EP3553793B1 - Leitfähiger kupfer-aluminium-verbundstoff mit hoher haftfestigkeit und herstellungsverfahren dafür - Google Patents

Leitfähiger kupfer-aluminium-verbundstoff mit hoher haftfestigkeit und herstellungsverfahren dafür Download PDF

Info

Publication number
EP3553793B1
EP3553793B1 EP16923175.0A EP16923175A EP3553793B1 EP 3553793 B1 EP3553793 B1 EP 3553793B1 EP 16923175 A EP16923175 A EP 16923175A EP 3553793 B1 EP3553793 B1 EP 3553793B1
Authority
EP
European Patent Office
Prior art keywords
copper
aluminum
aluminum composite
layer
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16923175.0A
Other languages
English (en)
French (fr)
Other versions
EP3553793A1 (de
EP3553793A4 (de
Inventor
Xiaowen DONG
Zhanjun LAN
Yangzi LIAN
Cao YAN
Jie Jiang
Lianzhong WANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yan Tai Fisend Bimetal Co ltd
Original Assignee
Yan Tai Fisend Bimetal Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yan Tai Fisend Bimetal Co ltd filed Critical Yan Tai Fisend Bimetal Co ltd
Publication of EP3553793A1 publication Critical patent/EP3553793A1/de
Publication of EP3553793A4 publication Critical patent/EP3553793A4/de
Application granted granted Critical
Publication of EP3553793B1 publication Critical patent/EP3553793B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Definitions

