EP3546826B1 - Pompe à chaleur à vapeur et procédé permettant d'employer vapeur à basse pression par complément d'enthalpie et surpression - Google Patents
Pompe à chaleur à vapeur et procédé permettant d'employer vapeur à basse pression par complément d'enthalpie et surpression Download PDFInfo
- Publication number
- EP3546826B1 EP3546826B1 EP17878307.2A EP17878307A EP3546826B1 EP 3546826 B1 EP3546826 B1 EP 3546826B1 EP 17878307 A EP17878307 A EP 17878307A EP 3546826 B1 EP3546826 B1 EP 3546826B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vapor
- section
- inner cavity
- tslb
- tornado
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 71
- 230000001502 supplementing effect Effects 0.000 title claims description 50
- 229920006395 saturated elastomer Polymers 0.000 claims description 244
- 239000000463 material Substances 0.000 claims description 122
- 239000007788 liquid Substances 0.000 claims description 97
- 238000010438 heat treatment Methods 0.000 claims description 83
- 230000001133 acceleration Effects 0.000 claims description 69
- 230000001965 increasing effect Effects 0.000 claims description 61
- 238000001704 evaporation Methods 0.000 claims description 57
- 230000008020 evaporation Effects 0.000 claims description 57
- 238000005507 spraying Methods 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 33
- 238000004064 recycling Methods 0.000 claims description 28
- 230000002708 enhancing effect Effects 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000005265 energy consumption Methods 0.000 description 9
- 239000002918 waste heat Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229940097139 perfect choice Drugs 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006244 Medium Thermal Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
- F22G1/005—Steam superheating characterised by heating method the heat being supplied by steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/26—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/16—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/42—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow characterised by the input flow of inducing fluid medium being radial or tangential to output flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/06—Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
Definitions
- the invention relates to the field of vapor heat pumps (VHP), in particular to a vapor heat pump and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost.
- VHP vapor heat pumps
- US 2007/245736 discloses process for the preparation of superheated of steam by transferring heat from at least a fraction of a high pressure steam to a lower pressure steam to produce a superheated, lower pressure steam.
- the high pressure steam can be generated by recovering heat from a heat producing chemical process.
- the lower pressure steam can be generated by reducing the pressure of a portion of the high pressure steam or by recovering heat from one or more chemical processes.
- the superheated, lower pressure steam may be used to generate electricity in a steam turbine, operate a steam turbine drive, or as a heat source. Also disclosed is a process for driving a steam turbine using superheated steam produced by the process of the invention.
- CN 103908788 discloses an MVR heat pump evaporation system, which comprises a water vapor compression system, an evaporator, a separator, an energy storage water tank and a waste heat recovery system.
- the vapor outlet of the energy storage water tank and the vapor outlet of the separator are both in connection with the vapor inlet of the water vapor compression system, the vapor outlet of which is connected to the vapor inlet of the evaporator.
- the vapor outlet of the evaporator is connected to the vapor inlet of the separator, and the stock solution inlet and the concentrated solution outlet of the evaporator are both in connection with the waste heat recovery system.
- the MVR heat pump evaporation system recovers low grade waste heat, i.e.
- CN 105523597 discloses liquid medium thermal compression evaporation purification system.
- the system mainly comprises a heater, a high pressure water pump, a jet flow inhalation device, a high pressure steam separator, an evaporation chamber, a separation chamber and a reflux pump.
- Material enters the evaporation chamber to be evaporated enters the separation chamber to undergo gas-liquid separation so as to obtain secondary steam, and the secondary steam enters the jet flow inhalation device; a high pressure liquid obtained by the high pressure water pump passes through the jet flow inhalation device while being mixed with the inhaled secondary steam, and the mixture is discharged into the high pressure steam separator to undergo gas-liquid separation; high pressure steam released after the gas-liquid separation enters the evaporation chamber to be used as a heat transfer medium for heating evaporation of the material; and a liquid medium produced from the high pressure steam separator is sent into the electric heater through the reflux pump, and the liquid medium heated by the electric heater is sent into the high pressure water pump.
- the secondary steam is fully utilized and there is no discharge of the secondary steam.
- CN 202902754 discloses a device for converting waste heat steam by a steam jet pump and belongs to the field of drying technology.
- the device comprises an internally-heated fluidized bed, a flash tank, a dry duster, a steam jet pump and a humidifier.
- a steam inlet of the internally-heated fluidized bed is communicated with a steam outlet of the humidifier.
- a condensate outlet of the internally-heated fluidized bed is communicated with an inlet of the flash tank.
- a condensate outlet of the flash tank is communicated with a condensate inlet of the humidifier.
- a waste heat steam outlet of the internally-heated fluidized bed is communicated with the dry duster.
- a steam outlet of the dry duster and a steam outlet of the flash tank are communicated with a low-temperature steam inlet of the steam jet pump.
- a high-temperature steam inlet of the steam jet pump is communicated with a steam master pipe.
- a steam outlet of the steam jet pump is provided with two pipes respectively communicated with the internally-heated fluidized bed and the humidifier. Superheated steam is used as fluidizing drying medium, so that moisture evaporated by material can be brought away and non-condensable gas is avoided.
- the temperature of the secondary vapor generated during evaporation is always lower than the liquid temperature due to the rising boiling point, which creates technical difficulties for the energy-saving utilization of the secondary vapor.
- the multi-effect evaporator uses the latent heat of vaporization of externally supplied vapor for many times. However, whatever happens, the externally supplied vapor enters and flows out of the system in a steam state so that the enthalpy difference of the steam entering and leaving the system is very small. For example, after the saturated steam (1.0MPa(G), 185°C) enters the evaporation system for multi-effect evaporation, it will become 45° C secondary steam and then be discharged from the system, with the enthalpy difference less than 250kJ/kg and the heat utilization rate of the externally supplied vapor less than 9%. Not only that, a large amount of circulating water will be used to condense the secondary steam with the purpose of ensuring the vacuum degree during evaporation. The circulating water consumption as well as other energy consumption decreases the heat utilization rate of second law of thermodynamics.
- MVR is an energy-saving technology aiming to reduce the demand for external energy by reusing the energy of the secondary steam. Its working process is to compress the steam (secondary steam) at low temperature through a compressor, increase the temperature, pressure and the enthalpy, and then condensate steam in an evaporator to make full use of the latent heat of steam. Except for start-up, the externally supplied steam is not used in the whole evaporation process, so as to fully utilize the secondary steam, recover latent heat and improve thermal efficiency, thus the economy is equal to 20-effect evaporation. However, one-time investment of MVR is greater than that of multi-effect evaporation, which is generally 1.5 times more than multi-effect evaporation.
- the steam-jet heat pump requires expanding the externally supplied high-pressure Steam in Laval nozzle (nozzle jet) of the steam ejector to generate supersonic flow so that the pressure energy and phase change energy are converted into kinetic energy of jet flow, so as to drive and eject the secondary steam or low pressure steam, and realize their pressure boosted utilization.
- the pressure of mixed steam is less than that of the externally supplied vapor.
- the injection driving coefficient is generally less than 1 so that the secondary Steam or low pressure Steam has been rarely used due to very low utilization rate and very high energy consumption.
- the technical solution to be provided by the invention is to provide a vapor heat pump (VHP) and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost, so as to efficiently utilize the low pressure vapor.
- VHP vapor heat pump
- the invention provides a method for utilizing low pressure vapor through enthalpy supplement and pressure boost, comprising the following steps:
- an artificial tornado method is used by reference to the formation theory of tornado in nature and its strong suction force, so as to generate tornado vortex in the low pressure vapor for superheating and then spraying-liquid boost pressure or superheating and spraying-liquid boost pressure.
- the method comprises the following steps:
- the material heater is an evaporator and the low pressure vapor is secondary vapor, comprising the following steps:
- a vapor heat pump comprising a material heater and a superheat and spraying-liquid booster (SHSLB) with a low pressure vapor inlet and a saturated vapor outlet;
- the material heater has a saturated vapor inlet in connected with the saturated vapor outlet of the SHSLB;
- step 1) the low pressure vapor flows into the SHSLB and is heated into the superheated vapor; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure;
- step 2) the condensate is sprayed into the SHSLB to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater for heating the material to archive the utilization or recycling.
- the vapor heat pump used in the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost is one capable of a tornado vapor heat pump(TVHP), which comprises a material heater and a tornado superheat and spraying-liquid booster (TSHSLB), wherein the TSHSLB has a low pressure vapor inlet and a saturated vapor outlet; the material heater has a saturated vapor inlet connected with the saturated vapor outlet of the TSHSLB; in step 1), the low pressure vapor is fed into the TSHSLB and heated into the superheated vapor; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater, the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force; a tornado is generated from the superheated vapor obtained in step 1) in the TSHSLB for enhancing the suction force; the conden
- the SHSLB comprises a superheater (SH) and a spraying-liquid booster (SLB); wherein the SH has a low pressure vapor inlet and a superheated vapor outlet, and the SLB has a superheated vapor inlet and a saturated vapor outlet; the superheated vapor outlet of the SH is connected with the superheated vapor inlet of the SLB, and the saturated vapor outlet of the SLB is connected with the saturated vapor inlet of the material heater; in step 1), the low pressure vapor flows through SH and is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SLB to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater for heating the material to archive the utilization or recycling.
