EP3562318A1 - Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande - Google Patents

Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande

Info

Publication number
EP3562318A1
EP3562318A1 EP17825882.8A EP17825882A EP3562318A1 EP 3562318 A1 EP3562318 A1 EP 3562318A1 EP 17825882 A EP17825882 A EP 17825882A EP 3562318 A1 EP3562318 A1 EP 3562318A1
Authority
EP
European Patent Office
Prior art keywords
weight
fraction
insects
powder
soft part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17825882.8A
Other languages
German (de)
English (en)
Inventor
Sophie Laurent
Thibault SARTON DU JONCHAY
Jean-Gabriel LEVON
Cecilia SOCOLSKY
Lorena SANCHEZ
Nathalie BEREZINA
Benjamin ARMENJON
Antoine Hubert
Corentin LE BERRE
Adam KIRECHE
Hella TOKOS
Bénédicte LORRETTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ynsect SAS
Original Assignee
Ynsect SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58464588&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3562318(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ynsect SAS filed Critical Ynsect SAS
Priority claimed from PCT/EP2017/084775 external-priority patent/WO2018122353A1/fr
Publication of EP3562318A1 publication Critical patent/EP3562318A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/02Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from meat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/10Shaping or working-up of animal feeding-stuffs by agglomeration; by granulation, e.g. making powders

