EP3563168B1 - Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation - Google Patents

Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation Download PDF

Info

Publication number
EP3563168B1
EP3563168B1 EP17825550.1A EP17825550A EP3563168B1 EP 3563168 B1 EP3563168 B1 EP 3563168B1 EP 17825550 A EP17825550 A EP 17825550A EP 3563168 B1 EP3563168 B1 EP 3563168B1
Authority
EP
European Patent Office
Prior art keywords
predicted
sensor device
reference point
point
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17825550.1A
Other languages
German (de)
English (en)
Other versions
EP3563168A1 (fr
Inventor
Franz Michael MAIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP3563168A1 publication Critical patent/EP3563168A1/fr
Application granted granted Critical
Publication of EP3563168B1 publication Critical patent/EP3563168B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating
    • G01S7/52052Means for monitoring or calibrating with simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4095Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder the external reference signals being modulated, e.g. rotating a dihedral reflector or modulating a transponder for simulation of a Doppler echo

Definitions

  • the present invention relates to a method and a system for the simulation-assisted determination of an actual echo point of an object as well as a method and an emulation device for emulating a location target.
  • test drives are usually carried out.
  • the test effort can be reduced by using hardware-in-the-loop (HiL) test procedures, whereby the corresponding systems are connected to a HiL simulator via their inputs and outputs. This makes it easy to test these systems in a simulated environment, ie a virtual world.
  • HiL hardware-in-the-loop
  • the aim is to simulate the environment essentially in real time. It is a particular challenge to integrate radar sensors into such a HiL test procedure, since the propagation, i.e. transmission and reflection, of electromagnetic waves in the virtual world generally has to be simulated in a very complex, i.e. computationally intensive, way.
  • a first aspect of the invention relates to a method for the simulation-supported determination of at least one actual echo point of an object, the method having the following working steps: Calculating a predicted object reference point of the Object and a predicted sensor device reference point of a, in particular radar-based, sensor device on the basis of an actual object reference point and an actual sensor device reference point; Determining a predicted echo point of the object on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point; Calculating a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point; Calculating, in particular at least essentially in real time, an updated actual object reference point; Determining, in particular at least essentially in real time, a simulated actual echo point of the object on the basis of the predicted relative relationship and the updated actual object reference point; and outputting the simulated actual echo point.
  • An echo point within the meaning of the invention specifies in particular the point at which a signal, in particular electromagnetic waves, for example a radar signal, are reflected from an object.
  • the reflections of signals on the object, in particular on several surfaces of the object are preferably combined in an echo point, and thus an idealization of reality is achieved.
  • an echo point can always be assigned to an object reference point, i.e. a distance vector can be calculated which, starting from the object reference point, points in the direction of the echo point.
  • a prediction in the sense of the invention is to be understood in particular as the prediction of the further development, in particular the interpolation, for example by simulation and / or modeling, of a variable, in particular of points or coordinates, for example reference points of an object.
  • a reference point can be a center of gravity, for example.
  • a signal within the meaning of the invention assigns a measurable physical variable such as B. an electrical voltage, a sound pressure or a field strength information.
  • This information can come from the measurement of a physical process, for example a reflection on an echo target.
  • the information can also be impressed on a signal using a technical modulation method in order to transmit any information to a suitable receiving device using a signal.
  • signals change their magnitude as a function of time and another information-carrying variable.
  • it is preferably a real signal, such as electromagnetic waves, which can be generated and received, in particular by an antenna.
  • the invention is based in particular on the knowledge that a calculation of an echo point of a simulated object, for example by a ray tracing method, can be carried out for a predicted simulated situation in the future in such a way that the precalculated echo point of the situation that occurred later has essentially no time delay , in particular essentially in real time, can be assigned. If the simulation is carried out accordingly in real time, in addition to actual object reference points, actual echo points of individual simulation time steps (frames) can also be output in real time. In other words, the echo point of a simulated object can be calculated for a predetermined situation, for example a predicted object reference point, which develops from a current situation, for example an actual object reference point. This echo point, which is therefore designated as predicted, is then preferably assigned to the actual situation, for example the current actual object reference point, after it has been calculated.
  • the assignment of the predicted echo point to the current actual object reference point is preferably carried out on the basis of a predicted relative relationship between the predicted echo point and the predicted object reference point.
  • the predicted relative relationship preferably specifies the distance and / or the orientation between the predicted echo point and the predicted object reference point, in particular by means of a distance vector.
  • the predicted echo point of the simulated object also corresponds to the actual echo point. If, on the other hand, the predicted development of the object reference point deviates from the actual development, a small deviation of the predicted echo point from the actual echo point can occur, depending on the situation. In particular, this deviation relates to the predicted relative relationship, so that, for example, the distance and / or the orientation from the predicted echo point to the current actual object reference point does not match the actual distance and / or the actual orientation. However, this deviation is small and therefore, especially in the context of a HiL test procedure, does not neglect any adverse effects.