- SH superheater
- SLB spraying-liquid booster
- the SH is a tornado superheater (TSH)
- the SLB is a tornado spraying-liquid booster (TSLB)
- a heater is arranged on the TSH; in step 1), the low pressure vapor is fed into the TSH to generate a tornado vortex; meanwhile, in the TSH low pressure vapor is heated into superheated vapor by the heater, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater, the saturated vapor will be condensed to generate a strong suction force; the superheated vapor obtained in step 1) is sucked into the TSLB to generate a tornado vortex for enhancing the suction force; meanwhile, the condensate is sprayed through the nozzle assembly at the direction opposite to the rotating direction of the TSLB tornado vortex, the superheated vapor and the condensate are fully mixed to generate the pressure boosted and quantity increased saturated
- Low pressure vapor is the low-level thermal energy saturated vapor relative to the pressurized high temperature and rich in thermal energy saturated vapor.
- the material of the invention means evaporable solution or pure liquid, of which the solvent can be either water or organic solvent.
- the method of the invention is based on the principle that saturated steam at different temperature has small enthalpy difference; for example, since the enthalpy difference of saturated steam at 100°C and 120°C is only 29kJ/kg, the secondary steam at 100°C can reach the saturated state at 120°C only through supplementing enthalpy of 29kJ/kg and pressure increase.
- the supplementing enthalpy and pressure increase of steam can be performed in many ways such as mechanical vapor recompression (MVR). Steam is difficult to compress and will eventually be in a superheated state, of which more than 80% of the energy is consumed for increase temperature and less than 20% for increase pressure. Therefore, the energy consumption is high.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the invention is based on the one-to-one correspondence characteristic of temperature, pressure and enthalpy of saturated vapor; that is, given the enthalpy value, the vapor pressure and temperature can be determined.
- the low pressure vapor or secondary vapor can be converted into superheated vapor through supplementing enthalpy , but vapor cannot be pressurized.
- Heat energy and pressure energy are both energy. Under certain conditions, heat energy can be converted into pressure energy such as spraying liquid boost pressure(SLBP), which is an excellent choice.
- SLBP spraying liquid boost pressure
- the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force.
- the low pressure vapor can be converted into the pressure boosted and quantity increased saturated vapor, that is, the high temperature and rich in thermal energy saturated vapor, so as to utilize the low pressure vapor.
- an artificial tornado is generated from vapor in corresponding equipment according to an artificial tornado method, so as to enhance the condensation suction force of vapor and further improve the thermal efficiency and compression ratio.
- the invention can effectively reduce the energy consumption and save the cost owing to small enthalpy difference between the low pressure vapor and pressurized saturated vapor, small enthalpy supplement required for superheated vapor, and high efficiency of spraying liquid boost pressure.
- the invention further provides a vapor heat pump, which is not a separate equipment but a device system, comprising a material heater and a SHSLB, wherein the low pressure vapor is heated into superheated vapor in the SHSLB for spraying liquid boost pressure and converted into the pressure boosted and quantity increased saturated vapor; the material heater has a saturated vapor inlet; the SHSLB has a saturated vapor outlet, a low pressure vapor inlet, and a condensate inlet; and the saturated vapor inlet of the material heater is connected with the saturated vapor outlet of the SHSLB.
- a vapor heat pump which is not a separate equipment but a device system, comprising a material heater and a SHSLB, wherein the low pressure vapor is heated into superheated vapor in the SHSLB for spraying liquid boost pressure and converted into the pressure boosted and quantity increased saturated vapor; the material heater has a saturated vapor inlet; the SHSLB has a saturated vapor outlet, a low pressure vapor inlet, and
- the SHSLB is a TSHSLB; and TSHSLB comprises a TSHSLB vortex generation superheat section, a TSHSLB acceleration section, a TSHSLB high-speed mixing section and a TSHSLB diffuser section; wherein the TSHSLB vortex generation superheat section has a circular drum or a cylindrical inner cavity, the TSHSLB acceleration section has a conical inner cavity, the TSHSLB high-speed mixing section has a cylindrical inner cavity, and the TSHSLB diffuser section has a conical inner cavity; the larger diameter end of the conical inner cavity of the TSHSLB acceleration section is connected with a circular drum or a cylindrical inner cavity of the TSHSLB vortex generation superheat section, and the smaller diameter end of the conical inner cavity of the TSHSLB acceleration section is connected with the smaller diameter end of the conical inner cavity of the TSHSLB diffuser section through the cylindrical inner cavity of the TSHSLB high-speed mixing section; the TSHSLB vortex generation superheat section
- the material heater is an evaporator
- the SHSLB comprises a SH and a SLB
- the SH has a secondary vapor inlet pipe and a superheated vapor outlet
- the evaporator comprises a heating chamber and an evaporation chamber
- the evaporator has a secondary vapor outlet connected with the evaporation chamber and a saturated vapor inlet connected with the heating chamber
- the SLB has a superheated vapor inlet and a saturated vapor outlet
- the secondary vapor inlet pipe of the SH is connected with the secondary vapor outlet of the evaporation chamber of the evaporator
- the superheated vapor outlet of the SH is connected with the superheated vapor inlet of the SLB
- the saturated vapor outlet of the SLB is connected with the saturated vapor inlet of the heating chamber
- the SLB has a nozzle assembly comprising a liquid ejection nozzle arranged in the SLB; and the ejection direction of the liquid ejection nozzle is the same as that of
- the SH comprises a TSH and a heater; wherein the TSH comprises a tornado vortex generation section, a tornado acceleration section, a high-speed section and a diffuser superheat section; the tornado vortex generation section has a circular drum or a cylindrical inner cavity; the tornado acceleration section has a conical inner cavity; the high-speed section has a cylindrical inner cavity; and the diffuser superheat section has a conical inner cavity; the larger diameter end of the conical inner cavity of the tornado acceleration section is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section, and the smaller diameter end of the conical inner cavity of the tornado acceleration section is connected with the smaller diameter end of the conical inner cavity of the diffuser superheat section through the cylindrical inner cavity of the high-speed section; the centerline of the circular drum or cylindrical inner cavity of the tornado vortex generation section, the centerline of the conical inner cavity of the tornado acceleration section, the centerline of the cylindrical inner cavity of the high-speed section and the centerline of the conical inner cavity of the diffuser superheat
- the SLB is a TSLB comprising a TSLB vortex generation section, a TSLB acceleration section, a TSLB high-speed mixing section and a TSLB diffuser section;
- the TSLB vortex generation section has a circular drum or cylindrical inner cavity;
- the TSLB acceleration section has a conical inner cavity;
- the TSLB high-speed mixing section has a cylindrical inner cavity;
- the TSLB diffuser section has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section through the cylindrical inner cavity of the TSLB high-speed mixing section;
- a superheated vapor inlet pipe is arranged on the TSLB vortex generation section;
- the centerline of the superheated vapor inlet pipe
- the length-diameter ratio of the cylindrical inner cavity of the TSLB high-speed mixing section is 1-4: 1; and the taper of the conical inner cavity of the TSLB diffuser section is 6-10°.
- the vapor heat pump comprises a condensate discharge tank and a condensate pump; the material heater or evaporator is provided with a condensate outlet connected with the inlet of the condensate discharge tank, wherein the outlet of the condensate discharge tank is connected with the inlet of the condensate pump, and the outlet of the condensate pump is connected with the tornado nozzle assembly or the nozzle assembly so that the heat energy of the condensate can be utilized.
- the vapor heat pump comprises a first temperature control loop, and a control valve is arranged on the connecting pipe between the nozzle assembly of the SLB or the TSLB and the condensate pump;
- a temperature sensor for pressure boosted and quantity increased saturated vapor is arranged at the outlet of the SLB or the TSLB, and the valve opening of the control valve is controlled by the first temperature control loop according to the saturated vapor temperature at the outlet of the SLB or the TSLB detected by the temperature sensor for pressure boosted and quantity increased saturated vapor, thereby maintaining stable temperature of the pressure boosted and quantity increased saturated vapor.
- the heater is provided with a second temperature control loop, and a second temperature sensor is arranged at the outlet of the SH or the TSH; and the heating amount of the heater is regulated by the second temperature control loop according to the superheated vapor temperature at the outlet of the SH or the TSH detected by the second temperature sensor to stabilize superheated vapor temperature.
