EP3555242B1 - Additif destiné à améliorer la stabilité thermique de carburants - Google Patents

Additif destiné à améliorer la stabilité thermique de carburants Download PDF

Info

Publication number
EP3555242B1
EP3555242B1 EP17808517.1A EP17808517A EP3555242B1 EP 3555242 B1 EP3555242 B1 EP 3555242B1 EP 17808517 A EP17808517 A EP 17808517A EP 3555242 B1 EP3555242 B1 EP 3555242B1
Authority
EP
European Patent Office
Prior art keywords
acid
use according
carbon atoms
vinyl
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17808517.1A
Other languages
German (de)
English (en)
Other versions
EP3555242A1 (fr
Inventor
Maxim Peretolchin
Ivette Garcia Castro
Aaron FLORES-FIGUEROA
Harald Boehnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP3555242A1 publication Critical patent/EP3555242A1/fr
Application granted granted Critical
Publication of EP3555242B1 publication Critical patent/EP3555242B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2362Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing nitrile groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2368Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the present invention relates to the use of certain polymers.
  • thermal or oxidation stability measured as text according to DIN EN 15751, of at least 20 hours is required.
  • renewable raw materials in particular fatty acid methyl esters (FAME)
  • FAME fatty acid methyl esters
  • the fuel decomposes at points where the fuel is exposed to oxygen and / or increased temperature, often catalyzed by metal surfaces. Such conditions often exist within the injection system, where elevated temperatures of up to 100 ° C and higher can be reached.
  • injection system is understood to mean that part of the fuel system in motor vehicles from the fuel pump up to and including the injector outlet.
  • fuel system is understood to mean the components of motor vehicles that are in contact with the respective fuel, preferably the area from the tank up to and including the injector outlet.
  • the present invention is based on the object of providing additives for use in modern diesel and gasoline fuels which increase the stability of the fuels, particularly of biofuels.
  • copolymers are distinguished in particular by the fact that they act against oxidation and / or thermal stress on fuels, which cause a wide variety of deposits in the fuel and / or injection system that impair the performance of modern diesel engines.
  • the monomer (A) is at least one, preferably one to three, particularly preferably one or two and very particularly preferably exactly one ethylenically unsaturated, preferably ⁇ , ⁇ - ethylenically unsaturated mono- or dicarboxylic acid or derivatives thereof, preferably a dicarboxylic acid or their derivatives, particularly preferably the anhydride of a dicarboxylic acid, very particularly preferably maleic anhydride.
  • the derivatives are preferably anhydrides in monomeric form or di-C 1 -C 4 -alkyl esters, particularly preferably anhydrides in monomeric form.
  • C 1 -C 4 -alkyl is understood to mean methyl, ethyl, iso -propyl, n-propyl, n-butyl, iso- butyl, sec- butyl and tert -butyl, preferably methyl and ethyl, particularly preferably methyl.
  • the ⁇ , ⁇ - ethylenically unsaturated mono- or dicarboxylic acids are those mono- or dicarboxylic acids or their derivatives in which the carboxyl group or in the case of dicarboxylic acids at least one carboxyl group, preferably both carboxyl groups, are conjugated with the ethylenically unsaturated double bond.
  • Examples of ethylenically unsaturated mono- or dicarboxylic acids that are not ⁇ , ⁇ -ethylenically unsaturated are cis-5-norbornene-endo-2,3-dicarboxylic acid anhydride, exo-3,6-epoxy-1,2,3,6- tetrahydrophthalic anhydride and cis-4-cyclohexene-1,2-dicarboxylic acid anhydride.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids are acrylic acid, methacrylic acid, crotonic acid and ethyl acrylic acid, preferably acrylic acid and methacrylic acid, referred to as (meth) acrylic acid for short in this document, and particularly preferably acrylic acid.
  • Particularly preferred derivatives of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids are methyl acrylate, ethyl acrylate, n-butyl acrylate and methyl methacrylate.
  • dicarboxylic acids examples include maleic acid, fumaric acid, itaconic acid (2-methylenebutanedioic acid), citraconic acid (2-methylmaleic acid), glutaconic acid (pent-2-ene-1,5-dicarboxylic acid), 2,3-dimethylmaleic acid, 2-methylfumaric acid, 2,3 Dimethylfumaric acid, methylenemalonic acid and tetrahydrophthalic acid, preferably maleic acid and fumaric acid and particularly preferably maleic acid and its derivatives.
  • the monomer (A) is maleic anhydride.
  • the monomer (B) is at least one, preferably one to four, particularly preferably one to three, very particularly preferably one or two and in particular exactly one ⁇ -olefin having from at least 12 up to and including 30 carbon atoms.
  • the ⁇ -olefins (B) preferably have at least 14, particularly preferably at least 16 and very particularly preferably at least 18 carbon atoms.
  • the ⁇ -olefins (B) preferably have up to and including 28, particularly preferably up to and including 26, and very particularly preferably up to and including 24 carbon atoms.
  • the ⁇ -olefins can preferably be linear or branched, preferably linear 1-alkenes.
  • Examples of these are 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonodecene, 1-eicoses, 1-docoses, 1-tetracoses, 1-hexa , of which 1-octadecene, 1-eicoses, 1-docoses and 1-tetracoses, and mixtures thereof are preferred.
  • ⁇ -olefins (B) are those olefins which are oligomers or polymers of C 2 to C 12 olefins, preferably of C 3 to C 10 olefins, particularly preferably of C 4 to C 6 olefins.
  • Examples are ethene, propene, 1-butene, 2-butene, isobutene, pentene isomers and hexene isomers; preference is given to ethene, propene, 1-butene, 2-butene and isobutene.
  • ⁇ -olefins (B) are oligomers and polymers of propene, 1-butene, 2-butene, isobutene, and mixtures thereof, especially oligomers and polymers of propene or isobutene or mixtures of 1-butene and 2-butene.
  • the oligomers the trimers, tetramers, pentamers and hexamers and mixtures thereof are preferred.
  • the olefins (C) may be olefins with a terminal ( ⁇ ) double bond or those with a non-terminal double bond, preferably with an ⁇ double bond.
  • the olefin (C) is preferably olefins having 4 to fewer than 12 or more than 30 carbon atoms. If the olefin (C) is an olefin having 12 to 30 carbon atoms, this olefin (C) does not have a double bond in the ⁇ position.
  • Examples of aliphatic olefins (C) are 1-butene, 2-butene, isobutene, pentene isomers, hexene isomers, heptene isomers, octene isomers, nonene isomers, decene isomers, undecene isomers and mixtures thereof .
  • cycloaliphatic olefins are cyclopentene, cyclohexene, cyclooctene, cyclodecene, cyclododecene, ⁇ - or ⁇ -pinene and mixtures thereof, limonene and norbornene.
  • olefins (C) are polymers containing more than 30 carbon atoms of propene, 1-butene, 2-butene or isobutene or olefin mixtures containing such, preferably of isobutene or olefin mixtures containing such, particularly preferably having an average molecular weight M. w in the range from 500 to 5000 g / mol, preferably 650 to 3000, particularly preferably 800 to 1500 g / mol.
  • the oligomers or polymers containing isobutene in copolymerized form preferably have a high content of terminally arranged ethylenic double bonds ( ⁇ double bonds), for example at least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol% and very particularly preferably at least 80 mol%.
  • C4 raffinates in particular “raffinate 1”
  • C4 cuts from isobutane are suitable as isobutene sources for the preparation of such oligomers or polymers containing isobutene in copolymerized form -Dehydrogenation
  • a C4 hydrocarbon stream from an FCC refinery unit is also known as a "b / b" stream.
  • Suitable isobutene-containing C4 hydrocarbon streams are, for example, the product stream of a propylene-isobutane co-oxidation or the product stream from a metathesis unit, which are usually used after conventional purification and / or concentration.
  • Suitable C4 hydrocarbon streams generally contain less than 500 ppm, preferably less than 200 ppm, butadiene.
  • the presence of 1-butene and of cis- and trans-2-butene is largely uncritical.
  • the isobutene concentration in the said C4 hydrocarbon streams is typically in the range from 40 to 60% by weight.
  • raffinate 1 generally consists essentially of 30 to 50% by weight isobutene, 10 to 50% by weight 1-butene, 10 to 40% by weight cis- and trans-2-butene and 2 to 35% by weight % Butanes;