  • this deviation only occurs situationally, for example only when the direction of movement of the object reference point changes. If, on the other hand, the object reference point moves towards the sensor device reference point, for example in the case of simulated vehicles driving one behind the other or oncoming traffic, the distance between the object reference point and the sensor device reference point does not matter for the relative relationship between the echo point and the object reference point. As a result, an actual echo point of the actual object reference point is determined without errors in this case even if the object reference point is incorrectly predicted.
  • the deviation between the predicted echo point of the simulated object and the actual echo point is preferably estimated and / or corrected.
  • the deviation between the orientation of the predicted echo point to the predicted object reference point and the orientation of the predicted echo point to the current actual object reference point can be recorded, for example by comparing the respective relative relationships, and from this a corresponding correction factor for correcting the predicted echo point can be calculated .
  • the simulated actual echo point is preferably not dependent on the prediction algorithm and is updated in real time.
  • a Doppler frequency deviation can also preferably be updated in real time.
  • the invention enables the reliable determination of an actual echo point, in particular essentially in real time.
  • the predicted object reference point of the object and the predicted sensor device reference point of a sensor device are preferably calculated on the basis of an actual object reference point and an actual sensor device reference point with data from a traffic simulation, in particular CarMaker® and / or VIRES®.
  • the traffic simulation preferably supplies the actual data; another simulation is used for the prediction.
  • the predicted echo point of the object is preferably determined on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point by means of a ray tracing method, in particular OptiX®.
  • the method can preferably also be used to determine actual echo points of virtual signals, i.e. signals emitted by a simulated sensor device.
  • the method can also be used to test simulated sensor devices by calculating, in particular modeling, the propagation of the virtual, in particular simulated, signals taking into account predicted object reference points, also simulated objects and a predicted sensor device reference point of the sensor device, in particular in a simulated traffic situation, for example by means of a ray tracing method.
  • the method according to the invention has the further, following working step: calculating, in particular at least essentially in real time, an updated actual sensor device reference point; wherein the actual echo point is further determined based on the updated actual sensor device reference point of the sensor device.
  • This takes into account the fact that the, in particular radar-based, sensor device is not stationary, but can in particular move linearly or in an accelerated manner. This plays a role, for example, if the object is an at least essentially immobile object, for example a pedestrian or a building, relative to which the sensor device changes the direction of movement or speed.
  • a Doppler deviation of a signal which would be reflected on a simulated object, in particular in its echo point, can thereby be taken into account particularly reliably.
  • the work steps of the method according to the invention are repeated periodically.
  • the prediction horizon is preferably as wide as is required to determine the predicted echo point of the object.
  • the prediction horizon is preferably less than one second, preferably less than approximately 500 ms, particularly preferably less than approximately 200 ms, in particular at least approximately 100 ms. This ensures that the predicted echo point reliably corresponds to an actual echo point of the current actual object reference point.
  • the determination of a simulated actual echo point on the basis of a previously predicted relative relationship between a previously predicted echo point and a previously predicted object reference point on the one hand and the determined updated actual object reference point of the current simulation time step on the other hand.
  • the actual echo points are preferably determined based on the non-current predicted relative relationship until a current predicted relative relationship has been calculated.
  • the working steps of the method are repeated periodically.
  • the determination of a simulated actual echo point is preferably repeated after approximately 10 ms, preferably after approximately 5 ms, preferably after approximately 2 ms, in particular after approximately 1 ms.
  • the actual echo point can preferably also be determined based on the non-current predicted relative relationship between a previously determined predicted echo point and a previously calculated predicted object reference point. This ensures that the simulated actual echo point is determined at least essentially in real time and thus, in particular, HiL test methods can be carried out reliably.
  • an arrangement of the object, in particular its orientation, relative to the sensor device and / or object dimensions, in particular the shape of the object are also taken into account. This ensures that the predicted echo point reproduces the reflection of a signal on the object, in particular back in the direction of the sensor device, particularly reliably, in particular realistically.
  • a second aspect of the invention relates to a method for simulating a location target, having the following working steps: Checking whether a signal which is transmitted by a, in particular radar-based, sensor device is received; Determining and outputting at least one simulated actual echo point according to the first aspect of the invention, in particular when a signal is received; Modulating the received signal based on the at least one simulated actual echo point; and sending the modulated signal to the sensor device.
  • Sending within the meaning of the invention means in particular sending back.
  • the signal is preferably only modulated and sent back.
  • the emitted modulated signal acts, in particular directly, on a transducer, in particular a measured variable transducer, preferably in the sense of DIN 1319-1, the sensor device. This ensures that the emitted modulated signal is not disturbed, in particular falsified, so that the sensor device can reliably detect one or more simulated objects, in particular a simulated environment.
  • a third aspect of the invention relates to a system for the simulation-based determination of at least one actual echo point of an object, having a means for calculating a predicted object reference point of the object and a predicted sensor device reference point of a, in particular radar-based, sensor device on the basis of an actual object reference point and an actual Sensor device reference point and a means for determining a predicted echo point of the object on the basis of a radiation characteristic of the sensor device, the predicted object reference point and the predicted sensor device reference point.