Definitions

  • the present invention relates to a method of treating insects.
  • the invention also relates to powders, in particular a powder that can be obtained by the insect treatment method according to the invention, and the use of these powders in food, especially in animal feed.
  • Powders made from animals have long been used in animal feed.
  • fish meal which is one of the main sources of protein in animal feed.
  • Fishmeal is very rich in animal protein (rich in amino acids such as lysine and methionine) that are easy to digest.
  • a growing demand accompanied by a limited supply has resulted, in particular, in significantly increasing its price.
  • Insect flours offer natural protein sources for replacement and the possibility of mass production with minimal ecological footprint.
  • some beetles such as Tenebrio molitor, have the advantage of being suitable for intensive mass production.
  • application WO2016 / 108037 describes in particular a coleopteran powder comprising at least 67% by weight of proteins and at least 5% by weight of chitin, which can be used in animal feed.
  • chitin means any type of chitinic derivative, that is to say of a polysaccharide derivative comprising N-acetylglucosamine units and D-glucosamine units, in particular the chitin-polypeptide copolymers (sometimes referred to as “chitin-polypeptide composite”). These copolymers may also be associated with pigments, often of the melanin type.
  • Chitin is the second most synthesized polymer in the world after cellulose. Indeed, chitin is synthesized by many species of the living world: it is partly the exoskeleton of crustaceans and insects and the side wall that surrounds and protects mushrooms. More particularly, in insects, chitin thus constitutes 3 to 60% of their exoskeleton.
  • chitin is generally considered a compound difficult to digest by some animals.
  • the invention thus relates to a method of treating insects comprising separating the cuticles from the soft part of the insects, wherein the separation is carried out by means of a band separator.
  • insects means insects at any stage of development, such as adult, larval, or pupal stage.
  • the cuticle is the outer layer (or exoskeleton) secreted by the epidermis of insects. It usually consists of three layers: the epicuticle, the exocuticle and the endocuticle.
  • soft part refers to the flesh (including muscles and viscera) and the juice (including body fluids, water and haemolymph) of the insects. In particular, the soft part does not consist in the juice of insects.
  • insects used in the process according to the invention are in a larval stage.
  • insects used in the process according to the invention are edible.
  • the preferred insects for carrying out the process according to the invention are, for example, Coleoptera, Diptera, Lepidoptera, Isoptera, Orthoptera, Hymenoptera, Boletoptera, Hemiptera, Heteroptera, Ephemeroptera and moptera, preferably beetles, Diptera, Orthoptera, Lepidoptera or mixtures thereof, more preferably beetles.
  • the beetles preferentially used in the process according to the invention belong to the families Tenebrionidae, Melolonthidae, Dermestidae, Coccinellidae, Cerambycidae, Carabidae, Buprestidae, Cetoniidae, Dryophthoridae, or their mixtures.
  • these are the following beetles: Tenebrio molitor, Alphitobius diaperinus, Zophobas morio, Tenebrio obscurus, Tribolium castaneum and Rhynchophorus ferrugineus, or mixtures thereof.
  • band separator is meant a device for separating the solid portion of the soft portion of a product, and which comprises a clamping band (or pressing belt) and a perforated drum.
  • step 2 of the detailed insect treatment method according to the invention The separation of the cuticles from the soft part of the insects is more fully described in step 2 of the detailed insect treatment method according to the invention hereinafter.
  • the cuticles obtained at the end of this separation step has a high chitin content of the order of 10 to 30% by weight on the total weight of cuticles, as indicated below.
  • the step of separating cuticles from the soft part is carried out without any prior step of grinding insects, particularly in the form of particles, has been performed.
  • the insect treatment method according to the invention may furthermore comprise a stage of maturation of the soft part of the insects.
  • stage of maturation of the soft part of the insects it is more particularly a step during which the soft part of the insects is subjected to agitation.
  • step 3 is more fully described in step 3 of the detailed insect treatment method according to the invention hereinafter.
  • the insect treatment method according to the invention may therefore comprise:
  • the insect treatment method according to the invention comprises a step of separating the soft part of the insects into an oily fraction, a solid fraction and an aqueous fraction.
  • the oily fraction has a lipid content greater than or equal to 90%, preferably greater than or equal to 95%, even more preferably greater than or equal to 99% by weight relative to the total weight of the oily fraction.
  • the solid fraction has a dry matter content of between 45 and 65% by weight relative to the total weight of solid fraction.
  • the aqueous fraction has a carbohydrate content of between 15 and 40% by weight, preferably between 20 and 30% by weight, relative to the total dry weight of the aqueous fraction.
  • the aqueous fraction has a solids content of less than or equal to 20% by weight, preferably less than or equal to 15% by weight. % by weight on the total weight of aqueous fraction.
  • step 4 of the detailed insect treatment method according to the invention is more fully described in step 4 of the detailed insect treatment method according to the invention hereinafter.
  • the insect treatment method according to the invention may comprise a slaughtering step prior to the step of separating the cuticles from the soft part.
  • the insects are directly used for the implementation of step 2 of separating the cuticles from the soft part of the insects, that is to say that the insects are not subjected to no treatment, such as grinding, freezing or dehydration between step 1 and step 2.
  • step 1 of the detailed method of treating insects according to the invention hereinafter.
  • the method of treating insects according to the invention comprises, after the separation of the soft part into an oily fraction, a solid fraction and an aqueous fraction, a concentration step of the aqueous fraction, to obtain a concentrated aqueous fraction.
  • step 5 is more fully described in step 5 of the detailed insect treatment method according to the invention hereinafter.
  • the insect treatment method according to the invention further comprises a step of mixing the solid fraction:
  • step 6 of the detailed insect treatment method according to the invention is more fully described in step 6 of the detailed insect treatment method according to the invention hereinafter.
  • the insect treatment method according to the invention comprises a step of drying the solid fraction or mixture to obtain a fraction. dry solid or dry mix.
  • step 7 of the detailed insect treatment method according to the invention is more fully described in step 7 of the detailed insect treatment method according to the invention hereinafter.
  • the insect treatment method according to the invention further comprises a step of grinding the dry solid fraction or the dry mixture.
  • step 8 is more fully described in step 8 of the detailed insect treatment method according to the invention hereinafter.
  • the process according to the invention is carried out without it being necessary to add a solvent, such as water.
  • a solvent such as water.
  • no dilution of the soft part is performed during the process according to the invention.
  • this is a process for preparing a powder, and especially an insect powder, and comprises the following steps:
  • step viii) grinding the dry solid fraction or the dry mixture obtained in step vii).
  • This slaughtering stage 1 may advantageously be carried out by thermal shock, such as boiling or bleaching.
  • This step 1 makes it possible to kill the insects while lowering the microbial load (reduction of the risk of deterioration and health) and by inactivating the internal enzymes of the insects that can trigger an autolysis, and thus a rapid browning of these.
  • insects preferably larvae
  • the water is at a temperature between 87 to 100 ° C, preferably 92 to 95 ° C.
  • the quantity of water introduced during scalding is determined as follows: the ratio of the volume of water in ml to the weight in g of insect is preferably between 0.3 and 10, more preferably between 0 and 10. , 5 and 5, still more preferably between 0.7 and 3, even more preferably of the order of 1.
  • insects preferably larvae
  • water or steam nozzles or steam bed
  • water or steam nozzles or steam bed
  • the residence time in the bleaching chamber is between 5 seconds and 15 minutes, preferably between 1 and 7 min.
  • the insects are directly used for the implementation of step 2 of separating the cuticles from the soft part of the insects, that is to say that the insects are not subjected to no treatment, such as grinding, freezing or dehydration between step 1 and step 2.
  • Step 2 Separation of cuticles from the soft part of the insects This step is carried out using a band separator and aims to separate the cuticles from the soft part of the insects.
  • a belt separator may comprise a clamping band and a perforated drum, the clamping band surrounding at least a portion of the perforated drum.
  • the clamping band allows the application and application of the insects against the perforated drum so that the soft part of the insects passes through the perforations of the drum by pressure while the cuticles remain outside the drum. .
  • the cuticles can then be recovered using a scraper knife.
  • band separators from Baader such as 601 to 607 (“soft separator 601 to 607") band separators, or BFD Corporation's SEPAmatic® belt separators ( range 410 to 4000V).
  • the diameter of the perforations of the drum is between 0.5 and 3 mm, preferably between 1 and 2 mm.
  • the skilled person is able to determine the pressure to be exerted for the separation of cuticles from the soft part of the insects.
  • This insect separation step differs from a conventional pressing that can be achieved for example with a single-screw or twin-screw press in that it allows a separation (net) of the soft part and cuticles of insects and not a separation of a juice from a solid fraction.
  • the cuticles obtained in step 2 comprise between 10 and 30%, preferably between 15 and 25% by weight of chitin, on the total dry weight of cuticles.
  • the determination of the chitin content is carried out by extraction thereof.
  • the determination of the chitin content is carried out by extraction thereof.
  • a method of determining chitin that can be used is ADAC 991 .43.
  • the cuticles comprise less than 25%, preferably less than 10%, more preferably less than 5%, even more preferably less than 3% by weight of lipids on the total dry weight of the cuticles.
  • the cuticles comprise between 55 and 90%, advantageously between 60 and 85%, preferably between 65 and 80% by weight of proteins on the total dry weight of cuticles.
  • proteins refers to the amount of crude protein. Quantification of the crude proteins is well known to those skilled in the art. By way of example, mention may be made of the Dumas method or the Kjeldhal method. Preferably, the Kjeldhal method is used.
  • the cuticles comprise between 0.5 and 30%, advantageously between 1 and 20%, preferably between 5 and 15% by weight of carbohydrates on the total dry weight of cuticles.
  • the carbohydrate content was calculated by measuring the difference in carbohydrates. According to this method, the carbohydrate content is equal to the dry matter content to which the ash, protein and lipid content are subtracted.
  • the cuticles preferably comprise at least 0.08% by weight, more preferably at least 0.1% by weight, more preferably at least 0.12% by weight of trehalose on the total dry weight of cuticles.
  • the amount of trehalose is determined by GC-MS analysis. Such an analysis is more fully described in Example 1 below.
  • the soft part obtained in step 2 comprises between 20 and 50% by weight of lipids, preferably between 30 and 40% by weight of lipids on the total dry weight of the soft part.
  • the soft part comprises at least 45%, preferably at least 48%, more preferably at least 50% by weight of protein on the total dry weight of the soft part.
  • the soft part of the insects is then, optionally, stirred in a tank.
  • the maturation is carried out for a period of time between
  • the maturation is carried out at a temperature between 65 and ⁇ ⁇ ' ⁇ , preferably between 85 and 100 ° C, more preferably at a temperature of about 90 ° C.
  • This step facilitates the separation of the soft part of the insects in step 4 below.
  • the method according to the invention comprises such a step.
  • this maturation step is immediately followed by the step of separating the soft part into a solid fraction, an aqueous fraction and an oily fraction.
  • Step 4 Separation of the soft part into a solid fraction, an aqueous fraction and an oily fraction
  • This step aims to recover three fractions from the soft part of insects obtained in step 2 or 3, namely a solid fraction, an aqueous fraction, and an oily fraction.
  • this step of separating the soft part is performed in two sub-steps.
  • the soft part of the insects is decanted using a 2-phase decanter, so as to obtain a solid fraction and a liquid fraction.
  • the liquid fraction is subjected to centrifugation, so as to recover an oily fraction and an aqueous fraction.
  • a plate centrifuge is used.
  • step 4 the soft part of the insects is subjected to decantation using a 3-phase decanter, so as to obtain directly an aqueous fraction, an oily fraction and a solid fraction.
  • Suitable 3-phase decanters are, for example, the Flottweg Tricanter®, or the 3-phase decanters of GEA, such as the CA 225-03-33 clarifier.
  • the separation of the soft part is performed according to the second embodiment.
  • the use of a 3-phase decanter makes it possible to obtain particularly effective phase separation.
  • the solid fraction obtained has a high content of dry matter, the aqueous fraction has little insoluble sediment (from the solid fraction) and oil, and the oily fraction has little insoluble sediment (from the solid fraction ) and water.
  • Step 5 Concentration of the aqueous fraction
  • the aqueous fraction obtained in step 4 is then optionally concentrated to obtain a concentrated aqueous fraction.
  • the concentration is carried out by evaporation.
  • the evaporation is carried out at a temperature between 30 and 100 ° C, preferably between 60 and 80 ° C.
  • the evaporation is carried out at a pressure of between 50 and 1013 mbar, preferably at 1013 mbar.
  • the evaporation is preferably carried out for a period of between 5 and 20 minutes.
  • the concentration is preferably carried out using a falling film evaporator, a rising water plate evaporator, or a thin film evaporator.
  • This type of standard equipment can be used without encountering fouling problem, thanks to the small amount of sediment present in the aqueous fraction.
  • the aqueous fractions can not be concentrated beyond 42% dry matter, because they tend to gel (glue water) from this concentration.
  • the aqueous fraction comprises soluble proteins of small size (at least 45%, preferably at least 60% of the soluble proteins of the aqueous fraction have a size of less than 550 g / mol, as more fully described hereinafter), which makes it possible to avoid gelling and thus to obtain an aqueous fraction with a high concentration of dry matter (up to 70%) and having a viscosity of less than 30,000 cPs (centipoise).
  • soluble proteins is meant, among the crude proteins, those which are soluble in an aqueous solution whose pH is between 6 and 8, advantageously between 7.2 and 7.6.
  • the aqueous solution is a buffer solution whose pH is between 6 and 8, advantageously between 7.2 and 7.6.
  • the buffer solution is an NaCl phosphate buffer solution, whose pH is equal to 7.4 +/- 0.2.
  • concentration step of the aqueous fraction has a double interest because it allows:
  • Step 6 Melting of the concentrated aqueous fraction and / or cuticles with the solid fraction
  • All or part of the cuticles obtained in step 2 and / or all or part of the concentrated aqueous fraction obtained in step 5 can / may be optionally mixed with the solid fraction obtained in step 4 to obtain a mixed.
  • the mixture is homogenized so as to facilitate its subsequent treatment.
  • Mixers that can be used are, for example, conical screw mixers, such as those from the company Vrieco-Nauta®, or pendulum mixers, such as those from the company PMS.
  • Step 7 Drying of the solid fraction obtained in step 4 or of the mixture obtained in step 6
  • the solid fraction obtained in step 4 or the mixture obtained in step 6 can be dried to obtain a dry solid fraction or a dry mixture.
  • the drying is carried out using a disk dryer, a tubular dryer, a propeller dryer, a flash type dryer, a thin film dryer or an atomization dryer.
  • the drying is carried out using a disk or tubular dryer.
  • Suitable tubular dryers are for example those of Tummers (Simon Dryers Technology).
  • Suitable disk dryers are, for example, those of Haarslev.
  • the drying can be carried out between 1 and 10 hours, preferably between 3 and 5 hours.
  • drying is carried out at a temperature between 60 and 225 ⁇ €, preferably between 80 and 100 ° C.
  • the evaporation is carried out at atmospheric pressure.
  • Step 8 Grinding of the dry solid fraction or of the dry mixture obtained in step 7
  • powder is obtained.
  • powder is meant a composition in the form of particles.
  • the powder according to the invention is an insect powder, that is to say say a powder prepared only from insects and possibly water.
  • a mill such as a hammer mill or a cone mill (such as cone mills (“Kek cone mills”) from Kemutec) can for example be used.
  • the particle size is less than 0.5 cm (larger particle size observable using a microscope), preferably of the order of 1 mm. More particularly, the particle size is between 300 ⁇ and 1 mm, even more preferentially between 500 and 800 ⁇ .
  • particle size acceptable for human or animal consumption When the powder is milled to a particle size acceptable for human or animal consumption, it may be referred to as “flour” and in particular “insect meal” ("insect meal”).
  • particle size acceptable for human or animal nutrition a particle size of between 100 ⁇ and 1.5 mm is preferred, preferably between 300 ⁇ and 1 mm, more preferably between 500 and 800 ⁇ .
  • the invention also relates to the products resulting from the process according to the invention.
  • the invention further relates to a solid fraction obtainable by the insect treatment method according to the invention.
  • the invention also relates to a solid fraction comprising at least 71% by weight of proteins and between 0.1 and 2% by weight of chitin, the percentages by weight being indicated on the total dry weight of the solid fraction.
  • the solid fraction comprises at least 73% by weight, more preferably at least 74% by weight, still more preferably at least 75% by weight of proteins, the percentages by weight being indicated on the total dry weight of solid fraction.
  • the solid fraction comprises between 0.5 and 1, 7% by weight of chitin on the total dry weight of solid fraction.
  • the solid fraction comprises between 5 and 17% by weight of lipids, preferably between 10 and 15% by weight of lipids, on the total dry weight of solid fraction.
  • the solid fraction comprises between 1 and 10% by weight, preferably between 2 and 6% by weight of ash, on the total dry weight of solid fraction.
  • the method of determining the ash content is well known to those skilled in the art.
  • the ashes have been determined according to the method falling under the EC Regulation 152/2009 of 27-01-2009.
  • the solid fraction preferably comprises between 5 and 15% by weight, more preferably between 7 and 13% by weight of carbohydrates on the total dry weight of solid fraction.
  • the solid fraction preferably comprises at least 0.2% by weight, more preferably at least 0.3% by weight, still more preferably at least 0.35% by weight, still more preferably at least 0.5% by weight. by weight and even more preferably at least 0.7% by weight of trehalose on the total dry weight of solid fraction.
  • the digestibility of proteins in humans and animals is strongly conditioned by the size of the proteins.
  • the solid fraction comprises soluble proteins whose size is sufficiently small to facilitate the digestion of the animals.
  • At least 75%, preferably at least 80%, more preferably at least 85% of the soluble proteins of the solid fraction have a size less than or equal to 12400 g / mol.
  • At least 55%, preferably at least 60%, more preferably at least 65% of the soluble proteins of the solid fraction have a size of less than 550 g / mol.
  • the invention also relates to an aqueous fraction that can be obtained by the insect treatment method according to the invention.
  • the invention further relates to an aqueous fraction comprising at least 48% by weight of proteins, at least 2% by weight of trehalose, and having a lipid content of less than 7% by weight, the percentages by weight being indicated on the weight total dry of the aqueous fraction.
  • the aqueous fraction comprises at least 55% by weight, more preferably at least 60% by weight, still more preferably at least 65% by weight of protein, relative to the total dry weight of the aqueous fraction.
  • the aqueous fraction comprises at least 2.5% by weight, more preferably at least 3% by weight of trehalose on the total dry weight of the aqueous fraction.
  • the aqueous fraction has a lipid content of less than 6% by weight, more preferably less than 4% by weight, even more preferably less than 2% by weight, relative to the total dry weight of the aqueous fraction.
  • the aqueous fraction comprises between 5% and 20% by weight of ash, preferably between 7% and 15% by weight of ash on the total dry weight of the aqueous fraction.
  • the aqueous fraction comprises less than 2% by weight of insoluble sediments, preferably less than 1% by weight of insoluble sediments, preferably less than 0.5% by weight of insoluble sediments on the total weight of the aqueous fraction.
  • the aqueous fraction does not contain chitin.
  • the aqueous fraction has soluble proteins whose size is sufficiently small to facilitate digestion of the animals.
  • At least 90%, preferably at least 95%, more preferably at least 97% of the soluble proteins of the aqueous fraction have a size less than or equal to 12400 g / mol.
  • At least 45%, preferably at least 50%, more preferably at least 53%, preferably at least 60% of the soluble proteins of the aqueous fraction have a size of less than 550 g / mol.
  • the aqueous fraction has a dry matter content of between 5 and 15% by weight relative to the total weight of the aqueous fraction.
  • the concentrated aqueous fraction When concentrated, the concentrated aqueous fraction has a dry matter content of between 55 and 75% by weight relative to the total weight of concentrated aqueous fraction.
  • the invention also relates to a concentrated aqueous fraction that can be obtained by the insect treatment method according to the invention, said treatment process then comprising the optional concentration step.