  • the present disclosure belongs to the technical field of composite materials, and in particular to a high-bonding strength copper-aluminum composite conductive material and a preparation method thereof.
  • a copper-aluminum composite material is also named as a copper-clad aluminum bar or a copper-clad aluminum bus composited by copper on an outer layer and aluminum on a core.
  • the copper on the outer layer and the aluminum on the core are bonded mechanically in general, which is the so-called copper-clad aluminum.
  • the copper on the outer layer and the aluminum on the core are bonded together via a pressure force under a solid-state action. With such a bonding manner, the bonding strength of a copper-aluminum interface is lower, and it is easy for the copper and the aluminum to appear a separation phenomenon under the action of an external force.
  • the melting point of the aluminum is 660°C and is far lower than the melting point 1083°C of the copper, when the aluminum rod passes through the molten copper solution, the aluminum rod may be molten and cannot be composited. With a copper-clad aluminum bar having such a structure, the bonding strength of the copper-aluminum interface cannot be guaranteed macroscopically and microcosmically.
  • the existing copper-aluminum composite material in various application fields needs to be conventionally bent, punched, milled, hank hnotting, riveted and the like.
  • machining manners such as torsion, spiraling and side bending are pushed forward, which requires that the copper-aluminum composite material can have better deformability and higher bonding strength and a copper-aluminum interface when the machining is completed is not damaged.
  • the elongation rate of the common copper-aluminum composite material is 3-20%, so that the machining requirement of the torsion, spiraling and side bending is met difficultly.
  • the existing copper-aluminum composite material has the following defects: (1) the bonding performance between the copper and the aluminum is poor, the metallurgical bonding state fundamentally required by the composite material is not achieved, and the corresponding bonding strength is also lower; (2) for a flat wide copper-aluminum composite material, a thickness of a clad copper layer has a design problem; the thickness of a clad copper layer on a narrow surface is smaller and the current density is larger, which are not sufficient to allow high-current impact; and moreover, the clad copper layer on an narrow surface is easily heated and the heat dissipation performance is poorer; and (3) with the machining performance of the existing copper-aluminum composite material, only machining such as conventional bending, punching, milling, riveting and tapping can be implemented, and the machining such as torsion, spiraling and side bending applied in the new field cannot be implemented.
  • clad welding method a copper sheet is coated on an outer surface of an aluminum rod, a joint of the copper sheet is welded by a welding method, and then drawing and moulding are performed for multiple times;
  • sleeve rolling method an aluminum rod is sleeved to a copper pipe, and the copper pipe and the aluminum rod are solid-phase bonded and moulded by rolling;
  • core-filled casting method a bottom end of a copper pipe is sealed, a molten aluminum solution is poured into the copper pipe and after the aluminum solution is solidified, a copper-aluminum composite bar billet is formed; and then, rolling, drawing and moulding are performed;
  • hydrostatic extrusion method a large-diameter copper pipe and a pure aluminum rod are extruded and are moulded under a large pressure by using a large extrusion device; and (5) a copper layer is electroplated on a surface of an aluminum core and then drawing
  • a solid-state bonding method is substantially adopted by the above first method and second method, i.e., solid-state copper and aluminum are bonded mechanically by virtue of an external pressure, no obvious mutual diffusion layer is present between the copper and the aluminum, and the bonding strength is very low.
  • the process of pouring the aluminum solution is not continuous and stable, so that the copper pipe is easily burnt through.
  • the length in one casting is limitable, so the problems of low yield, low production efficiency and unstable product performance are caused.
  • the copper and the aluminum are solid-phase bonded by Bruker by using a large hydrostatic extrusion machine to extrude and deform the copper pipe and the core aluminum rod, and then are moulded into the copper-aluminum composite material via various moulds.
  • Such a method is highly demanding on a use device, cannot implement continuous production, has low production efficiency, large loss, complex process requirement and high manufacturing cost, and thus is not suitable for large batch production.
  • a thickness of the electroplated copper layer is limitable, and the general electroplated thickness is far smaller than the thickness of a copper pipe used by other methods; and moreover, the copper layer is dropped easily, so that the quality problem of the product cannot be guaranteed.
  • the present disclosure provides a high-bonding strength copper-aluminum composite conductive material and a preparation method thereof.
  • a high-bonding strength copper-aluminum composite conductive material includes a clad copper layer and an aluminum core matrix; an interatomic bonded metallurgical bonding layer is formed between the clad copper layer and the aluminum core matrix; a thickness of the bonding layer is 5 ⁇ 35 ⁇ m, and the bonding strength is ⁇ 40Mpa; copper-aluminum intermetallic compounds are dispersedly distributed in the bonding layer; the copper-aluminum intermetallic compounds being CuAl 2 , Cu 9 Al 4 and CuAl; the bonding layer comprises a first diffusion layer close to the clad copper layer and a second diffusion layer close to the aluminum core matrix, wherein the components of the first diffusion layer are uniform, wherein the second diffusion layer is of a reticular structure formed by a mixture of two or more component phases, and wherein a thickness of the second diffusion layer is wider than a thickness of the first diffusion layer; and wherein the clad copper layer of the high-bonding
  • a method for preparing a high-bonding strength copper-aluminum composite conductive material includes the following technological steps.