  • the system has a means for calculating a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point and a means for calculating, in particular at least essentially in real time, an updated actual object reference point.
  • the system has a means for determining, in particular at least essentially in real time, a simulated actual echo point of the object on the basis of the predicted relative relationship and the updated actual object reference point and a means for outputting the simulated actual echo point.
  • the system preferably has one or more computing units, in particular main processors (CPU) and / or graphics processors (GPU), which are set up to carry out one or more work steps of the method according to the first aspect of the invention.
  • the computing units are preferably controlled by a control unit.
  • the control unit is set up to adapt the prediction horizon when calculating a predicted object reference point and a predicted sensor device reference point to the time required to determine the predicted echo point of the object.
  • the means for calculating a predicted object reference point and a predicted sensor device reference point is designed as a computing unit which is set up to carry out a traffic simulation, in particular CarMaker® and / or VIRES®, and the results of the simulation, in particular object reference points and sensor device reference points, in a given temporal object cycle, ie a predetermined temporal sequence of simulation time steps, preferably faster than about 10 ms, preferably faster than about 5 ms, in particular faster than about 1 ms.
  • the means for determining a predicted echo point is designed as a computing unit, which is set up to execute a ray tracing method, in particular OptiX®, and the results of the simulation, in particular echo points, in a predetermined time echo rate, preferably faster than about 1 Second, preferably faster than about 500 ms, preferably faster than about 200 ms, in particular faster than about 100 ms.
  • the system can preferably output actual echo points from simulated participants in any, in particular predetermined, simulated traffic situation.
  • a fourth aspect of the invention relates to an emulation device for emulating a location target, having a receiving module which is set up to receive a signal sent by a sensor device, in particular a radar signal, and a computing module which comprises a system according to the third aspect of the invention.
  • the emulation device has a modulation module which is set up to modulate a signal received by the receiving module on the basis of the at least one simulated actual echo point, and a control module which is set up to generate a control signal for an antenna, in particular at least partially based on the at least one simulated actual echo point and / or the modulated signal.
  • the emulation device also has a transmission module which is set up to transmit the modulated signal to the sensor device.
  • a receiving module in the context of the invention is to be understood in particular as an antenna for receiving electromagnetic waves.
  • the receiving module preferably converts a signal characterized by the electromagnetic waves into an electrical, in particular analog, signal which can be modulated.
  • the receiving module preferably provides / modulates a received signal with the characteristics determined by a simulation and then sends it back in a modified manner.
  • the emulation device is preferably designed at least as part of a HiL test system, the sensor device being a radar-based sensor direction of a vehicle.
  • the emulation device is designed at least as part of a test stand for highly automated vehicles.
  • the transmission module is set up, in particular to act directly on a transducer, in particular a measurement variable transducer, preferably within the meaning of DIN 1319-1, of the sensor device. This ensures that the emitted modulated signal is not disturbed, in particular falsified, so that the sensor device can reliably detect one or more simulated objects, in particular a simulated environment.
  • Figure 1 shows an embodiment of a method 1 according to the invention.
  • a first work step S1 based on coordinates of road users and a sensor device, which are preferably generated by a traffic simulation, the development of a, in particular predetermined, traffic situation is predicted, for example by simulating the various road users and sensor device, in particular their kinematics.
  • a predicted object reference point is calculated for each of the road users.
  • a predicted sensor device reference point is also calculated for a sensor device which is intended to detect signals, in particular reflected electromagnetic waves, from the road users.
  • a second work step S2 the coordinates of points at which signals emitted by the sensor device, in particular from each road user, would be reflected according to the simulated traffic situation, are determined.
  • the signals in particular radar signals
  • signals which the sensor device emits for detecting objects in reality are simulated and their propagation in the virtual environment of the simulated traffic situation is calculated. This results in particular in the coordinates of the reflection points of each object, so-called echo points.
  • the sensor device is not moving or that the object is moving in an inertial system of the sensor device.
  • the sensor device is at rest in this inertial system and only the relative movement of the object in relation to the sensor device is calculated.
  • the echo points depend on the radiation characteristics of the sensor device, the predicted object reference point and the predicted sensor device point, ie in particular on the coordinates of the road users and the sensor device.
  • the echo points can also depend on the arrangements, for example orientations, of the road users in relation to the sensor device and / or the dimensions of the road users, in particular their shapes. Because these coordinates depend on coordinates of objects predicted in step S1, they become referred to as predicted echo points.
  • a relative relationship is, for example, a distance and / or an orientation, preferably a distance vector, which, starting from a predicted object reference point, is directed to a predicted echo point.
  • updated coordinates of the road users i.e. object reference points
  • This calculation is preferably carried out at least essentially in real time.
  • the prediction horizon i.e. the time period for which the traffic situation specified in the first work step S1 is further developed, is preferably selected such that it essentially corresponds to the time period required to determine the predicted echo points.
  • updated coordinates of the sensor device are calculated, which, analogously to the road users, move on within the prediction horizon.
  • simulated actual echo points are determined by assigning the relative relationships to the updated coordinates of the road users and the updated coordinates of the sensor device. In other words, predicted object reference points are exchanged for current actual object reference points, so that the starting points of the distance vectors are shifted.