  • the invention further relates to an oily fraction obtainable by the insect treatment method according to the invention.
  • the invention also relates to a powder obtainable by the insect treatment method comprising the following steps:
  • the concentration of the aqueous fraction optionally, the concentration of the aqueous fraction
  • This insect treatment method may further comprise one or more of the features described above.
  • the invention relates more particularly to a powder that can be obtained by the process for preparing a powder, and in particular an insect powder, according to the invention, as described above.
  • the optional steps 5 and / or 6 of the insect treatment process according to the invention namely the concentration step of the aqueous fraction and the mixing step of all or part of the cuticle and / or all or part of the concentrated aqueous fraction, with the solid fraction, is / are or is / are not used and, where appropriate, according to the conditions of their implementation, different powders can be obtained.
  • the invention also relates to a powder, and in particular an insect powder, comprising at least 71% by weight of proteins and between 0.1 and 4% by weight of chitin, the percentages by weight being indicated on the total dry weight of powder.
  • this powder has a protein content greater than or equal to 72% by weight, more preferably greater than or equal to 74% by weight, still more preferably greater than or equal to 75% by weight, relative to the total dry weight of powder.
  • this powder has a chitin content of between 0.5 and 3% by weight, more preferably between 0.8 and 2% by weight, even more preferably between 0.8 and 1.7% by weight on the total dry weight of powder.
  • This powder preferably comprises between 5 and 20% by weight, preferably between 7 and 17% by weight of lipids, on the total dry weight of powder.
  • this powder comprises between 1 and 10% by weight, preferably between 2 and 6% by weight of ash, on the total dry weight of powder.
  • this powder preferably comprises between 3 and 20% by weight of carbohydrates on the total dry weight of powder.
  • this powder preferably comprises at least 0.1% by weight, more preferably at least 0.2% by weight of trehalose on the total dry weight of powder.
  • This powder comprises at least 71% by weight of proteins and between 0.1 and 2% by weight of chitin, the percentages by weight being indicated on the total dry weight of powder.
  • this powder has a protein content greater than or equal to
  • this powder has a chitin content of between 0.5 and 1.7% by weight of chitin, based on the total dry weight of powder.
  • this powder comprises between 5 and 17% by weight, preferably between 10 and 15% by weight of lipids, relative to the total dry weight of powder.
  • this powder comprises between 1 and 10% by weight, preferably between 2 and 6% by weight of ash, on the total dry weight of powder.
  • this powder preferably comprises between 5 and 15% by weight, more preferably between 7 and 13% by weight of carbohydrates on the total dry weight of powder.
  • this powder preferably comprises at least 0.2% by weight, more preferably at least 0.3% by weight, still more preferably at least 0.35% by weight of trehalose on the total dry weight of powder.
  • the invention therefore also relates to a powder, and in particular an insect powder, comprising at least 65% by weight of proteins, at least 10% by weight of carbohydrates and between 0.1 and 2% by weight of chitin, the percentages by weight being indicated on the total dry weight of powder.
  • this powder has a protein content greater than or equal to 70% by weight, more preferably greater than or equal to 74% by weight, relative to the total dry weight of powder.
  • this powder has a chitin content of between 0.2 and 1.5% by weight, more preferably between 0.5 and 1.3% by weight, relative to the total dry weight of powder.
  • this powder has a carbohydrate content greater than or equal to 12% by weight, more preferably greater than or equal to 14% by weight, relative to the total dry weight of powder.
  • this powder preferably comprises at least 0.7% by weight, more preferably at least 0.9% by weight, even more preferably at least 1% by weight, and even more preferably at least 1.2% by weight. of trehalose on the total dry weight of powder.
  • this powder comprises between 5 and 15% by weight, preferably between 7 and 13% by weight of lipids, relative to the total dry weight of powder.
  • this powder comprises between 3 and 10% by weight, preferably between 4 and 8% by weight of ash, relative to the total dry weight of powder.
  • the residual moisture content of the powders according to the invention is between 2 and 15%, preferably between 5 and 10%, more preferably between 4 and 8%.
  • This humidity level can for example be determined according to the method resulting from the EC regulation 152/2009 of 27-01-2009 (103 ° C I 4 h).
  • the proteins of the powders according to the invention have a digestibility greater than or equal to 85% by weight relative to the total weight of crude proteins.
  • Digestibility is a pepsic digestibility measured by the method described in Directive 72/199 / EC.
  • the digestibility is greater than or equal to 88%, more preferably greater than or equal to 92%.
  • the invention furthermore relates to the use of an aqueous fraction according to the invention, a concentrated aqueous fraction according to the invention, or a powder comprising at least 65% of proteins, at least 10% by weight of carbohydrates. and between 0.1 and 2% by weight of chitin according to the invention described above, as a flavor, advantageously in the animal feed.
  • the invention finally relates to the use of a powder according to the invention in food, preferably in animal feed.
  • Figure 1 is a diagram illustrating the detailed method of treating insects according to the invention
  • Figure 2 shows two photographs of the soft part, on the one hand at the outlet of the reactor after the maturation step ( Figure A) and secondly, after centrifugation to separate the phases ( Figure B);
  • Figure 3 is a standard curve used to perform the trehalose assay
  • Figure 4 is a diagram illustrating the moisture content of the oily fraction obtained by the process according to the invention and the oily fraction obtained by comparative methods;
  • Figure 5 is a diagram illustrating the sediment content of the oily fraction obtained by the process according to the invention and the oily fraction obtained by comparative methods;
  • FIG. 6 is a diagram illustrating the peroxide number of the oily fraction obtained by the process according to the invention and of the oily fraction obtained by a comparative method;
  • Figure 7 is a diagram illustrating the dry matter content of the aqueous fraction obtained by the process according to the invention and the aqueous fraction obtained by comparative methods;
  • Figure 8 is a diagram illustrating the sediment content of the aqueous fraction obtained by the process according to the invention and the aqueous fraction obtained by a comparative method;
  • FIG. 9 is a diagram illustrating the percentage of emulsion present in the aqueous fraction obtained by the process according to the invention and in the aqueous fraction obtained by a comparative method;
  • FIG. 10 is a diagram illustrating the percentage (as a percentage of dry matter) of lipids present in the aqueous fraction obtained by the process according to the invention and in the aqueous fraction obtained by comparative methods;
  • FIG. 11 is a diagram illustrating the pepsic digestibility of the proteins of the aqueous fraction obtained by the process according to the invention and that of the proteins of the aqueous fraction obtained by comparative methods;
  • Figure 12 is a diagram illustrating the trehalose content of the aqueous fraction obtained by the process according to the invention and the aqueous fraction obtained by comparative methods;
  • Figure 13 comprises three photographs illustrating the color of the aqueous fraction obtained by the process according to the invention and that of the aqueous fraction obtained by comparative methods;
  • Figure 14 is a diagram illustrating the trehalose content of the solid fraction obtained by the process according to the invention and the solid fraction obtained by comparative methods;
  • Figure 15 is a diagram illustrating the percentage of water soluble portion of the solid fraction obtained by the process according to the invention and the solid fraction obtained by comparative methods;
  • Figure 16 is a diagram illustrating the percentage of soluble portion in the mobile phase of the solid fraction obtained by the process according to the invention and the solid fraction obtained by comparative methods; and Figure 17 is a diagram illustrating the distribution of protein size in the solid fraction obtained by the process according to the invention and in the solid fraction obtained by comparative methods.
  • Tenebrio molitor larvae were used. On receipt of the larvae, they can be stored at 4 ° C for 0 to 15 days in their breeding tanks before slaughter without major degradation. The weight of the larvae (age) used is variable and therefore their composition may vary, as illustrated in Table 1 below:
  • Table 1 Biochemical composition of larvae of Tenebrio molitor according to their weight.
  • Live larvae (+ 4 ° C to + 25 ° C) are conveyed in a thickness of between 2 and 10 cm, on a perforated belt (1 mm) to a bleaching chamber.
  • the insects are thus bleached with steam (nozzles or steam bed) at 98 ' ⁇ under forced ventilation or with water at 92-95' ⁇ (spray nozzles) or in mixed mode (water + steam).
  • the residence time in the bleaching room is included between 5 seconds and 15 minutes, ideally 5 minutes.
  • the temperature of the larvae at the bleaching outlet is between 75% and
  • Step 2 Separation of the soft part of the cuticles of the insects
  • the larvae, once blanched, are conveyed to the feed hopper of a band separator, in order to separate the cuticles from the soft part of the larvae.
  • the separation takes place immediately after slaughtering so that the larvae do not have time to cool to room temperature.
  • the band separator used is a 601 band separator from Baader.
  • the diameter of the perforations of the drum is 1, 3 mm.
  • the soft part of the insects is recovered in a tank.
  • the cuticles are recovered using a scraper knife.
  • the amount of trehalose in the cuticles recovered in step 2 was measured as follows:
  • Trehalose is analyzed by GC-MS.
  • Temperature program 150 ° C, followed by a ramp at 10 ° C / min up to 260 ° C, after 5 minutes at this temperature, a ramp of 25 ° C / min up to 310 ° C and maintenance of this temperature for 2 minutes.
  • Injector temperature 280 ° C
  • interface 250 ° C
  • the split ratio is 10
  • the injection volume is 1 ⁇ ⁇ -.
  • a column sH-RXI-5mS, 30 m ⁇ 0.25 mm ⁇ 0.25 ⁇ is used.
  • the preparation of the sample for analysis is carried out as follows: a precise quantity of the sample (between 10 and 300 mg) is weighed in a Falcon tube, 9.75 ml of methanol are added thereto and 250 ⁇ of a solution internal standard (myo-inositol, 25 ⁇ g mL) in DMSO. The mixture is stirred at 80 ° C. for 10 minutes, 100 ⁇ l of BSTFA are then added and the reaction mixture is stirred for a further 30 minutes at ambient temperature, 1 ml of acetonitrile is then added and the sample thus prepared is injected. on a GC-MS device.
  • a solution internal standard myo-inositol, 25 ⁇ g mL
  • the amount measured is 1.2 mg trehalose per g dry matter.
  • the soft part of the insects is allowed to stand in the recovery tank of step 2, with stirring for 1 h and at a temperature of about 90 ° C.
  • Step 4 Separation of the soft part into a solid fraction, an aqueous fraction and an oily fraction
  • the soft part is then separated into three fractions using a decanter three phases.
  • the decanter used is Tricanter® Z23 from Flottweg.
  • Table 2 Characteristics of the oily fraction, the solid fraction and the aqueous fraction.
  • Preparation of the liquid sample 400 ⁇ l are solubilized in 1600 ⁇ l of the mobile phase and filtered using the Chromafil xtra filter PES-45/25 just before the injection. 1.5 ml of the sample thus prepared are centrifuged for 15 minutes at 12000 rpm (10625 g).
  • the conditions of implementation of the chromatography are the following: the column used is a Superdex Peptide GL 10/300 (GE Healthcare), the detection is carried out by a DAD detector at 215 nm, the speed of the mobile phase is 0.3 mL / min and is composed of ACN (Acetonitrile) / H 2 O / TFA (trifluoroacetic acid) (30/70 / 0.1), the analysis is carried out.
  • ACN Alcohol
  • H 2 O / TFA trifluoroacetic acid
  • Table 3 Distribution of the size of the soluble proteins in the solid fraction
  • Table 4 The size distribution of the soluble proteins of the aqueous fraction is presented in Table 4 below:
  • Trehalose is analyzed by GC-MS.
  • Temperature program 150 ° C, followed by a ramp at 10 ° C / min until 260 ' ⁇ , after 5 minutes at this temperature, a ramp of 25 ⁇ ⁇ / ⁇ up to 310 ° C and maintenance of this temperature for 2 minutes.
  • the preparation of the sample for analysis is carried out as follows: a precise quantity of the sample (between 10 and 300 mg) is weighed in a Falcon tube, 9.75 ml of methanol are added thereto and 250 ⁇ of a solution standard internal (myo-inositol, 25 ⁇ .) in DMSO. The mixture is stirred at 80 ° C. for 10 minutes, 100 ⁇ l of BSTFA are then added and the reaction mixture is stirred for a further 30 minutes at ambient temperature, 1 ml of acetonitrile is then added and the sample thus prepared is injected. on a GC-MS device.
  • the amount measured in the solid fraction is 3.82 mg trehalose per g dry matter.
  • the amount measured in the aqueous fraction is 33.2 mg trehalose per g dry matter.
  • the aqueous fraction has less than 1% by weight of insoluble sediments on the total weight of the aqueous fraction.
  • Step 5 Concentration of the aqueous fraction
  • the aqueous fraction obtained in step 4 is then concentrated by evaporation, using a falling-film evaporator.
  • the concentrated aqueous fraction obtained has a solids concentration of about 65%.
  • Step 6 (optional): Melting of the concentrated aqueous fraction and / or cuticles with the solid fraction
  • Step 6 has not been implemented in this example.
  • the solid fraction obtained in step 4 is dried using a disk dryer from Haarslev for 5 hours in order to obtain a dry solid fraction or a dry mixture.
  • the solid fraction contains less than 10 CFU / g of enterobacteria.
  • the dry solid fraction is finally milled using a continuous hammer mill (6 reversible mobile - 8 mm thick).
  • the mill is fed by a hopper with flow control flap (180kg / h).
  • the perforated grid used to control the grain size at the outlet is 0.8 mm.
  • the rotation speed of the motor is 3000 rpm (electric motor, power consumption 4kW (5.5 hp)).
  • Table 5 Characteristics of an insect powder obtained in Example 1.
  • Step 6 (optional): Melting of the concentrated aqueous fraction and cuticles with the solid fraction
  • a conical screw mixer from Vrieco-Nauta® was used.
  • the mixture obtained in step 6 is dried using a disk dryer from Haarslev for 5 hours in order to obtain a dry mixture.
  • the dry mixture contains less than 10 CFU / g of enterobacteria.
  • the dry mixture is finally milled using a continuous hammer mill (6 reversible mobile - 8 mm thick).
  • the mill is fed by a hopper with flow control flap (180kg / h).
  • the perforated grid used to control the grain size at the outlet is 0.8 mm.
  • the rotation speed of the motor is 3000 rpm (electric motor, power consumption 4kW (5.5 hp)).
  • the objective is to compare the quality of the products obtained by the two processes.
  • the larvae are initially bleached (parboiled) and then the cuticles of the larvae are separated from the soft part ("decutilated") through a band separator of the Baader brand.
  • This soft part came from the same batch of soft part as that used for the process according to the invention.
  • the comparative method differs from that according to the invention in two steps:
  • an additional step of coagulation of the soft part is carried out starting from 4 kg of soft part, in a pilot reactor, with stirring (350 revolutions / min) with a temperature of the walls of the fixed reactor at 100 ° C for 20 minutes; then
  • the soft part is diluted by adding water and heated. Two dilutions of the soft part were made for these tests, 1: 0.5 (m / m, mass / mass) and 1: 0, 75 (m / m). Specifically, a volume of water at 50 ° C (2 liters or 3 liters depending on the dilution) is added to the pilot reactor. The regulation of the temperature in the pulp mass is carried out at 90 ° C. for one hour and then the reactor is emptied. The diluted soft part is then centrifuged under the same conditions as previously and the 3 phases collected and stored at -20 ° C pending physicochemical analyzes.
  • the dry matter of TMO, SW and SPC is determined by drying to constant mass at 105 ° C according to ISO 6496.
  • the difference in mass of the product before and after drying serves as a measure for the dry matter content. These contents are expressed as a percentage of mass.
  • the moisture content is obtained by subtraction of the dry matter to the value 100.
  • the peroxide number is determined according to the French standard NF EN ISO 3960 (June 2010) and expressed in MEQ of active oxygen / kg of oil.
  • the filter used is a pore stainless steel screen 50 ⁇ , previously tared. Sediment quantification is performed after 300 mL of TMO or 750 mL of SW (750 mL) is passed by weighing the residues in the sieve.
  • the evaluation of the emulsion in the SW is carried out after centrifugation of 50 ml of SW collected. Collection of the emulsion (supernatant) is performed after placing the tubes at -20 ° to facilitate separation. The emulsion is then weighed and the result is expressed as a percentage of emulsion in the stick water.
  • the determination of the fat or lipids in the samples of SW is carried out by extraction with petroleum ether after hydrolysis according to the regulation CE 152/2009.
  • the amount of lipids is related to the dry matter of the sample in question (SW or SPC).
  • the pepsic digestibility is determined on the SW according to Directive 72/199 / EC, without degreasing.
  • Trehalose is determined in SW and SPC after lyophilization. 40 mg of dry sample are extracted with 2 ml of DMSO for 1 hour, with stirring at 80 ° C. 250 ⁇ l of the extract are then mixed with 50 ⁇ l of myo-inositol, used as internal standard (1 g / L in DMSO). After homogenization, 100 ⁇ l of this mixture is derivatized with 100 ⁇ l of BSTFA-TMCS (99: 1) directly into the vial GC-MS for 30 minutes at 60 ° C. Before injection, 600 ⁇ of acetonitrile are added to the vial GC-MS. The results are expressed in mg of trehalose / g dry using a standard range of trehalose carried out under the same conditions (FIG 3).
  • the derived extracts and the different standard range points are analyzed on a Shimadzu GC-MS-QP2010.
  • the column used is a column SH-Rxi 5 ms (Schimadzu) of length 30 m, diameter 0.25 mm and finesse 0.25 ⁇ .
  • the temperature program of the GC-MS is as follows: 100 ° C, followed by a ramp at 10 ° C / min up to 300 ° C held for 2 min.
  • the temperature of the injector is 280 ° C, that of the interface is 250 ° C, the split ratio is 10, the injection volume is 1 ⁇ .
  • the detection is carried out in SIM (Selected Ion monitoring) mode with m / z specific for 305 for myoinositol and 361 for trehalose.
  • the color has been compared to a color chart (RAL Classic K7 color chart) and characterized by the color code of this color chart.
  • the experiments were performed from lyophilized SPCs. 1 g of sample is weighed (m,) in a previously calibrated 50 ml tube. 30 ml of water at room temperature are added and the tube is stirred (vortexed) for several minutes. After centrifugation, the supernatant liquid is removed and a second wash with 30 ml of water is carried out under the same conditions as the first. After removing the supernatant, the washed SPC pellet is placed in an oven at 60 ° C for 48 hours and then weighed. A control (unwashed SPC) is also placed in the oven to determine the percentage of actual dry matter and correct the initial weighing of samples before washing (% MS).
  • the percentage of soluble is determined as:
  • the size of the soluble proteins of the SPC is determined by steric exclusion chromatography.
  • 40 mg of freeze-dried sample are solubilized in the mobile phase composed of acetonitrile / H 2 O / TFA (trifluoroacetic acid) (30/70 / 0.1) in order to reach a concentration of 30 mg / mL and filtered at 45.degree. ⁇ after centrifugation using the filter chromafil xtra PES-45/25.
  • the solubility of dry SW and SPC in the mobile phase is determined after drying the centrifugation residues in the oven.
  • the conditions for carrying out the chromatography carried out on a Shimadzu Nexera XR HPLC chain are as follows: the column used is a Superdex Peptide GL 10/300 (GE Healthcare), the detection is carried out by a DAD detector at 215 nm, the speed of the mobile phase (isocratic mode) is 0.3 mL / min. It is composed of an acetonitrile / H 2 O / TFA (trifluoroacetic acid) mixture (30/70 / 0.1), the analysis is carried out at 25 ° C.
  • FIGS 4 and 5 relating to the moisture content and the sediment content show that the separation of the oily fraction is significantly better in the process according to the invention. Indeed, we see in these Figures a higher moisture content and sediment in the oily fraction according to the comparative method. This result is unexpected because it is well known to those skilled in the art that increasing a phase and / or heating usually improves the phase separation of a complex medium.
  • FIGS 8 to 10 for sediment content, emulsion content and lipid content show that the separation of the aqueous fraction is significantly better in the process according to the invention. Indeed, there is shown in these figures a higher sediment content, emulsion and lipids in the oily fraction according to the comparative method. This result is unexpected because it is well known to those skilled in the art that increasing a phase and / or heating usually improves the phase separation of a complex medium.
  • the trehalose content of the aqueous fraction obtained by the process according to the invention is better than that obtained by the comparative method.
  • trehalose has the ability to stabilize proteins and is therefore considered a natural biological preservative.
  • FIG. 13 proposes 3 photographs of the aqueous fraction obtained either by the process according to the invention, or by the comparative method, and lyophilized.
  • the aqueous fraction obtained by the process according to the invention has a significantly lighter color. It follows from these figures that a different product is obtained by the method according to the invention. This difference in color can potentially be explained by the Maillard reaction which can take place during the coagulation and aqueous heating steps which are carried out in the comparative method. In the Maillard reaction, the small size proteins present in the medium are more likely to react, reducing the content of the medium to small proteins. This may in particular result in a decrease in the digestibility of the aqueous fraction. 3. Solid fraction
  • the comparative method at a dilution 1: 0.5 generates a cost 19.8 times higher than that of the process according to the invention and the comparative method at a dilution of 1: 0.75 generates a cost 20.2 times greater than that of the process according to the invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