  • Adding a raw material of a standard cathode electrolytic copper plate to an oxygen-free copper melting furnace, and polishing verdigris and pollutant on a surface of the electrolytic copper plate by a polishing machine wherein a furnace body of the copper melting furnace is divided into three portions that are a melting area, a heat preservation area and a standing area; 3 ⁇ 5 mins per material feeding interval, keeping a temperature of the copper solution at 1150 ⁇ 1180° C and flowing the molten copper solution to the heat preservation area; and at this moment, there is a need for temperature adjustment, and flowing the copper solution after heat preservation to the standing area to leach out the copper for use.
  • the copper solution enters a composition cavity via a copper flowing pipeline
  • the aluminum solution enters the composition cavity via an aluminum flowing pipeline at core
  • the copper solution and the aluminum solution in a composition furnace pass through a composition mould, a peripheral crystallizer, a twice-triple cooling device to form a copper-aluminum composite bar billet of which the outer layer is the copper and the core is the aluminum, controlling a composite casting temperature at 1200 ⁇ 5° C, controlling a temperature of the returned water of cooling water of the crystallizer at 50 ⁇ 60° C, controlling a flow at 4 ⁇ 8 L/min
  • the twice-triple cooling device is connected with the crystallizer
  • a flow of the cooling water of the twice-triple cooling device is 12 ⁇ 25 L/min
  • a pulling speed of the bar billet is 110 ⁇ 180 mm/min.
  • a rolling is a two-roll reversing rolling mill, wherein a material reversing device is mounted at two sides of the rolling mill respectively, the rolling mill may reverse a material automatically, and rolls are of a box-type pass shape; rolling the copper-aluminum composite bar billet having a rectangular cross section into a copper-aluminum composite intermediate product having a flat wide cross section, wherein a roll gap during rolling is generally set as 2 ⁇ 3 mm and a rolling speed is 10 ⁇ 40 m/min.
  • annealing is the most important procedure before moulding; an annealing temperature is 295 ⁇ 345° C and an annealing heat preservation time is 3-4.5 h; and then, spraying water to a tank to cool to a room temperature.
  • the machining rate in the drawing process is as follows: when thickness h ⁇ 10 mm, 25%>machining rate ⁇ 30%; when 6 mm ⁇ thickness h ⁇ 10 mm, 20% > machining rate ⁇ 25%; when 3 mm ⁇ thickness h ⁇ 6 mm, 15% > machining rate ⁇ 20%; and when thickness h ⁇ 3 mm, machining rate ⁇ 15%.
  • tank annealing and online induction annealing are adopted by the annealing process.
  • the online induction annealing is adopted by a copper-aluminum composite bar of which the width of the specification above 80 mm; and the tank annealing is adopted by a copper-aluminum composite bar of which the specification below 80 mm.
  • the rolling process is a pass type nine-course rolling process.
  • a coil drawing process, a hydraulic drawing process and a crawler drawing process may be adopted by the drawing process.
  • the width ⁇ 30 mm the coil drawing or hydraulic drawing or crawler drawing is adopted; when 30 mm ⁇ width ⁇ 120mm, the hydraulic drawing or crawler drawing is adopted; 6 m/min ⁇ coil drawing speed ⁇ 60 m/min; 50 m/min ⁇ crawler drawing speed ⁇ 80 m/min, and hydraulic drawing speed ⁇ 8 m/min.
  • the present disclosure has the following beneficial effects: the bonding between copper and aluminum in the copper-aluminum composite material achieves a metallurgical bonding state, and the corresponding bonding strength is greater than 40 MPa; a thickness of a side copper layer of the copper-aluminum composite material is thicker than a thickness of a planar copper layer, and is 1.6-2 times of the thickness of a planar copper layer; the thickness of the side clad copper layer is sufficient enough for large current impact and heat dissipation; and the elongation rate of the copper-aluminum composite material is greater than 30%; and the high-bonding strength copper-aluminum composite conductive material may carry out processing such as torsion, spiraling and side bending which are applied to the new field.
  • the high-bonding strength copper-aluminum composite conductive material provided by the present disclosure includes an aluminum bar matrix and a copper layer; an interatomic bonded metallurgical bonding layer is formed between a clad copper layer and an aluminum core matrix; the thickness of the bonding layer is controlled at 25 ⁇ m; the bonding layer is different from common copper-aluminum bonding and requires that the bonding strength is 40 MPa; and copper-aluminum intermetallic compounds CuAl 2 , Cu 9 Al 4 and CuAl are dispersed in the bonding layer.
  • Casting moulds having unequal thicknesses of copper layers are designed. According to a manner of alternatively rolling a horizontal hole and a vertical hole in subsequent machining, a product having a narrow surface copper with a thicker layer is produced, wherein the thickness of a side copper layer of a copper-aluminum composite bar is 1.8 times of the thickness of a planar copper layer.
  • the product meets an electrical theory such as "skin effect", and the problems of difficult heat dissipation and insufficient current carrying of a narrow surface of a flat wide copper-aluminum composite material are solved.
  • the preparation method of the high-bonding strength copper-aluminum composite conductive material in the present disclosure includes the following steps.
  • a raw material of a 1070 model (or equivalent 1060 model) aluminum ingot is added to an aluminum melting furnace for melting, wherein according to a proportion of 0.3 ⁇ of AlB 3 and 0.5 ⁇ of NH 4 Cl, adding the AlB 3 and the NH 4 Cl to the aluminum melting furnace, the aluminum melting furnace is a medium-frequency induction melting furnace, a rated power of the aluminum melting furnace is 500 KW, a furnace addition amount at each time is 200 kg and a rotational speed of a corresponding degassing stirring rod is 200 r/min; a high-purity argon gas is charged to a degassing stirrer till a flow is controlled at 0.2 L/min, wherein a degassing time is controlled at 18 min, and with corresponding parameter matching, a gas of the aluminum solution in each furnace may be removed completely; and a temperature of the aluminum solution is controlled at 780° C and at this time, the power of the aluminum melting furnace is adjusted to 60 kw.