  • the simulated actual echo points are finally output in a sixth work step S6.
  • Figure 2 shows a first embodiment of a system 2 according to the invention for the simulation-supported determination of at least one actual echo point with a traffic simulation 3, a ray tracing unit 4 and a calculation unit 5.
  • the traffic simulation 3 has an input 6 via which the traffic simulation 3 can be controlled.
  • Input 6 can be used in particular to input a traffic situation to be simulated, as well as a prediction horizon, which indicates the length of time for which the traffic situation is to be further developed.
  • the traffic situation is characterized in particular by actual object reference points and actual sensor device reference points.
  • the traffic simulation 3 outputs a predicted object reference point and a predicted sensor device reference point to the ray tracing unit 4 in work step S1.
  • the predicted reference points roughly correspond to the coordinates of a road user and the sensor device in the predicted future.
  • the predicted reference point of the road user and the sensor device are processed in the ray tracing unit 4 in order to determine a predicted echo point of the road user and output it to the calculation unit 5. This process is indicated by step S2.
  • the paths of signals emitted by the sensor device are simulated, for example calculated, in particular their transmission or refraction and / or reflection on the surfaces of the simulated road users.
  • the calculation unit 5 is set up to calculate a predicted, in particular spatial, relative relationship between the predicted echo point and the predicted object reference point from the predicted echo point and the predicted object reference point calculated in step S1. As a result, the position, in particular the distance and / or the orientation, of the predicted echo point relative to the predicted object reference point is known.
  • the traffic simulation 3 calculates an updated actual object reference point.
  • the traffic simulation 3 can also calculate an updated actual sensor device reference point.
  • the updated reference points are output to the calculation unit 5. This is indicated by the work steps S4, S4 '.
  • the calculation unit 5 is also set up to use the predicted relative relationship, the updated actual object reference point and the updated actual sensor device reference point to determine a simulated actual echo point of the simulated road user, which can be output in step S6.
  • Figure 3 shows a second embodiment of a system 2 according to the invention with a traffic simulation 3, a ray tracing unit 4, a calculation unit 5 and a prediction unit 7.
  • the traffic simulation 3 outputs the calculated actual object reference point and the actual sensor device reference point to the prediction unit 7, which is set up to calculate a predicted object reference point and a predicted sensor device reference point on the basis of the actual object reference point and the actual sensor device reference point.
  • the prediction unit 7 models the development of the actual reference points, for example the coordinates of road users and sensors.
  • the prediction unit 7 can in particular be designed as a computing unit which carries out Kalman filtering and / or determines the coordinates by means of recursive least squares prediction or model-based RLSQ.
  • the prediction unit 7 then outputs the predicted object reference point and the predicted sensor device reference point to the ray tracing device 4.
  • FIGS. 4A-C show various scenarios for determining an actual echo point 8 of a simulated object 9.
  • a sensor device 10 is arranged at an actual sensor device reference point 11 and a simulated object 9 is arranged at an actual object reference point 12.
  • a prediction unit (see Figure 3 ) predicts an object reference point 13 behind a predetermined prediction horizon, ie after a predetermined period of time has elapsed.
  • a predicted echo point 15 of the object 9 is determined, which at least ideally reflects how and / or at which coordinates a signal emitted by the sensor device 10 would be reflected by the object 9.
  • the predicted echo point 15 lies on a side of the object 9 facing the sensor device 10.
  • a predicted relative relationship 16 between the predicted echo point 15 and the predicted object reference point 13 can be calculated.
  • the predicted relative relationship 16 is shown as a vector which points from the predicted object reference point 13 to the predicted echo point 15.
  • the predicted echo point 15 is the actual echo point of the object 9.
  • the simulated object 9 has moved towards the sensor device 10, in particular its reference point 11, with its updated actual object reference point 12 ′ not corresponding to the predicted object reference point 13.
  • the original position of the simulated object 9 is indicated by dash-dotted lines.
  • the actual echo point 15 ' is determined on the basis of the predicted relative relationship 16 and the updated actual object reference point 12', the actual echo point 15 'reflects the actual position of the echo point of the simulated object 9, although there is a discrepancy between the updated object reference point 12' and predicted object reference point 13 exists.
  • the simulated object 9 has changed its direction of movement, i.e. it has followed a curved path. Since the position of an actual echo point 15 ′′ depends on the shape and / or the orientation of the object 9 relative to the sensor device 10, the actual echo point 15 ′′ in this example has shifted to a corner of the object 9 facing the sensor device to be warped.
  • a correction of the actual echo point 15 'can preferably be carried out on the basis of the deviation in the orientation of the object 9 at the predicted object reference point 13 and at the updated actual object reference point 12 ′, for example by calculating a correction factor for the deviation and including it in the determination of the actual echo point 15 'is involved.
  • Figure 5 shows an exemplary embodiment of an emulation device 8 according to the invention for emulating a location target with a receiving module 17, a system 2 for the simulation-based determination of at least one actual echo point, a modulation module 18, a control module 19 and a transmission module 20.
  • the system 2 determines actual echo points and outputs them to the modulation module 18 .
  • the modulation module 18 modulates the signal 14 ′ received by the receiving module 17 according to the actual echo points, in particular so that a modulated signal 14 ′′ is characterized by the traffic situation simulated by the system 2, and outputs it to the control module 19.
  • This controls a transmission module 20 , for example an antenna, in such a way, in particular by means of a control signal, that the modulated signal 14 ′′ can be transmitted by the transmission module 20, which is finally received by the sensor device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (10)