L'invention concerne un procédé de traitement d'insectes comprenant la séparation des cuticules de la partie molle des insectes, dans lequel la séparation est effectuée à l'aide d'un séparateur à bande, et une étape de maturation de la partie molle des insectes, ladite étape étant effectuée sans aucune dilution de la partie molle des insectes dans un solvant. L'invention concerne en outre des poudres, en particulier une poudre susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention, et l'utilisation de ces poudres dans l'alimentation.

Description

PROCEDE DE TRAITEMENT D'INSECTES COMPRENANT LA SEPARATION DES CUTICULES DE LA PARTIE MOLLE DES INSECTES A L'AIDE D'UN SEPARATEUR A
BANDE
La présente invention se rapporte à un procédé de traitement d'insectes. L'invention vise également des poudres, en particulier une poudre susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention, et l'utilisation de ces poudres dans l'alimentation, notamment dans l'alimentation animale.
Les poudres préparées à partir d'animaux sont depuis longtemps utilisées dans l'alimentation animale.
L'une des poudres les plus utilisée est la farine de poisson, qui représente une des principales sources de protéines dans l'alimentation animale. La farine de poisson est très riche en protéines animales (riche en acides aminés type lysine et méthionine) faciles à digérer. Une demande croissante accompagnée d'une offre limitée a eu pour conséquence, notamment, d'en augmenter significativement son prix. Ainsi, il y a une forte demande pour des sources alternatives de protéines de qualité élevée et, dans la mesure du possible, renouvelables, qui seraient utilisables dans l'alimentation animale.
Au cours de ces dernières années, il a été proposé d'utiliser des farines préparées à partir d'insectes comme substituant à la farine de poisson.
Les farines d'insectes proposent des sources protéiques naturelles de remplacement et la possibilité d'être produites en masse avec une empreinte écologique minimale. En particulier, certains coléoptères tels que Tenebrio molitor, présentent l'intérêt de pouvoir être adaptés à une production en masse intensive.
A titre d'exemple, la demande WO2016/108037 décrit notamment une poudre de coléoptères comportant au moins 67% en poids de protéines et au moins 5% en poids de chitine, pouvant être utilisée dans l'alimentation animale.
Dans le cadre de la présente demande, par « chitine », on entend tout type de dérivé chitinique, c'est-à-dire de dérivé de polysaccharides comportant des unités N- acétyl-glucosamine et des unités D-glucosamines, en particulier les copolymères chitine-polypeptides (parfois désignés sous l'appellation « composite chitine- polypeptides »). Ces copolymères peuvent également être associés à des pigments, souvent de type mélanine.
La chitine serait le deuxième polymère le plus synthétisé dans le monde vivant après la cellulose. En effet, la chitine est synthétisée par de nombreuses espèces du monde vivant: elle constitue en partie l'exosquelette des crustacés et des insectes et la paroi latérale qui entoure et protège les champignons. Plus particulièrement, chez les insectes, la chitine constitue ainsi 3 à 60% de leur exosquelette.
Cependant, la chitine est généralement considérée comme un composé difficile à digérer par certains animaux.
Il existe donc un besoin pour des poudres préparées à partir d'insectes qui auraient une teneur réduite en chitine.
Le travail des inventeurs a permis de mettre en évidence qu'il était possible d'obtenir de tels poudres, lorsque les insectes à partir desquels sont préparées ces poudres subissaient un traitement spécifique.
Le travail des inventeurs a permis de mettre en évidence qu'il était possible d'obtenir de tels poudres, lorsque les insectes à partir desquels sont préparées ces poudres subissaient un traitement spécifique.
L'invention concerne donc un procédé de traitement d'insectes comprenant la séparation des cuticules de la partie molle des insectes, dans lequel la séparation est effectuée à l'aide d'un séparateur à bande.
Par « insectes », on entend des insectes à n'importe quel stade de développement, tel qu'un stade adulte, larvaire ou un stade de nymphe.
La cuticule est la couche externe (ou exosquelette) sécrétée par l'épiderme des insectes. Elle est en général formée de trois couches : l'épicuticule, l'exocuticule et l'endocuticule.
Par « partie molle », on vise la chair (comportant notamment les muscles et les viscères) et le jus (comportant notamment les liquides biologiques, l'eau et l'hémolymphe) des insectes. En particulier, la partie molle ne consiste pas en le jus des insectes.
Avantageusement, les insectes mis en œuvre dans le procédé selon l'invention sont à un stade larvaire.
De préférence, les insectes mis en œuvre dans le procédé selon l'invention sont comestibles.
Avantageusement, les insectes préférés pour la mise en œuvre du procédé selon l'invention sont par exemple les coléoptères, les diptères, les lépidoptères, les isoptères, les orthoptères, les hyménoptères, les blattoptères, les hémyptères, les hétéroptères, les éphéméroptères et les mécoptères, de préférence, les coléoptères, les diptères, les orthoptères, les lépidoptères ou leurs mélanges, encore plus préférentiellement les coléoptères.
Les coléoptères préférentiellement mis en œuvre dans le procédé selon l'invention appartiennent aux familles des Tenebrionidae, Melolonthidae , Dermestidae, Coccinellidae, Cerambycidae, Carabidae, Buprestidae, Cetoniidae, Dryophthoridae, ou leurs mélanges.
Plus préférentiellement, il s'agit des coléoptères suivants : Tenebrio molitor, Alphitobius diaperinus, Zophobas morio, Tenebrio obscurus, Tribolium castaneum et Rhynchophorus ferrugineus, ou leurs mélanges.
Par « séparateur à bande », on vise un dispositif permettant la séparation de la partie solide de la partie molle d'un produit, et qui comporte une bande de serrage (ou bande presseuse) et un tambour perforé.
La séparation des cuticules de la partie molle des insectes est plus amplement décrite dans l'étape 2 du procédé détaillé de traitement d'insectes selon l'invention ci- après.
Cette séparation des cuticules de la partie molle de l'insecte permet notamment de séparer la chitine de la partie molle. En effet, les cuticules obtenues à l'issue de cette étape de séparation présente une teneur en chitine élevée de l'ordre de 10 à 30% en poids sur le poids total de cuticules, comme indiqué ci-après.
En particulier, l'étape de séparation des cuticules de la partie molle s'effectue sans qu'aucune étape préalable de broyage des insectes, notamment sous forme de particules, n'ait été effectuée.
Le procédé de traitement d'insectes selon l'invention peut comprendre en outre une étape de maturation de la partie molle des insectes.
Par « étape de maturation de la partie molle des insectes », on vise plus particulièrement une étape pendant laquelle la partie molle des insectes est soumise à agitation.
Cette étape est plus amplement décrite dans l'étape 3 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Le procédé de traitement d'insectes selon l'invention peut donc comprendre :
- une étape de séparation des cuticules de la partie molle des insectes, dans lequel la séparation est effectuée à l'aide d'un séparateur à bande, et
- une étape de maturation de la partie molle des insectes, ladite étape étant effectuée sans aucune dilution de la partie molle des insectes dans un solvant. De préférence, le procédé de traitement d'insectes selon l'invention comprend une étape de séparation de la partie molle des insectes en une fraction huileuse, une fraction solide et une fraction aqueuse.
La fraction huileuse a une teneur en lipides supérieure ou égale à 90%, préférentiellement supérieure ou égale à 95%, encore plus préférentiellement supérieure ou égale à 99% en poids sur le poids total de fraction huileuse.
On notera que dans le cadre de la présente demande, et sauf stipulation contraire, les gammes de valeurs indiquées s'entendent bornes incluses.
La fraction solide a une teneur en matière sèche comprise entre 45 et 65% en poids sur le poids total de fraction solide.
La fraction aqueuse a une teneur en glucides comprise entre 15 et 40% en poids, de préférence entre 20 et 30% en poids, sur le poids sec total de fraction aqueuse.
A l'issue de l'étape de séparation de la partie molle, et avant une concentration éventuelle de celle-ci, la fraction aqueuse a une teneur en matière sèche inférieure ou égale à 20% en poids, de préférence inférieure ou égale à 15% en poids sur le poids total de fraction aqueuse.
De même, la séparation de la partie molle des insectes en une fraction huileuse, une fraction solide et une fraction aqueuse est plus amplement décrite dans l'étape 4 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Le procédé de traitement d'insectes selon l'invention peut comprendre une étape d'abattage préalable à l'étape de séparation des cuticules de la partie molle.
Avantageusement, suite à l'étape 1 d'abattage, les insectes sont directement utilisés pour la mise en œuvre de l'étape 2 de séparation des cuticules de la partie molle des insectes, c'est-à-dire que les insectes ne sont soumis à aucun traitement, tel qu'un broyage, une congélation ou une déshydratation entre l'étape 1 et l'étape 2.
Cette étape d'abattage est plus amplement décrite dans l'étape 1 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Optionnellement, le procédé de traitement d'insectes selon l'invention comprend, à l'issue de la séparation de la partie molle en une fraction huileuse, une fraction solide et une fraction aqueuse, une étape de concentration de la fraction aqueuse, pour obtenir une fraction aqueuse concentrée.
Cette étape est plus amplement décrite dans l'étape 5 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Optionnellement, le procédé de traitement d'insectes selon l'invention comprend en outre une étape de mélangeage de la fraction solide :
- avec tout ou partie de la fraction aqueuse concentrée ; et/ou
- tout ou partie des cuticules,
pour obtenir un mélange.
Cette étape est plus amplement décrite dans l'étape 6 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
De préférence, le procédé de traitement d'insectes selon l'invention comprend une étape de séchage de la fraction solide ou du mélange pour obtenir une fraction solide sèche ou un mélange sec.
Cette étape est plus amplement décrite dans l'étape 7 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Préférentiellement, le procédé de traitement d'insectes selon l'invention comprend en outre une étape de broyage de la fraction solide sèche ou du mélange sec.
Cette étape est plus amplement décrite dans l'étape 8 du procédé détaillé de traitement d'insectes selon l'invention ci-après.
Plus particulièrement, le procédé selon l'invention est réalisé sans qu'il ne soit nécessaire d'ajouter un solvant, tel que de l'eau. En particulier, aucune dilution de la partie molle n'est effectuée au cours du procédé selon l'invention.
Selon un mode de réalisation préféré du procédé de traitement d'insectes selon l'invention, celui-ci est un procédé de préparation d'une poudre, et notamment d'une poudre d'insectes, et comporte les étapes suivantes :
i) l'abattage des insectes ;
ii) la séparation des cuticules de la partie molle des insectes ;
iii) optionnellement, la maturation de la partie molle des insectes ;
iv) la séparation de la partie molle des insectes en une fraction solide, une fraction aqueuse et une fraction huileuse ;
v) optionnellement, la concentration de la fraction aqueuse pour obtenir une fraction aqueuse concentrée ;
vi) optionnellement, le mélangeage de la fraction aqueuse concentrée et/ou des cuticules avec la fraction solide pour obtenir un mélange ; vii) le séchage de la fraction solide obtenue à l'étape iv) ou du mélange obtenu à l'étape vi) pour obtenir une fraction solide sèche ou un mélange sec ; et
viii) le broyage de la fraction solide sèche ou du mélange sec obtenu à l'étape vii).
Procédé détaillé de traitement d'insectes selon l'invention
• Etape 1 : Abattage des insectes
Cette étape 1 d'abattage peut avantageusement s'effectuer par choc thermique, tel que par ébouillantage ou par blanchiment. Cette étape 1 permet d'abattre les insectes tout en abaissant la charge microbienne (réduction du risque d'altération et sanitaire) et en inactivant les enzymes internes des insectes pouvant déclencher une autolyse, et ainsi un brunissement rapide de ceux-ci.
Pour l'ébouillantage, les insectes, de préférence des larves, sont ainsi ébouillantés à l'eau pendant 2 à 20 min, préférentiellement, 5 à 15 min. De préférence, l'eau est à une température comprise entre 87 à 100°C, préférentiellement 92 à 95°C.
La quantité d'eau introduite lors de l'ébouillantage est déterminée de la façon suivante : le ratio du volume d'eau en ml sur le poids en g d'insecte est de préférence compris entre 0,3 et 10, plus préférentiellement entre 0,5 et 5, encore plus préférentiellement entre 0,7 et 3, encore plus préférentiellement de l'ordre de 1 .
Pour le blanchiment, les insectes, de préférence des larves, sont blanchis à l'eau ou à la vapeur (buses ou lit de vapeur) à une température comprise entre 80 et 105°C, de préférence entre 87 et l Oô'C, plus préférentiellement entre 95 et 100 °C, encore plus préférentiellement 98°C ou bien à l'eau à une température comprise entre 90 et l OO 'C, préférentiellement entre 92 et 95°C (par buses d'aspersion) ou en mode mixte (eau + vapeur) à une température comprise entre 80 et 130 ^, de préférence entre 90 et 120°C, plus préférentiellement entre 95 et l Oô'C, encore plus préférentiellement 98 °C. Lorsque les insectes sont blanchis uniquement à la vapeur, le blanchiment est avantageusement réalisé dans des blancheurs à vapeur à circulation forcée (« forced steaming »). Le temps de séjour dans la chambre de blanchiment est compris entre 5 secondes et 15 minutes, préférentiellement entre 1 et 7 min.
Avantageusement, suite à l'étape 1 d'abattage, les insectes sont directement utilisés pour la mise en œuvre de l'étape 2 de séparation des cuticules de la partie molle des insectes, c'est-à-dire que les insectes ne sont soumis à aucun traitement, tel qu'un broyage, une congélation ou une déshydratation entre l'étape 1 et l'étape 2.
• Etape 2 : Séparation des cuticules de la partie molle des insectes Cette étape s'effectue à l'aide d'un séparateur à bande et a pour objectif de séparer les cuticules de la partie molle des insectes.
A titre d'exemple, un séparateur à bande peut comprendre une bande de serrage et un tambour perforé, la bande de serrage entourant au moins une partie du tambour perforé.
La bande de serrage permet l'apport et l'application des insectes contre le tambour perforé de sorte à faire passer, par pression, la partie molle des insectes à travers les perforations du tambour, tandis que les cuticules restent à l'extérieur du tambour.
Les cuticules peuvent ensuite être récupérées à l'aide d'un couteau racleur. A titre d'exemple, on peut citer les séparateurs à bande provenant de la société Baader, tels que les séparateurs à bande 601 à 607 (« soft separator 601 to 607 »), ou encore les séparateurs à bande SEPAmatic® de BFD Corporation (gamme 410 à 4000V). Avantageusement, le diamètre des perforations du tambour est compris entre 0,5 et 3 mm, de préférence entre 1 et 2 mm.
Concernant la pression, l'homme du métier est à même de déterminer la pression à exercer permettant la séparation des cuticules de la partie molle des insectes.
Cette étape de séparation des insectes se distingue d'un pressage classique pouvant être réalisé par exemple avec une presse mono-vis ou bi-vis en ce qu'elle permet une séparation (nette) de la partie molle et des cuticules des insectes et non une séparation d'un jus d'une fraction solide.
Les cuticules obtenues dans l'étape 2 comportent entre 10 et 30%, de préférence entre 15 et 25% en poids de chitine, sur le poids sec total de cuticules.
La détermination du taux de chitine est effectuée par extraction de celle-ci.
La détermination du taux de chitine est effectuée par extraction de celle-ci. A titre d'exemple, une méthode de détermination du taux de chitine pouvant être utilisée est la méthode ADAC 991 .43.
Par ailleurs, les cuticules comportent moins de 25%, de préférence moins de 10%, plus préférentiellement moins de 5%, encore plus préférentiellement moins de 3% en poids de lipides sur le poids sec total des cuticules.
Les méthodes de détermination de la teneur en matière grasse (lipides) sont bien connues de l'homme du métier. A titre d'exemple et de manière préférée, la détermination de cette teneur sera effectuée en suivant la méthode du règlement CE 152/2009.
Dans toute la demande, lorsqu'aucune date n'est précisée pour un règlement, une norme ou une directive, il s'agit du règlement, de la norme ou de la directive en vigueur à la date de dépôt.
En outre, les cuticules comportent entre 55 et 90%, avantageusement entre 60 et 85%, de préférence entre 65 et 80% en poids de protéines sur le poids sec total de cuticules.