- a control valve is arranged on the connecting pipe between the tornado nozzle assembly of the SHSLB or the TSHSLB and the condensate pump; and the second heater is provided with a temperature regulator; an temperature automatic selective control loop and a temperature sensor for pressure boosted and quantity increased saturated vapor are arranged at the outlet of the SHSLB or the TSHSLB; the temperature sensor for pressure boosted and quantity increased saturated vapor is connected to the temperature automatic selective control loop; and the valve opening of the control valve as well as the temperature regulator is controlled by the temperature automatic selective control loop to maintain stable temperature of the pressure boosted and quantity increased saturated vapor.
- the control principle for temperature automatic selective adjustment loop is as follow: if the temperature is higher than set value, the temperature of saturated vapor at the target pressure was reached by increasing the flow rate of condensate and/or reducing the heating amount of the heater; conversely if the temperature is lower than set value, the temperature of saturated vapor at the target pressure was reached by reducing the flow rate of condensate and/or increasing the heating amount of the heater .
- the vapor heat pump of the invention has the following advantages especially when the SHSLB is a TSHSLB or the SHSLB is a combined TSH and TSLB mode for a tornado vapor heat pump (TVHP):
- SHSLB 2- superhe
- the 100°C low pressure vapor or secondary vapor can reach the 120°C saturation state steam and reused through supplementing enthalpy of 29kJ/kg and pressure boosting based on the technology of the invention.
- the enthalpy of superheated steam increases with the amount of heat supplemented, superheat degree or superheated steam temperature, which is the mode and principle of supplementing enthalpy of the superheated steam.
- the superheated steam cannot be pressure increased during supplementing enthalpy.
- heat energy and pressure energy are both energy. Under certain conditions, heat energy can be converted into pressure energy by spraying liquid boost pressure. will be a perfect choice.
- the supplementing enthalpy requirements can be met by exceeding the high temperature and rich in thermal energy saturated steam temperature at the target pressure; and the principle of superheated steam rising is the same as that of hot air balloon rising.
- the spraying liquid boost pressure of the invention is different from adiabatic compression, of which steam will eventually be in a superheated state because more than 80% of the energy is consumed for temperature increase and less than 20% of the energy is used for pressure increase; meanwhile, it is also different from isothermal compression.
- the isothermal compression of gas will release heat to the outside, i.e. the compression heat shall be taken away by cooling water or air, resulting in a decrease in enthalpy of energy.
- the characteristics of spraying liquid boost pressure lie in that the pressure boosted or compressed vapor is the pressure boosted saturated vapor instead of superheated vapor, and no heat is released so as not to reduce the enthalpy value.
- the system acquires heat from the outside, i.e. spraying liquid heat; thus the spraying liquid absorbs this part of enthalpy higher than the temperature of pressure boosted saturated vapor and becomes the incremental saturated vapor.
- spraying liquid boost pressure is to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, with low energy consumption and large pressure ratio.
- an artificial tornado is generated in relevant equipment by reference to the formation principle of tornado in nature and its strong suction to further enhance the strong suction force generated during condensation and sharp volume reduction of vapor, so as to improve the thermal efficiency and compression ratio.
- the technical scheme provided by the invention is a vapor heat pump and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost comprises the following steps:
- the low pressure vapor may be the secondary vapor generated in the evaporator, or the industrial by-product vapor, the waste heat boiler steam, etc.
- the low pressure vapor is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at target pressure; in particular, the superheated vapor shall be at 2-30°C higher than the high temperature and rich in thermal energy saturated vapor
- step 1) the low pressure vapor can be directly heated, or heated by an external heater after being made into tornadoes according to the principle of artificial tornadoes.
- the material heater 1 in step 2) refers to the equipment where the material can be heated by vapor; and the material heater may be an evaporator, a heat exchanger, a heater, etc. Meanwhile, when the saturated vapor is condensed in step 2, it will sharply shrink in volume to generate a strong suction force so that the superheated vapor obtained in step 1) can be sucked for spraying liquid boost pressure. Alternatively, under the action of the strong suction force generated when the saturated vapor is condensed and sharply shrinks in volume, a tornado vortex is generated from the superheated vapor for spraying liquid boost pressure.
- the material heater 1 is an evaporator.
- the method comprises the following steps:
- the superheat and spraying liquid boost pressure of low pressure vapor can be realized through many ways; for example, a heater or a heat exchanger can be used in the process of heating the low pressure vapor; or the diffuser and booster can be directly used in the process of pressurizing the low pressure vapor.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost is a preferred embodiment, adopting a vapor heat pump comprising a material heater 1 and a SHSLB 2; wherein the SHSLB2 has a saturated vapor outlet and a low pressure vapor inlet; the material heater 1 has a saturated vapor inlet in connected with the saturated vapor outlet of the SHSLB2; in step 1), the low pressure vapor is heated into the superheated vapor in the SHSLB2; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SHSLB2 at 3-16m/s to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater 1 for heating the material to archive the utilization or recycling.
- the SHSLB2 can be an integrated combination mode of a common heater and a diffuser, or a separate connection combination of the common heater and the diffuser.
- the SHSLB2 is used for easy installation. Further, in order to improve the efficiency of superheat and spraying liquid boost pressure of secondary vapor, the SHSLB2 is a TSHSLB capable of realizing supplementing enthalpy and spraying liquid boost pressure of secondary vapor.
- step 1) the secondary vapor formed in an evaporation chamber of the evaporator is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the evaporable solution or pure liquid is heated by the saturated vapor in the heating chamber of the evaporator, the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force; a tornado is generated from the superheated vapor obtained in step 1) in the TSHSLB for enhancing the suction force, with the central speed of the tornado vortex more than 200m/s; meanwhile, the condensate is sprayed through the nozzle assembly 206 at 3-16m/s and at the rotating direction opposite to that of the tornado vortex in the TSHSLB; the superheated vapor and the condensate are fully mixed to generate the pressure boosted and quantity increased saturated vapor, which is then fed into the heating chamber of the evaporator for heating
- the SHSLB2 preferably comprises a SH21 and a SLB22; wherein the SH21 has a low pressure vapor inlet and a superheated vapor outlet, and the SLB22 has a superheated vapor inlet and a saturated vapor outlet.
- the superheated vapor outlet of the SH21 is connected with the superheated vapor inlet of the SLB22, and the saturated vapor outlet of the SLB22 is connected with the saturated vapor inlet of the material heater 1; in step 1), the low pressure vapor is heated into the superheated vapor in the SH21; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SLB22 at 3-16m/s to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater 1 for heating the material to archive the utilization or recycling.
- the SHSLB2 further comprises a SH21 and a SLB22; wherein the SH21 is a TSH through which a tornado vortex can be generated from vapor, and the SLB22 is a TSLB through which a tornado vortex can be generated from vapor, and TSH is provided with a heater 6 for heating vapor; in step 1), the low pressure vapor is fed into the TSH to generate a tornado vortex; meanwhile, the TSH low pressure vapor is heated into superheated vapor by the heater 6 arranged on the TSH, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater 1, the saturated vapor will be condensed to generate a strong suction force so that the superheated vapor obtained in step 1) is sucked into the TSLB for spraying-liquid boost pressure
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump comprising a material heater 1 and a SHSLB2, wherein the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11; and the secondary vapor outlet 18 of the evaporation chamber 12, the SHSLB2, and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- a vapor heat pump comprising a material heater 1 and a SHSLB2
- the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11
- the secondary vapor outlet 18 of the evaporation chamber 12 the SHSLB2
- the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump comprising a material heater 1 and a SHSLB2, wherein the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11; the SHSLB2 comprised a SH21 and a SLB22; and the secondary vapor outlet 18 of the evaporation chamber 12, the SH21, the SLB22 and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method further comprises the following steps:
- the SH21 is a heat exchanger and the SLB22 is a diffuser.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising an evaporator and a TSHSLB, wherein the evaporator comprised an evaporation chamber 12 and a heating chamber 11; and the secondary vapor outlet 18 of the evaporation chamber 12, the TSHSLB, and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method comprises the following steps:
- the SHSLB2 is a TSHSLB comprising a TSHSLB vortex generation superheat section 202, a TSHSLB acceleration section 203, a TSHSLB high-speed mixing section 204 and a TSHSLB diffuser section 205; wherein the TSHSLB vortex generation superheat section 202 has a circular drum or a cylindrical inner cavity, the TSHSLB acceleration section 203 has a conical inner cavity, the TSHSLB high-speed mixing section 204 has a cylindrical inner cavity, and the TSHSLB diffuser section 205 has a conical inner cavity; the larger diameter end of the conical inner cavity of the TSHSLB acceleration section 203 is connected with the circular drum or cylindrical inner cavity of the TSHSLB vortex generation superheat section 202, and the smaller diameter end of the conical inner cavity of the TSHSLB acceleration section 203 is connected with the smaller diameter end of the conical inner cavity of the TSHSLB
- step 1) the secondary vapor is heated into the superheated vapor on the TSHSLB vortex generation superheat section 202.
