried out at least essentially in real time.
- the prediction horizon i.e. the time period for which the traffic situation specified in the first work step S1 is further developed, is preferably selected such that it essentially corresponds to the time period required to determine the predicted echo points.
- updated coordinates of the sensor device are calculated, which, analogously to the road users, move on within the prediction horizon.
- simulated actual echo points are determined by assigning the relative relationships to the updated coordinates of the road users and the updated coordinates of the sensor device. In other words, predicted object reference points are exchanged for current actual object reference points, so that the starting points of the distance vectors are shifted.
- the simulated actual echo points are finally output in a sixth work step S6.
- Figure 2 shows a first embodiment of a system 2 according to the invention for the simulation-supported determination of at least one actual echo point with a traffic simulation 3, a ray tracing unit 4 and a calculation unit 5.
- the traffic simulation 3 has an input 6 via which the traffic simulation 3 can be controlled.
- Input 6 can be used in particular to input a traffic situation to be simulated, as well as a prediction horizon, which indicates the length of time for which the traffic situation is to be further developed.
- the traffic situation is characterized in particular by actual object reference points and actual sensor device reference points.
- the traffic simulation 3 outputs a predicted object reference point and a predicted sensor device reference point to the ray tracing unit 4 in work step S1.
- the predicted reference points roughly correspond to the coordinates of a road user and the sensor device in the predicted future.
- the predicted reference point of the road user and the sensor device are processed in the ray tracing unit 4 in order to determine a predicted echo point of the road user and output it to the calculation unit 5. This process is indicated by step S2.
- the paths of signals emitted by the sensor device are simulated, for example calculated, in particular their transmission or refraction and / or reflection on the surfaces of the simulated road users.
- the calculation unit 5 is set up to calculate a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point from the predicted echo point and the predicted object reference point calculated in step S1. As a result, the position, in particular the distance and / or the orientation, of the predicted echo point relative to the predicted object reference point is known.
- the traffic simulation 3 calculates an updated actual object reference point.
- the traffic simulation 3 can also calculate an updated actual sensor device reference point.
- the updated reference points are output to the calculation unit 5. This is indicated by the work steps S4, S4 '.
- the calculation unit 5 is also set up to use the predicted relative relationship, the updated actual object reference point and the updated actual sensor device reference point to determine a simulated actual echo point of the simulated road user, which can be output in step S6.
- Figure 3 shows a second embodiment of a system 2 according to the invention with a traffic simulation 3, a ray tracing unit 4, a calculation unit 5 and a prediction unit 7.
- the traffic simulation 3 outputs the calculated actual object reference point and the actual sensor device reference point to the prediction unit 7, which is set up to calculate a predicted object reference point and a predicted sensor device reference point on the basis of the actual object reference point and the actual sensor device reference point.
- the prediction unit 7 models the development of the actual reference points, for example the coordinates of road users and sensors.
- the prediction unit 7 can in particular be designed as a computing unit which carries out Kalman filtering and / or determines the coordinates by means of recursive least squares prediction or model-based RLSQ.
- the prediction unit 7 then outputs the predicted object reference point and the predicted sensor device reference point to the ray tracing device 4.
- FIGS. 4A-C show various scenarios for determining an actual echo point 8 of a simulated object 9.
- a sensor device 10 is arranged at an actual sensor device reference point 11 and a simulated object 9 is arranged at an actual object reference point 12.
- a prediction unit (see Figure 3 ) predicts an object reference point 13 behind a predetermined prediction horizon, ie after a predetermined period of time has elapsed.
- a predicted echo point 15 of the object 9 is determined, which at least ideally reflects how and / or at which coordinates a signal emitted by the sensor device 10 would be reflected by the object 9.
- the predicted echo point 15 lies on a side of the object 9 facing the sensor device 10.
- a predicted relative relationship 16 between the predicted echo point 15 and the predicted object reference point 13 can be calculated.
- the predicted relative relationship 16 is shown as a vector which points from the predicted object reference point 13 to the predicted echo point 15.
- the predicted echo point 15 is the actual echo point of the object 9.
- the simulated object 9 has moved towards the sensor device 10, in particular its reference point 11, with its updated actual object reference point 12 ′ not corresponding to the predicted object reference point 13.
- the original position of the simulated object 9 is indicated by dash-dotted lines.
- the actual echo point 15 ' is determined on the basis of the predicted relative relationship 16 and the updated actual object reference point 12', the actual echo point 15 'reflects the actual position of the echo point of the simulated object 9, although there is a discrepancy between the updated object reference point 12' and predicted object reference point 13 exists.