  • the temperature in the control range may meet the
  • a raw material of a standard cathode electrolytic copper plate is added to a melting area of an oxygen-free copper melting furnace, and verdigris and pollutant on a surface of the electrolytic copper plate are polished by a polishing machine, 3-5 mins per material feeding interval, a molten copper solution is flowed to a heat preservation area, and the copper solution after heat preservation is flowed to a standing area to leach out the copper for use; a furnace body of the copper melting furnace is divided into three portions that are the melting area, the heat preservation area and the standing area.
  • the electrolytic copper plate is added to the melting area, a temperature of the copper solution is kept at 1150 ⁇ 1180° C and a temperature of the heat preservation area and the standing area is kept at 1200 ⁇ 10° C.
  • a crystallization potential required for a solidification process of the copper solution may be compensated; and in addition, a heat energy required for a copper-aluminum composition process may be supplemented and the metallurgical bonding is implemented.
  • the furnace body of the whole copper melting furnace is provided with a sealed furnace cover, and a surface layer of the molten copper solution is covered by graphite beads and charcoal for protection to prevent the copper solution from oxidizing and sucking gas, so that the effects of low hydrogen and low oxygen are achieved; and by controlling the hydrogen and oxygen contents to below 10 PPM and reducing the gas content of the copper solution, a subsequent product may be prevented from appearing a potential bubble.
  • the copper solution and the aluminum solution in the step 1 and the step 2 are composited via a respective flowing channel, wherein the copper solution is cooled by a crystallizer to form a solidified copper pipe, the core aluminum solution enters the copper pipe via an aluminum flowing pipeline and then passes through a copper sleeve inside the crystallizer, and the copper pipe is cooled to form the solidified core aluminum; and at last, the copper pipe and the core aluminum are cooled by a twice -triple cooling device to form a copper-aluminum composite bar billet.
  • the copper solution enters a composition cavity via a copper flowing pipeline, and a composition casting temperature is controlled at 1205°C; the aluminum solution enters the composition cavity via an aluminum flowing pipeline at core, and the copper solution and the aluminum solution in a composition furnace pass through a composition mould, a peripheral crystallizer, the twice-triple cooling device to form the copper-aluminum composite bar billet of which the outer layer is the copper and the core is the aluminum.
  • a temperature of the returned water of cooling water of the crystallizer is controlled at 55° C, a flow is controlled at 6 L/min, the twice-triple cooling device are connected with the crystallizer, a flow of the cooling water of the twice-triple cooling device is 18 L/min and is three times of a flow of the cooling water of the crystallizer, and a pulling speed of the bar billet is controlled at 150 mm/min.
  • An obvious mutual diffusion layer i.e., the metallurgical bonding layer
  • the interatomic bonding is implemented between the copper and the aluminum
  • intermetallic compounds CuAl 2 , Cu 9 Al 4 and CuAl are dispersedly distributed in the bonding layer
  • the components of a diffusion layer close to the copper matrix are uniform, and the thickness is narrower
  • a diffusion layer close to the aluminum matrix is of a reticular structure formed by a mixture of two or more components, and the thickness is wider.
  • the copper-aluminum composite bar billet is reversed for 90° via a material reversing device of a reversing mill, an appropriate roll gap is adjusted, vertical pass type E rolling is adopted, and according to different billet specifications and rolling specifications, a reduction rate is also obviously different.
  • a reduction rate is smaller.
  • the reduction rate is relatively large and the reduction rate is 5% ⁇ 23%.
  • the inclination of a sidewall of the vertical pass type E generally is 3° ⁇ 9° .
  • the inclination of the sidewall is not too small because the excessively small inclination of the sidewall prevents the rolling material from being gripped and thrown out and is disadvantageous for redressing of the rolls to cause poor utilization rate of the rolls, the rolling material after the cogging down and rolling is called as A1.
  • the A1 is reversed for 90° via the material reversing device of the reversing mill, the vertical pass type E rolling is adopted, the reduction rate is 20%, the inclination of the sidewall of the vertical pass type E is 7° generally, and the rolling material after the first vertical rolling is called as A2.
  • the A2 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the horizontal pass type F rolling is adopted, the reduction rate is 55% and the inclination of the sidewall of the horizontal pass type F is 14° .
  • the surface of the rolling material after this time of rolling becomes smooth from a rough state, and at this moment, the prepared rolling material is called as A3.
  • the A3 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the vertical pass type G rolling is adopted, the reduction rate is 15% and the inclination of the sidewall of the horizontal pass type G is 5° .
  • the prepared rolling material is called as A4.
  • the A4 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the horizontal pass type H rolling is adopted, the reduction rate is 22% and the inclination of the sidewall of the horizontal pass type H is 13° .
  • the prepared rolling material is called as A5.
  • the A5 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the vertical pass type I rolling is adopted, the reduction rate is 8% generally and the inclination of the sidewall of the vertical pass type I is 5° .
  • the prepared rolling material is called as A6.
  • the A6 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the horizontal pass type J rolling is adopted, the reduction rate is 16% and the inclination of the sidewall of the horizontal pass type J is 8° ⁇ 10° .