- step 2) the condensate is sprayed into the TSHSLB to convert the superheated secondary vapor into the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the evaporator comprised an evaporation chamber 12 and a heating chamber 11; the secondary vapor outlet 18 of the evaporation chamber 12, the TSH, the TSLB and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected; a tornado vortex is generated from vapor in the TSH; and a heater 6 is arranged on the TSH for heating vapor.
- a tornado vapor heat pump in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the SH21 comprised a TSH and a heater 6; wherein the TSH comprised a tornado vortex generation section 212, a tornado acceleration section 213, a high-speed section 214 and a diffuser superheat section 215; the tornado vortex generation section 212 has a circular drum or a cylindrical inner cavity; the tornado acceleration section 213 has a conical inner cavity; the high-speed section 214 has a cylindrical inner cavity; and the diffuser superheat section 215 has a conical inner cavity; the larger diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section
- the SLB22 is a TSLB comprising a TSLB vortex generation section 222, a TSLB acceleration section 223, a TSLB high-speed mixing section 224 and a TSLB diffuser section 225;
- the TSLB vortex generation section 222 has a circular drum or a cylindrical inner cavity;
- the TSLB acceleration section 223 has a conical inner cavity;
- the TSLB high-speed mixing section 224 has a cylindrical inner cavity;
- the TSLB diffuser section 225 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section 222, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section 225 through the cylindrical inner cavity of the high-speed mixing section 224;
- a superheated vapor inlet pipe 221 is
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the example comprising following steps:
- the method, technique, system and regulation of using artificial tornadoes are as follows: the solution in the evaporation chamber of the evaporator is evaporated to generate the secondary vapor (low-level thermal energy vapor), which is discharged from the outlet 18, entered the secondary vapor inlet pipe 211 of the TSH, and then tangentially flowed into the vortex generation section 212 to generate the initial tornado vortex. Next, the tornado vortex is accelerated in the acceleration section 213 with the central wind speed more than 100 m/s, thus creating favorable conditions for the superheating of the secondary vapor.
- the secondary vapor low-level thermal energy vapor
- the secondary vapor is superheated by the heater 6 into the superheated vapor for supplementing enthalpy in the high-speed section 214 and the diffuser superheat section 215.
- the supplementing enthalpy is satisfactory when the superheated vapor temperature exceeded the temperature of saturated vapor at the target pressure.
- the superheated vapor can reach the required superheat degree by adjusting the heat supply amount of the heater 6 at the outlet of the diffuser superheat section 215 of the TSH.
- the rising principle of superheated vapor is similar to that of a hot air balloon, and produced corresponding suction force (or pumping force) to the secondary vapor at the same time.
- the superheated vapor at the outlet of the diffuser superheat section 215 can only be used for supplementing enthalpy rather than pressure boosting according to the nature of the superheated vapor.
- the superheated vapor at the outlet of the diffuser superheat section 215 entered the TSLB superheated vapor inlet pipe 221 by means of its lift force, and then tangentially flowed into the TSLB vortex generation section 222 to generate an initial tornado vortex.
- the circular drum or cylindrical shell is required for the TSLB vortex generation section, and its diameter can allow the superheated vapor to enter and boosted pressure at the outlet. Its tornado vortex is accelerated in the TSLB acceleration section 223, with the central wind speed more than 200 m/s, thus creating favorable conditions for the spraying liquid boost pressure of the superheated vapor.
- the counter-rotating condensate is sprayed through the nozzle assembly 226 and mixed with the superheated vapor violently at high speed, so as to generate a strong suction force under the combined action of the circulation area, diffuser, spraying liquid boost pressure and vapor condensation.
- the tornado formation method is used to enhance the suction force so that the superheated vapor is converted into the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor, and then flowed out of the TSLB diffuser section 225. Since the saturated vapor can reach the required temperature by controlling the flow rate of condensate, the spraying liquid boost pressure technology can avoid the situation that over 80% of the energy consumed by conventional technology, namely adiabatic compression is consumed for temperature increasing .
- the high temperature and rich in thermal energy saturated vapor entered the heating chamber of the evaporator through the inlet pipe 15 for heating the solution to be evaporated, and changing itself into condensate after releasing latent heat.
- the saturated vapor sharply shrank in volume to generate a strong suction force, which is also the motive power of the tornado vapor heat pump. Therefore, the secondary vapor (low-level thermal energy vapor) can be changed into the high temperature and rich in thermal energy saturated vapor for reuse.
- the SHSLB2 was a TSHSLB in example 3, and the SHSLB2 is a combination of a TSH and a TSLB in example 5.
- the TSHSLB in example 3 has basically the same structure as that of the TSLB in example 5.
- the TSH in example 5 is not provided, the second heater 207 is arranged on the TSLB vortex generation section 222 to act as the TSHSLB, and the rest remained unchanged.
- the method in example 5 differs from that in example 3 in that: in example 3, the TSH is not provided; the secondary vapor discharged from the secondary vapor outlet 18 of the evaporation chamber 12 is directly fed into the TSHSLB, and the temperature of saturated vapor at its outlet is controlled by an temperature automatic selective adjustment loop.
- the temperature of saturated vapor at the target pressure is reached by increasing the flow rate of condensate and/or reducing the heating amount of the second heater 207; conversely if the temperature is lower than set value, the temperature of saturated vapor at the target pressure is reached by reducing the flow rate of condensate and/or increasing the heating amount of the second heater 207.
- the invention provides a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost, adopting a tornado vapor heat pump system.
- the strong suction force formed through the self-condensation of saturated vapor during heating in the evaporator can be provided for forming a tornado, and the suction force further enhanced by the artificial tornado for supplementing enthalpy and spraying liquid boost pressure, so as to realize the recycling of secondary vapor.
- This method has low energy consumption due to small enthalpy difference of saturated vapor at different temperature, thus small supplementing enthalpy heat is needed , but large suction force and high pressure ratio for spraying liquid boost pressure is reached, so it can achieve the goal of the energy save and emission reduction.
- Example 1 to Example 5 Based on Example 1 to Example 5, as shown in Fig. 1 and Fig. 4 , the secondary vapor is replaced with the low pressure vapor, the evaporator is replaced with the material heater 1, the corresponding vapor heat pump and the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost remained unchanged, and low pressure vapor is fed through the low pressure vapor pipe 9.
- the vapor heat pump is a tornado vapor heat pump, comprising a material heater 1 and a SHSLB2; wherein the SHSLB2 comprised a SH21 and a SLB22; the SH21 is a TSH as shown in Fig. 6 to Fig.
- the TSH comprised a tornado vortex generation section 212, a tornado acceleration section 213, a high-speed section 214 and a diffuser superheat section 215;
- the tornado vortex generation section 212 has a circular drum or a cylindrical inner cavity;
- the tornado acceleration section 213 has a conical inner cavity;
- the high-speed section 214 has a cylindrical inner cavity;
- the diffuser superheat section 215 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section 212, and the smaller diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the smaller diameter end of the conical inner cavity of the diffuser superheat section 215 through the cylindrical inner cavity of the high-speed section 214;
- the length-diameter ratio of the cylindrical inner cavity of the high-speed section 214 is 1.5 - 4:1 and the taper of the conical inner cavity of the diffuser superheat section 215 is set at 2 - 8°.
- the supplementing enthalpy can be satisfactory when the superheated vapor temperature exceeded the saturated vapor temperature at the target pressure.
- the superheated vapor can reach the superheat degree by adjusting the heat supply amount of the heater 6 at the outlet of the diffuser superheat section 215.
- the principle of superheated vapor discharging is similar to that of a hot air balloon, and corresponding suction force (or pumping force) will be produced for the secondary vapor in the above process.
- the superheated vapor at the outlet of the diffuser superheat section 215 can only be used for supplementing enthalpy rather than pressure boosting according to the property of superheated vapor.
- the vapor heat pump is a tornado vapor heat pump, comprising a material heater 1 and a SHSLB2; wherein the SHSLB2 comprised a SH21 and a SLB22; the SH21 is a TSH; the SLB22 is a TSLB as shown in Fig. 10 to Fig.
- the TSLB comprised a TSLB vortex generation section 222, a TSLB acceleration section 223, a TSLB high-speed mixing section 224 and a TSLB diffuser section 225;
- the TSLB vortex generation section 222 has a circular drum or a cylindrical inner cavity;
- the TSLB acceleration section 223 has a conical inner cavity;
- the TSLB high-speed mixing section 224 has a cylindrical inner cavity;
- the TSLB diffuser section 225 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section 222, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section 225 through the cylindrical inner cavity of the high-speed mixing section 224;
- a superheated vapor inlet pipe 221 is arranged on the TS
- the length-diameter ratio of the cylindrical inner cavity of the TSLB high-speed mixing section 224 is 1 ⁇ 4: 1; and the taper of the conical inner cavity of the TSLB diffuser section 225 is 6 ⁇ 10°.