- the simulated object 9 has changed its direction of movement, i.e. it has followed a curved path. Since the position of an actual echo point 15 ′′ depends on the shape and / or the orientation of the object 9 relative to the sensor device 10, the actual echo point 15 ′′ in this example has shifted to a corner of the object 9 facing the sensor device to be warped.
- a correction of the actual echo point 15 'can preferably be carried out on the basis of the deviation in the orientation of the object 9 at the predicted object reference point 13 and at the updated actual object reference point 12 ′, for example by calculating a correction factor for the deviation and including it in the determination of the actual echo point 15 'is involved.
- Figure 5 shows an exemplary embodiment of an emulation device 8 according to the invention for emulating a location target with a receiving module 17, a system 2 for the simulation-based determination of at least one actual echo point, a modulation module 18, a control module 19 and a transmission module 20.
- the system 2 determines actual echo points and outputs them to the modulation module 18 .
- the modulation module 18 modulates the signal 14 ′ received by the receiving module 17 according to the actual echo points, in particular so that a modulated signal 14 ′′ is characterized by the traffic situation simulated by the system 2, and outputs it to the control module 19.
- This controls a transmission module 20 , for example an antenna, in such a way, in particular by means of a control signal, that the modulated signal 14 ′′ can be transmitted by the transmission module 20, which is finally received by the sensor device 10.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Claims (10)
- Procédé (1) pour déterminer de manière assistée par simulation au moins un point réel d'écho (15') d'un objet (9), présentant des étapes de phases de travail qui suivent :S1 le calcul d'un point de référence d'objet prédit (13) de l'objet (9) et d'un point de référence de dispositif capteur prédit d'un dispositif capteur (10) en particulier à base de radar sur la base d'un point de référence d'objet réel (12) et d'un point de référence de dispositif capteur réel (11) ;S2 la détermination d'un point d'écho prédit (15) de l'objet (9) sur la base d'une caractéristique d'émission (14) du dispositif capteur (10), du point de référence d'objet prédit (13) et du point de référence de dispositif capteur prédit, dans lequel le point d'écho prédit (15) est calculé pour une situation anticipée ;S3 le calcul d'une relation relative (16) prédite, en particulier spatiale, entre le point d'écho réel prédit (15) et le point de référence d'objet prédit (13) ;S4 le calcul, en particulier au moins sensiblement en temps réel, d'un point de référence d'objet réel (12') mis à jour;S5 la détermination, en particulier au moins sensiblement en temps réel, d'un point d'écho réel (15') simulé de l'objet (9) sur la base de la relation relative prédite (16) et du point de référence d'objet réel mis à jour (12'), dans lequel le point d'écho prédit (15) est associé au point de référence d'objet réel mis à jour (12') ; etS6 l'émission du point d'écho réel (15') simulé.
- Procédé selon la revendication 1, présentant par ailleurs l'étape de travail qui suit :
S4' le calcul en particulier au moins sensiblement en temps réel d'un point de référence de dispositif capteur réel mis à jour ; dans lequel le point d'écho réel (15') est déterminé par ailleurs sur la base du point de référence de dispositif capteur réel mis à jour du dispositif capteur (10) . - Procédé selon la revendication 1 ou 2, dans lequel les étapes de travail du procédé sont répétées de manière périodique et l'horizon de prédiction est aussi éloigné lors de l'étape de travail S1 que la détermination du point d'écho prédit (15) de l'objet (9) lors de l'étape de travail S2, de préférence est inférieur à une seconde, en particulier est inférieur à environ 500 ms, en particulier est inférieur à environ 200 ms, en particulier est inférieur à environ 100 ms.
- Procédé selon la revendication 1 ou 2, dans lequel les étapes de travail du procédé sont répétées de manière périodique et l'étape de travail S5 est répétée après environ 10 ms, de manière préférée après environ 5 ms, de manière particulièrement préférée après environ 2 ms et idéalement après environ 1 ms.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de la détermination du point d'écho prédit (15), un agencement de l'objet (9) par rapport au dispositif capteur (10) et/ou des dimensions d'objet sont pris en compte par ailleurs lors de l'étape de travail S2.