  1. Procédé (1) pour déterminer de manière assistée par simulation au moins un point réel d'écho (15') d'un objet (9), présentant des étapes de phases de travail qui suivent :
    S1 le calcul d'un point de référence d'objet prédit (13) de l'objet (9) et d'un point de référence de dispositif capteur prédit d'un dispositif capteur (10) en particulier à base de radar sur la base d'un point de référence d'objet réel (12) et d'un point de référence de dispositif capteur réel (11) ;
    S2 la détermination d'un point d'écho prédit (15) de l'objet (9) sur la base d'une caractéristique d'émission (14) du dispositif capteur (10), du point de référence d'objet prédit (13) et du point de référence de dispositif capteur prédit, dans lequel le point d'écho prédit (15) est calculé pour une situation anticipée ;
    S3 le calcul d'une relation relative (16) prédite, en particulier spatiale, entre le point d'écho réel prédit (15) et le point de référence d'objet prédit (13) ;
    S4 le calcul, en particulier au moins sensiblement en temps réel, d'un point de référence d'objet réel (12') mis à jour;
    S5 la détermination, en particulier au moins sensiblement en temps réel, d'un point d'écho réel (15') simulé de l'objet (9) sur la base de la relation relative prédite (16) et du point de référence d'objet réel mis à jour (12'), dans lequel le point d'écho prédit (15) est associé au point de référence d'objet réel mis à jour (12') ; et
    S6 l'émission du point d'écho réel (15') simulé.
  2. Procédé selon la revendication 1, présentant par ailleurs l'étape de travail qui suit :
    S4' le calcul en particulier au moins sensiblement en temps réel d'un point de référence de dispositif capteur réel mis à jour ; dans lequel le point d'écho réel (15') est déterminé par ailleurs sur la base du point de référence de dispositif capteur réel mis à jour du dispositif capteur (10) .
  3. Procédé selon la revendication 1 ou 2, dans lequel les étapes de travail du procédé sont répétées de manière périodique et l'horizon de prédiction est aussi éloigné lors de l'étape de travail S1 que la détermination du point d'écho prédit (15) de l'objet (9) lors de l'étape de travail S2, de préférence est inférieur à une seconde, en particulier est inférieur à environ 500 ms, en particulier est inférieur à environ 200 ms, en particulier est inférieur à environ 100 ms.
  4. Procédé selon la revendication 1 ou 2, dans lequel les étapes de travail du procédé sont répétées de manière périodique et l'étape de travail S5 est répétée après environ 10 ms, de manière préférée après environ 5 ms, de manière particulièrement préférée après environ 2 ms et idéalement après environ 1 ms.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel lors de la détermination du point d'écho prédit (15), un agencement de l'objet (9) par rapport au dispositif capteur (10) et/ou des dimensions d'objet sont pris en compte par ailleurs lors de l'étape de travail S2.
  6. Procédé d'émulation d'une cible localisée, qui présente des étapes de travail suivantes :
    - de vérification pour savoir si un signal (14'), lequel est envoyé par un dispositif capteur (10) en particulier à base de radar, est reçu ;
    - de détermination et d'émission d'au moins un point d'écho réel (15') simulé selon l'une quelconque des revendications 1 à 5, en particulier seulement quand un signal (14') est reçu ;
    - de modulation d'un signal (14') reçu sur la base de l'au moins un point d'écho réel (15') simulé ; et
    - l'envoi du signal modulé (14'') au dispositif capteur (10) .
  7. Procédé selon la revendication 6, dans lequel le signal modulé (14'') envoyé agit, en particulier directement, sur un enregistreur de grandeurs de mesure du dispositif capteur (10).
  8. Système (2) de détermination assistée par simulation d'au moins un point d'écho réel (15') d'un objet (9), présentant :
    - des moyens (7) pour calculer un point de référence d'objet prédit (13) de l'objet (9) et d'un point de référence de dispositif capteur prédit d'un dispositif capteur (10) en particulier à base de radar, sur la base d'un point de référence d'objet réel (12) et d'un point de référence de dispositif capteur réel (11) ;
    - des moyens (4) pour déterminer un point d'écho prédit (15) de l'objet (9) sur la base d'une caractéristique d'émission (14) du dispositif capteur (10), du point de référence d'objet prédit (13) et du point de référence de dispositif capteur prédit, dans lequel le point d'écho prédit (15) est calculé pour une situation anticipée ;
    - des moyens (5) pour calculer une relation relative (16) prédite, en particulier spatiale, entre le point d'écho prédit (15) et le point de référence d'objet prédit (13) ;
    - des moyens (3) pour calculer, en particulier au moins sensiblement en temps réel, un point de référence d'objet réel mis à jour (12') ;
    - des moyens (5) pour déterminer, en particulier au moins sensiblement en temps réel, un point d'écho réel (15') simulé de l'objet (9) sur la base d'une relation relative prédite (16) et du point de référence d'objet réel mis à jour (12'), dans lequel le point d'écho prédit (15) est associé au point de référence d'objet réel mis à jour (12') ; et
    - des moyens (5) pour émettre le point écho réel (15') simulé.
  9. Dispositif d'émulation (8) pour l'émulation d'une cible localisée, présentant :
    - un module de réception (17) mis au point pour recevoir un signal (14') envoyé par un dispositif capteur (10), en particulier un signal radar ;
    - un module de calcul, lequel comprend un système (2) selon la revendication 8 ;
    - un module de modulation (18), lequel est mis au point pour moduler un signal (14') reçu par le module de réception (17) sur la base de l'au moins un point d'écho réel (15') simulé ;
    - un module de pilotage (19), lequel est mis au point pour générer un signal de pilotage pour une antenne, en particulier au moins en partie sur la base de l'au moins un point d'écho réel (15') simulé et/ou du signal modulé (14") ; et
    - un module d'envoi (20) mis au point pour envoyer le signal modulé (14") au dispositif capteur (10).
  10. Dispositif d'émulation selon la revendication 9, dans lequel le module d'envoi (20) est mis au point pour agir en particulier directement sur un enregistreur de grandeurs de mesure du dispositif capteur (10).
EP17825550.1A 2016-12-29 2017-12-28 Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation Active EP3563168B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA51188/2016A AT519538B1 (de) 2016-12-29 2016-12-29 Verfahren und System zur simulationsgestützten Bestimmung von Echopunkten sowie Verfahren zur Emulation und Emulationsvorrichtung
PCT/EP2017/084681 WO2018122282A1 (fr) 2016-12-29 2017-12-28 Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation

Publications (2)

Publication Number Publication Date
EP3563168A1 EP3563168A1 (fr) 2019-11-06
EP3563168B1 true EP3563168B1 (fr) 2021-11-24

Family

ID=60935867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17825550.1A Active EP3563168B1 (fr) 2016-12-29 2017-12-28 Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation

Country Status (4)

Country Link
US (1) US11313947B2 (fr)
EP (1) EP3563168B1 (fr)
AT (1) AT519538B1 (fr)
WO (1) WO2018122282A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519540B1 (de) 2016-12-29 2018-10-15 Avl List Gmbh Schaltvorrichtung für einen Radarzielemulator und Radarzielemulator mit einer solchen Schaltvorrichtung
AT519539B1 (de) 2016-12-29 2018-10-15 Avl List Gmbh Radarzielemulator mit einer Überblendungsvorrichtung und Verfahren zum Überblenden von Signalen
AT520578B1 (de) 2017-10-06 2021-01-15 Avl List Gmbh Vorrichtung und Verfahren zur Konvertierung eines Radarsignals sowie Prüfstand
CN113687316A (zh) * 2020-05-17 2021-11-23 是德科技股份有限公司 用于仿真测试系统的时间同步和等待时间补偿
CN113376612B (zh) * 2021-08-12 2021-11-23 成都众享天地网络科技有限公司 一种基于地形矩阵化及探测的雷达杂波生成方法
CN117669776A (zh) * 2024-01-31 2024-03-08 北京云中盖娅科技有限公司 面向海陆空集群的联合仿真系统及方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002188A (en) 1959-04-14 1961-09-26 Frank R Abbott Harmonic wave beam-steering system
US3903521A (en) 1964-07-09 1975-09-02 Us Navy Simulator of radar return signals from an accelerating target
FR2271582A1 (en) 1974-05-13 1975-12-12 Thomson Csf Variable delay device for radar simulator - employs quartz delay lines which propagate using acoustic surface waves
US4316159A (en) 1979-01-22 1982-02-16 Rca Corporation Redundant microwave switching matrix
DE3112112C1 (de) 1981-03-27 1982-09-30 Dornier System Gmbh, 7990 Friedrichshafen Pruefvorrichtung fuer ein Radargeraet mit synthetischer Apertur
US4660041A (en) 1983-09-22 1987-04-21 Boeing Aerospace Company Radar scene simulator
JPS60223303A (ja) 1984-04-20 1985-11-07 Hitachi Ltd マイクロ波スイツチマトリツクス
EP0282195B1 (fr) 1987-03-06 1994-04-13 Raytheon Company Dispositif de contrôle de la performance d'un radar
JPH04212083A (ja) 1990-02-28 1992-08-03 Mitsubishi Electric Corp レーダビデオ信号模擬装置
US5247843A (en) 1990-09-19 1993-09-28 Scientific-Atlanta, Inc. Apparatus and methods for simulating electromagnetic environments
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
US5339087A (en) 1993-10-27 1994-08-16 The United States Of America As Represented By The Secretary Of The Navy Wavefront simulator for evaluating RF communication array signal processors
JPH07280924A (ja) 1994-04-04 1995-10-27 Mitsubishi Electric Corp 疑似目標信号発生装置
US5518400A (en) 1994-11-15 1996-05-21 Hughes Aircraft Company Portable radar target simulator
JP3292024B2 (ja) 1996-02-21 2002-06-17 三菱電機株式会社 合成開口レーダの試験装置
JPH09270772A (ja) 1996-03-29 1997-10-14 Mitsubishi Electric Corp 受信妨害装置
US6191735B1 (en) 1997-07-28 2001-02-20 Itt Manufacturing Enterprises, Inc. Time delay apparatus using monolithic microwave integrated circuit
US5892479A (en) 1997-07-30 1999-04-06 The United States Of America As Represented By The Secretary Of The Army Electromagnetic target generator
US5920281A (en) 1997-08-05 1999-07-06 Wiltron Company Radar test system for collision avoidance automotive radar
US6114985A (en) 1997-11-21 2000-09-05 Raytheon Company Automotive forward looking sensor test station
US7154431B2 (en) 1999-09-01 2006-12-26 The United States Of America As Represented By The Secretary Of The Navy Signal synthesizer and method therefor
JP3928837B2 (ja) 1999-09-13 2007-06-13 株式会社ルネサステクノロジ 半導体集積回路装置