- Principle of spraying liquid boost pressure for the superheated vapor in TSLB The superheated vapor at the outlet of the TSH diffuser superheat section 215 entered the TSLB superheated vapor inlet pipe 221 due to its lift force, and then tangentially flowed into the TSLB vortex generation section 222 to generate an initial tornado vortex.
- Requirements for the TSLB vortex generation section the diameter of a circular drum or cylindrical shell can allow the superheated vapor to enter and be pressure boosted at the outlet.
- the tornado vortex is accelerated in the TSLB acceleration section 223, with the central wind speed more than 200 m/s, thus creating favorable internal conditions for the spraying liquid boost pressure of the superheated vapor.
- the counter-rotating condensate is sprayed through the nozzle assembly 226 and mixed with the TSLB tornado vortex violently at high speed to generate a strong suction force under the combined action of the circulation area, diffuser, spraying liquid boost pressure and vapor condensation, which is enhanced by the tornado formation method so that the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor flowed out of the diffuser section 225.
- the saturated vapor can reach the required temperature by controlling the flow rate of condensate.
- the vapor heat pump further comprised a condensate discharge tank 10 and a condensate pump 3; the condensate outlet 16 of the evaporator or the condensate outlet of the material heater 1 is connected with the inlet of the condensate discharge tank 10, the condensate outlet of the condensate discharge tanklO is connected with the inlet of the condensate pump 3, and the outlet of the condensate pump 3 is connected with the tornado nozzle assembly 206 or the nozzle assembly 226.
- the condensate in the condensate discharge tank 10 is pumped out and pressurized by the condensate pump 3, and then sprayed into the SHSLB2, the TSHSLB, the SLB22 and the TSLB through the tornado nozzle assembly 206 or the nozzle assembly 226 respectively, so as to change the superheated vapor into the pressure boosted and quantity increased saturated vapor, and achieve the purpose of utilizing condensate heat energy and saving cost.
- the vapor heat pump further comprised a first temperature control loop 7; and a control valve 4 is arranged on the connecting pipe between the condensate pump 3 and the nozzle assembly 226 of the SLB22 or the TSLB; a temperature sensor is arranged at the outlet of the SLB22 or the TSLB, and the valve opening of the control valve 4 is controlled according to the vapor temperature at the outlet of the SLB22 or the TSLB by the first temperature control loop 7, so as to regulate the flow rate of condensate and maintain stable temperature of the pressure boosted and quantity increased saturated vapor.
- the first temperature control loop 7 can be of DCS centralized control.
- the heater 6 is provided with a second temperature control loop 8, and a second temperature sensor is arranged at the outlet of the SH21 or the TSH; the heating amount of the heater 6 is adjusted by the second temperature control loop 8 according to the temperature of the superheated vapor at the outlet of the SH21 or the TSH detected by the second temperature sensor to maintain stable temperature of the superheated vapor.
- the second temperature control loop 8 can be of DCS centralized control.
- the vapor heat pump further comprised a temperature automatic selective control loop 5 arranged at the outlet of the SHSLB2 or the TSHSLB.
- the pressure boosted and quantity increased saturated vapor temperature sensor is arranged at the outlet of the SHSLB2 or the TSHSLB.
- the temperature automatic selective control loop can be of DCS centralized control.
- the vapor heat pump and the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the Examples 1 to 10, especially the more efficient tornado vapor heat pump(TVHP), have the following advantages:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Air Humidification (AREA)
Claims (15)
- Procédé permettant d'employer une vapeur à basse pression par complément d'enthalpie et surpression, caractérisé en ce qu'il comprend les étapes suivantes :1) le chauffage d'une vapeur à basse pression pour obtenir une vapeur surchauffée, la vapeur surchauffée étant à une température supérieure à celle d'une vapeur saturée à haute température et riche en énergie thermique à une pression cible ;2) lorsqu'une substance est chauffée par la vapeur saturée à haute température et riche en énergie thermique dans un dispositif de chauffage de substance (1), la vapeur saturée se voit condensée et rétrécit brusquement en volume pour générer une force intense d'aspiration de sorte que la vapeur surchauffée obtenue à l'étape 1) est aspirée pour obtenir une surpression de liquide à pulvériser (SLBP), et convertie en vapeur saturée surpressée et augmentée quantitativement, c'est-à-dire en la vapeur saturée à haute température et riche en énergie thermique, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) afin de chauffer la substance pour mener à bien l'utilisation ou le recyclage.
- Procédé selon la revendication 1, caractérisé en ce qu'un procédé de tornade artificielle est utilisé par référence à la théorie de formation des tornades dans la nature et à leur force intense d'aspiration, de manière à générer un tourbillon de tornade dans la vapeur à basse pression devant faire l'objet d'un surchauffage suivi de l'obtention d'une surpression de liquide à pulvériser ou devant faire l'objet d'un surchauffage et de l'obtention d'une surpression de liquide à pulvériser, comprenant les étapes suivantes :1) un tourbillon de tornade est généré à partir de la vapeur à basse pression et chauffé en vapeur surchauffée ; et la vapeur surchauffée doit être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;2) lorsqu'une substance est chauffée par la vapeur saturée à haute température et riche en énergie thermique sur un dispositif de chauffage de substance (1), la vapeur saturée se voit condensée et rétrécit brusquement en volume pour générer une force intense d'aspiration ; sur la base du procédé de tornade artificielle, un tourbillon de tornade est généré à partir de la vapeur surchauffée afin d'augmenter la force d'aspiration de sorte que la vapeur surchauffée est aspirée pour obtenir une surpression de liquide à pulvériser, de manière à former la vapeur saturée surpressée et augmentée quantitativement, c'est-à-dire la vapeur saturée à haute température et riche en énergie thermique, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) pour chauffer la substance afin d'améliorer le rendement thermique et le rapport de surpression, et de réaliser l'utilisation ou le recyclage.
- Procédé selon la revendication 1, caractérisé en ce que le dispositif de chauffage de substance (1) est un évaporateur et la vapeur à basse pression est une vapeur secondaire, comprenant les étapes suivantes :1) la vapeur secondaire formée et évacuée depuis une chambre d'évaporation (12) de l'évaporateur est chauffée pour obtenir une vapeur surchauffée, et la vapeur surchauffée doit être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;2) lorsqu'une substance est chauffée par la vapeur saturée à haute température et riche en énergie thermique dans une chambre de chauffage (11) de l'évaporateur, la vapeur saturée se voit condensée et rétrécit brusquement en volume pour générer une force intense d'aspiration de sorte que la vapeur surchauffée est aspirée pour obtenir une surpression de liquide à pulvériser, et génère la vapeur saturée surpressée et augmentée quantitativement, c'est-à-dire la vapeur saturée à haute température et riche en énergie thermique, laquelle est ensuite introduite dans la chambre de chauffage (11) de l'évaporateur afin de chauffer la substance, de manière à mener à bien le recyclage.