  • the undisplayed butenes in raffinate 1 are generally practically inert and only the isobutene is polymerized.
  • a technical C4 hydrocarbon stream with an isobutene content of 1 to 100% by weight is used as the monomer source for the polymerization, in particular from 1 to 99% by weight, above all from 1 to 90% by weight, particularly preferably from 30 to 60% by weight, in particular a raffinate 1 stream, a b / b stream from an FCC refinery unit , a product stream from a propylene-isobutane co-oxidation or a product stream from a metathesis unit.
  • the use of water as the sole initiator or as a further initiator has proven useful, especially when at temperatures from -20 ° C to + 30 ° C, in particular from 0 ° C to + 20 ° C, polymerized.
  • temperatures from -20 ° C. to + 30 ° C., in particular from 0 ° C. to + 20 ° C. it is also possible, however, to dispense with the use of an initiator when using a raffinate 1 stream as the isobutene source.
  • the isobutene-containing monomer mixture mentioned can contain small amounts of contaminants such as water, carboxylic acids or mineral acids without there being any critical loss of yield or selectivity. It is expedient to avoid an accumulation of these impurities by removing such pollutants from the isobutene-containing monomer mixture, for example by adsorption on solid adsorbents such as activated carbon, molecular sieves or ion exchangers.
  • the monomer mixture preferably contains at least 5% by weight, particularly preferably at least 10% by weight and in particular at least 20% by weight isobutene, and preferably at most 95% by weight, especially preferably at most 90% by weight and in particular at most 80% by weight comonomers.
  • the mixture of olefins (B) and optionally (C), averaged over their amounts of substance has at least 12 carbon atoms, preferably at least 14, particularly preferably at least 16 and very particularly preferably at least 17 carbon atoms.
  • the upper limit is less relevant and is generally not more than 60 carbon atoms, preferably not more than 55, particularly preferably not more than 50, very particularly preferably not more than 45 and in particular not more than 40 carbon atoms.
  • vinyl esters (Da) are vinyl esters of C 2 to C 12 carboxylic acids, preferably vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pentanoate, vinyl hexanoate, vinyl octanoate, vinyl 2-ethylhexanoate, vinyl decanoate, and vinyl esters of Versatic acids 5 to 10, preferably Vinyl ester of 2,2-dimethylpropionic acid (pivalic acid, Versatic acid 5), 2,2-dimethylbutyric acid (neohexanoic acid, Versatic acid 6), 2,2-dimethylpentanoic acid (neoheptanoic acid, Versatic acid 7), 2,2-dimethylhexanoic acid ( Neooctanoic acid, Versatic acid 8), 2,2-dimethylheptanoic acid (neononanoic acid, Versatic acid 9) or 2,2-dimethyloctanoic acid (neodecanoic acid, Versatic acid 10).
  • vinyl ethers (Db) are vinyl ethers of C 1 - to C 12 alkanols, preferably vinyl ethers of methanol, ethanol, isopropanol , n-propanol, n-butanol, isobutanol , sec- butanol, tert- butanol, n -Hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol) or 2-ethylhexanol.
  • Preferred (meth) acrylic acid esters (Dc) are (meth) acrylic acid esters of C 5 to C 12 alkanols, preferably of n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol ), 2-ethylhexanol or 2-propylheptanol. Pentyl acrylate, 2-ethylhexyl acrylate and 2-propylheptyl acrylate are particularly preferred.
  • Examples of monomers (Dd) are allyl alcohols and allyl ethers of C 2 - to C 12 -alkanols, preferably allyl ethers of methanol, ethanol, iso -propanol, n-propanol, n-butanol, iso -butanol, sec -butanol, tert -butanol, n-hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol) or 2-ethylhexanol.
  • Examples of vinyl compounds (De) of heterocycles containing at least one nitrogen atom are N-vinylpyridine, N-vinylimidazole and N-vinylmorpholine.
  • Preferred compounds (De) are N-vinylamides or N-vinyllactams:
  • Examples of N-vinylamides or N-vinyllactams (De) are N-vinylformamide, N-vinyl acetamide, N-vinylpyrrolidone and N-vinylcaprolactam.
  • ethylenically unsaturated aromatics are styrene and ⁇ -methylstyrene.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated nitriles (Dg) are acrylonitrile and methacrylonitrile.
  • Examples of (meth) acrylic acid amides (Dh) are acrylamide and methacrylamide.
  • allylamines are allylamine, dialkylallylamine and trialkyl allylammonium halides.
  • Preferred monomers (D) are (Da), (Db), (Dc), (De) and / or (Df), particularly preferred (Da), (Db) and / or (Dc), very particularly preferred (Da) and / or (Dc) and in particular (Dc).
  • the incorporation ratio of monomers (A) and (B) and optionally (C) and optionally (D) in the copolymer obtained from reaction step (I) is generally as follows:
  • the molar ratio of (A) / ((B) and (C)) (in total) is generally from 10: 1 to 1:10, preferably 8: 1 to 1: 8, particularly preferably 5: 1 to 1 : 5, very particularly preferably 3: 1 to 1: 3, in particular 2: 1 to 1: 2 and especially 1.5: 1 to 1: 1.5.
  • the molar incorporation ratio of maleic anhydride to monomers ((B) and (C)) (in total) is about 1: 1.
  • maleic anhydride in a slight excess over the ⁇ -olefin, for example 1.01-1.5: 1, preferably 1.02-1.4 : 1, particularly preferably 1.05-1.3: 1, very particularly preferably 1.07-1.2: 1 and in particular 1.1-1.15: 1.
  • the molar ratio of obligatory monomer (B) to monomer (C), if it is present, is generally from 1: 0.05 to 10, preferably from 1: 0.1 to 6, particularly preferably from 1: 0, 2 to 4, very particularly preferably from 1: 0.3 to 2.5 and especially 1: 0.5 to 1.5.
  • no optional monomer (C) is present in addition to monomer (B).
  • the proportion of one or more of the monomers (D), if any, based on the amount of monomers (A), (B) and optionally (C) (in total) is generally from 5 to 200 mol%, preferably from 10 to 150 mol%, particularly preferably 15 to 100 mol%, very particularly preferably 20 to 50 mol% and in particular 0 to 25 mol%.
  • no optional monomer (D) is present.
  • the copolymer consists of monomers (A) and (B).
  • the anhydride functionalities contained in the copolymer after reaction step (II) are essentially completely hydrolyzed.
  • the amount of water is added which corresponds to the desired degree of hydrolysis and the copolymer obtained from (I) is heated in the presence of the added water.
  • a temperature preferably 20 to 150 ° C, preferably 60 to 100 ° C, is sufficient.
  • the reaction can be carried out under pressure in order to prevent the escape of water. Under these reaction conditions, the anhydride functionalities in the copolymer are generally converted selectively, whereas any carboxylic acid ester functionalities contained in the copolymer do not react or at least only react to a minor extent.
  • the copolymer is reacted with an amount of a strong base in the presence of water which corresponds to the desired degree of saponification.
  • Hydroxides, oxides, carbonates or hydrogen carbonates of alkali or alkaline earth metals can preferably be used as strong bases.
  • the copolymer obtained from (I) is then heated in the presence of the added water and the strong base.
  • the carboxylic ester functionalities are hydrolyze with water in the presence of an acid.
  • the preferred acids are mineral, carbon, sulfonic or phosphorus-containing Acids with a pKa value of not more than 5, particularly preferably not more than 4, are used.
  • acetic acid formic acid, oxalic acid, salicylic acid, substituted succinic acids, aromatic-substituted or unsubstituted benzenesulfonic acids, sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid; the use of acidic ion exchange resins is also conceivable.
  • the copolymer obtained from (I) is then heated in the presence of the added water and the acid.
  • the copolymers obtained from step (II) still contain residues of acid anions, it may be preferred to remove these acid anions from the copolymer with the aid of an ion exchanger and preferably to replace them with hydroxide ions or carboxylate ions, particularly preferably hydroxide ions. This is particularly the case when the acid anions contained in the copolymer are halides, sulfur-containing or nitrogen-containing.
  • the copolymer obtained from reaction step (II) generally has a weight average molecular weight Mw of 0.5 to 20 kDa, preferably 0.6 to 15, particularly preferably 0.7 to 7, very particularly preferably 1 to 7 and in particular 1, 5 to 54 kDa (determined by gel permeation chromatography with tetrahydrofuran and polystyrene as standards).