US20030053574A1 (en) 1999-12-28 2003-03-20 Shai Cohen Adaptive sampling
US6346909B1 (en) 2000-09-06 2002-02-12 The United States Of America As Represented By The Secretary Of The Army System for generating simulated radar targets
JP3631457B2 (ja) 2001-11-08 2005-03-23 三菱電機株式会社 レーダ装置の最小受信感度確認装置
DE10209291A1 (de) 2002-03-01 2003-09-25 Thales Comm Gmbh Vorrichtung zur Erzeugung einer Laufzeitverzögerung eines gepulsten Radarsignals und Verfahren zu dessen Betrieb
US6700531B2 (en) 2002-07-17 2004-03-02 Anritsu Company Integrated multiple-up/down conversion radar test system
US6989788B2 (en) 2002-09-16 2006-01-24 Continental Microwave & Tool Co., Inc. Antenna array having apparatus for producing time-delayed microwave signals using selectable time delay stages
US7714782B2 (en) 2004-01-13 2010-05-11 Dennis Willard Davis Phase arrays exploiting geometry phase and methods of creating such arrays
JP4781240B2 (ja) * 2006-11-22 2011-09-28 古野電気株式会社 エコー画像の表示装置
DE102007002370A1 (de) 2007-01-17 2008-07-24 Valeo Schalter Und Sensoren Gmbh Radartestvorrichtung mit aktiver Verzögerungsleitung ohne Zwischenfrequenz
US7782250B2 (en) 2008-06-13 2010-08-24 Honeywell International Inc. Millimeter wave radar target simulation systems and methods
US20100109940A1 (en) * 2008-10-30 2010-05-06 Peter Robert Williams Simulating a Radar Signal Reflected From a Moving Target
US20100306825A1 (en) * 2009-05-27 2010-12-02 Lucid Ventures, Inc. System and method for facilitating user interaction with a simulated object associated with a physical location
US8571508B2 (en) 2009-07-16 2013-10-29 Saab Ab Method and wideband antenna system to minimise the influence of interference sources
US8248297B1 (en) 2011-04-11 2012-08-21 Advanced Testing Technologies, Inc. Phase noise measurement system and method
WO2013084654A1 (fr) 2011-12-05 2013-06-13 インターナショナル・ビジネス・マシーンズ・コーポレーション Procédé, programme et système d'exécution de simulation
CN103809163B (zh) * 2014-01-13 2016-05-25 中国电子科技集团公司第二十八研究所 一种基于局部极大值的车辆雷达目标检测方法
EP3180636B1 (fr) 2014-08-15 2019-05-22 Robert Bosch GmbH Procédé et système pour la détérmination de l'alignement d'un capteur radar
KR20160050121A (ko) 2014-10-28 2016-05-11 한남대학교 산학협력단 다중 샘플링 클럭 주파수를 이용한 레이더 표적 시뮬레이터
CN104391283A (zh) 2014-12-01 2015-03-04 无锡市雷华科技有限公司 一种雷达目标模拟方法及系统
DE102014017831A1 (de) * 2014-12-03 2016-06-09 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Simulationssystem
DE102014118622A1 (de) * 2014-12-15 2016-06-16 Valeo Schalter Und Sensoren Gmbh Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung
DE102014118625A1 (de) 2014-12-15 2016-06-16 Valeo Schalter Und Sensoren Gmbh Sensoranordnung für einen Prüfstand eines Fahrerassistenzsystems eines Kraftfahrzeugs, Prüfstand sowie dazugehöriges Verfahren
US10012721B2 (en) 2015-02-19 2018-07-03 Teradyne, Inc. Virtual distance test techniques for radar applications
DE102015121297B4 (de) 2015-09-06 2017-12-21 Hochschule Trier Abstandssimulierendes Radartarget
SE538908C2 (sv) 2015-10-22 2017-02-07 Uniquesec Ab Testing method with virtual radar signatures for an automotive safety radar system
US10496766B2 (en) * 2015-11-05 2019-12-03 Zoox, Inc. Simulation system and methods for autonomous vehicles
CN105510980A (zh) 2015-12-08 2016-04-20 重庆地质仪器厂 一种用于激发极化法的多通道采集装置及系统
CN106802593B (zh) 2016-12-20 2019-03-26 上海交通大学 雷达回波模拟器高精度延时控制方法及雷达回波模拟器
AT519539B1 (de) 2016-12-29 2018-10-15 Avl List Gmbh Radarzielemulator mit einer Überblendungsvorrichtung und Verfahren zum Überblenden von Signalen