  • the prepared rolling material is called as A7.
  • the A7 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the vertical pass type K rolling is adopted, the reduction rate is 6% generally and the inclination of the sidewall of the vertical pass type K is 3° .
  • This time is the last time of vertical rolling and thus it is necessary to strictly control the narrowing size of the rolling material.
  • the prepared rolling material is called as A8.
  • the A8 is reversed for 90° via the material reversing device of the reversing mill, an appropriate roll gap is adjusted, the horizontal pass type L rolling is adopted, the reduction rate is 15% generally and the inclination of the sidewall of the horizontal pass type L is 12° .
  • This time is the last time of rolling before drawing and thus it is necessary to strictly control the discharge size of the rolling material, i.e., an appropriate drawing amount is reserved, and obvious influence will be occurred on a surface state of the drawing material.
  • the prepared rolling material is called as A9.
  • the copper-aluminum composite rolling material after being rolled enters side polishing machines under the transmission of a transfer roll, where the side polishing machines are divided into four groups, and the former two groups of the side polishing machines grind the upper side and the later two groups of the side polishing machines grind the lower plane; the polishing material is a sandpaper flap wheel; the grinding amount for narrow edges is controlled at 0.12 mm; each of the side polishing devices that are used is provided with a pressing device, which may prevent the copper-aluminum composite rolling material from swinging up and down or left and right; the grinding amount of each of the narrow edges is performed in groups so as to prevent excessively large grinding amount at each single time; and the grouped side grinding refers to that two narrow edges are ground alternatively.
  • the incoming material is a rolled copper-aluminum composite bar, and enters a mill via a pull roll leader; the incoming material is pressed via upper and lower rolls so as to prevent it from swinging up and down; the transmission speed of the incoming material is 4 m/min; a milling cutter is mounted on a circular roll cutting tool; a spiral blade is provided on a surface of a roll cutter, and the roll cutter is a circular roll milling cutter.
  • the milling cutters are divided into two groups, where the first group machines the upper plane and the second group machines the lower plane; the amount of feed of each of the milling cutters is 0.13 mm; the milled amount of the copper layer is 0.12 mm; and copper scales on a milling surface is recycled by a blower via a pipeline.
  • a drawing process includes the following steps.
  • Online induction annealing is adopted by a copper-aluminum composite bar of which the width of the specification is above 80 mm.
  • a copper-aluminum composite bar of which the width is 100 mm passes through an induction coil area via a delivery bearing to generate an induction current inside the copper-aluminum composite bar to heat, an induction annealing current is set at 140 A, and the copper-aluminum composite bar is quickly cooled by a water-spray cooling device at an outlet to achieve the quick-heating and quick-cooling annealing effect.
  • a transmission speed of the incoming material in induction annealing is 45 mm/s.
  • the temperature of the copper-aluminum composite bar can be monitored timely via an infrared temperature measurer at a discharge port, and an annealing temperature is approximately set at 295-345°C.
  • Tank annealing is adopted by a copper-aluminum composite bar of which the width is below 80 mm.
  • the copper-aluminum composite bar is sized at 6.3 m, then put onto a material rack and placed into a heated tank via a gantry crane.
  • An annealing heat preservation time of the tank bright annealing is 4.2 h according to different charge batches, the composite bar is delivered to a heating hearth via a control cabinet button, the vacuum is pumped for 12 min, an argon gas is charged to 0.12 MPa, an annealing temperature is set at 330°C according to the specification of the copper-aluminum composite bar, the heating heat preservation time is set according to the charge batch and the tank bright annealing is performed. With tank water-spray cooling, the water is sprayed all around via spray cooling pipelines, so that the tank is guaranteed to be cooled quickly and uniformly.
  • the plastic property of the material is improved.
  • a temperature of the material is improved to 350°C within a very short time (6-10 s in general); and then, the material is cooled by water quickly to an normal temperature.
  • crystal particles inside the copper layers are re-crystallized again and it is too late to grow the crystal particles; and meanwhile, the bonding layer on the copper-aluminum interface is not damaged. Therefore, the plastic machining property of the material is good.
  • the elongation rate of the copper-aluminum composite material may be controlled at 30-35%, and the requirements of machining manners such as torsion, spiraling and side bending may be met.
  • the copper-aluminum composite bar is placed on a platform of an automatic loading mechanism; automatic loading and material receiving devices suck the surface of the copper-aluminum composite bar via vacuum suction plates, and are moved up and down or left and right via lead screws.
  • the copper-aluminum composite bar is placed into a guide groove, and under the driving of a delivery wheel, the copper-aluminum composite bar first passes through an alkali washing box, where a hairbrush and an air knife are provided in a box body, the hairbrush is configured to brush surface oil stain and the air knife blows the surface of the copper-aluminum composite bar to be dry; then, the copper-aluminum composite bar passes through a water spraying device, and a residual alkali solution on the surface is cleaned with water and the copper-aluminum composite bar is blown to be dry to enter an acid cleaning box, where a hairbrush and an air knife are also provided in the acid cleaning box; after acid cleaning treatment, the copper-aluminum composite bar is washed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Claims (7)