Dans le cadre de la présente demande, par « protéines », on vise la quantité de protéines brutes. La quantification des protéines brutes est bien connue de l'homme du métier. A titre d'exemple, on peut citer la méthode Dumas ou la méthode Kjeldhal. De préférence, la méthode Kjeldhal est utilisée.
On notera toutefois que cette méthode se base sur la mesure de la teneur en azote. Or, la chitine contient de l'azote à une teneur de l'ordre de 8%. Par conséquent, la teneur en azote de la chitine a été déduite de la teneur en azote mesurée avant d'effectuer la conversion permettant d'obtenir la teneur en protéines. Les cuticules comportent entre 0,5 et 30%, avantageusement entre 1 et 20%, de préférence entre 5 et 15% en poids de glucides sur le poids sec total de cuticules.
La teneur en glucides a été calculée par mesure de différence des glucides. Selon cette méthode, la teneur en glucides est égale à la teneur en matière sèche à laquelle on soustrait la teneur en cendres, en protéines et en lipides.
En outre, les cuticules comportent de préférence au moins 0,08% en poids, plus préférentiellement au moins 0,1 % en poids, encore plus préférentiellement au moins 0,12% en poids de tréhalose sur le poids sec total de cuticules.
La quantité de tréhalose est déterminée par analyse par GC-MS. Une telle analyse est plus amplement décrite à l'Exemple 1 ci-après.
La partie molle obtenue dans l'étape 2 comporte entre 20 et 50% en poids de lipides, de préférence entre 30 et 40% en poids de lipides sur le poids sec total de la partie molle.
En outre, la partie molle comporte au moins 45%, de préférence au moins 48%, plus préférentiellement au moins 50% en poids de protéines sur le poids sec total de la partie molle.
• Etape 3 : Maturation de la partie molle des insectes
La partie molle des insectes est ensuite, optionnellement, soumise à agitation dans une cuve.
Avantageusement, la maturation est réalisée pendant une durée comprise entre
15 minutes et 3 heures, de préférence pendant 1 h.
Avantageusement, la maturation est réalisée à une température comprise entre 65 et Ι ΟΟ 'Ό, de préférence entre 85 et 100 °C, plus préférentiellement à une température d'environ 90°C.
Cette étape permet de faciliter la séparation de la partie molle des insectes dans l'étape 4 ci-après.
De préférence, le procédé selon l'invention comprend une telle étape.
En particulier, aucune dilution de la partie molle des insectes dans un solvant tel que l'eau n'est nécessaire dans cette étape.
Avantageusement, cette étape de maturation est immédiatement suivie de l'étape de séparation de la partie molle en une fraction solide, une fraction aqueuse et une fraction huileuse.
En particulier, aucune étape supplémentaire de dilution dans un solvant tel que l'eau et/ou de chauffage n'est nécessaire pour effectuer la séparation en trois fractions.
Au contraire, comme cela est montré à l'Exemple 3, une telle étape de dilution a pour effet : d'empêcher une bonne séparation des trois fractions (solide, aqueuse et huileuse),
- de dégrader les propriétés des trois fractions, et
d'engendrer des coûts notablement plus importants.
· Etape 4 : Séparation de la partie molle en une fraction solide, une fraction aqueuse et une fraction huileuse
Cette étape a pour objectif de récupérer trois fractions à partir de la partie molle des insectes obtenue à l'étape 2 ou 3, à savoir une fraction solide, une fraction aqueuse, et une fraction huileuse.
Selon un premier mode de réalisation, cette étape de séparation de la partie molle est réalisée en deux sous-étapes.
Dans la première sous-étape, la partie molle des insectes est soumise à une décantation à l'aide d'un décanteur 2 phases, de sorte à obtenir une fraction solide et une fraction liquide.
Dans la deuxième sous-étape, la fraction liquide est soumise à une centrifugation, de sorte à récupérer une fraction huileuse et une fraction aqueuse.
Avantageusement, dans cette deuxième sous-étape, une centrifugeuse à assiettes est utilisée.
Selon un second mode de réalisation de l'étape 4, la partie molle des insectes est soumise à une décantation à l'aide d'un décanteur 3 phases, de sorte à obtenir directement une fraction aqueuse, une fraction huileuse et une fraction solide.
Des décanteurs 3 phases adaptés sont, par exemple, le Tricanter® de la société Flottweg, ou les décanteurs 3 phases de la société GEA, tel que le décanteur CA 225-03-33.
Avantageusement, la séparation de la partie molle est réalisée selon le second mode de réalisation.
En effet, l'utilisation d'un décanteur 3 phases permet d'obtenir une séparation des phases particulièrement efficace. Plus particulièrement, la fraction solide obtenue présente une haute teneur en matière sèche, la fraction aqueuse comporte peu de sédiments insolubles (provenant de la fraction solide) et d'huile, et la fraction huileuse comporte peu de sédiments insolubles (provenant de la fraction solide) et d'eau.
• Etape 5 : Concentration de la fraction aqueuse
La fraction aqueuse obtenue à l'étape 4 est ensuite optionnellement concentrée, pour obtenir une fraction aqueuse concentrée.
Avantageusement, la concentration est réalisée par évaporation.
Avantageusement, l'évaporation est réalisée à une température comprise entre 30 et 100°C, de préférence entre 60 et 80 °C.
De préférence, l'évaporation est réalisée à une pression comprise entre 50 et 1013 mbars, de préférence à 1013mbars.
L'évaporation est de préférence réalisée pendant une durée comprise entre 5 et 20 minutes.
La concentration est de préférence réalisée à l'aide d'un évaporateur à film tombant, d'un évaporateur à plaque à flot montant, ou d'un évaporateur à couche mince.
Ce type de matériel standard peut être utilisé sans rencontrer de problème d'encrassement, grâce notamment à la faible quantité de sédiments présents dans la fraction aqueuse.
Généralement, les fractions aqueuses ne peuvent être concentrées au-delà de 42% en matière sèche, car celles-ci ont tendance à gélifier (eau de colle) à partir de cette concentration.
Dans le cas de la présente invention, la fraction aqueuse comporte des protéines solubles de petite taille (au moins 45%, préférentiellement au moins 60% des protéines solubles de la fraction aqueuse ont une taille inférieure à 550 g/mol, comme plus amplement décrit ci-après), ce qui permet d'éviter la gélification et ainsi d'obtenir une fraction aqueuse à haute concentration en matière sèche (jusqu'à 70%) et présentant une viscosité inférieure à 30000 cPs (centipoises).
Par « protéines solubles », on entend, parmi les protéines brutes, celles qui sont solubles dans une solution aqueuse dont le pH est compris entre 6 et 8, avantageusement entre 7,2 et 7,6.
Lorsque le terme « protéines » seul est utilisé dans la présente demande, il désigne des protéines brutes.
De préférence, la solution aqueuse est une solution tampon dont le pH est compris entre 6 et 8, avantageusement entre 7,2 et 7,6. Préférentiellement, la solution tampon est une solution tampon phosphate NaCI, dont le pH est égal 7,4 +/- 0,2.
En outre, l'étape de concentration de la fraction aqueuse présente un double intérêt, car elle permet :
- une économie de vapeur : en l'absence de l'étape 5 de concentration, l'eau devrait être évaporée lors de l'étape 7 de séchage décrite ci-après, avec un sécheur dont la consommation spécifique de vapeur est plus importante que celle d'un concentrateur tel que décrit ci-avant ; et
- d'éviter les contaminations microbiologiques, grâce à une réduction du volume et de la pression osmotique due à la forte concentration en matière sèche de la fraction aqueuse concentrée.
• Etape 6 : Mélanqeaqe de la fraction aqueuse concentrée et/ou des cuticules avec la fraction solide
Tout ou partie des cuticules obtenues à l'étape 2 et/ou tout ou partie de la fraction aqueuse concentrée obtenue à l'étape 5 peuvent/peut être optionnellement mélangée(s) à la fraction solide obtenue à l'étape 4 pour obtenir un mélange.
Avantageusement, le mélange est homogénéisé de sorte à faciliter son traitement ultérieur.
Les mélangeurs pouvant être utilisés sont par exemple des mélangeurs à vis conique, tels que ceux de la société Vrieco-Nauta®, ou des mélangeurs pendulaires, tels que ceux de la société PMS.
On notera qu'en moyenne, pour un kilogramme de fraction solide obtenue, on obtient de 500 à 650g de cuticules, par exemple environ 550g, et de 250 à 350g de fraction aqueuse, par exemple environ 300g.
· Etape 7 : Séchage de la fraction solide obtenue à l'étape 4 ou du mélange obtenu à l'étape 6
La fraction solide obtenue à l'étape 4 ou le mélange obtenu à l'étape 6 peuvent être séchés pour obtenir une fraction solide sèche ou un mélange sec.
Avantageusement, le séchage est réalisé à l'aide d'un sécheur à disques, un sécheur tubulaire, un sécheur à hélices, un sécheur de type flash, un sécheur à couche mince ou un sécheur à atomisation.
De préférence, le séchage est réalisé à l'aide d'un sécheur à disques ou tubulaire.
Des sécheurs tubulaires adaptés sont par exemple ceux de la société Tummers (Simon Dryers Technology).
Des sécheurs à disques adaptés sont par exemple ceux de la société Haarslev. Le séchage peut être réalisé entre 1 et 10 heures, de préférence entre 3 et 5 heures.
Avantageusement, le séchage est réalisé à une température comprise entre 60 et 225 <€, de préférence entre 80 et 100 °C.
De préférence, l'évaporation est réalisée à une pression atmosphérique.
• Etape 8 : Broyage de la fraction solide sèche ou du mélange sec obtenu à l'étape 7
Suite au séchage, un broyage peut être réalisé et une poudre est obtenue. Par « poudre », on entend une composition sous forme de particules.
De préférence, la poudre selon l'invention est une poudre d'insectes, c'est-à- dire une poudre préparée uniquement à partir d'insectes et éventuellement d'eau.
Un broyeur tel qu'un broyeur à marteau ou un broyeur conique (tel que les broyeurs coniques (« Kek cone mills ») de la société Kemutec) peut par exemple être utilisé.
Avantageusement, à l'issue de ce broyage, la taille des particules est inférieure à 0,5 cm (plus grande taille de particule observable à l'aide d'un microscope), de préférence de l'ordre de 1 mm. Plus particulièrement, la taille de particules est comprise entre 300 μηι et 1 mm, encore plus préférentiellement entre 500 et 800 μηι.
Lorsque la poudre est broyée à une taille de particules acceptable pour l'alimentation humaine ou animale, celle-ci peut être désignée sous l'appellation « farine » et notamment « farine d'insectes » (« insect meal », en anglais). Par « taille de particules acceptable pour l'alimentation humaine ou animale », on vise une taille de particules comprise entre 100 μηι et 1 ,5 mm, préférentiellement comprise entre 300 μηι et 1 mm, plus préférentiellement entre 500 et 800 μηι.
Selon que les étapes 5 et/ou 6 optionnelles est/sont mise(s) en œuvre ou non, différentes poudres peuvent être obtenues, à savoir :
- une poudre résultant uniquement de la fraction solide (étape 6 non mise en œuvre) ;
- une poudre résultant du mélange de la fraction solide et de tout ou partie des cuticules ;
- une poudre résultant du mélange de la fraction solide et de tout ou partie de la fraction aqueuse concentrée ;
- une poudre résultant du mélange de la fraction solide, de tout ou partie des cuticules et de tout ou partie de la fraction aqueuse concentrée. L'invention vise également les produits issus du procédé selon l'invention.
L'invention concerne en outre une fraction solide susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention.
L'invention concerne également une fraction solide comprenant au moins 71 % en poids de protéines et entre 0,1 et 2% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de la fraction solide.
De préférence, la fraction solide comprend au moins 73% en poids, plus préférentiellement au moins 74% en poids, encore plus préférentiellement au moins 75% en poids de protéines, les pourcentages en poids étant indiqués sur le poids sec total de fraction solide.
Avantageusement, la fraction solide comprend entre 0,5 et 1 ,7% en poids de chitine sur le poids sec total de fraction solide. Avantageusement, la fraction solide comprend entre 5 et 17% en poids de lipides, de préférence entre 10 et 15% en poids de lipides, sur le poids sec total de fraction solide.
De préférence, la fraction solide comprend entre 1 et 10% en poids, de préférence entre 2 et 6% en poids de cendres, sur le poids sec total de fraction solide.
La méthode de détermination de la teneur en cendres est bien connue de l'homme du métier. De préférence, les cendres ont été déterminées selon la méthode relevant du règlement CE 152/2009 du 27-01 -2009.
En outre, la fraction solide comporte de préférence entre 5 et 15% en poids, plus préférentiellement entre 7 et 13% en poids de glucides sur le poids sec total de fraction solide.
Plus particulièrement, la fraction solide comporte de préférence au moins 0,2% en poids, plus préférentiellement au moins 0,3% en poids, encore plus préférentiellement au moins 0,35% en poids, encore plus préférentiellement au moins 0,5% en poids et encore plus préférentiellement au moins 0,7% en poids de tréhalose sur le poids sec total de fraction solide.
Par ailleurs, la digestibilité des protéines chez l'homme et les animaux est fortement conditionnée par la taille des protéines. En nutrition animale, il est courant de réduire la taille des protéines, afin de faciliter la digestion des animaux. Cette réduction de la taille des protéines se fait généralement par des procédés d'hydrolyse (par exemple enzymatique), dont la mise en œuvre est particulièrement coûteuse.
La fraction solide comporte des protéines solubles dont la taille est suffisamment réduite pour faciliter la digestion des animaux.
Avantageusement, au moins 75%, préférentiellement au moins 80%, plus préférentiellement au moins 85% des protéines solubles de la fraction solide ont une taille inférieure ou égale à 12400 g/mol.
Plus particulièrement, au moins 55%, de préférence au moins 60%, plus préférentiellement au moins 65% des protéines solubles de la fraction solide ont une taille inférieure à 550 g/mol.
L'invention concerne également une fraction aqueuse susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention.
L'invention concerne en outre une fraction aqueuse comprenant au moins 48% en poids de protéines, au moins 2% en poids de tréhalose, et présentant une teneur en lipides inférieure à 7% en poids, les pourcentages en poids étant indiqués sur le poids sec total de la fraction aqueuse.
De préférence, la fraction aqueuse comporte au moins 55% en poids, plus préférentiellement au moins 60% en poids, encore plus préférentiellement au moins 65% en poids de protéines, sur le poids sec total de la fraction aqueuse.
Avantageusement, la fraction aqueuse comporte au moins 2,5% en poids, plus préférentiellement au moins 3% en poids de tréhalose sur le poids sec total de la fraction aqueuse.
De préférence, la fraction aqueuse présente une teneur en lipides inférieure à 6% en poids, plus préférentiellement inférieure à 4% en poids, encore plus préférentiellement inférieure à 2% en poids, sur le poids sec total de la fraction aqueuse.
Avantageusement, la fraction aqueuse comprend entre 5% et 20% en poids de cendres, de préférence entre 7% et 15% en poids de cendres sur le poids sec total de la fraction aqueuse.
En outre, la fraction aqueuse comporte moins de 2% en poids de sédiments insolubles, de préférence moins de 1 % en poids de sédiments insolubles, préférentiellement moins de 0,5% en poids de sédiments insolubles sur le poids total de la fraction aqueuse.
La fraction aqueuse ne comporte pas de chitine.
Similairement à la fraction solide, la fraction aqueuse comporte des protéines solubles dont la taille est suffisamment réduite pour faciliter la digestion des animaux.
Avantageusement, au moins 90%, préférentiellement au moins 95%, plus préférentiellement au moins 97% des protéines solubles de la fraction aqueuse ont une taille inférieure ou égale à 12400 g/mol.
Plus particulièrement, au moins 45%, de préférence au moins 50%, plus préférentiellement au moins 53%, préférentiellement au moins 60% des protéines solubles de la fraction aqueuse ont une taille inférieure à 550 g/mol.
Plus particulièrement, la fraction aqueuse a une teneur en matière sèche comprise entre 5 et 15% en poids sur le poids total de fraction aqueuse.
Lorsqu'elle est concentrée, la fraction aqueuse concentrée a une teneur en matière sèche comprise entre 55 et 75% en poids sur le poids total de fraction aqueuse concentrée.
L'invention concerne également une fraction aqueuse concentrée susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention, ledit procédé de traitement comportant alors l'étape optionnelle de concentration.
L'invention concerne en outre une fraction huileuse susceptible d'être obtenue par le procédé de traitement d'insectes selon l'invention.
L'invention concerne également une poudre susceptible d'être obtenu par le procédé de traitement d'insectes comprenant les étapes suivantes :
- la séparation des cuticules de la partie molle des insectes,