- Procédé selon la revendication 1, caractérisé en ce qu'une thermopompe à vapeur (VHP) est utilisée et comprend le dispositif de chauffage de substance (1) et un surchauffeur et surpresseur de liquide à pulvériser (2) (SHSLB (2)) ; et
le SHSLB (2) présente un orifice d'entrée de vapeur à basse pression et un orifice de sortie de vapeur saturée ;
le dispositif de chauffage de substance (1) présente un orifice d'entrée de vapeur saturée raccordé à un orifice de sortie de vapeur saturée du SHSLB (2) ;
à l'étape 1), la vapeur à basse pression est chauffée pour obtenir une vapeur surchauffée dans le SHSLB (2), et la vapeur surchauffée doit être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;
à l'étape 2), le condensat est pulvérisé dans le SHSLB (2) pour convertir la vapeur surchauffée en vapeur surchauffée et en vapeur surpressée et augmentée quantitativement, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) afin de chauffer la substance pour archiver l'utilisation ou le recyclage. - Procédé selon la revendication 4, caractérisé en ce que la thermopompe à vapeur est une thermopompe à vapeur à effet tornade (TVHP) comprenant le dispositif de chauffage de substance (1) et un surchauffeur et surpresseur de liquide à pulvériser à effet tornade (TSHSLB), le TSHSLB présentant un orifice d'entrée de vapeur à basse pression et un orifice de sortie de vapeur saturée ;
la chaleur (1) de substance présente un orifice d'entrée de vapeur saturée raccordé à l'orifice de sortie de vapeur saturée du TSHSLB ;
à l'étape 1), la vapeur à basse pression est introduite dans le TSHSLB et chauffée pour obtenir une vapeur surchauffée par un dispositif de chauffage (207) disposé sur la surface extérieure du TSHSLB ; et la vapeur surchauffée doit être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;
à l'étape 2), lorsque la substance est chauffée par la vapeur saturée dans le dispositif de chauffage de substance (1), la vapeur saturée se voit condensée et rétrécit brusquement en volume pour générer une force intense d'aspiration ; une tornade est générée et accélérée à partir de la vapeur surchauffée obtenue à l'étape 1) dans le TSHSLB afin d'augmenter la force d'aspiration ; le condensat est pulvérisé dans le TSHSLB pour absorber une partie de l'enthalpie de la vapeur surchauffée et convertir la vapeur surchauffée en vapeur surchauffée surpressée et augmentée quantitativement, c'est-à-dire la vapeur saturée à haute température et riche en énergie thermique, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) afin de chauffer la substance pour mener à bien l'utilisation ou le recyclage. - Procédé selon la revendication 4, caractérisé en ce que le SHSLB (2) comprend un surchauffeur (21) (SH (21)) et un surpresseur de liquide à pulvériser (22) (SLB (22)) ; le SH (21) présentant un orifice d'entrée de vapeur à basse pression et un orifice de sortie de vapeur surchauffée, et le SLB (22) présentant un orifice d'entrée de vapeur surchauffée et un orifice de sortie de vapeur saturée ;
l'orifice de sortie de vapeur surchauffée du SH (21) étant raccordé à l'orifice d'entrée de vapeur surchauffée du SLB (22), et l'orifice de sortie de vapeur saturée du SLB (22) étant raccordé à l'orifice d'entrée de vapeur saturée du dispositif de chauffage de substance (1) ;
à l'étape 1), la vapeur à basse pression étant chauffée pour obtenir une vapeur surchauffée dans le SH (21), et la vapeur surchauffée devant être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;
à l'étape 2), le condensat étant pulvérisé dans le SLB (22) pour convertir la vapeur surchauffée en vapeur saturée surchauffée et augmentée quantitativement, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) afin de chauffer la substance pour archiver l'utilisation ou recyclage. - Procédé selon la revendication 6, caractérisé en ce que le SH (21) est un surchauffeur à effet tornade (TSH), le SLB (22) est un surpresseur de liquide à pulvériser à effet tornade (TSLB) et un dispositif de chauffage (6) est agencé sur le TSH ;
à l'étape 1), la vapeur à basse pression est introduite dans le TSH pour générer un tourbillon de tornade ;
pendant ce temps, la vapeur à basse pression est chauffée pour obtenir une vapeur surchauffée par le dispositif de chauffage (6) puis évacuée, et la vapeur surchauffée doit être à une température supérieure à celle de la vapeur saturée à haute température et riche en énergie thermique à la pression cible ;
à l'étape 2), lorsque la substance est chauffée par la vapeur saturée dans le dispositif de chauffage de substance (1), la vapeur saturée est condensée pour générer une force intense d'aspiration ;
la vapeur surchauffée obtenue à l'étape 1) est aspirée dans le TSLB pour générer un tourbillon de tornade pour augmenter la force d'aspiration ; pendant ce temps, le condensat est pulvérisé par l'intermédiaire de l'ensemble buse (226) dans le sens opposé au sens de rotation du tourbillon de tornade du TSLB, et la vapeur surchauffée et le condensat sont entièrement mélangés pour former la vapeur saturée surpressée et augmentée quantitativement, laquelle est ensuite introduite dans le dispositif de chauffage de substance (1) afin de chauffer la substance pour mener à bien l'utilisation ou le recyclage. - Thermopompe à vapeur utilisée pour réaliser le procédé d'utilisation de vapeur à basse pression par complément d'enthalpie et surpression selon les revendications 1, 2, 3, 4, 5, 6 ou 7, caractérisée en ce qu'elle comprend un dispositif de chauffage (1) et un SHSLB (2) ; la vapeur à basse pression étant chauffée pour obtenir une vapeur surchauffée dans le SHSLB (2) pour obtenir une surpression de liquide à pulvériser pour générer la vapeur saturée surpressée et augmentée quantitativement ; le dispositif de chauffage de substance (1) présentant un orifice d'entrée de vapeur saturée et le SHSLB (2) présentant un orifice de sortie de vapeur saturée, un orifice d'entrée de vapeur à basse pression et un orifice d'entrée de condensat ; et l'orifice d'entrée de vapeur saturée du dispositif de chauffage de substance (1) est raccordé à l'orifice de sortie de vapeur saturée du SHSLB (2).
- Thermopompe à vapeur selon la revendication 8, caractérisée en ce que le SHSLB (2) est un surchauffeur et surpresseur de liquide à pulvériser à effet tornade (TSHSLB) ; et
le TSHSLB comprend une section de surchauffage de génération de tourbillon de TSHSLB (202), une section d'accélération de TSHSLB (203), une section de mélange à grande vitesse de TSHSLB (204) et une section de diffuseur de TSHSLB (205) ; la section de surchauffage de génération de tourbillon de TSHSLB (202) présentant un tambour circulaire ou une cavité intérieure cylindrique, la section d'accélération de TSHSLB (203) présentant une cavité intérieure conique, la section de mélange à grande vitesse de TSHSLB (204) présentant une cavité intérieure cylindrique, et la section de diffuseur de TSHSLB (205) présentant une cavité intérieure conique ;
l'extrémité de plus grand diamètre de la cavité intérieure conique de la section d'accélération de TSHSLB (203) étant raccordée au tambour circulaire ou à la cavité intérieure cylindrique de la section de surchauffage de génération de tourbillon de TSHSLB (202), et l'extrémité de plus petit diamètre de la cavité intérieure conique de la section d'accélération de TSHSLB (203) étant raccordée à l'extrémité de plus petit diamètre de la cavité intérieure conique de la section de diffuseur de TSHSLB (205) par l'intermédiaire de la cavité intérieure cylindrique de la section de mélange à grande vitesse de TSHSLB (204) ;
la section de surchauffage de génération de tourbillon de TSHSLB étant pourvue d'un tuyau d'orifice d'entrée de vapeur à basse pression (201) ; l'axe central du tuyau d'orifice d'entrée de vapeur à basse pression (201) étant perpendiculaire à celui du tambour circulaire ou de la cavité intérieure cylindrique de la section de surchauffage de génération de tourbillon de TSHSLB (202) ; le tuyau d'orifice d'entrée de vapeur à basse pression (201) étant raccordé au tambour circulaire ou à la cavité intérieure cylindrique de la section de surchauffage de génération de tourbillon de TSHSLB (202) ; et la paroi intérieure du tuyau d'orifice d'entrée de vapeur à basse pression (201) étant tangente à celle de la section de surchauffage de génération de tourbillon de TSHSLB (202) ;
la section de surchauffage de génération de tourbillon de TSHSLB (202) étant pourvue d'un ensemble buse à effet tornade (206) en raccordé au tambour circulaire ou à la cavité intérieure cylindrique de la section de surchauffage de génération de tourbillon de TSHSLB (202) ; l'ensemble buse à effet tornade (206) et la section d'accélération de TSHSLB (203) étant respectivement agencées sur deux côtés de la section de surchauffage de génération de tourbillon de TSHSLB (202) en regard l'un de l'autre ;