  • the number average molecular weight Mn is mostly from 0.5 to 10 kDa, preferably 0.6 to 5, particularly preferably 0.7 to 4, very particularly preferably 0.8 to 3 and in particular 1 to 2 kDa (determined by gel permeation chromatography with tetrahydrofuran and polystyrene as standard).
  • the polydispersity is generally from 1 to 10, preferably from 1.1 to 8, particularly preferably from 1.2 to 7, very particularly preferably from 1.3 to 5 and in particular from 1.5 to 3.
  • the content of free acid groups in the copolymer after passing through reaction step (II) is preferably from 1 to 8 mmol / g copolymer, particularly preferably from 2 to 7 and very particularly preferably from 3 to 7 mmol / g copolymer.
  • the copolymers contain a high proportion of adjacent carboxylic acid groups, which is determined by measuring the adjacency. For this purpose, a sample of the copolymer is tempered for a period of 30 minutes at a temperature of 290 ° C. between two Teflon films and an FTIR spectrum is recorded at a bubble-free point. The IR spectrum of Teflon is subtracted from the spectra obtained, the layer thickness is determined and the content of cyclic anhydride is determined.
  • the adjacency is at least 10%, preferably at least 15%, particularly preferably at least 20%, very particularly preferably at least 25% and in particular at least 30%.
  • the fuel can contain other customary additives.
  • the copolymers described are often used in the form of fuel additive mixtures, together with customary additives: In the case of diesel fuels, these are primarily customary detergent additives, carrier oils, cold flow improvers, lubricity improvers, corrosion inhibitors other than the copolymers described, demulsifiers, dehazers , Antifoams, cetane number improvers, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or solvents.
  • lubricity improvers In the case of petrol, these are primarily lubricity improvers (friction modifiers), corrosion inhibitors other than the copolymers described, demulsifiers, dehazers, antifoams, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or solvents.
  • the hydrophobic hydrocarbon radical in the above detergent additives which ensures sufficient solubility in the fuel, has a number average molecular weight (M n ) of 85 to 20,000, preferably 113 to 10,000, particularly preferably 300 to 5,000, more preferably 300 to 3,000, even more preferably from 500 to 2,500 and in particular from 700 to 2,500, especially from 800 to 1500.
  • M n number average molecular weight
  • a typical hydrophobic hydrocarbon radical especially in connection with the polar, in particular polypropenyl, polybutenyl and polyisobutenyl radicals with a number average molecular weight M n of preferably 300 to 5,000, particularly preferably 300 to 3,000, more preferably 500 to 2,500, even more preferably 700 to 2,500, and in particular 800 to 1,500, in each case.
  • Such additives based on highly reactive polyisobutene which are made from polyisobutene, which can contain up to 20% by weight of n-butene units, by hydroformylation and reductive amination with ammonia, monoamines or polyamines such as dimethyl aminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine can be prepared, in particular from the EP-A 244 616 known.
  • the production route is by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to form carbonyl or Carboxyl compound and subsequent amination under reductive (hydrogenating) conditions.
  • amines such as. B. ammonia
  • monoamines or the above polyamines can be used.
  • Corresponding additives based on polypropene are particularly in the WO-A 94/24231 described.
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Dd) containing additives are preferably copolymers of C 2 - to C 40 olefins with maleic anhydride with a total molecular weight of 500 to 20,000, the carboxyl groups wholly or partially to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are in particular from EP-A 307 815 known.
  • Such additives are mainly used to prevent valve seat wear and can, as in WO-A 87/01126 described, can be used with advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Additives containing sulfonic acid groups or their alkali metal or alkaline earth metal salts are preferably alkali metal or alkaline earth metal salts of an alkyl sulfosuccinate, as it is in particular in US Pat EP-A 639 632 is described.
  • Such additives are mainly used to prevent valve seat wear and can be used with advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Additives containing polyoxy-C 2 -C 4 -alkylene groups are preferably polyethers or polyetheramines, which are obtained by reacting C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 - to C 30 -alkylamines, C 1 - to C 30 -alkylcyclohexanols or C 1 - to C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per Hydroxyl group or amino group and, in the case of the polyetheramines, can be obtained by subsequent reductive amination with ammonia, monoamines or polyamines.
  • Such products are particularly popular in the EP-A 310 875 , EP-A 356 725 , EP-A 700 985 and US-A 4,877,416 described.
  • polyethers such products also have carrier oil properties.
  • Typical examples are tridecanol or isotridecanol butoxylates, isononylphenol butoxylates and polyisobutenol butoxylates and propoxylates and the corresponding reaction products with ammonia.
  • Additives containing carboxylic ester groups (Dg) are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, in particular those with a minimum viscosity of 2 mm 2 / s at 100 ° C., as in particular in the DE-A 38 38 918 are described.
  • Aliphatic or aromatic acids can be used as mono-, di- or tricarboxylic acids, and especially long-chain representatives with, for example, 6 to 24 carbon atoms are suitable as ester alcohols or polyols.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and iso-tridecanol. Such products also meet carrier oil properties.
  • the groupings with hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of di- or polyamines which, in addition to the amide function, also have free amine groups, succinic acid derivatives with an acid and an amide function, carboximides with monoamines, carboximides with di- or polyamines which, in addition to the imide function, also have free amine groups, or diimides which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are generally known and are described, for example, in documents (1) and (2).
  • reaction products of alkyl- or alkenyl-substituted succinic acids or derivatives thereof with amines are preferably the reaction products of polyisobutenyl-substituted succinic acids or derivatives thereof with amines.
  • reaction products with aliphatic polyamines such as in particular ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine and hexaethylene heptamine, which have an imide structure.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 2012/004300 , there preferably page 5, line 18 to page 33, line 5, particularly preferably of preparation example 1,
  • the compounds according to the invention can be combined with quaternized compounds, as described in the unpublished international application with the file number PCT / EP2014 / 061834 and the filing date June 6, 2014, there preferably page 5, line 21 to page 47, line 34, particularly preferably the preparation examples 1 to 17.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 11/95819 A1 , there preferably page 4, line 5 to page 13, line 26, particularly preferably preparation example 2.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 11/110860 A1 , there preferably page 4, line 7 to page 16, line 26, particularly preferably of the preparation examples 8, 9, 11 and 13.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 06/135881 A2 , there preferably page 5, line 14 to page 12, line 14, particularly preferably Examples 1 to 4.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 10/132259 A1 , there preferably page 3, line 29 to page 10, line 21, particularly preferably example 3.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 08/060888 A2 , there preferably page 6, line 15 to page 14, line 29, particularly preferably Examples 1 to 4.
  • the compounds according to the invention can be combined with quaternized compounds, as described in GB 2496514 A , there preferably paragraphs [00012] to [00039], particularly preferably examples 1 to 3.
  • the compounds according to the invention can be combined with quaternized compounds, as described in WO 2013 070503 A1 , there preferably paragraphs [00011] to [00039], particularly preferably examples 1 to 5.