  1. Leitfähiger Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit, umfassend eine plattierte Kupferschicht und eine Aluminium-Kernmatrix, wobei eine interatomar gebundene metallurgische Haftschicht zwischen der plattierten Kupferschicht und der Aluminium-Kernmatrix gebildet ist; die Dicke der Haftschicht 5~35 µm beträgt und die Haftfestigkeit ≥ 40 MPa beträgt; intermetallische Kupfer-Aluminium-Verbindungen in der Haftschicht dispergiert verteilt sind; die intermetallischen Kupfer-Aluminium-Verbindungen CuAl2, Cu9Al4 und CuAl sind; die Haftschicht eine erste Diffusionsschicht in der Nähe der plattierten Kupferschicht und eine zweite Diffusionsschicht in der Nähe der Aluminium-Kernmatrix umfasst, wobei die Komponenten der ersten Diffusionsschicht gleichförmig sind, wobei die zweite Diffusionsschicht eine netzartige Struktur aufweist, die durch eine Mischung von zwei oder mehr Komponentenphasen gebildet wird; und wobei eine Dicke der zweiten Diffusionsschicht breiter als eine Dicke der ersten Diffusionsschicht ist; und wobei die plattierte Kupferschicht des leitfähigen Kupfer-Aluminium-Verbundstoffs mit hoher Haftfestigkeit eine Seitenoberfläche und eine ebene Oberfläche umfasst, die jeweils als Seitenkupferschicht und ebene Kupferschicht bezeichnet werden, wobei die Dicke der Seitenkupferschicht das 1,6-2-Fache der Dicke der ebenen Kupferschicht beträgt.
  2. Herstellungsverfahren für einen leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 1, umfassend die folgenden technologischen Schritte:
    1) Aluminium schmelzen
    Hinzufügen eines Rohmaterials eines Aluminiumbarrens zu einem Aluminiumschmelzofen zum Schmelzen, entsprechend einem Anteil von 0,15 ‰~0,5 ‰ AlB3 und 0,3 ‰~0,7 ‰ NH4Cl, Hinzufügen des AlB3 und des NH4Cl in den Aluminiumschmelzofen; Durchführen einer hochreinen Verunreinigungsentfernung und Entgasung, wobei die Ofenzugabemenge zu jedem Zeitpunkt 100 kg~400 kg und die Rotationsgeschwindigkeit eines entsprechenden Entgasungsrührstabs 100 bis 400 U/min beträgt; Steuern einer Strömung eines hochreinen Argongases zu einem Entgasungsrührer mit 0,1~0,5 1/min, Steuern der Entgasungszeit auf 15∼20 min und nach Entschlackung und Entgasung kann eine Aluminiumlösung verwendet werden; und Steuern einer Temperatur der Aluminiumlösung auf 770~820 °C und Steuern der Leistung des Aluminiumschmelzofens auf 50∼70 kW;
    2) Kupfer schmelzen
    Hinzufügen eines Rohmaterials einer elektrolytischen Standardkathoden-Kupferplatte zu einem sauerstofffreien Kupferschmelzofen und Polieren von Grünspan und Verunreinigungen auf einer Oberfläche der elektrolytischen Kupferplatte durch eine Poliermaschine; dann Hinzufügen der elektrolytischen Kupferplatte zu einem Schmelzbereich, Halten einer Temperatur einer Kupferlösung bei 1150~1180 °C, Strömenlassen der geschmolzenen Kupferlösung zu einem Wärmekonservierungsbereich und Strömenlassen der Kupferlösung nach der Wärmekonservierung zu einem Stehbereich, um das Kupfer zur Verwendung auszulaugen;
    3) Kupfer-Aluminium-Verbund herstellen
    Verbundherstellen der Aluminiumlösung in Schritt 1 und der Kupferlösung in Schritt 2 über einen jeweiligen Strömungskanal, wobei die Kupferlösung über eine Kupferströmungsleitung in einen Verbundherstellungshohlraum eintritt, die Aluminiumlösung über eine Aluminiumströmungsleitung in den Kern in dem Verbundherstellungshohlraum eintritt, die Kupferlösung und die Aluminiumlösung in einem Verbundherstellungsofen eine Verbundherstellungsform, einen peripheren Kristallisator und eine Zweifach-Dreifach-Kühlvorrichtung durchlaufen, um einen Kupfer-Aluminium-Verbundstoffstangenrohling zu bilden, dessen äußere Schicht das Kupfer und dessen Kern das Aluminium ist, Steuern einer Temperatur des Verbundgusses auf 1195~1205 °C, Steuern der Temperatur des zurückfließenden Wassers des Kühlwassers des Kristallisators auf 50∼60 °C, Steuern der Durchflussrate auf 4-81/min, wobei die Zweifach-Dreifach-Kühlvorrichtung mit dem Kristallisator verbunden ist, der Durchfluss des Kühlwassers der Zweifach-Dreifach-Kühlvorrichtung 12∼25 l/min beträgt, und Steuern einer Ziehgeschwindigkeit des Stangenrohlings auf 110-180 mm/min.
    4) Kupfer-Aluminium-Verbundstoffstangenrohling walzen
    Walzen des in Schritt 3 hergestellten Kupfer-Aluminium-Verbundstoffstangenrohlings, wobei ein Walzwerk ein Zwei-Walzen-Reversierwalzwerk ist, wobei eine Materialumkehrvorrichtung jeweils an zwei Seiten des Walzwerks montiert ist, das Walzwerk ein Material automatisch umkehren kann und die Walzen eine kastenförmige Durchlaufform aufweisen; Walzen des Kupfer-Aluminium-Verbundstoffstangenrohlings mit einem rechteckigen Querschnitt in ein Kupfer-Aluminium-Verbundstoffzwischenprodukt mit einem flachen breiten Querschnitt, wobei ein Walzenspalt während des Walzens auf 2∼3 mm und die Walzgeschwindigkeit auf 10∼40 m/min eingestellt wird;
    5) Seitenoberflächenschichtbehandlung
    Drehen eines ankommenden Materials an einer Seite eines gewalzten Kupfer-Aluminium-Verbundstoffmaterials mit einer konstanten Geschwindigkeit in einem gepressten Zustand unter der Übertragung einer Übertragungswalze und Eintreten in eine Seitenoberflächenschicht-Behandlungsvorrichtung, wobei eine Schleifscheibe der Vorrichtung die Seite des gewalzten Kupfer-Aluminium-Verbundstoffmaterials kontaktiert, und, mit einer Hochgeschwindigkeitsdrehung der Schleifscheibe, Polieren und Schleifen einer Oberflächenschicht einer Kontaktoberfläche des ankommenden Materials;