l'axe central du tambour circulaire ou de la cavité intérieure cylindrique de la section de surchauffage de génération de tourbillon de TSHSLB (202), l'axe central de la cavité intérieure conique de la section d'accélération de TSHSLB (203), l'axe central de la cavité intérieure cylindrique de la section de mélange à grande vitesse de TSHSLB (204), l'axe central de la cavité intérieure conique de la section de diffuseur de TSHSLB (205) et l'axe central d'injection de l'ensemble buse à effet tornade (206) étant colinéaires ;
un second dispositif de chauffage (207) étant agencé sur la surface extérieure de la section de surchauffage de génération de tourbillon de TSHSLB (202) ;
la section de diffuseur de TSHSLB (205) étant raccordée à l'orifice d'entrée de vapeur saturée du dispositif de chauffage de substance (1). - Thermopompe à vapeur selon la revendication 8, caractérisée en ce que le dispositif de chauffage de substance (1) est un évaporateur, et que le SHSLB (2) comprend un SH (21) et un SLB (22) ;
le SH (21) présente un tuyau d'orifice d'entrée de vapeur secondaire et un orifice de sortie de vapeur surchauffée ; l'évaporateur comprend une chambre de chauffage (11) et une chambre d'évaporation (12) ; l'évaporateur présente un orifice de sortie de vapeur secondaire (18) raccordé à la chambre d'évaporation (12) et un orifice d'entrée de vapeur saturée (15) raccordé à la chambre de chauffage (11) ; le SLB (22) présente un orifice d'entrée de vapeur surchauffée et un orifice de sortie de vapeur saturée ; l'orifice de sortie de vapeur secondaire (18) de la chambre d'évaporation (12) de l'évaporateur est raccordé au tuyau d'orifice d'entrée de vapeur secondaire du SH (21), et l'orifice de sortie de vapeur surchauffée du SH (21) est raccordé à l'orifice d'entrée de vapeur surchauffée du SLB (22) ; l'orifice de sortie de vapeur saturée du SLB (22) est raccordé à l'orifice d'entrée de vapeur saturée (15) de la chambre de chauffage (11) ; le SLB (22) présente un ensemble buse (226) comprenant une éjection de liquide agencée dans le SLB (22) ; et la direction d'éjection de la buse d'éjection de liquide est la même que celle de l'orifice de sortie de vapeur saturée du SLB (22). - Thermopompe à vapeur selon la revendication 10, caractérisée en ce que le SH (21) comprend un TSH et un dispositif de chauffage (6) ; le TSH comprenant une section de génération de tourbillon de tornade (212), une section d'accélération de tornade (213), une section à grande vitesse (214) et une section de surchauffage de diffuseur (215) ; la section de génération de tourbillon de tornade (212) présentant un tambour circulaire ou une cavité intérieure cylindrique ; la section d'accélération de tornade (213) présentant une cavité intérieure conique ; la section à grande vitesse (214) présentant une cavité intérieure cylindrique ; et la section de surchauffage de diffuseur (215) présentant une cavité intérieure conique ;
l'extrémité de plus grand diamètre de la cavité intérieure conique de la section d'accélération de tornade (213) étant raccordée au tambour circulaire ou à la cavité intérieure cylindrique de la section de génération de tourbillon de tornade (212), et l'extrémité de plus petit diamètre de la cavité intérieure conique de la section d'accélération de tornade (213) étant raccordée à l'extrémité de plus petit diamètre de la cavité intérieure conique de la section de surchauffage de diffuseur (215) par l'intermédiaire de la cavité intérieure cylindrique de la section à grande vitesse (214) ;
l'axe central du tambour circulaire ou de la cavité intérieure cylindrique de la section de génération de tourbillon de tornade (212), l'axe central de la cavité intérieure conique de la section d'accélération de tornade (213), l'axe central de la cavité intérieure cylindrique de la section à grande vitesse (214) et l'axe central de la cavité intérieure conique de la section de surchauffage du diffuseur (215) étant colinéaires ;
un tuyau d'orifice d'entrée de vapeur secondaire (211) étant agencé sur la section de génération de tourbillon de tornade (212) ; l'axe central du tuyau secondaire d'orifice d'entrée de vapeur (211) étant perpendiculaire à celui du tambour circulaire ou de la cavité intérieure cylindrique de la section de génération de tourbillon de tornade (212) ; le tuyau d'orifice d'entrée de vapeur secondaire (211) étant raccordé au tambour circulaire ou à la cavité intérieure cylindrique de la section de génération de tourbillon de tornade (212), et la paroi intérieure du tuyau d'orifice d'entrée de vapeur secondaire (211) étant tangente à celle de la section de génération de tourbillon de tornade (212) ;
le dispositif de chauffage (6) étant agencé sur la section de surchauffage de diffuseur (215) ou sur la section à grande vitesse (214) et la section de surchauffage de diffuseur (215). - Thermopompe à vapeur selon la revendication 10, le SLB (22) étant un TSLB ; le TSLB comprenant une section de génération de tourbillon de TSLB (222), une section d'accélération de TSLB (223), une section de mélange à grande vitesse de TSLB (224) et une section de diffuseur de TSLB (225) ; la section de génération de tourbillon de TSLB (222) présentant un tambour circulaire ou une cavité intérieure cylindrique ; la section d'accélération de TSLB (223) présentant une cavité intérieure conique ; la section de mélange à grande vitesse de TSLB (224) présentant une cavité intérieure cylindrique ; et la section de diffuseur de TSLB (225) présentant une cavité intérieure conique ;
l'extrémité de plus grand diamètre de la cavité intérieure conique de la section d'accélération de TSLB (223) étant raccordée au tambour circulaire ou à la cavité intérieure cylindrique de la section de génération de tourbillon de TSLB (222), et l'extrémité de plus petit diamètre de la cavité intérieure conique de la section d'accélération de TSLB (223) étant raccordée à l'extrémité de plus petit diamètre de la cavité intérieure conique de la section de diffuseur de TSLB (225) par l'intermédiaire de la cavité intérieure cylindrique de la section de mélange à grande vitesse de TSLB (224) ;
un tuyau d'orifice d'entrée de vapeur surchauffée (221) étant agencé sur la section de génération de tourbillon de TSLB (222) ; l'axe central du tuyau d'orifice d'entrée de vapeur surchauffée (221) étant perpendiculaire à celui du tambour circulaire ou de la cavité intérieure cylindrique de la section de génération de tourbillon de TSLB (222) ; le tuyau d'orifice d'entrée de vapeur surchauffée (221) étant raccordé au tambour circulaire ou à la cavité intérieure cylindrique de la section de génération de tourbillon de TSLB (222), et la paroi intérieure du tuyau d'orifice d'entrée de vapeur surchauffée (221) étant tangente à celle de la section de génération de tourbillon de TSLB (222) ;
l'ensemble buse (226) étant agencé sur la section de génération de tourbillon de TSLB (222) et étant raccordé au tambour circulaire ou à la cavité intérieure cylindrique de la section de génération de tourbillon de TSLB (222) ; l'ensemble buse (226) et la section d'accélération de TSLB (223) étant respectivement agencés sur deux côtés de la section de génération de tourbillon de TSLB (222) en regard l'un de l'autre ;
l'axe central du tambour circulaire ou de la cavité intérieure cylindrique de la section de génération de tourbillon de TSLB (222), l'axe central de la cavité intérieure conique de la section d'accélération de TSLB (223), l'axe central de la cavité intérieure cylindrique du mélangeur à grande vitesse de TSLB la section (224), l'axe central de la cavité intérieure conique de la section de diffuseur de TSLB (225) et l'axe central d'injection de l'ensemble buse (226) étant colinéaires ;
l'orifice de sortie de vapeur secondaire (18) de la chambre d'évaporation (12) de l'évaporateur étant raccordé au tuyau d'orifice d'entrée de vapeur secondaire (211) du TSH, et l'orifice de sortie de la section de surchauffage de diffusion de TSH (215) étant raccordé au tuyau d'orifice d'entrée de vapeur surchauffée de TSLB (221) ; et l'orifice de sortie de la section de diffuseur de TSLB (225) étant raccordé à l'orifice d'entrée de vapeur saturée (15) de la chambre de chauffage (11) de l'évaporateur ; facultativement,
caractérisée en ce que le rapport longueur/diamètre de la cavité intérieure cylindrique de la section de mélange à grande vitesse de TSLB (224) est 1-4 : 1 ; et la conicité de la cavité intérieure conique de la section de diffuseur de TSLB (225) est de 6 à 10 °. - Thermopompe à vapeur selon la revendication 8, 9, 10, 11 ou 12, caractérisée en ce qu'elle comprend en outre un réservoir d'évacuation de condensat (10) et une pompe à condensat (3) ;