  • Additives containing (di) groups produced by the Mannich reaction of substituted phenols with aldehydes and mono- or polyamines are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine or dimethyl aminopropylamine .
  • Such "polyisobutene Mannich bases" are particularly in the EP-A 831 141 described.
  • One or more of the detergent additives mentioned can be added to the fuel in such an amount that the metering rate of these detergent additives is preferably 25 to 2500 ppm by weight, in particular 75 to 1500 ppm by weight, especially 150 to 1000 ppm by weight .-ppm.
  • Carrier oils used can be mineral or synthetic in nature. Suitable mineral carrier oils are fractions obtained during petroleum processing, such as bright stocks or base oils with viscosities such as from class SN 500 to 2000, but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. A fraction known as "hydrocrack oil” and obtained during the refining of mineral oil (vacuum distillate cut with a boiling range of about 360 to 500 ° C., obtainable from natural mineral oil catalytically hydrogenated and isomerized and dewaxed under high pressure) can also be used. Mixtures of the abovementioned mineral carrier oils are also suitable.
  • suitable synthetic carrier oils are polyolefins (polyalphaolefins or polyinternalolefins), (poly) esters, (poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-started polyethers, alkylphenol-started polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 - to C 4 -alkylene groups, which are obtained by reaction of C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 - To C 30 alkylamines, C 1 to C 30 alkyl cyclohexanols or C 1 to C 30 alkyl phenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the event the polyetheramines, are obtainable by subsequent reductive amination with ammonia, monoamines or polyamines.
  • Such products are particularly popular in the EP-A 310 875 , EP-A 356 725 , EP-A 700 985 and the US-A 4,877,416 described.
  • poly-C 2 - to C 6 -alkylene oxide amines or functional derivatives thereof can be used as polyether amines.
  • Typical examples are tridecanol or isotridecanol butoxylates, isononylphenol butoxylates and polyisobutenol butoxylates and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are, in particular, esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as they are in particular in US Pat DE-A 38 38 918 are described.
  • Aliphatic or aromatic acids can be used as mono-, di- or tricarboxylic acids; long-chain representatives with, for example, 6 to 24 carbon atoms are particularly suitable as ester alcohols or polyols.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, e.g. B. di- (n- or isotridecyl) phthalate.
  • particularly suitable synthetic carrier oils are alcohol-initiated polyethers with about 5 to 35, preferably about 5 to 30, particularly preferably 10 to 30 and in particular 15 to 30 C 3 to C 6 alkylene oxide units, e.g. B. propylene oxide, n-butylene oxide and isobutylene oxide units or mixtures thereof, per alcohol molecule.
  • suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, the long-chain alkyl radical in particular being a straight-chain or branched C 6 - to C 18 -alkyl radical.
  • Tridecanol and nonylphenol should be mentioned as special examples.
  • Particularly preferred alcohol-initiated polyethers are the reaction products (polyetherification products) of monohydric aliphatic C 6 to C 18 alcohols with C 3 to C 6 alkylene oxides.
  • monohydric aliphatic C 6 -C 18 alcohols are hexanol, heptanol, octanol, 2-ethylhexanol, nonyl alcohol, decanol, 3-propylheptanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, octadecanol and their constitution and Positional isomers.
  • the alcohols can be used both in the form of the pure isomers and in the form of technical mixtures.
  • a particularly preferred alcohol is tridecanol.
  • Examples of C 3 to C 6 alkylene oxides are propylene oxide such as 1,2-propylene oxide, butylene oxide such as 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran, pentylene oxide and hexylene oxide.
  • Particularly preferred among these are C 3 to C 4 alkylene oxides, ie propylene oxide such as 1,2-propylene oxide and butylene oxide such as 1,2-butylene oxide, 2,3-butylene oxide and isobutylene oxide.
  • Butylene oxide is used in particular.
  • Particular carrier oils are synthetic carrier oils, the alcohol-initiated polyethers described above being particularly preferred.
  • the carrier oil or the mixture of different carrier oils is added to the fuel in an amount of preferably 1 to 1000 ppm by weight, particularly preferably 10 to 500 ppm by weight and in particular 20 to 100 ppm by weight.
  • Suitable cold flow improvers are in principle all organic compounds which are able to improve the flow behavior of middle distillate fuels or diesel fuels in the cold. Appropriately, they must have sufficient oil solubility.
  • the cold flow improvers (“middle distillate flow improvers”, “MDFI”) used for middle distillates of fossil origin, that is to say for conventional mineral diesel fuels, are suitable for this.
  • organic compounds can also be used are used which, when used in common diesel fuels, partly or predominantly have the properties of a wax anti-settling additive ("WASA"). They can also act partly or mainly as nucleators.
  • WASA wax anti-settling additive
  • Suitable C 2 to C 40 olefin monomers for the copolymers of class (K1) are, for example, those with 2 to 20, in particular 2 to 10 carbon atoms and with 1 to 3, preferably 1 or 2, in particular with a carbon-carbon Double weave.
  • the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and also internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and, above all, ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from alkenyl carboxylates, (meth) acrylic acid esters and further olefins.
  • further olefins are also polymerized in, these are preferably higher molecular weight than the above-mentioned C 2 to C 40 olefin base monomers. If, for example, ethylene or propene is used as the base olefin monomer, suitable further olefins are in particular C 10 to C 40 ⁇ -olefins. In most cases, other olefins are only also incorporated into the polymerization if monomers with carboxylic acid ester functions are also used.
  • Suitable (meth) acrylic acid esters are, for example, esters of (meth) acrylic acid with C 1 to C 20 alkanols, in particular C 1 to C 10 alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec. -Butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol and structural isomers thereof.
  • Suitable carboxylic acid alkenyl esters are, for example, C 2 - to C 14 -alkenyl esters, for example the vinyl and propenyl esters, of carboxylic acids having 2 to 21 carbon atoms, their hydrocarbon radicals can be linear or branched. Of these, the vinyl esters are preferred.
  • carboxylic acids with a branched hydrocarbon radical preference is given to those whose branches are in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie the carboxylic acid being what is known as a neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is preferably linear.
  • alkenyl carboxylates examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, the vinyl esters being preferred.
  • a particularly preferred alkenyl carboxylate is vinyl acetate; typical copolymers of group (K1) resulting therefrom are the ethylene-vinyl acetate copolymers ("EVA”) used most frequently.
  • copolymers of class (K1) are those which contain two or more different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • terpolymers from a C 2 - to C 40 - ⁇ -olefin, a C 1 - to C 20 -alkyl ester of an ethylenically unsaturated monocarboxylic acid with 3 to 15 carbon atoms and a C 2 - to C 14 -alkenyl ester of a saturated monocarboxylic acid with 2 to 21 Carbon atoms are suitable as copolymers of class (K1).
  • Such terpolymers are in the WO 2005/054314 described.
  • a typical terpolymer of this type is composed of ethylene, 2-ethylhexyl acrylic acid and vinyl acetate.
  • the at least one or the further ethylenically unsaturated monomers are present in the copolymers of class (K1) in an amount of preferably 1 to 50% by weight, in particular 10 to 45% by weight and above all from 20 to 40% by weight %, based on the total copolymer, polymerized.
  • the majority by weight of the monomer units in the copolymers of class (K1) thus generally originate from the C 2 to C 40 base olefins.
  • the copolymers of class (K1) preferably have a number average molecular weight M n from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 8000.