- Procédé d'émulation d'une cible localisée, qui présente des étapes de travail suivantes :- de vérification pour savoir si un signal (14'), lequel est envoyé par un dispositif capteur (10) en particulier à base de radar, est reçu ;- de détermination et d'émission d'au moins un point d'écho réel (15') simulé selon l'une quelconque des revendications 1 à 5, en particulier seulement quand un signal (14') est reçu ;- de modulation d'un signal (14') reçu sur la base de l'au moins un point d'écho réel (15') simulé ; et- l'envoi du signal modulé (14'') au dispositif capteur (10) .
- Procédé selon la revendication 6, dans lequel le signal modulé (14'') envoyé agit, en particulier directement, sur un enregistreur de grandeurs de mesure du dispositif capteur (10).
- Système (2) de détermination assistée par simulation d'au moins un point d'écho réel (15') d'un objet (9), présentant :- des moyens (7) pour calculer un point de référence d'objet prédit (13) de l'objet (9) et d'un point de référence de dispositif capteur prédit d'un dispositif capteur (10) en particulier à base de radar, sur la base d'un point de référence d'objet réel (12) et d'un point de référence de dispositif capteur réel (11) ;- des moyens (4) pour déterminer un point d'écho prédit (15) de l'objet (9) sur la base d'une caractéristique d'émission (14) du dispositif capteur (10), du point de référence d'objet prédit (13) et du point de référence de dispositif capteur prédit, dans lequel le point d'écho prédit (15) est calculé pour une situation anticipée ;- des moyens (5) pour calculer une relation relative (16) prédite, en particulier spatiale, entre le point d'écho prédit (15) et le point de référence d'objet prédit (13) ;- des moyens (3) pour calculer, en particulier au moins sensiblement en temps réel, un point de référence d'objet réel mis à jour (12') ;- des moyens (5) pour déterminer, en particulier au moins sensiblement en temps réel, un point d'écho réel (15') simulé de l'objet (9) sur la base d'une relation relative prédite (16) et du point de référence d'objet réel mis à jour (12'), dans lequel le point d'écho prédit (15) est associé au point de référence d'objet réel mis à jour (12') ; et- des moyens (5) pour émettre le point écho réel (15') simulé.
- Dispositif d'émulation (8) pour l'émulation d'une cible localisée, présentant :- un module de réception (17) mis au point pour recevoir un signal (14') envoyé par un dispositif capteur (10), en particulier un signal radar ;- un module de calcul, lequel comprend un système (2) selon la revendication 8 ;- un module de modulation (18), lequel est mis au point pour moduler un signal (14') reçu par le module de réception (17) sur la base de l'au moins un point d'écho réel (15') simulé ;- un module de pilotage (19), lequel est mis au point pour générer un signal de pilotage pour une antenne, en particulier au moins en partie sur la base de l'au moins un point d'écho réel (15') simulé et/ou du signal modulé (14") ; et- un module d'envoi (20) mis au point pour envoyer le signal modulé (14") au dispositif capteur (10).
- Dispositif d'émulation selon la revendication 9, dans lequel le module d'envoi (20) est mis au point pour agir en particulier directement sur un enregistreur de grandeurs de mesure du dispositif capteur (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA51188/2016A AT519538B1 (de) | 2016-12-29 | 2016-12-29 | Verfahren und System zur simulationsgestützten Bestimmung von Echopunkten sowie Verfahren zur Emulation und Emulationsvorrichtung |
PCT/EP2017/084681 WO2018122282A1 (fr) | 2016-12-29 | 2017-12-28 | Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3563168A1 EP3563168A1 (fr) | 2019-11-06 |
EP3563168B1 true EP3563168B1 (fr) | 2021-11-24 |
Family
ID=60935867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17825550.1A Active EP3563168B1 (fr) | 2016-12-29 | 2017-12-28 | Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation |
Country Status (4)
Country | Link |