    6) Behandlung der ebenen Oberflächenschicht
    bei einer halbfertigen Kupfer-Aluminium-Verbundstoffstange, die in Schritt 5 behandelt wurde, muss, nachdem eine Seitenkante poliert und geschliffen wurde, die obere und untere Oberfläche noch behandelt werden; Übertragen des ankommenden Materials in eine ebene Behandlungsvorrichtung über eine Zugwalzenführung und Pressen des ankommenden Materials über obere und untere Walzen, um zu verhindern, dass das ankommende Material auf und ab schwingt, wobei eine Übertragungsgeschwindigkeit des ankommenden Materials 3∼5 m/min beträgt, und Durchführen der Vorwärtsbewegung des ankommenden Materials mit einer konstanten Geschwindigkeit unter dem Zug einer Übertragungsvorrichtung; und Fräsen von Oberflächenschichten von Kupferschichten auf oberen und unteren Ebenen über Bearbeitungsvorrichtungen auf oberen und unteren Ebenen, wobei der Vorschub eines Fräswerkzeugs 0,10∼0,15 mm beträgt, und eine gefräste Menge der Kupferschichten 0,1∼0,15 mm beträgt;
    7) Ziehen
    Ziehen des ankommenden Materials nach der Behandlung in Schritt 6, wobei eine Bearbeitungsrate für eine Ziehmenge erstmalig auf 25 %~30 % gesteuert wird und die Bearbeitungsrate ≤ 30 % beträgt; und Wickeln oder Sägen des gezogenen Materials zu einem geraden Material mit einer bestimmten Länge, wobei die gesamten Zieh-, Wickel- und Sägeverfahren alle automatisch gesteuert werden und kontinuierlich arbeiten können;
    8) Glühen
    Glühen ist der wichtigste Vorgang vor dem Formen; eine Glühtemperatur beträgt 295~345 °C und die Glühzeit beträgt 3-4,5 h; und dann Sprühen von Wasser in einen Tank, um auf Raumtemperatur abzukühlen;
    9) Oberflächen reinigen
    Platzieren einer Kupfer-Aluminium-Verbundstoffstange in Schritt 8 in einer Führungsnut über einen automatischen Lademechanismus, Starten einer Vorrichtung und unter dem Antrieb eines Ausgaberades, erstes Durchführen der Kupfer-Aluminium-Verbundstoffstange durch einen Alkali-Waschkasten, wobei eine Haarbürste und ein Luftmesser in einem Kastenkörper vorgesehen sind, die Haarbürste so konfiguriert ist, dass sie Ölflecken an der Oberfläche abbürstet, und das Luftmesser eine Oberfläche der Kupfer-Aluminium-Verbundstoffstange trockenbläst; dann Durchführen der Kupfer-Aluminium-Verbundstoffstange durch eine Wassersprühvorrichtung und Waschen einer verbleibenden Alkalilösung auf der Oberfläche mit Wasser und Trockenblasen der Kupfer-Aluminium-Verbundstoffstange, um in einen Säurereinigungskasten einzutreten, wobei in dem Säurereinigungskasten auch eine Haarbürste und ein Luftmesser vorgesehen sind; nach der Säurereinigungsbehandlung, Waschen der Kupfer-Aluminium-Verbundstoffstange mit Wasser und erneutes Trockenblasen, um in einen Passivierungskasten einzutreten, wobei eine Passivierungslösung mit einem Passivierungsverfahren im Passivierungskasten vorbereitet wird; nach dem Besprühen und der Passivierung, automatisches Trocknen der Kupfer-Aluminium-Verbundstoffstange und Ausführen aus dem Passivierungskasten unter dem Zug eines Förderbandes; und dann Platzieren der Kupfer-Aluminium-Verbundstoffstange nach der Oberflächenreinigung und der Passivierung auf ein Aufnahmegestell über eine automatische Materialaufnahmevorrichtung.
  3. Herstellungsverfahren für den leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 2, wobei die Bearbeitungsrate beim Ziehverfahren wie folgt ist:
    wenn Dicke h ≥ 10 mm, 25 % > Bearbeitungsrate ≤ 30 %; wenn 6 mm ≤ Dicke h < 10 mm, 20 % > Bearbeitungsrate ≤ 25 %; wenn 3 mm ≤ Dicke h < 6 mm, 15 % > Bearbeitungsrate ≤ 20 %; und wenn Dicke h < 3 mm, Bearbeitungsrate ≤ 15 %.
  4. Herstellungsverfahren für den leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 2, wobei das Glühverfahren durch Tankglühen oder Online-Induktionsglühen erfolgt.
  5. Herstellungsverfahren für den leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 4, wobei das Online-Induktionsglühen bei einer Kupfer-Aluminium-Verbundstoffstange verwendet wird, deren spezifizierte Breite über 80 mm liegt; und das Tankglühen bei einer Kupfer-Aluminium-Verbundstoffstange verwendet wird, deren spezifizierte Breite unter 80 mm liegt.
  6. Herstellungsverfahren für den leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 2, wobei das Walzverfahren ein Neun-Gang-Walzverfahren vom Durchgangstyp ist.
  7. Herstellungsverfahren für den leitfähigen Kupfer-Aluminium-Verbundstoff mit hoher Haftfestigkeit nach Anspruch 2 oder 3, wobei das Ziehverfahren ein Spulenziehverfahren, ein hydraulisches Ziehverfahren oder ein Raupenziehverfahren sein kann; wenn die Breite ≤ 30 mm ist, wird das Spulenziehen oder das hydraulische Ziehen oder das Raupenziehen angewandt; bei 30 mm < Breiten ≤ 120mm wird das hydraulische Ziehen oder das Raupenziehen angewandt; 6 m/min ≤ Spulenziehgeschwindigkeiten ≤ 60 m/min; 50 m/min ≤ Raupenziehgeschwindigkeit ≤ 80 m/min, und hydraulische Ziehgeschwindigkeit ≤ 8 m/min.
EP16923175.0A 2016-12-07 2016-12-16 Leitfähiger kupfer-aluminium-verbundstoff mit hoher haftfestigkeit und herstellungsverfahren dafür Active EP3553793B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611114257.5A CN106601324B (zh) 2016-12-07 2016-12-07 一种高结合强度铜铝复合导电材料及其制备方法
PCT/CN2016/110430 WO2018103132A1 (zh) 2016-12-07 2016-12-16 一种高结合强度铜铝复合导电材料及其制备方法