  • Typical comb polymers of component (K2) are, for example, through the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol with at least 10 carbon atoms available.
  • Further suitable comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • Suitable comb polymers can also be polyfumarates or polymaleinates.
  • homo- and copolymers of vinyl ethers are suitable comb polymers.
  • Comb polymers suitable as components of class (K2) are, for example, also those in the WO 2004/035715 and in " Comb-Like Polymers. Structure and Properties ", NA Plate and VP Shibaev, J. Poly. Sci. Macromolecular Revs. 8, pp. 117-253 (1974 ) ". Mixtures of comb polymers are also suitable.
  • Polyoxyalkylenes suitable as components of class (K3) are, for example, polyoxyalkylene esters, polyoxyalkylene ethers, mixed polyoxyalkylene ester ethers and mixtures thereof. These polyoxyalkylene compounds preferably contain at least one, preferably at least two, linear alkyl groups each having 10 to 30 carbon atoms and one polyoxyalkylene group with a number average molecular weight of up to 5000. Such polyoxyalkylene compounds are, for example, in EP-A 061 895 as well as in the U.S. 4,491,455 described. Special polyoxyalkylene compounds are based on polyethylene glycols and polypropylene glycols with a number average molecular weight of 100 to 5000. Furthermore, polyoxyalkylene mono- and diesters of fatty acids with 10 to 30 carbon atoms such as stearic acid or behenic acid are suitable.
  • Polar nitrogen compounds suitable as component of class (K4) can be both ionic and non-ionic in nature and preferably have at least one, in particular at least two, substituents in the form of a tertiary nitrogen atom of the general formula> NR 7 , where R 7 is a C 8 bis C 40 hydrocarbon residue.
  • the nitrogen substituents can also be present in quaternized form, that is to say in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides which can be obtained by reacting at least one amine substituted by at least one hydrocarbon radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines preferably contain at least one linear C 8 - to C 40 -alkyl radical.
  • Primary amines suitable for preparing the polar nitrogen compounds mentioned are, for example, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues; secondary amines suitable for this purpose are, for example, dioctadecylamine and methylbehenylamine.
  • Amine mixtures are also suitable for this purpose, in particular amine mixtures available on an industrial scale, such as fatty amines or hydrogenated tall amines, such as those described in, for example Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic Acids suitable for the reaction are, for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted with long-chain hydrocarbon radicals.
  • the component of class (K4) is an oil-soluble reaction product of poly (C 2 to C 20 carboxylic acids) having at least one tertiary amino group with primary or secondary amines.
  • the poly (C 2 -C 20 -carboxylic acids) on which this reaction product is based preferably contain at least one tertiary amino group at least 3 carboxyl groups, especially 3 to 12, especially 3 to 5 carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are linked to the polycarboxylic acids in a suitable manner, usually via one or more carbon and / or nitrogen atoms.
  • the component of class (K4) is preferably an oil-soluble reaction product based on poly (C 2 to C 20 carboxylic acids) of the general formula IIa or IIb having at least one tertiary amino group in which the variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula III and the variable B denotes a C 1 to C 19 alkylene group.
  • the compounds of the general formulas IIa and IIb in particular have the properties of a WASA.
  • the preferred oil-soluble reaction product of component (K4) in particular that of the general formula IIa or IIb, is an amide, an amide ammonium salt or an ammonium salt in which no, one or more carboxylic acid groups have been converted into amide groups.
  • Straight-chain or branched C 2 - to C 6 -alkylene groups of the variable A are, for example, 1,1-ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4- Butylene, 2-methyl-1,3-propylene, 1,5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene (hexamethylene) and in particular 1,2-ethylene.
  • the variable A preferably comprises 2 to 4, in particular 2 or 3, carbon atoms.
  • C 1 - to C 19 -alkylene groups of the variable B are above, for example, 1,2-ethylene, 1,3-propylene, 1,4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecamethylene and, in particular, methylene .
  • the variable B preferably comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form component (K4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines can be selected from a large number of amines which - optionally linked to one another - carry hydrocarbon radicals.
  • amines on which the oil-soluble reaction products of component (K4) are based are secondary amines and have the general formula HN (R 8 ) 2 , in which the two variables R 8, independently of one another, are straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular C 14 - to C 24 -alkyl radicals.
  • R 8 the two variables R 8 independently of one another, are straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular C 14 - to C 24 -alkyl radicals.
  • These longer-chain alkyl radicals are preferably straight-chain or only branched to a small extent.
  • the secondary amines mentioned are derived from naturally occurring fatty acids or their derivatives with regard to their longer-chain alkyl radicals.
  • the two radicals R 8 are preferably the same.
  • the secondary amines mentioned can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only some can be present as amide structures and some as ammonium salts. Preferably there are few or no free acid groups.
  • the oil-soluble reaction products of component (K4) are preferably completely in the form of the amide structures.
  • Typical examples of such components (K4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diamine tetraacetic acid, each with 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group , Dioleylamine, dipalmitinamine, dicoconut fatty amine, distearylamine, dibehenylamine or especially ditallow fatty amine.
  • a particularly preferred component (K4) is the reaction product of 1 mol of ethylenediaminetetraacetic acid and 4 mol of hydrogenated ditallow fatty amine.
  • component (K4) are the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mole of phthalic anhydride and 2 moles of ditallow fatty amine, the latter being hydrogenated or non-hydrogenated , and the reaction product of 1 mol of an alkenyl spirobislactone with 2 mol of a dialkylamine, for example ditallow fatty amine and / or tallow fatty amine, the latter two being hydrogenated or non-hydrogenated, mentioned.
  • component of class (K4) are cyclic compounds with tertiary amino groups or condensates of long-chain primary or secondary amines with carboxylic acid-containing polymers, as they are in WO 93/18115 are described.
  • Sulfocarboxylic acids, sulfonic acids or their derivatives suitable as cold flow improvers of the component of class (K5) are, for example, the oil-soluble carboxamides and carboxylic acid esters of ortho-sulfobenzoic acid, in which the sulfonic acid function is present as a sulfonate with alkyl-substituted ammonium cations, as described in US Pat EP-A 261 957 to be discribed.
  • Poly (meth) acrylic acid esters suitable as cold flow improvers of the component of class (K6) are both homo- and copolymers of acrylic and methacrylic acid esters. Preference is given to copolymers of at least two (meth) acrylic acid esters which are different from one another and differ with regard to the alcohol which has condensed in.
  • the copolymer may contain a further, different olefinically unsaturated monomer in copolymerized form.
  • the weight average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 14 and C 15 alcohols, the acid groups being neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic acid esters are, for example, in WO 00/44857 described.
  • the cold flow improver or the mixture of different cold flow improvers is added to the middle distillate fuel or diesel fuel in a total amount of preferably 10 to 5000 ppm by weight, particularly preferably 20 to 2000 ppm by weight, more preferably 50 to 1000 ppm by weight and especially from 100 to 700 ppm by weight, e.g. from 200 to 500 ppm by weight added.