---|---|
US (1) | US11313947B2 (fr) |
EP (1) | EP3563168B1 (fr) |
AT (1) | AT519538B1 (fr) |
WO (1) | WO2018122282A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT519540B1 (de) | 2016-12-29 | 2018-10-15 | Avl List Gmbh | Schaltvorrichtung für einen Radarzielemulator und Radarzielemulator mit einer solchen Schaltvorrichtung |
AT519539B1 (de) | 2016-12-29 | 2018-10-15 | Avl List Gmbh | Radarzielemulator mit einer Überblendungsvorrichtung und Verfahren zum Überblenden von Signalen |
AT520578B1 (de) | 2017-10-06 | 2021-01-15 | Avl List Gmbh | Vorrichtung und Verfahren zur Konvertierung eines Radarsignals sowie Prüfstand |
CN113687316A (zh) * | 2020-05-17 | 2021-11-23 | 是德科技股份有限公司 | 用于仿真测试系统的时间同步和等待时间补偿 |
CN113376612B (zh) * | 2021-08-12 | 2021-11-23 | 成都众享天地网络科技有限公司 | 一种基于地形矩阵化及探测的雷达杂波生成方法 |
CN117669776A (zh) * | 2024-01-31 | 2024-03-08 | 北京云中盖娅科技有限公司 | 面向海陆空集群的联合仿真系统及方法 |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3002188A (en) | 1959-04-14 | 1961-09-26 | Frank R Abbott | Harmonic wave beam-steering system |
US3903521A (en) | 1964-07-09 | 1975-09-02 | Us Navy | Simulator of radar return signals from an accelerating target |
FR2271582A1 (en) | 1974-05-13 | 1975-12-12 | Thomson Csf | Variable delay device for radar simulator - employs quartz delay lines which propagate using acoustic surface waves |
US4316159A (en) | 1979-01-22 | 1982-02-16 | Rca Corporation | Redundant microwave switching matrix |
DE3112112C1 (de) | 1981-03-27 | 1982-09-30 | Dornier System Gmbh, 7990 Friedrichshafen | Pruefvorrichtung fuer ein Radargeraet mit synthetischer Apertur |
US4660041A (en) | 1983-09-22 | 1987-04-21 | Boeing Aerospace Company | Radar scene simulator |
JPS60223303A (ja) | 1984-04-20 | 1985-11-07 | Hitachi Ltd | マイクロ波スイツチマトリツクス |
EP0282195B1 (fr) | 1987-03-06 | 1994-04-13 | Raytheon Company | Dispositif de contrôle de la performance d'un radar |
JPH04212083A (ja) | 1990-02-28 | 1992-08-03 | Mitsubishi Electric Corp | レーダビデオ信号模擬装置 |
US5247843A (en) | 1990-09-19 | 1993-09-28 | Scientific-Atlanta, Inc. | Apparatus and methods for simulating electromagnetic environments |
US5177488A (en) | 1991-10-08 | 1993-01-05 | Hughes Aircraft Company | Programmable fiber optic delay line, and radar target simulation system incorporating the same |
US5339087A (en) | 1993-10-27 | 1994-08-16 | The United States Of America As Represented By The Secretary Of The Navy | Wavefront simulator for evaluating RF communication array signal processors |
JPH07280924A (ja) | 1994-04-04 | 1995-10-27 | Mitsubishi Electric Corp | 疑似目標信号発生装置 |
US5518400A (en) | 1994-11-15 | 1996-05-21 | Hughes Aircraft Company | Portable radar target simulator |
JP3292024B2 (ja) | 1996-02-21 | 2002-06-17 | 三菱電機株式会社 | 合成開口レーダの試験装置 |
JPH09270772A (ja) | 1996-03-29 | 1997-10-14 | Mitsubishi Electric Corp | 受信妨害装置 |
US6191735B1 (en) | 1997-07-28 | 2001-02-20 | Itt Manufacturing Enterprises, Inc. | Time delay apparatus using monolithic microwave integrated circuit |
US5892479A (en) | 1997-07-30 | 1999-04-06 | The United States Of America As Represented By The Secretary Of The Army | Electromagnetic target generator |
US5920281A (en) | 1997-08-05 | 1999-07-06 | Wiltron Company | Radar test system for collision avoidance automotive radar |
US6114985A (en) | 1997-11-21 | 2000-09-05 | Raytheon Company | Automotive forward looking sensor test station |
US7154431B2 (en) | 1999-09-01 | 2006-12-26 | The United States Of America As Represented By The Secretary Of The Navy | Signal synthesizer and method therefor |
JP3928837B2 (ja) | 1999-09-13 | 2007-06-13 | 株式会社ルネサステクノロジ | 半導体集積回路装置 |
US20030053574A1 (en) | 1999-12-28 | 2003-03-20 | Shai Cohen | Adaptive sampling |
US6346909B1 (en) | 2000-09-06 | 2002-02-12 | The United States Of America As Represented By The Secretary Of The Army | System for generating simulated radar targets |
JP3631457B2 (ja) | 2001-11-08 | 2005-03-23 | 三菱電機株式会社 | レーダ装置の最小受信感度確認装置 |