Also Published As

Publication number Publication date
AT519538B1 (de) 2019-05-15
AT519538A1 (de) 2018-07-15
US20200025875A1 (en) 2020-01-23
EP3563168A1 (fr) 2019-11-06
US11313947B2 (en) 2022-04-26
WO2018122282A1 (fr) 2018-07-05

Similar Documents

Publication Publication Date Title
EP3563168B1 (fr) Procédé et système de détermination établie par simulation de points d'écho et procédé d'émulation et dispositif d'émulation
DE112016000274B4 (de) System zum Generieren virtueller Radarsignaturen
CN106991041B (zh) 用于测试用于自主车辆的软件的方法和装置
AT521120B1 (de) Verfahren und Vorrichtung zum Ermitteln eines Radarquerschnitts, Verfahren zum Trainieren eines Wechselwirkungsmodells sowie Radarzielemulator und Prüfstand
EP3695244B1 (fr) Procédé et dispositif de génération d'un modèle de capteur inverse et procédé de détection d'obstacles
WO2014183948A2 (fr) Capteur, simulateur et procédé de simulation de mesures de capteur, de fusion de mesures de capteur, de validation d'un modèle pour capteur et de conception d'un système d'aide à la conduite
DE102014118625A1 (de) Sensoranordnung für einen Prüfstand eines Fahrerassistenzsystems eines Kraftfahrzeugs, Prüfstand sowie dazugehöriges Verfahren
EP3729044B1 (fr) Procédé pour l'analyse d'un système d'automatisation d'une installation, émulateur pour le fonctionnement au moins partiellement virtuel d'un système d'automatisation d'une installation et système pour l'analyse d'un système d'automatisation d'une installation
EP3757795A1 (fr) Procédé et dispositif destinés à la distribution optimale de cas d'essai sur différentes plateformes d'essai
DE112010005903T5 (de) Objekterfassungsvorrichtung und Objekterfassungsprogramm
DE102018222862A1 (de) Verfahren und System zur Lokalisierung einer Akustikquelle relativ zu einem Fahrzeug
WO2019229047A2 (fr) Procédé de test de fonctionnement d'un capteur radar et dispositif d'exécution de ce procédé
DE102011015094B4 (de) Verfahren zum simulativen Ermitteln von Messeigenschaften eines Sensors eines Kraftfahrzeugs und Rechensystem
DE102014118622A1 (de) Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung
WO2022122339A1 (fr) Procédé et système pour tester un dispositif de commande d'un véhicule
DE102009053509A1 (de) Verfahren zum simulativen Ermitteln von Messeigenschaften eines Sensors eines Kraftfahrzeugs und Rechensystem
WO2019162317A1 (fr) Procédé de génération de données de capteur pour des appareils de commande d'automobile critiques pour la sécurité
DE102014118624A1 (de) Verfahren zum simulativen Bestimmen einer Interaktion zwischen einem Sensor eines Kraftfahrzeugs und einem virtuellen Objekt in einem virtuellen Umgebungsbereich des Kraftfahrzeugs sowie Recheneinrichtung
Jia et al. Using real-world data to calibrate a driving simulator measuring lateral driving behaviour
DE10314129A1 (de) Verfahren und Computerprogramm zum Simulieren des Detektionsbereiches eines Sensors
WO2021089242A1 (fr) Procédé et dispositif pour déterminer des itinéraires d'urgence et pour faire fonctionner des véhicules automatisés
WO2018065087A1 (fr) Procédé de localisation, dispositif associé et utilisation d'un logiciel
DE102019101127A1 (de) Verfahren zum Verarbeiten mittels Ultraschall erhaltener Daten
DE102007022055B3 (de) Verfahren zum Lokalisieren von Geräuschquellen eines sich in einer Entfernung bewegenden Fahrzeugs
DE102020106014A1 (de) Unterscheiden und schätzen der geschwindigkeiten mehrerer objekte mit hilfe eines mehrknoten-radarsystems

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1450262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012113

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211228

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

26N No opposition filed

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 7

Ref country code: FR

Payment date: 20231219

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1450262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124