  • Suitable lubricity improvers or friction modifiers are usually based on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, such as in WO 98/004656 and glycerol monooleate. Even those in the US 6,743,266 B2 The reaction products described from natural or synthetic oils, for example triglycerides, and alkanolamines are suitable as such lubricity improvers.
  • Suitable corrosion inhibitors are e.g. Succinic acid esters, especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanol amines and products that are sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Succinic acid esters especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanol amines and products that are sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Suitable demulsifiers are, for example, the alkali metal or alkaline earth metal salts of alkyl-substituted phenol and naphthalene sulfonates and the alkali metal or alkaline earth metal salts of fatty acids, as well as neutral compounds such as alcohol alkoxylates, e.g. alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylates, e.g.
  • tert-butylphenol ethoxylates or tert-pentylphenol ethoxylates Alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), for example also in the form of EO / PO block copolymers, polyethyleneimines or polysiloxanes.
  • EO ethylene oxide
  • PO propylene oxide
  • Suitable dehazers are e.g. alkoxylated phenol-formaldehyde condensates, such as the products available under the trade name NALCO 7D07 (Nalco) and TOLAD 2683 (Petrolite).
  • Suitable antifoam agents are e.g. Polyether-modified polysiloxanes, for example the products available under the trade name TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc).
  • Suitable cetane number improvers are e.g. aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide.
  • Suitable antioxidants are e.g. substituted phenols, such as 2,6-di-tert-butylphenol and 6-di-tert-butyl-3-methylphenol, and phenylenediamines such as N, N'-di-sec-butyl-p-phenylenediamine.
  • Suitable metal deactivators are e.g. Salicylic acid derivatives such as N, N'-disalicylidene-1,2-propanediamine.
  • Suitable ones are e.g. non-polar organic solvents such as aromatic and aliphatic hydrocarbons, for example toluene, xylenes, "white spirit” and products sold under the trade names SHELLSOL (Royal Dutch / Shell Group) and EXXSOL (ExxonMobil), as well as polar organic solvents, for example alcohols such as 2 -Ethylhexanol, Decanol and Isotridecanol.
  • solvents usually get into the diesel fuel together with the aforementioned additives and co-additives, which they should dissolve or dilute for better handling.
  • the additive is excellently suited as a fuel additive and can in principle be used in any fuel. It brings about a number of beneficial effects when operating internal combustion engines with fuels.
  • the additive is preferably used in middle distillate fuels, especially diesel fuels, very particularly diesel fuels containing biofuel oils.
  • Middle distillate fuels such as diesel fuels or heating oils are preferably petroleum raffinates, which usually have a boiling range of 100 to 400.degree. These are mostly distillates with a 95% point up to 360 ° C or even more. However, these can also be so-called “Ultra Low Sulfur Diesel” or "City Diesel", characterized by a 95% point of, for example, a maximum of 345 ° C. and a sulfur content of a maximum of 0.005% by weight or a 95% point of for example 285 ° C and a maximum sulfur content of 0.001% by weight.
  • mineral middle distillate fuels or diesel fuels obtainable through refining
  • mineral middle distillate fuels or diesel fuels there are also those that are produced through coal gasification or gas liquefaction ["gas to liquid” (GTL) fuels] or through biomass liquefaction ["biomass to liquid” (BTL) fuels]. are available.
  • GTL gas to liquid
  • BTL biomass liquefaction
  • Mixtures of the aforementioned middle distillate fuels or diesel fuels with regenerative fuels, such as biodiesel or bioethanol, are also suitable.
  • Biofuel oils are usually based on fatty acid esters, preferably essentially on alkyl esters of fatty acids which are derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually understood to mean lower alkyl esters, preferably C 1 to C 4 alkyl esters, particularly preferably methyl or ethyl esters and very particularly preferably methyl esters, which are obtained by transesterification of the glycerides, in particular triglycerides, occurring in vegetable and / or animal oils and / or fats, by means of lower alcohols, for example ethanol or especially methanol (“FAME”), are obtainable.
  • lower alcohols for example ethanol or especially methanol
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats, which are used as biofuel oil or components for this, are, for example, sunflower methyl ester, palm oil methyl ester ("PME”), soybean oil methyl ester (“SME”), animal fat methyl ester (“FME”) or Tallow methyl ester (“TME”), methyl ester of recovered vegetable oils, processed used cooking oils and frying fats, so-called used vegetable oil (“UVO”) or waste vegetable oil (“WVE”) or used cooking oil methyl ester ( "UCOME”), tall oil methyl ester (English Tall oil methyl ester) and especially rapeseed oil methyl ester ("RME”).
  • PME palm oil methyl ester
  • SME soybean oil methyl ester
  • FME animal fat methyl ester
  • UVO used vegetable oil
  • WVE waste vegetable oil
  • UCOME used cooking oil methyl ester
  • tall oil methyl ester English Tall oil methyl ester
  • the middle distillate fuels or diesel fuels are particularly preferably those with a low sulfur content, that is to say with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular less than 0.005% by weight and especially less than 0.001% by weight sulfur.
  • gasoline compositions can be used as gasoline.
  • the common Eurosuper base fuel according to EN 228 should be mentioned here as a typical representative.
  • gasoline compositions are also in accordance with the specification WO 00/47698 possible fields of application for the present invention.
  • test methods mentioned below are part of the general disclosure of the application and are not restricted to the specific exemplary embodiments.
  • the mass average Mw and number average molecular weight Mn of the polymers were measured by means of gel permeation chromatography (GPC). GPC separation was carried out using two PLge Mixed B columns (Agilent) in tetrahydrofuran at 35 ° C. The calibration was carried out using a narrowly distributed polystyrene standard (PSS, Germany) with a molecular weight of 162-50400 Da. Hexylbenzene was used as a low molecular weight marker.
  • Approx. 1 g sample is weighed into a 150 ml COD glass and dissolved in 50 ml 0.5 molar ethanolic KOH.
  • the COD glass is provided with an air cooler and placed in the stirring block thermostat, which has been preheated to 95 ° C. After three (3) hours, the COD glass is removed from the heating block, rinsed with 30 ml of ethanol and the solution is potentiographically titrated with 0.5 molar aqueous hydrochloric acid (HCl).
  • the olefin or the mixture of olefins with or without a solvent was initially introduced into a reactor with an anchor stirrer.
  • the mixture was heated to the indicated temperature under a stream of nitrogen and with stirring.
  • the specified free-radical initiator (optionally diluted in the same solvent) and molten maleic anhydride (1 equivalent based on olefin monomer) were added.
  • the reaction mixture was stirred at the same temperature for the specified reaction time and then cooled. Then water was added (unless otherwise stated 0.9 equivalents based on maleic anhydride) and the mixture was stirred either at 95 ° C. for 10-14 hours or under pressure at 110 ° C. for 3 hours.
  • the copolymer had a ratio of carbon atoms per acid group of 13, and the acid number determined according to the above procedure was 210.8 mg KOH / g.
  • the copolymer had a ratio of carbon atoms per acid group of 13, and the acid number determined according to the above procedure was 210.8 mg KOH / g.
  • the copolymer had a ratio of carbon atoms per acid group of 13, and the acid number determined according to the above procedure was 210.8 mg KOH / g.
  • a diesel fuel (Aral B7, Gelsenmaschinen refinery) according to DIN EN590 was tested with the help of the test according to DIN EN 15751: 2014-06 in a Rancimat® device, model Metrohm 873 biodiesel Ranzimat, from Metrohm AG, Herisau, Switzerland, examined its thermal stability.
  • the stream containing volatile constituents is passed into 60 ml of demineralized water and the conductivity is determined.
  • a sudden increase in electrical conductivity indicates the end of the induction time specified in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Claims (11)