- la séparation de la partie molle des insectes en une fraction huileuse, une fraction solide et une fraction aqueuse,
- optionnellement, la concentration de la fraction aqueuse,
- optionnellement, le mélangeage de la fraction solide avec :
- tout ou partie la fraction aqueuse concentrée ; et/ou
- tout ou partie des cuticules,
pour obtenir un mélange,
- le séchage de la fraction solide ou du mélange pour obtenir une fraction solide sèche ou un mélange sec, respectivement ;
- le broyage de la fraction solide sèche ou du mélange sec.
Ce procédé de traitement d'insectes peut comporter en outre une ou plusieurs des caractéristiques décrites ci-avant.
L'invention concerne plus particulièrement une poudre susceptible d'être obtenu par le procédé de préparation d'une poudre, et notamment d'une poudre d'insectes, selon l'invention, tel que décrit ci-avant.
Comme indiqué ci-avant, selon que les étapes 5 et/ou 6 optionnelles du procédé de traitement d'insectes selon l'invention, à savoir l'étape de concentration de la fraction aqueuse et l'étape de mélangeage de tout ou partie des cuticules et/ou de tout ou partie de la fraction aqueuse concentrée, avec la fraction solide, est/sont ou n'est/ne sont pas mise(s) en œuvre, et le cas échéant selon les conditions de leur mise œuvre, différentes poudres peuvent être obtenues.
L'invention concerne en outre une poudre, et notamment une poudre d'insectes, comprenant au moins 71 % en poids de protéines et entre 0,1 et 4% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de poudre.
De préférence, cette poudre a une teneur en protéines supérieure ou égale à 72% en poids, plus préférentiellement supérieure ou égale à 74% en poids, encore plus préférentiellement supérieure ou égale à 75% en poids, sur le poids sec total de poudre.
Plus particulièrement, cette poudre a une teneur en chitine comprise entre 0,5 et 3% en poids, plus préférentiellement comprise entre 0,8 et 2% en poids, encore plus préférentiellement comprise entre 0,8 et 1 ,7% en poids sur le poids sec total de poudre.
De préférence, cette poudre comprend entre 5 et 20% en poids, de préférence entre 7 et 17% en poids de lipides, sur le poids sec total de poudre.
Plus particulièrement, cette poudre comprend entre 1 et 10% en poids, de préférence entre 2 et 6% en poids de cendres, sur le poids sec total de poudre.
En outre, cette poudre comporte de préférence entre 3 et 20% en poids de glucides sur le poids sec total de poudre.
Plus particulièrement, cette poudre comporte de préférence au moins 0,1 % en poids, plus préférentiellement au moins 0,2% en poids de tréhalose sur le poids sec total de poudre.
Lorsque les étapes 5 et/ou 6 optionnelles n'est/ne sont pas mise(s) en œuvre, une poudre, et notamment une poudre d'insectes, résultant uniquement de la fraction solide est obtenue.
Cette poudre comprend au moins 71 % en poids de protéines et entre 0,1 et 2% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de poudre.
De préférence, cette poudre a une teneur en protéines supérieure ou égale à
72% en poids, plus préférentiellement supérieure ou égale à 74% en poids, encore plus préférentiellement supérieure ou égale à 75% en poids, sur le poids sec total de poudre.
Plus particulièrement, cette poudre a une teneur en chitine comprise entre 0,5 et 1 ,7% en poids de chitine, sur le poids sec total de poudre.
De préférence, cette poudre comprend entre 5 et 17% en poids, de préférence entre 10 et 15% en poids de lipides, sur le poids sec total de poudre.
Plus particulièrement, cette poudre comprend entre 1 et 10% en poids, de préférence entre 2 et 6% en poids de cendres, sur le poids sec total de poudre.
En outre, cette poudre comporte de préférence entre 5 et 15% en poids, plus préférentiellement entre 7 et 13% en poids de glucides sur le poids sec total de poudre.
Plus particulièrement, cette poudre comporte de préférence au moins 0,2% en poids, plus préférentiellement au moins 0,3% en poids, encore plus préférentiellement au moins 0,35% en poids de tréhalose sur le poids sec total de poudre.
Lorsque les étapes 5 et 6 du procédé selon l'invention sont mises en œuvre, une poudre résultant du mélange de la fraction solide, de tout ou partie des cuticules et de tout ou partie de la fraction aqueuse concentrée peut également être obtenue.
L'invention concerne donc en outre une poudre, et notamment une poudre d'insectes, comprenant au moins 65% en poids de protéines, au moins 10% en poids de glucides et entre 0,1 et 2% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de poudre. De préférence, cette poudre a une teneur en protéines supérieure ou égale à 70% en poids, plus préférentiellement supérieure ou égale à 74% en poids, sur le poids sec total de poudre.
Plus particulièrement, cette poudre a une teneur en chitine comprise entre 0,2 et 1 ,5% en poids, plus préférentiellement entre 0,5 et 1 ,3% en poids, sur le poids sec total de poudre.
De préférence, cette poudre a une teneur en glucides supérieure ou égale à 12% en poids, plus préférentiellement supérieure ou égale à 14% en poids, sur le poids sec total de poudre.
Plus particulièrement, cette poudre comporte de préférence au moins 0,7% en poids, plus préférentiellement au moins 0,9% en poids, encore plus préférentiellement au moins 1 % en poids, et encore plus préférentiellement au moins 1 ,2% en poids de tréhalose sur le poids sec total de poudre.
De préférence, cette poudre comprend entre 5 et 15% en poids, de préférence entre 7 et 13% en poids de lipides, sur le poids sec total de poudre.
Plus particulièrement, cette poudre comprend entre 3 et 10% en poids, de préférence entre 4 et 8% en poids de cendres, sur le poids sec total de poudre.
Le taux d'humidité résiduel des poudres selon l'invention est compris entre 2 et 15%, de préférence entre 5 et 10%, plus préférentiellement, entre 4 et 8%. Ce taux d'humidité peut par exemple être déterminé selon la méthode issue du règlement CE 152/2009 du 27-01 -2009 (103 °C I 4 h).
Avantageusement, les protéines des poudres selon l'invention présentent une digestibilité supérieure ou égale à 85% en poids sur le poids total de protéines brutes.
La digestibilité est une digestibilité pepsique mesurée par la méthode décrite dans la directive 72/199/CE.
De préférence, la digestibilité est supérieure ou égale à 88%, plus préférentiellement, supérieure ou égale à 92%.
L'invention concerne en outre l'utilisation d'une fraction aqueuse selon l'invention, d'une fraction aqueuse concentrée selon l'invention, ou de la poudre comprenant au moins 65% de protéines, au moins 10% en poids de glucides et entre 0,1 et 2% en poids de chitine selon l'invention décrite ci-avant, en tant qu'arôme, avantageusement dans l'alimentation animale.
L'invention concerne enfin l'utilisation d'une poudre selon l'invention dans l'alimentation, de préférence dans l'alimentation animale.
D'autres caractéristiques et avantages de l'invention, apparaîtront dans les exemples qui suivent, donnés à titre illustratif, avec référence aux Figures : La Figure 1 est un schéma illustrant le procédé détaillé de traitement d'insectes selon l'invention ;
La Figure 2 comporte deux photographies de la partie molle, d'une part en sortie de réacteur après l'étape de maturation (Fig. A) et d'autre part, après centrifugation pour séparer les phases (Fig. B) ;
La Figure 3 est une courbe étalon utilisée pour effectuer le dosage du tréhalose ;
La Figure 4 est un diagramme illustrant la teneur en humidité de la fraction huileuse obtenue par le procédé selon l'invention et de la fraction huileuse obtenue par des procédés comparatifs ;
La Figure 5 est un diagramme illustrant la teneur en sédiments de la fraction huileuse obtenue par le procédé selon l'invention et de la fraction huileuse obtenue par des procédés comparatifs ;
La Figure 6 est un diagramme illustrant l'indice peroxyde de la fraction huileuse obtenue par le procédé selon l'invention et de la fraction huileuse obtenue par un procédé comparatif ;
La Figure 7 est un diagramme illustrant la teneur en matière sèche de la fraction aqueuse obtenue par le procédé selon l'invention et de la fraction aqueuse obtenue par des procédés comparatifs ;
La Figure 8 est un diagramme illustrant la teneur en sédiments de la fraction aqueuse obtenue par le procédé selon l'invention et de la fraction aqueuse obtenue par un procédé comparatif ;
La Figure 9 est un diagramme illustrant le pourcentage d'émulsion présente dans la fraction aqueuse obtenue par le procédé selon l'invention et dans la fraction aqueuse obtenue par un procédé comparatif ;
La Figure 10 est un diagramme illustrant le pourcentage (en pourcentage de matière sèche) de lipides présents dans la fraction aqueuse obtenue par le procédé selon l'invention et dans la fraction aqueuse obtenue par des procédés comparatifs ;
La Figure 1 1 est un diagramme illustrant la digestibilité pepsique des protéines de la fraction aqueuse obtenue par le procédé selon l'invention et celle des protéines de la fraction aqueuse obtenue par des procédés comparatifs ;
La Figure 12 est un diagramme illustrant la teneur en tréhalose de la fraction aqueuse obtenue par le procédé selon l'invention et de la fraction aqueuse obtenue par des procédés comparatifs ; La Figure 13 comporte trois photographies illustrant la couleur de la fraction aqueuse obtenue par le procédé selon l'invention et celle de la fraction aqueuse obtenue par des procédés comparatifs ;
La Figure 14 est un diagramme illustrant la teneur en tréhalose de la fraction solide obtenue par le procédé selon l'invention et de la fraction solide obtenue par des procédés comparatifs ;
La Figure 15 est un diagramme illustrant le pourcentage de partie soluble dans l'eau de la fraction solide obtenue par le procédé selon l'invention et de la fraction solide obtenue par des procédés comparatifs ;
La Figure 16 est un diagramme illustrant le pourcentage de partie soluble dans la phase mobile de la fraction solide obtenue par le procédé selon l'invention et de la fraction solide obtenue par des procédés comparatifs ; et La Figure 17 est un diagramme illustrant la répartition de la taille des protéines dans la fraction solide obtenue par le procédé selon l'invention et dans la fraction solide obtenue par des procédés comparatifs.
EXEMPLE 1 : Procédé de traitement d'insectes selon l'invention
Des larves de Tenebrio molitor ont été utilisées. A réception des larves, ces dernières peuvent être stockées à 4°C pendant 0 à 15 jours dans leurs bacs d'élevages avant l'abattage sans dégradation majeure. Le poids des larves (âge) utilisées est variable et par conséquent leur composition peut varier, comme cela est illustré dans le Tableau 1 ci-après :
* Les % sont exprimés en poids sec sur le poids humide de larves.
Tableau 1 : Composition biochimique des larves de Tenebrio molitor selon leur poids.
• Etape 1 : Abattage des insectes
Les larves vivantes (+4°C à + 25°C) sont convoyées en couche d'épaisseur comprise entre 2 et 10 cm, sur un tapis à bande perforé (1 mm) jusqu'à une chambre de blanchiment. Les insectes sont ainsi blanchis à la vapeur (buses ou lit de vapeur) à 98 'Ό sous ventilation forcée ou bien à l'eau à 92-95 'Ό (buses d'aspersion) ou en mode mixte (eau + vapeur). Le temps de séjour dans la chambre de blanchiment est compris entre 5 secondes et 15 minutes, idéalement 5 min.
La température des larves en sortie de blanchiment est comprise entre 75^ et
98 <€.
• Etape 2 : Séparation de la partie molle des cuticules des insectes Les larves, une fois blanchies, sont convoyées jusqu'à la trémie d'alimentation d'un séparateur à bande, afin de séparer les cuticules de la partie molle des larves.
Avantageusement, la séparation s'effectue immédiatement après l'abattage de manière à ce que les larves n'aient pas le temps de refroidir à température ambiante.
Le séparateur à bande utilisé est un séparateur à bande 601 de la société Baader.
Le diamètre des perforations du tambour est de 1 ,3 mm.
La partie molle des insectes est récupérée dans une cuve.
Les cuticules sont récupérées à l'aide d'un couteau racleur.
Détermination de la quantité de tréhalose des cuticules
La quantité de tréhalose dans les cuticules récupérées à l'étape 2 a été mesurée de la façon suivante :
Le tréhalose est analysé par GC-MS.
Programme de température : 150 °C, suivi d'une rampe à 10 °C/min jusqu'à 260 'Ό, après 5 minutes à cette température, une rampe de 25 °C/min jusqu'à 310 °C et maintien de cette température pendant 2 minutes. Température de l'injecteur : 280 °C, de l'interface : 250 °C, le ratio de split est de 10, le volume de l'injection est de 1 μ\-. Par exemple, une colonne sH-RXI-5mS, 30 m x 0,25 mm x 0,25 μηι est utilisée.
La préparation de l'échantillon pour analyse est réalisée de façon suivante : une quantité précise de l'échantillon (entre 10 et 300 mg) est pesée dans un tube Falcon, 9.75 mL de méthanol y sont ajoutés ainsi que 250 μί d'une solution de standard interne (myo-inositol, 25 μg mL) dans le DMSO. Le mélange est agité à 80 °C pendant 10 minutes, 100 μ\- de BSTFA sont alors ajoutés et le mélange réactionnel est agité pendant 30 minutes supplémentaires à température ambiante, 1 mL d'acétonitrile est alors ajouté et l'échantillon ainsi préparé injecté sur un appareil de GC-MS.
La quantité mesurée est de 1 ,2 mg de tréhalose par g de matière sèche.
• Etape 3 : Maturation de la partie molle des insectes
La partie molle des insectes est laissé à reposer dans la cuve de récupération de l'étape 2, sous agitation pendant 1 h et à une température d'environ 90°C.
• Etape 4 : Séparation de la partie molle en une fraction solide, une fraction aqueuse et une fraction huileuse
La partie molle est ensuite séparée en trois fractions à l'aide d'un décanteur trois phases. Le décanteur utilisé est le Tricanter® Z23 de chez Flottweg.
Conditions de la séparation :
- Débit : jusqu'à 500Kg/h;
- Vt bol : 4806 t/mm (3000G) ;
- Y min : 5% (1 ,4 t/mm).
Trois fractions sont obtenues à l'issue de cette phase de séparation : une fraction huileuse, une fraction solide, et une fraction aqueuse.
Ces fractions présentent les caractéristiques indiquées dans le Tableau 2 suivant :
* Résultats moyens calculés sur plusieurs échantillons de chacune des fractions, exprimés sur le % de matière sèche
Tableau 2 : Caractéristiques de la fraction huileuse, de la fraction solide et de la fraction aqueuse.
Détermination de la taille des protéines solubles de la fraction solide et de la fraction aqueuse
Préparation de l'échantillon solide (fraction solide) : 30 mg de l'échantillon sont solubilisés dans 1 L de phase mobile et filtrés utilisant le filtre chromafil xtra PES- 45/25.
Préparation de l'échantillon liquide (fraction aqueuse) : 400 μΙ_ sont solubilisés dans 1600 μΙ_ de la phase mobile et filtrés utilisant le filtre Chromafil xtra PES-45/25, juste avant l'injection. 1 ,5 mL de l'échantillon ainsi préparé sont centrifugés pendant 15 min à 12000 rpm (10625 g).
Les conditions de mise en œuvre de la chromatographie (HPLC Nexera XR de Shimadzu) sont les suivantes : la colonne utilisée est une Superdex Peptide GL 10/300 (GE Healthcare), la détection est réalisée par un détecteur DAD à 215 nm, la vitesse de la phase mobile est de 0,3 mL/min et elle est composée de ACN (acétonitrile)/H20/TFA (acide trifluoroacétique) (30/70/0,1 ), l'analyse est réalisée à 25 La distribution de taille des protéines solubles de la fraction solide est présentée ci-dessous :
Poids moléculaire (kDa) %
Tableau 3 : Distribution de la taille des protéines solubles dans la fraction solide La distribution de taille des protéines solubles de la fraction aqueuse est présentée dans le Tableau 4 ci-dessous :
Poids moléculaire (kDa) %
la fraction aqueuse
Détermination de la quantité de tréhalose dans la fraction solide et la fraction aqueuse
La quantité de tréhalose dans ces fractions a été mesurée de la façon suivante :
Le tréhalose est analysé par GC-MS.
Programme de température : 150 °C, suivi d'une rampe à 10 °C/min jusqu'à 260 'Ό, après 5 minutes à cette température, une rampe de 25 <Ό/πΉη jusqu'à 310 °C et maintien de cette température pendant 2 minutes. Température de l'injecteur : 280 °C, de l'interface : 250 °C, le ratio de split est de 10, le volume de l'injection est de 1 μΐ.
La préparation de l'échantillon pour analyse est réalisée de façon suivante : une quantité précise de l'échantillon (entre 10 et 300 mg) est pesée dans un tube Falcon, 9.75 mL de méthanol y sont ajoutés ainsi que 250 μί d'une solution de standard interne (myo-inositol, 25 μοΛηί.) dans le DMSO. Le mélange est agité à 80 °C pendant 10 minutes, 100 μ\- de BSTFA sont alors ajoutés et le mélange réactionnel est agité pendant 30 minutes supplémentaires à température ambiante, 1 mL d'acétonitrile est alors ajouté et l'échantillon ainsi préparé injecté sur un appareil de GC-MS.
La quantité mesurée dans la fraction solide est de 3,82 mg de tréhalose par g de matière sèche.
La quantité mesurée dans la fraction aqueuse est de 33,2 mg de tréhalose par g de matière sèche.
En outre, la fraction aqueuse comporte moins de 1 % en poids de sédiments insolubles sur le poids total de la fraction aqueuse.