Publications (3)

Publication Number Publication Date
EP3553793A1 EP3553793A1 (de) 2019-10-16
EP3553793A4 EP3553793A4 (de) 2020-05-06
EP3553793B1 true EP3553793B1 (de) 2022-07-13

Family

ID=58596723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16923175.0A Active EP3553793B1 (de) 2016-12-07 2016-12-16 Leitfähiger kupfer-aluminium-verbundstoff mit hoher haftfestigkeit und herstellungsverfahren dafür

Country Status (4)

Country Link
EP (1) EP3553793B1 (de)
KR (1) KR102278579B1 (de)
CN (1) CN106601324B (de)
WO (1) WO2018103132A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941238A (zh) * 2017-05-18 2018-12-07 艾洛益(杭州)材料科技有限公司 铜包覆铝复合母线的连续制备工艺
CN107974651B (zh) * 2017-12-22 2022-09-06 烟台孚信达双金属股份有限公司 一种铜铝复合圆棒在线旋转感应退火方法及设备
CN110656351A (zh) * 2019-10-28 2020-01-07 昆明冶金研究院 一种锌电积用夹节式铜铝横梁的制备方法
CN110993876A (zh) * 2019-12-24 2020-04-10 烟台孚信达双金属股份有限公司 一种锂电池极耳连接用铜铝复合端子及其制备方法
CN114653752A (zh) * 2020-02-21 2022-06-24 洛阳铜一金属材料发展有限公司 厚铜层比例的铜铝复合板带的制备方法
CN111489852A (zh) * 2020-05-09 2020-08-04 东莞市营特电子科技有限公司 一种延伸性能好的铜包铝线材及其制作工艺
CN112117023A (zh) * 2020-08-10 2020-12-22 常州金方圆新材料有限公司 一种铜铝复合导线及其制备方法
CN113352019A (zh) * 2021-04-22 2021-09-07 东方日升新能源股份有限公司 铜铝复合焊带的制作方法及铜铝复合焊带和太阳能组件
CN114758818A (zh) * 2022-03-14 2022-07-15 吉林省中赢高科技有限公司 一种电能传输总成及车辆
CN115091153A (zh) * 2022-07-05 2022-09-23 珠海市斗门区宇博电子科技有限公司 一种散热器制作工艺
CN115194414A (zh) * 2022-08-03 2022-10-18 国网福建省电力有限公司惠安县供电公司 一种新型铜铝过渡解决方法
CN115558873A (zh) * 2022-09-26 2023-01-03 徐保才 一种铝合金海底电缆铠装材料及其制备方法与应用
CN115764346B (zh) * 2022-12-14 2023-07-28 郑州机械研究所有限公司 一种铜铝共晶过渡线夹及其制备方法
CN116487110B (zh) * 2023-06-21 2023-09-01 西安聚能超导线材科技有限公司 一种高镍含量的NbTi超导开关线及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902801B1 (fr) * 2006-06-21 2008-12-05 Rh Innovation Sarl Procede de realisation d'un fil d'aluminium recouvert d'une couche de cuivre et fil obtenu
KR101276496B1 (ko) * 2010-06-08 2013-06-18 가부시키가이샤 네오맥스 마테리아르 알루미늄 구리 클래드재
CN102161088A (zh) * 2010-12-16 2011-08-24 张纪云 一种改进型铜包铝排及其制备方法
WO2013134939A1 (en) * 2012-03-14 2013-09-19 Abb Technology Ltd. High conductivity and high strength copper clad aluminum busbar
CN102601325A (zh) * 2012-04-16 2012-07-25 金川集团有限公司 一种水平连铸铜铝复合棒材的制备方法
WO2015042492A1 (en) * 2013-09-21 2015-03-26 Applied Composite Material Llc Isothermal processed copper cladded aluminum composite and method and system for manufacturing the same
CN103537483B (zh) * 2013-10-16 2016-02-03 河南科技大学 一种铜铝复合板带的制备方法及复合板带连铸装置
CN105170689A (zh) * 2015-10-15 2015-12-23 烟台孚信达双金属股份有限公司 一种铜铝复合圆棒的制备工艺
CN106111922B (zh) * 2016-06-28 2018-07-31 北京科技大学 一种铜包铝复合材料高效连铸成形设备及工艺

Also Published As

Publication number Publication date
KR102278579B1 (ko) 2021-07-16
EP3553793A1 (de) 2019-10-16
CN106601324B (zh) 2017-12-08
KR20190091502A (ko) 2019-08-06
EP3553793A4 (de) 2020-05-06
CN106601324A (zh) 2017-04-26
WO2018103132A1 (zh) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3553793B1 (de) Leitfähiger kupfer-aluminium-verbundstoff mit hoher haftfestigkeit und herstellungsverfahren dafür
CN103008383B (zh) 一种双金属覆合用铜带的生产工艺
CN105177327A (zh) 5xxx系高镁铝合金o态板材的制备方法
CN113088750B (zh) 一种铜铁合金线材及其制备方法
CN104722577A (zh) 一种连续轧制生产工艺及工艺布置
CN112458349A (zh) 一种含钕和钇的低稀土高强度变形镁合金及其制备方法
JP7262129B2 (ja) 高強度高伝導率銅合金の水平連続鋳造方法およびその応用
CN106216423B (zh) 一种陶瓷覆铜基板用高导电无氧铜带的生产工艺
CN102443725B (zh) 一种用AlH3处理的高强度铝合金
CN108546850A (zh) 一种高导电性6101铝合金板材的生产方法
CN111101035B (zh) 一种汽车散热器用铝箔的制备方法
CN111763860A (zh) 一种超高强铝合金线及其生产工艺
CN115896653B (zh) 一种高强度铝合金圆杆的连铸连轧装置及方法
CN102418009A (zh) 一种可消解高硬度化合物的铝合金及其熔炼方法
CN115540594A (zh) 一种配有电磁搅拌装置的钛合金锭电磁冷坩埚连续熔炼方法及装置
CN114393196A (zh) 一种超厚铝合金淬火板及其制备方法
CN113388761A (zh) 一种电子封装用铝硅合金盖板材料及其制备方法
CN219402895U (zh) 一种Al-Zn-Mg-Cu合金焊丝的制造设备
CN115555583B (zh) 一种金属基复合材料粉芯丝材固相增材制造装置及方法
CN114107766B (zh) 一种7xxx铝合金薄带的制备方法
CN115449658B (zh) 一种8011l合金铸轧坯料无裂边生产工艺
JP3419437B2 (ja) 黄銅の横型連続鋳造方法および黄銅条の製造方法
CN114107762B (zh) 一种薄带连铸高性能7xxx铝合金薄带的制备方法
CN114107767B (zh) 一种薄带连铸高性能7xxx铝合金薄带及其制备方法
CN114107759B (zh) 一种7xxx铝合金薄带及其制造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200403

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 1/02 20060101AFI20200330BHEP

Ipc: B21C 37/04 20060101ALI20200330BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210112

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016073565

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1504689

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1504689

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016073565

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

26N No opposition filed

Effective date: 20230414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 8

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713