  1. Utilisation de copolymères, pouvant être obtenus par
    - copolymérisation, dans une première étape de réaction (I),
    (A) d'anhydride d'acide maléique,
    (B) d'au moins une α-oléfine comportant au moins 12 jusqu'à 30 atomes de carbone inclus,
    (C) éventuellement d'au moins une oléfine aliphatique ou cycloaliphatique supplémentaire, présentant au moins 4 atomes de carbone, qui est différente de (B) et
    (D) éventuellement d'un ou plusieurs monomères copolymérisables supplémentaires, qui sont différents des monomères (A), (B) et (C), choisis dans le groupe constitué par
    (Da) des esters de vinyle,
    (Db) des éthers de vinyle,
    (Dc) des esters d'acide (méth)acrylique d'alcools qui présentent au moins 5 atomes de carbone,
    (Dd) des alcools allyliques ou leurs éthers,
    (De) des composés de type N-vinyle, choisis dans le groupe constitué par des composés vinyliques d'hétérocycles contenant au moins un atome d'azote, des N-vinylamides et des N-vinyllactames,
    (Df) des composés aromatiques éthyléniquement insaturés
    (Dg) des nitriles éthyléniquement α,β-insaturés,
    (Dh) des amides d'acide (méth)acrylique et
    (Di) des allylamines,
    suivie par
    - l'hydrolyse partielle ou totale, dans une deuxième étape de réaction (II), de fonctionnalités anhydride contenues dans le copolymère obtenu de (I),
    pour l'amélioration de la stabilité thermique et/ou à l'oxydation de biocombustibles ou préférablement de carburants diesel, contenant au moins un ester d'alkyle d'acide gras.
  2. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que le monomère (B) est une α-oléfine comportant au moins 14 jusqu'à 26 atomes de carbone inclus.
  3. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'oléfine (C) est un polymère, présentant plus de 30 atomes de carbone, de propène, de 1-butène, de 2-butène ou d'isobutène ou de mélanges d'oléfines contenant ceux-ci, préférablement d'isobutène ou de mélanges d'oléfines contenant celui-ci dotés d'un poids moléculaire moyen Mw dans la plage de 500 à 5 000 g/mole.
  4. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que le mélange de matières des oléfines (B) et (C), moyenné sur leurs quantités de matière, présente au moins 12 atomes de carbone.
  5. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que les monomères (D) sont choisis dans le groupe constitué par (Da), (Db), (Dc), (De) et (Df).
  6. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que le rapport molaire de (A)/((B) et (C)) (en somme) est de 10:1 à 1:10.
  7. Utilisation selon la revendication 6, caractérisée en ce que le rapport molaire du monomère (B) au monomère (C) est de 1:0,05 à 10.
  8. Utilisation selon la revendication 6 ou 7, caractérisée en ce que la proportion de l'un ou plusieurs des monomères (D) par rapport à la quantité des monomères (A), (B) ainsi qu'éventuellement (C) (en somme) est de 5 à 200 % en moles.
  9. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ester d'alkyle d'acide gras est un ester de C1-4-alkyle.
  10. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ester d'alkyle d'acide gras est un ester de méthyle ou d'éthyle.
  11. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ester d'alkyle d'acide gras est choisi dans le groupe constitué par des esters méthyliques de tournesol, des esters méthyliques d'huile de palme (« PME »), des esters méthyliques d'huile de soja (« SME »), des esters méthyliques de graisse animale (« FME »), des esters méthyliques de suif (« TME »), des esters méthyliques d'huiles végétales récupérées, des huiles alimentaires et des huiles de friture recyclées, de l'huile végétale usagée (used vegetable oil, « UVO »), de l'huile végétale de déchets (waste vegetable oil, « WVE »), un ester méthylique d'huile de cuisson usagée (used cooking oil methyl ester, « UCOME »), des esters méthyliques de tallöl et des esters méthyliques d'huile de colza (« RME »).
EP17808517.1A 2016-12-19 2017-12-07 Additif destiné à améliorer la stabilité thermique de carburants Active EP3555242B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16204958 2016-12-19
PCT/EP2017/081778 WO2018114348A1 (fr) 2016-12-19 2017-12-07 Additifs pour améliorer la stabilité thermique des carburants