• Etape 5 : Concentration de la fraction aqueuse
La fraction aqueuse obtenue à l'étape 4 est ensuite concentrée par évaporation, à l'aide d'un évaporateur à flot tombant.
La fraction aqueuse concentrée obtenue a une concentration en matière sèche d'environ 65%.
• Etape 6 (optionnel): Mélanqeaqe de la fraction aqueuse concentrée et/ou des cuticules avec la fraction solide
L'étape 6 n'a pas été mise en œuvre dans cet Exemple.
• Etape 7 : Séchage de la fraction solide
La fraction solide obtenue à l'étape 4 est séchée à l'aide d'un sécheur à disque de la société Haarslev pendant 5h afin d'obtenir une fraction solide sèche ou un mélange sec.
D'un point de vue microbiologique, la fraction solide comporte moins de 10 UFC/g d'entérobactéries.
· Etape 8 : Broyage
La fraction solide sèche est enfin broyée à l'aide d'un broyeur à marteau continu (6 mobiles réversibles - épaisseur 8 mm). Le broyeur est alimenté par une trémie avec trappe de réglage de débit (180kg/h). La grille perforée utilisée pour contrôler la granulométrie en sortie est de 0,8 mm. La vitesse de rotation du moteur est de 3000tr/min (motorisation électrique, puissance absorbée 4kW (5,5 CV)).
Les caractéristiques d'une poudre d'insectes obtenue sont présentées dans le Tableau 5 ci-après.
* Les pourcentages indiqués sont des pourcentages en poids sur le poids sec total de la poudre d'insectes.
Tableau 5 : Caractéristiques d'une poudre d'insectes obtenue dans l'Exemple 1.
EXEMPLE 2 : Procédé de traitement d'insectes selon l'invention
Les étapes 1 à 5 ont été mises en œuvre tel que cela est décrit dans l'Exemple
1 .
• Etape 6 (optionnel): Mélanqeaqe de la fraction aqueuse concentrée et des cuticules avec la fraction solide
La totalité (100%) de la fraction aqueuse concentrée obtenue à l'étape 5, ainsi que 0,05% en poids des cuticules récupérées à l'étape 2 ont été mélangés à la totalité de la fraction solide obtenue à l'étape 4, pour obtenir un mélange.
Un mélangeur à vis conique de la société Vrieco-Nauta® a été utilisé.
• Etape 7 : Séchage du mélange
Le mélange obtenu à l'étape 6 est séché à l'aide d'un sécheur à disque de la société Haarslev pendant 5h afin d'obtenir un mélange sec.
D'un point de vue microbiologique, le mélange sec comporte moins de 10 UFC/g d'entérobactéries.
• Etape 8 : Broyage
Le mélange sec est enfin broyé à l'aide d'un broyeur à marteau continu (6 mobiles réversibles - épaisseur 8 mm). Le broyeur est alimenté par une trémie avec trappe de réglage de débit (180kg/h). La grille perforée utilisée pour contrôler la granulométrie en sortie est de 0,8 mm. La vitesse de rotation du moteur est de 3000tr/min (motorisation électrique, puissance absorbée 4kW (5,5 CV)).
Les caractéristiques d'une poudre d'insectes obtenue sont présentées dans le Tableau 6 ci-après.
* Les pourcentages indiqués sont des pourcentages en poids sur le poids sec total de la poudre d'insectes.
Tableau 6 : Caractéristiques de la poudre d'insectes obtenue dans l'Exemple 2. EXEMPLE 3 : Procédé selon l'invention et procédés comparatifs
I. Préparation des échantillons
Le procédé selon l'invention de transformation de pulpe de larves de Tenebrio molitor en huile (fraction huileuse ou « TMO » pour Tenebrio Molitor Oil), en phase aqueuse (fraction aqueuse ou « SW » pour Stick Water) et en protéines solides (fraction solide ou « SPC » pour Solid Protein Cake) et un procédé comparatif ont été reproduits.
L'objectif est de comparer la qualité des produits obtenus par les 2 procédés.
1. Procédé selon l'invention
Les larves sont dans un premier temps abattues par blanchiment (étuvage) puis les cuticules des larves sont séparées de la partie molle (« décutilées ») au travers d'un séparateur à bandes de la marque Baader.
8 kg de partie molle résultant de l'étape de séparation est alors envoyée pour maturation dans un réacteur pilote d'une capacité de 10 litres, ledit réacteur étant préalablement chauffé à 50 °C, sous agitation mécanique à 350 tours/min afin de garantir une homogénéisation au cœur de la partie molle. Après une montée progressive en température de la partie molle, la température est directement régulée dans la masse de celle-ci à 90 'C. Après une heure de chauffage à 90 'C, le réacteur est vidé. La partie molle chauffée est ensuite séparée. L'utilisation d'un tricanteur n'étant pas possible à l'échelle du laboratoire, la partie molle est centrifugée à 10000 g pendant 15 minutes afin de séparer les différentes phases obtenues (voir Figure 2). Chaque phase (TMO, SW et SPC) est collectée manuellement et stockée à -20 <C dans l'attente des analyses physico-chimiques.
2. Procédé comparatif
8 kg de partie molle résultant de l'étape de séparation sont utilisés. Cette partie molle provenait du même lot de partie molle que celui utilisé pour le procédé selon l'invention.
Le procédé comparatif diffère de celui selon l'invention par deux étapes :
- à l'issue de la séparation, une étape additionnelle de coagulation de la partie molle est effectuée à partir de 4 kg de partie molle, dans un réacteur pilote, sous agitation (350 tours/min) avec une température des parois du réacteur fixée à 100 °C pendant 20 minutes ; puis
- la partie molle est diluée par ajout d'eau et chauffée. Deux dilutions de la partie molle ont été réalisées pour ces essais, 1 : 0,5 (m/m, masse/masse) et 1 : 0, 75 (m/m). Concrètement, un volume d'eau à 50 °C (2 litres ou 3 litres en fonction de la dilution) est ajouté dans le réacteur pilote. La régulation de la température dans la masse de pulpe est effectuée à 90 °C pendant une heure puis le réacteur est vidé. La partie molle diluée est alors centrifugée dans les mêmes conditions que précédemment et les 3 phases collectées et stockées à - 20 °C dans l'attente des analyses physicochimiques.
II. Analyses des échantillons
Détermination de la matière sèche des échantillons
La matière sèche des TMO, SW et SPC est déterminée par séchage jusqu'à masse constante à 105 °C selon la norme ISO 6496. La différence de masse du produit avant et après séchage sert de mesure pour la teneur en matière sèche. Ces teneurs sont exprimées en pourcentage de masse. La teneur en humidité est obtenue par soustraction de la matière sèche à la valeur 100.
Détermination de l'indice de peroxyde dans du TMO
L'indice de peroxyde est déterminé selon la norme française NF EN ISO 3960 (juin 2010) et exprimé en MEQ d'oxygène actif/kg d'huile.
Teneur en sédiments du TMO et de la SW
Le filtre utilisé est un tamis en inox de pores 50 μηι, préalablement taré. La quantification des sédiments est effectuée après passage de 300 mL de TMO ou de 750 mL de SW (750 mL) par pesées des résidus dans le tamis.
Dans le cas de la SW, la matière sèche des sédiments est alors déterminée comme décrite précédemment.
Evaluation de l'émulsion dans la SW
L'évaluation de l'émulsion dans la SW est effectuée après centrifugation de 50 mL de SW collectée. La collecte de l'émulsion (surnageant) est réalisée après avoir placé les tubes à -20 ° pour faciliter la séparation. L'émulsion est alors pesée et le résultat est exprimé en pourcentage d'émulsion dans le stick water.
Détermination de la matière grasse dans la SW
La détermination de la matière grasse ou lipides dans les échantillons de SW est effectuée par extraction à l'éther de pétrole après hydrolyse selon le règlement CE 152/2009. La quantité de lipides est rapportée à la matière sèche de l'échantillon considéré (SW ou SPC).
Détermination de la digestibilité pepsique de la SW
La digestibilité pepsique est déterminée sur la SW d'après la directive 72/199/CE, sans dégraissage.
Dosage du tréhalose dans la SW et le SPC
Le tréhalose est déterminé dans la SW et le SPC après leur lyophilisation. 40 mg d'échantillon sec sont extraits à l'aide de 2 mL de DMSO pendant 1 heure, sous agitation à 80 °C. 250 μί de l'extrait sont alors mélangés à 50 μί de myo-inositol, utilisé comme étalon interne (1 g/L dans le DMSO). Après homogénéisation, 100 μΙ_ de ce mélange est dérivé avec 100 μΙ_ de BSTFA-TMCS (99 : 1 ) directement dans le vial GC-MS pendant 30 minutes à 60 °C. Avant injection, 600 μΙ_ d'acétonitrile sont ajoutés au vial GC-MS. Les résultats sont exprimés en mg de tréhalose/g sec à l'aide d'une gamme étalon de tréhalose effectuée dans les mêmes conditions (Fig. 3).
Les extraits dérivés et les différents points de gamme étalon sont analysés sur une GC-MS-QP2010 de Shimadzu. La colonne utilisée est une colonne SH-Rxi 5 ms (Schimadzu) de longueur 30 m, de diamètre 0,25 mm et de finesse 0,25 μ. Le programme de température de la GC-MS est le suivant : 100 °C, suivi d'une rampe à 10 °C/min jusqu'à 300 °C maintenus pendant 2 min.
La température de l'injecteur est de 280 °C, celle de l'interface est de 250 °C, le ratio de split est de 10, le volume de l'injection est de 1 μί. La détection est effectuée en mode SIM (Selected Ion monitoring) avec les m/z spécifiques de 305 pour le myo- inositol et de 361 pour le tréhalose.
Mesure de la couleur de la SW lyophilisée
La couleur a été comparée à un nuancier (Nuancier RAL Classic K7) et caractérisée par le code couleur de ce nuancier.
Détermination de la fraction soluble du SPC
Les expériences ont été réalisées à partir des SPC lyophilisés. 1 g d'échantillon est pesé (m,) dans un tube de 50 mL préalablement taré. 30 mL d'eau à température ambiante sont ajoutés et le tube est agité (vortex) plusieurs minutes. Après centrifugation, le liquide surnageant est retiré et un second lavage avec 30 mL d'eau est effectué dans les mêmes conditions que le premier. Après avoir retiré le surnageant, le culot de SPC lavé est placé à l'étuve à 60 °C pendant 48 heures puis pesé. Un contrôle (SPC non lavé) est également placé dans l'étuve pour déterminer le pourcentage de matière sèche réelle et corriger la pesée initiale d'échantillons avant lavage (%MS).
Le pourcentage de soluble est déterminé comme :
(mi x %MS) - mSPC lavé sec
mi x %MS
Détermination de la taille des protéines solubles du SPC
La taille des protéines solubles des SPC est déterminée par chromatographie d'exclusion stérique.
40 mg d'échantillon lyophilisé sont solubilisés dans la phase mobile composée d'acétonitrile/H20/TFA (acide trifluoroacétique) (30/70/0,1 ) afin d'atteindre une concentration de 30 mg/mL et filtrés à 45 μηι après centrifugation en utilisant le filtre chromafil xtra PES-45/25. En parallèle, la solubilité des SW et SPC secs dans la phase mobile est déterminée après séchage des résidus de centrifugation à l'étuve.
Les conditions de mise en œuvre de la chromatographie réalisée sur une chaîne HPLC Nexera XR de Shimadzu sont les suivantes : la colonne utilisée est une Superdex Peptide GL 10/300 (GE Healthcare), la détection est réalisée par un détecteur DAD à 215 nm, la vitesse de la phase mobile (mode isocratique) est de 0,3 mL/min. Elle est composée d'un mélange acétonitrile/H20/TFA (acide trifluoroacétique) (30/70/0,1 ), l'analyse est réalisée à 25 °C.
Pour déterminer la distribution des masses moléculaires, quatre protéines « standard » de masse moléculaire connue ont d'abord été injectées afin de définir des intervalles de temps de rétention correspondant à différentes masses moléculaires. Pour analyser la distribution moléculaire des échantillons, l'aire totale du chromatogramme est d'abord intégrée à 215 nm puis séparée en fractions correspondant aux cinq catégories de masses moléculaires. Les résultats sont exprimés en pourcentage de protéines solubles par catégories de taille moléculaire.
La détermination de la partie soluble dans la phase mobile est obtenue de manière analogue à celle dans l'eau, mais à 25% (température de l'analyse).
III. Résultats
1. Fraction huileuse
Les résultats pour la fraction huileuse sont présentés en Figure 4, 5 et 6.
Les Figures 4 et 5 relatives à la teneur en humidité et à la teneur en sédiments mettent en évidence que la séparation de la fraction huileuse est notablement meilleure dans le procédé selon l'invention. En effet, on constate sur ces Figures une plus forte teneur en humidité et en sédiments dans la fraction huileuse selon le procédé comparatif. Ce résultat est inattendu car il est bien connu de l'homme de l'art que l'augmentation d'une phase et/ou le chauffage permet usuellement d'améliorer la séparation des phases d'un milieu complexe.
Par ailleurs, sur la Figure 6, on constate que l'indice peroxyde de la phase huileuse obtenue par le procédé selon l'invention est inférieur à celui de la phase huileuse obtenue par le procédé comparatif. La phase huileuse obtenue par le procédé selon l'invention présente donc une meilleure capacité de conservation. Ceci est particulièrement avantageux car cela permet d'éviter ou de diminuer l'ajout de conservateur tel que des antioxydants. 2. Fraction aqueuse
Les résultats pour la fraction huileuse sont présentés en Figures 7 à 13.
Sur la Figure 7, on constate une plus faible teneur en humidité pour la fraction aqueuse obtenue par le procédé selon l'invention. Du fait de la dilution, la teneur en matière sèche est moins importante dans le procédé comparatif, ce qui nécessite par conséquent des équipement plus importants pour récupérer la partie (matière sèche) qui présente un intérêt et une utilisation plus intense en termes de consommation d'énergie et de consommation d'eau notamment.
Les Figures 8 à 10 relatives à la teneur en sédiments, à la teneur en émulsion et à la teneur en lipides mettent en évidence que la séparation de la fraction aqueuse est notablement meilleure dans le procédé selon l'invention. En effet, on constate sur ces Figures une plus forte teneur en sédiments, en émulsion et en lipides dans la fraction huileuse selon le procédé comparatif. Ce résultat est inattendu car il est bien connu de l'homme de l'art que l'augmentation d'une phase et/ou le chauffage permet usuellement d'améliorer la séparation des phases d'un milieu complexe.
On constate également que :
- sur la Figure 1 1 , la digestibilité pepsique des protéines de la fraction aqueuse obtenue par le procédé selon l'invention est meilleure que celle obtenue par le procédé comparatif ; et
- sur la Figure 12, la teneur en tréhalose de la fraction aqueuse obtenue par le procédé selon l'invention est meilleure que celle obtenue par le procédé comparatif.
La présence de tréhalose est intéressante car le tréhalose a la capacité de stabiliser les protéines et est, de ce fait, considéré comme un conservateur biologique naturel.
Enfin, la Figure 13 propose 3 photographies de la fraction aqueuse obtenue soit par le procédé selon l'invention, soit par le procédé comparatif, et lyophilisée. La fraction aqueuse obtenue par le procédé selon l'invention a une couleur notablement plus clair. Il ressort donc de ces figures qu'un produit différent est obtenu par le procédé selon l'invention. Cette différence de couleur peut potentiellement s'expliquer par la réaction de Maillard qui peut avoir lieu lors des étapes de coagulation et de chauffage en milieu aqueux qui sont effectuées dans le procédé comparatif. Lors de la réaction de Maillard, les protéines de faibles tailles présentes dans le milieu sont plus susceptibles de réagir, réduisant ainsi la teneur du milieu en protéines de faibles tailles. Ceci peut notamment avoir pour conséquence une diminution de la digestibilité de la fraction aqueuse. 3. Fraction solide
Les résultats pour la fraction solide sont présentés en Figures 14 à 17.
Sur la Figure 14, on peut constater que la teneur en tréhalose de la fraction solide obtenue par le procédé selon l'invention est meilleure que celle obtenue par le procédé comparatif.
Sur la Figure 15, on peut constater que la teneur en partie soluble de la fraction solide obtenue par le procédé selon l'invention est meilleure que celle obtenue par le procédé comparatif. Il est intéressant de disposer d'une teneur importante en partie soluble car la partie soluble facilite la formulation des aliments et confère une meilleure biodisponibilité, notamment en libérant les protéines de plus petite taille.
Sur les Figures 16 et 17, il est mis en évidence que la teneur en petite protéines, à savoir des protéines inférieures à 550Da est plus importante dans la fraction solide obtenue par le procédé selon l'invention que dans celle obtenue par le procédé comparatif.
On peut ainsi constater que les protéines de petite taille sont mieux préservées par le procédé selon l'invention. Cela se traduit par une plus forte solubilité dans l'eau ou la phase mobile et par une proportion plus importante de protéines de petites tailles dans cette fraction solide, le procédé comparatif ayant vraisemblablement contribué à la destruction de ces produits lors des phases de coagulation et de chauffage.
4. Consommation d'énergie
Enfin, des calculs de consommation d'énergie ont été effectués afin de comparer le procédé selon l'invention avec les deux procédés comparatifs.
Le procédé comparatif à une dilution 1 :0,5 engendre un coût 19,8 fois supérieur à celui du procédé selon l'invention et le procédé comparatif à une dilution 1 :0,75 engendre un coût 20,2 fois supérieur à celui du procédé selon l'invention.