DE10209291A1 (de) | 2002-03-01 | 2003-09-25 | Thales Comm Gmbh | Vorrichtung zur Erzeugung einer Laufzeitverzögerung eines gepulsten Radarsignals und Verfahren zu dessen Betrieb |
US6700531B2 (en) | 2002-07-17 | 2004-03-02 | Anritsu Company | Integrated multiple-up/down conversion radar test system |
US6989788B2 (en) | 2002-09-16 | 2006-01-24 | Continental Microwave & Tool Co., Inc. | Antenna array having apparatus for producing time-delayed microwave signals using selectable time delay stages |
US7714782B2 (en) | 2004-01-13 | 2010-05-11 | Dennis Willard Davis | Phase arrays exploiting geometry phase and methods of creating such arrays |
JP4781240B2 (ja) * | 2006-11-22 | 2011-09-28 | 古野電気株式会社 | エコー画像の表示装置 |
DE102007002370A1 (de) | 2007-01-17 | 2008-07-24 | Valeo Schalter Und Sensoren Gmbh | Radartestvorrichtung mit aktiver Verzögerungsleitung ohne Zwischenfrequenz |
US7782250B2 (en) | 2008-06-13 | 2010-08-24 | Honeywell International Inc. | Millimeter wave radar target simulation systems and methods |
US20100109940A1 (en) * | 2008-10-30 | 2010-05-06 | Peter Robert Williams | Simulating a Radar Signal Reflected From a Moving Target |
US20100306825A1 (en) * | 2009-05-27 | 2010-12-02 | Lucid Ventures, Inc. | System and method for facilitating user interaction with a simulated object associated with a physical location |
US8571508B2 (en) | 2009-07-16 | 2013-10-29 | Saab Ab | Method and wideband antenna system to minimise the influence of interference sources |
US8248297B1 (en) | 2011-04-11 | 2012-08-21 | Advanced Testing Technologies, Inc. | Phase noise measurement system and method |
WO2013084654A1 (fr) | 2011-12-05 | 2013-06-13 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Procédé, programme et système d'exécution de simulation |
CN103809163B (zh) * | 2014-01-13 | 2016-05-25 | 中国电子科技集团公司第二十八研究所 | 一种基于局部极大值的车辆雷达目标检测方法 |
EP3180636B1 (fr) | 2014-08-15 | 2019-05-22 | Robert Bosch GmbH | Procédé et système pour la détérmination de l'alignement d'un capteur radar |
KR20160050121A (ko) | 2014-10-28 | 2016-05-11 | 한남대학교 산학협력단 | 다중 샘플링 클럭 주파수를 이용한 레이더 표적 시뮬레이터 |
CN104391283A (zh) | 2014-12-01 | 2015-03-04 | 无锡市雷华科技有限公司 | 一种雷达目标模拟方法及系统 |
DE102014017831A1 (de) * | 2014-12-03 | 2016-06-09 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Simulationssystem |
DE102014118622A1 (de) * | 2014-12-15 | 2016-06-16 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung |
DE102014118625A1 (de) | 2014-12-15 | 2016-06-16 | Valeo Schalter Und Sensoren Gmbh | Sensoranordnung für einen Prüfstand eines Fahrerassistenzsystems eines Kraftfahrzeugs, Prüfstand sowie dazugehöriges Verfahren |
US10012721B2 (en) | 2015-02-19 | 2018-07-03 | Teradyne, Inc. | Virtual distance test techniques for radar applications |
DE102015121297B4 (de) | 2015-09-06 | 2017-12-21 | Hochschule Trier | Abstandssimulierendes Radartarget |
SE538908C2 (sv) | 2015-10-22 | 2017-02-07 | Uniquesec Ab | Testing method with virtual radar signatures for an automotive safety radar system |
US10496766B2 (en) * | 2015-11-05 | 2019-12-03 | Zoox, Inc. | Simulation system and methods for autonomous vehicles |
CN105510980A (zh) | 2015-12-08 | 2016-04-20 | 重庆地质仪器厂 | 一种用于激发极化法的多通道采集装置及系统 |
CN106802593B (zh) | 2016-12-20 | 2019-03-26 | 上海交通大学 | 雷达回波模拟器高精度延时控制方法及雷达回波模拟器 |
AT519539B1 (de) | 2016-12-29 | 2018-10-15 | Avl List Gmbh | Radarzielemulator mit einer Überblendungsvorrichtung und Verfahren zum Überblenden von Signalen |
-
2016
- 2016-12-29 AT ATA51188/2016A patent/AT519538B1/de active
-
2017
- 2017-12-28 WO PCT/EP2017/084681 patent/WO2018122282A1/fr unknown
- 2017-12-28 EP EP17825550.1A patent/EP3563168B1/fr active Active
- 2017-12-28 US US16/474,751 patent/US11313947B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AT519538B1 (de) | 2019-05-15 |
AT519538A1 (de) | 2018-07-15 |
US20200025875A1 (en) | 2020-01-23 |
EP3563168A1 (fr) | 2019-11-06 |
US11313947B2 (en) | 2022-04-26 |
WO2018122282A1 (fr) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3563168B1 (fr) | Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation | |
DE112016000274B4 (de) | System zum Generieren virtueller Radarsignaturen | |
CN106991041B (zh) | 用于测试用于自主车辆的软件的方法和装置 | |
AT521120B1 (de) | Verfahren und Vorrichtung zum Ermitteln eines Radarquerschnitts, Verfahren zum Trainieren eines Wechselwirkungsmodells sowie Radarzielemulator und Prüfstand | |
EP3695244B1 (fr) | Procédé et dispositif de génération d'un modèle de capteur inverse et procédé de détection d'obstacles | |
WO2014183948A2 (fr) | Capteur, simulateur et procédé de simulation de mesures de capteur, de fusion de mesures de capteur, de validation d'un modèle pour capteur et de conception d'un système d'aide à la conduite | |
DE102014118625A1 (de) | Sensoranordnung für einen Prüfstand eines Fahrerassistenzsystems eines Kraftfahrzeugs, Prüfstand sowie dazugehöriges Verfahren | |
EP3729044B1 (fr) | Procédé pour l'analyse d'un système d'automatisation d'une installation, émulateur pour le fonctionnement au moins partiellement virtuel d'un système d'automatisation d'une installation et système pour l'analyse d'un système d'automatisation d'une installation | |
EP3757795A1 (fr) | Procédé et dispositif destinés à la distribution optimale de cas d'essai sur différentes plateformes d'essai | |
DE112010005903T5 (de) | Objekterfassungsvorrichtung und Objekterfassungsprogramm | |
DE102018222862A1 (de) | Verfahren und System zur Lokalisierung einer Akustikquelle relativ zu einem Fahrzeug | |
WO2019229047A2 (fr) | Procédé de test de fonctionnement d'un capteur radar et dispositif d'exécution de ce procédé | |
DE102011015094B4 (de) | Verfahren zum simulativen Ermitteln von Messeigenschaften eines Sensors eines Kraftfahrzeugs und Rechensystem | |
DE102014118622A1 (de) | Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung | |
WO2022122339A1 (fr) | Procédé et système pour tester un dispositif de commande d'un véhicule | |
DE102009053509A1 (de) | Verfahren zum simulativen Ermitteln von Messeigenschaften eines Sensors eines Kraftfahrzeugs und Rechensystem | |
WO2019162317A1 (fr) | Procédé de génération de données de capteur pour des appareils de commande d'automobile critiques pour la sécurité | |
DE102014118624A1 (de) | Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung | |
Jia et al. | Using real-world data to calibrate a driving simulator measuring lateral driving behaviour | |
DE10314129A1 (de) | Verfahren und Computerprogramm zum Simulieren des Detektionsbereiches eines Sensors | |
WO2021089242A1 (fr) | Procédé et dispositif pour déterminer des itinéraires d'urgence et pour faire fonctionner des véhicules automatisés | |
WO2018065087A1 (fr) | Procédé de localisation, dispositif associé et utilisation d'un logiciel | |
DE102019101127A1 (de) | Verfahren zum Verarbeiten mittels Ultraschall erhaltener Daten | |
DE102007022055B3 (de) | Verfahren zum Lokalisieren von Geräuschquellen eines sich in einer Entfernung bewegenden Fahrzeugs | |
DE102020106014A1 (de) | Unterscheiden und schätzen der geschwindigkeiten mehrerer objekte mit hilfe eines mehrknoten-radarsystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190729 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210614 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1450262 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012113 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220324 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012113 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211228 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
26N | No opposition filed |
Effective date: 20220825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231219 Year of fee payment: 7 Ref country code: FR Payment date: 20231219 Year of fee payment: 7 Ref country code: DE Payment date: 20231214 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1450262 Country of ref document: AT Kind code of ref document: T Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231229 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211124 |