Publications (2)

Publication Number Publication Date
EP3555242A1 EP3555242A1 (fr) 2019-10-23
EP3555242B1 true EP3555242B1 (fr) 2020-11-25

Family

ID=57714404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17808517.1A Active EP3555242B1 (fr) 2016-12-19 2017-12-07 Additif destiné à améliorer la stabilité thermique de carburants

Country Status (2)

Country Link
EP (1) EP3555242B1 (fr)
WO (1) WO2018114348A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3481920B1 (fr) 2016-07-05 2021-08-11 Basf Se Utilisation d'additfs anticorrosivs pour des carburants et des lubrifiants
EP3481921B1 (fr) * 2016-07-07 2023-04-26 Basf Se Copolymère en tant qu'additifs pour carburants et lubrifiants

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523768A (en) * 1965-04-28 1970-08-11 Chevron Res Ester modified polymers as fuel dispersants
US4464182A (en) 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
JPS58138791A (ja) 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
IN184481B (fr) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
ES2032318T3 (es) 1987-09-15 1993-02-01 Basf Aktiengesellschaft Carburantes para motores otto.
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
DE19754039A1 (de) 1997-12-05 1999-06-24 Basf Ag Verfahren zur Herstellung von Ethylencopolymeren in segmentierten Rohrreaktoren und Verwendung der Copolymere als Fließverbesserer
GB9827366D0 (en) 1998-12-11 1999-02-03 Exxon Chemical Patents Inc Macromolecular materials
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
AU2001248679A1 (en) 2000-03-31 2001-10-08 Texaco Development Corporation Fuel additive composition for improving delivery of friction modifier
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
DE10247795A1 (de) 2002-10-14 2004-04-22 Basf Ag Verwendung von Hydrocarbylvinyletherhomopolymeren zur Verbesserung der Wirkung von Kaltfliessverbesserern
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
JP5561933B2 (ja) 2005-06-16 2014-07-30 ザ ルブリゾル コーポレイション 燃料における使用のための四級アンモニウム塩洗浄剤
US20070094918A1 (en) * 2005-10-12 2007-05-03 Sawhney Kailash N Composition and method for enhancing the stability of jet fuels
US20080113890A1 (en) 2006-11-09 2008-05-15 The Lubrizol Corporation Quaternary Ammonium Salt of a Polyalkene-Substituted Amine Compound
PL2514807T5 (pl) 2009-05-15 2021-03-08 The Lubrizol Corporation Czwartorzędowe amidowe sole amonowe
GB201001920D0 (en) 2010-02-05 2010-03-24 Innospec Ltd Fuel compostions
GB201003973D0 (en) 2010-03-10 2010-04-21 Innospec Ltd Fuel compositions
EP2808350B1 (fr) 2010-07-06 2017-10-25 Basf Se Composés azotés quaternisés exempts d'acide et leur utilisation comme additifs pour carburants et lubrifiants
US9574149B2 (en) 2011-11-11 2017-02-21 Afton Chemical Corporation Fuel additive for improved performance of direct fuel injected engines
CA2789907A1 (fr) 2011-11-11 2013-05-11 Afton Chemical Corporation Additif de carburant pour le rendement des moteurs a injection directe
WO2015113681A1 (fr) 2014-01-29 2015-08-06 Basf Se Additifs à base d'acide polycarbonique, destinés à des carburants et à des lubrifiants
RU2689799C2 (ru) * 2014-01-29 2019-05-29 Басф Се Ингибиторы коррозии для топлив и смазочных материалов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3555242A1 (fr) 2019-10-23
WO2018114348A1 (fr) 2018-06-28

Similar Documents

Publication Publication Date Title
EP3099768B1 (fr) Inhibiteurs de corrosion pour carburants
EP3481921B1 (fr) Copolymère en tant qu'additifs pour carburants et lubrifiants
EP3322780B1 (fr) Inhibiteurs de corrosion pour carburants
EP3555244B1 (fr) Polymère comme additif pour gazole pour moteurs diesel à injection directe
EP2585498B1 (fr) Copolymère quaternisé
EP3322775B1 (fr) Utilisation de copolymères dans des moteurs à combustion interne à injection directe
EP3481920B1 (fr) Utilisation d'additfs anticorrosivs pour des carburants et des lubrifiants
WO2011134923A1 (fr) Terpolymère quaternisé
EP3481922B1 (fr) Inhibiteurs de corrosion pour carburants et lubrifiants
EP3555242B1 (fr) Additif destiné à améliorer la stabilité thermique de carburants
WO2018007486A1 (fr) Polymères utilisés en tant qu'additifs pour carburants et lubrifiants
EP3609990B1 (fr) Polymères utilisés en tant qu'additifs pour carburants et lubrifiants
EP3940043B1 (fr) Inhibiteurs de corrosion pour carburants et lubrifiants
DE212016000150U1 (de) Korrosionsinhibitoren für Kraft- und Schmierstoffe
WO2016083090A1 (fr) Inhibiteurs de corrosion pour carburants et lubrifiants
WO2018007445A1 (fr) Inhibiteurs de corrosion pour carburants et lubrifiants
WO2017144378A1 (fr) Acides polycarboxyliques hydrophobes utilisés comme additifs réducteurs d'usure par frottement dans des carburants
DE102010001408A1 (de) Verwendung von Ketonen als Kraftstoffzusatz zur Verringerung des Kraftstoffverbrauches von Dieselmotoren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/196 20060101ALI20200608BHEP

Ipc: C10L 10/00 20060101ALI20200608BHEP

Ipc: C10L 1/236 20060101ALI20200608BHEP

Ipc: C10L 1/197 20060101ALI20200608BHEP

Ipc: C10L 1/16 20060101AFI20200608BHEP

Ipc: C10L 1/14 20060101ALI20200608BHEP

INTG Intention to grant announced

Effective date: 20200710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008404

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1338316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008404

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

26N No opposition filed

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1338316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 7