Claims

REVENDICATIONS
Procédé de traitement d'insectes comprenant :
- une étape de séparation des cuticules de la partie molle des insectes, dans lequel la séparation est effectuée à l'aide d'un séparateur à bande, et
- une étape de maturation de la partie molle des insectes, ladite étape étant effectuée sans aucune dilution de la partie molle des insectes dans un solvant.
Procédé selon l'une des revendications 1 , comprenant une étape de séparation de la partie molle des insectes en une fraction huileuse, une fraction solide et une fraction aqueuse.
Fraction solide susceptible d'être obtenue par le procédé selon la revendication 2.
Fraction solide comprenant au moins 71 % en poids de protéines et comprenant entre 0,1 et 2% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de la fraction solide.
Procédé selon la revendication 2, comprenant une étape de concentration de la fraction aqueuse.
Fraction aqueuse susceptible d'être obtenue par le procédé selon l'une des revendications 2 ou 5.
Fraction aqueuse comprenant au moins 48% en poids de protéines, au moins 2% en poids de tréhalose, et présentant une teneur en lipides inférieure à 7% en poids, les pourcentages en poids étant indiqués sur le poids sec total de la fraction aqueuse.
Procédé selon l'une des revendications 2 ou 5 comprenant en outre une étape de mélangeage de la fraction solide avec :
- tout ou partie la fraction aqueuse concentrée ; et/ou
- tout ou partie des cuticules,
pour obtenir un mélange.
9. Procédé selon l'une des revendications 2 ou 8, comprenant une étape de séchage de la fraction solide ou du mélange pour obtenir une fraction solide sèche ou un mélange sec, respectivement.
10. Procédé selon la revendication 9, comprenant en outre une étape de broyage de la fraction solide sèche ou du mélange sec.
1 1 . Poudre susceptible d'être obtenue par le procédé selon la revendication 10.
12. Poudre comprenant au moins 71 % en poids de protéines et comprenant entre 0,1 et 4% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de poudre.
13. Poudre comprenant au moins 65% en poids de protéines, au moins 10% en poids de glucides et comprenant entre 0,1 et 2% en poids de chitine, les pourcentages en poids étant indiqués sur le poids sec total de poudre.
14. Utilisation d'une fraction aqueuse selon l'une des revendications 6 ou 7, ou de la poudre selon la revendication 13, en tant qu'arôme.
15. Utilisation d'une poudre selon l'une quelconque des revendications 1 1 à 13, dans l'alimentation.
16. Utilisation selon l'une des revendications 14 ou 15, dans l'alimentation animale.
EP17825882.8A 2016-12-28 2017-12-28 Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande Withdrawn EP3562318A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1663477A FR3060946B1 (fr) 2016-12-28 2016-12-28 Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande
PCT/FR2017/050553 WO2018122475A1 (fr) 2016-12-28 2017-03-10 Procédé de traitement d'insectes comprenant la séparation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande
PCT/EP2017/084775 WO2018122353A1 (fr) 2016-12-28 2017-12-28 Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande

Publications (1)

Publication Number Publication Date
EP3562318A1 true EP3562318A1 (fr) 2019-11-06

Family

ID=58464588

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17715222.0A Pending EP3562315A1 (fr) 2016-12-28 2017-03-10 Procédé de traitement d'insectes comprenant la séparation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande
EP17825882.8A Withdrawn EP3562318A1 (fr) 2016-12-28 2017-12-28 Procede de traitement d'insectes comprenant la separation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17715222.0A Pending EP3562315A1 (fr) 2016-12-28 2017-03-10 Procédé de traitement d'insectes comprenant la séparation des cuticules de la partie molle des insectes a l'aide d'un separateur a bande

Country Status (13)

Country Link
US (2) US20190335788A1 (fr)
EP (2) EP3562315A1 (fr)
JP (2) JP2020504618A (fr)
KR (2) KR20190099295A (fr)
CN (2) CN110099572A (fr)
AU (2) AU2017387971A1 (fr)
BR (2) BR112019013450A2 (fr)
CA (2) CA3047485A1 (fr)
CO (2) CO2019007201A2 (fr)
EA (1) EA201991589A1 (fr)
FR (1) FR3060946B1 (fr)
MX (1) MX2019007885A (fr)
WO (1) WO2018122475A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096873B1 (fr) 2019-06-05 2021-06-25 Yann Didelot Procédé de préparation de chair de crabes
KR102393124B1 (ko) * 2021-01-13 2022-05-03 농업회사법인 (주)한국유용곤충연구소 동애등에와 곤충키틴을 포함하는 발효 곤충사료첨가제의 제조방법 및 그에 따라 제조된 발효 곤충사료첨가제

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2670245A1 (fr) * 2009-06-25 2010-12-25 James Haythornthwaite Mecanisme d'alignement pour separateur d'aliments
DE202010001849U1 (de) * 2010-01-30 2010-05-20 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Vorrichtung zum Trennen von miteinander vermischten Stoffen unterschiedlicher Fließfähigkeit
CN102558387A (zh) * 2010-12-13 2012-07-11 青岛中仁药业有限公司 一种从蝇蛆中提取甲壳素和抗菌肽的方法
FR2975706B1 (fr) * 2011-05-26 2017-07-21 Ifremer (Institut Francais De Rech Pour L'exploitation De La Mer) Extraction de chitines en une seule etape par hydrolyse enzymatique en milieu acide
CN102578390A (zh) * 2012-02-17 2012-07-18 郎影菲 一种禽畜饲料用昆虫添加剂及应用
NL2010268C2 (en) * 2013-02-07 2014-08-11 Protix Biosystems B V Method to convert insects or worms into nutrient streams and compositions obtained thereby.
MX2016006081A (es) * 2013-11-11 2016-11-23 T Dossey Aaron Productos de insectos y metodos para fabricarlos y utilizarlos.
DK3240905T3 (da) 2014-12-31 2019-07-08 Ynsect Billepulver
EP3078277A1 (fr) * 2015-03-12 2016-10-12 Krauß, Stefan Procédé pour la fabrication de poudre d'insectes

Also Published As

Publication number Publication date
MX2019007885A (es) 2019-09-06
FR3060946B1 (fr) 2021-12-31
AU2017387971A1 (en) 2019-07-18
CA3047514A1 (fr) 2018-07-05
FR3060946A1 (fr) 2018-06-29
CO2019007197A2 (es) 2019-07-31
CA3047485A1 (fr) 2018-07-05
KR20190099295A (ko) 2019-08-26
CN110087479A (zh) 2019-08-02
US20200154731A1 (en) 2020-05-21
RU2019123579A3 (fr) 2021-01-29
JP2020504618A (ja) 2020-02-13
EP3562315A1 (fr) 2019-11-06
RU2019123579A (ru) 2021-01-29
JP2020518230A (ja) 2020-06-25
BR112019013505A2 (pt) 2020-01-07
CO2019007201A2 (es) 2019-08-20
US20190335788A1 (en) 2019-11-07
BR112019013450A2 (pt) 2019-12-31
EA201991589A1 (ru) 2019-11-29
AU2017385713A1 (en) 2019-07-18
KR20190099296A (ko) 2019-08-26
WO2018122475A1 (fr) 2018-07-05
CN110099572A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
EP3562317A1 (fr) Procede de traitement d&#39;insectes comprenant la separation des cuticules de la partie molle des insectes puis la separation de la partie molle en trois fractions
EP3562318A1 (fr) Procede de traitement d&#39;insectes comprenant la separation des cuticules de la partie molle des insectes a l&#39;aide d&#39;un separateur a bande
EP3724237A1 (fr) Chitine et procédé d&#39;obtention de chitine et/ou chitosan par voie chimique
EP3724234A1 (fr) Chitine et procédé d&#39;obtention de chitine et/ou chitosan par voie enzymo-chimique
WO2018122353A1 (fr) Procede de traitement d&#39;insectes comprenant la separation des cuticules de la partie molle des insectes a l&#39;aide d&#39;un separateur a bande
WO2018122352A1 (fr) Procede de traitement d&#39;insectes comprenant la separation des cuticules de la partie molle des insectes puis la separation de la partie molle en trois fractions
WO2020074844A1 (fr) Poudre d&#39;insectes pour eviter une deformation squelettique d&#39;un poisson et/ou renforcer la solidite d&#39;une arete de poisson pendant l&#39;elevage
US11998029B2 (en) Method for treating insects, in which the cuticles are separated from the soft part of the insects, and the soft part is then separated into three fractions
RU2790403C2 (ru) Способ обработки насекомых, включающий отделение кутикулы от мягкой части насекомых с помощью ленточного сепаратора с последующим разделение мягкой части на три фракции
RU2775236C2 (ru) Способ обработки насекомых, включающий отделение кутикулы от мягкой части насекомых с помощью ленточного сепаратора
EA045208B1 (ru) Твердая фракция для питания, полученная из насекомых
FR3089759A1 (fr) Extrait hydrosoluble et procédé d’obtention à partir de cuticules d’insectes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211201