le dispositif de chauffage de substance (1) ou l'évaporateur est pourvu d'un orifice de sortie de condensat raccordé à l'orifice d'entrée du réservoir d'évacuation de condensat (10), l'orifice de sortie du réservoir d'évacuation de condensat (10) étant raccordé à l'orifice d'entrée de la pompe à condensat (3), et l'orifice de sortie de la pompe à condensat (3) étant raccordé à l'ensemble buse à effet tornade (206) ou à l'ensemble buse (226) de sorte que l'énergie thermique du condensat peut être employée. - Thermopompe à vapeur selon la revendication 10, 11 ou 12, comprenant en outre une première boucle de régulation de température (7) et une soupape de régulation (4) agencée sur le tuyau de raccordement entre l'ensemble buse (226) du SLB (22) ou du TSLB et la pompe à condensat (3) ;
l'orifice de sortie du SLB (22) ou du TSLB est pourvu d'un capteur de température de vapeur saturée surpressée et augmentée quantitativement, et l'ouverture de la soupape de la soupape de régulation (4) est régulée par la première boucle de régulation de température (7) selon la température de vapeur à l'orifice de sortie du SLB (22) ou du TSLB détectée par le capteur de température de vapeur saturée surpressée et augmentée quantitativement, ce qui permet de régler le débit de condensat et de stabiliser la température de la vapeur saturée surpressée et augmentée quantitativement ; facultativement,
caractérisée en ce que le dispositif de chauffage (6) est pourvu d'une seconde boucle de régulation de température (8), et en ce qu'un second capteur de température est agencé à l'orifice de sortie du SH (21) ou du TSH ; et la seconde boucle de régulation de température (8) peut régler la quantité de chauffage du dispositif de chauffage (6) selon la température de vapeur surchauffée à l'orifice de sortie du SH (21) ou du TSH détectée par le second capteur de température pour réaliser une température surchauffée stable. - Thermopompe à vapeur selon la revendication 8 ou 9, caractérisée en ce qu'une soupape de régulation (4) est agencée sur le tuyau de raccordement entre l'ensemble buse à effet tornade (206) ou l'ensemble buse (226) et la pompe à condensat (3) ; et le second dispositif de chauffage (207) est pourvu d'un modulateur de température ;
une boucle de régulation sélective automatique de température (5) et un capteur de température pour vapeur saturée surpressée et augmentée quantitativement sont agencés sur l'orifice de sortie du SHSLB (2) ou du TSHSLB ; le capteur de température pour vapeur saturée surpressée et augmentée quantitativement est raccordé à la boucle de régulation sélective automatique de température (5) ; et l'ouverture de soupape de la soupape de régulation (4) ainsi que le régulateur de température est régulé par la boucle de régulation sélective automatique de température (5) pour maintenir une température stable de la vapeur saturée surpressée et augmentée quantitativement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611103728.2A CN106765049B (zh) | 2016-12-05 | 2016-12-05 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
PCT/CN2017/112817 WO2018103539A1 (fr) | 2016-12-05 | 2017-11-24 | Pompe à chaleur à vapeur et procédé de supplémentation d'enthalpie de vapeur à basse pression et d'utilisation de mise sous pression |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3546826A1 EP3546826A1 (fr) | 2019-10-02 |
EP3546826A4 EP3546826A4 (fr) | 2020-01-22 |
EP3546826B1 true EP3546826B1 (fr) | 2021-04-28 |
Family
ID=58874012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17878307.2A Active EP3546826B1 (fr) | 2016-12-05 | 2017-11-24 | Pompe à chaleur à vapeur et procédé permettant d'employer vapeur à basse pression par complément d'enthalpie et surpression |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3546826B1 (fr) |
CN (1) | CN106765049B (fr) |
WO (1) | WO2018103539A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106765049B (zh) * | 2016-12-05 | 2019-06-18 | 四川大学 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
DE102021104052B3 (de) * | 2021-02-19 | 2022-03-31 | Fachhochschule Westküste | Warmwasserspeicher-Beladungsverfahren an einem Fernwärmeanschluss und Warmwasser-Beladungsanordnung sowie Warmwasserbeladungs-Wärmepumpe |
CN113266609B (zh) * | 2021-06-02 | 2023-04-07 | 傅朝清 | 热液喷射多单元蒸气压缩装置及热泵 |
CN114151389B (zh) * | 2021-12-07 | 2024-05-28 | 宁波金发新材料有限公司 | 一种低压蒸汽回收利用装置 |
CN114405432B (zh) * | 2022-01-29 | 2024-08-09 | 山东科川节能环保科技有限公司 | 一种基于蒸汽的全工况精准智控装备 |
CN114804489A (zh) * | 2022-04-25 | 2022-07-29 | 倍杰特集团股份有限公司 | 一种气化浓水的节能水处理系统及方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3541418A1 (de) * | 1985-11-23 | 1987-05-27 | Steinmueller Gmbh L & C | Rohrbuendel und waermetauschvorrichtung mit diesem rohrbuendel |
DE10212480A1 (de) * | 2002-03-21 | 2003-10-02 | Trupp Andreas | Wärmepumpverfahren auf der Basis der Effekte der Siedepunkterhöhung bzw. Dampfdruckreduzierung |
US20070245736A1 (en) * | 2006-04-25 | 2007-10-25 | Eastman Chemical Company | Process for superheated steam |
DE102006028007A1 (de) * | 2006-06-14 | 2007-12-20 | Siemens Ag | Dampfkraftanlage |
CN102705273A (zh) * | 2012-06-05 | 2012-10-03 | 天津大学 | 吸入段机械加压引射回收废蒸汽的方法及装置 |
CN202902754U (zh) * | 2012-11-07 | 2013-04-24 | 石家庄工大化工设备有限公司 | 利用蒸汽喷射泵转化废热蒸汽的装置 |
CN103908788B (zh) * | 2012-12-31 | 2015-12-23 | 中国科学院理化技术研究所 | 一种mvr热泵蒸发系统 |
CN104399267B (zh) * | 2014-12-01 | 2016-04-13 | 大连理工大学 | 一种闪蒸气波蒸汽再压缩连续蒸发系统 |
CN105523597B (zh) * | 2015-12-11 | 2018-08-21 | 上海朴是环境科技股份有限公司 | 一种高效液媒热压蒸发净化系统 |
CN106765049B (zh) * | 2016-12-05 | 2019-06-18 | 四川大学 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
-
2016
- 2016-12-05 CN CN201611103728.2A patent/CN106765049B/zh active Active
-
2017
- 2017-11-24 WO PCT/CN2017/112817 patent/WO2018103539A1/fr active Search and Examination
- 2017-11-24 EP EP17878307.2A patent/EP3546826B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2018103539A1 (fr) | 2018-06-14 |
CN106765049A (zh) | 2017-05-31 |
EP3546826A4 (fr) | 2020-01-22 |
CN106765049B (zh) | 2019-06-18 |
EP3546826A1 (fr) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3546826B1 (fr) | Pompe à chaleur à vapeur et procédé permettant d'employer vapeur à basse pression par complément d'enthalpie et surpression | |
CN102797515B (zh) | 热力过程采用喷射抽气节能方法 | |
CN102852567B (zh) | 热力过程采用喷射抽气节能方法 | |
CN1097151C (zh) | 燃气轮机发电设备及空气加湿器 | |
CN101968299B (zh) | 一种利用过热蒸汽干燥物料的方法 | |
CN107165723B (zh) | 集高效、节水、可控于一体的燃气轮机四联产系统 | |
CN101464069B (zh) | 热力喷射及涡流复合型空调机 | |
CN105927299B (zh) | 一种二氧化碳储能及供能系统 | |
US11199361B2 (en) | Method and apparatus for net zero-water power plant cooling and heat recovery | |
WO2015192648A1 (fr) | Procédé d'économie d'énergie basé sur la puissance du vide | |
CN103775148A (zh) | 自冷式热力做功方法 | |
CN104061706B (zh) | 基于分馏冷凝氨动力/制冷循环和sofc/gt的联供系统 | |
CN110185511A (zh) | 一种中低温余热驱动闪蒸-喷射-吸收复合循环冷热电联供系统 | |
CN110186220B (zh) | 梯级余热回收的水工质喷射式热泵系统及其工作方法 | |
CN106337789B (zh) | 一种集光放大太阳能光热发电系统及发电方法 | |
RU2616148C2 (ru) | Электрогенерирующее устройство с высокотемпературной парогазовой конденсационной турбиной | |
CN1237261C (zh) | 燃气轮机发电设备及空气加湿器 | |
US20230018348A1 (en) | Vapor source system based on vapor-liquid ejector supercharging combined with flash vaporization technology | |
CN216521584U (zh) | 一种多热源热工混合压缩蒸汽发生系统 | |
CN206889110U (zh) | 一种集高效、节水、可控于一体的燃气轮机四联产系统 | |
WO2019231400A1 (fr) | Système de refroidissement et de puissance combiné et procédé | |
CN106523050B (zh) | 复合动力循环系统及其运行方法及发电系统 | |
CN114216113A (zh) | 太阳能双效蒸发引射与机械两级压缩热泵蒸汽系统及其工作方法 | |
CN113418320A (zh) | 提升低温热源温度的装置及其使用方法 | |
CN113266609B (zh) | 热液喷射多单元蒸气压缩装置及热泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190627 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20191220 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 3/26 20060101ALI20191216BHEP Ipc: F25B 1/06 20060101ALI20191216BHEP Ipc: F04F 5/42 20060101ALI20191216BHEP Ipc: F22G 1/00 20060101AFI20191216BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017037840 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F22G0001000000 Ipc: F04F0005160000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04F 5/16 20060101AFI20200902BHEP Ipc: F01K 3/26 20060101ALI20200902BHEP Ipc: F22G 1/00 20060101ALI20200902BHEP Ipc: F25B 1/06 20060101ALI20200902BHEP Ipc: F25B 30/00 20060101ALI20200902BHEP Ipc: F04F 5/42 20060101ALI20200902BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017037840 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1387375 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1387375 Country of ref document: AT Kind code of ref document: T Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210729 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210830 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017037840 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211124 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231123 Year of fee payment: 7 Ref country code: DE Payment date: 20231124 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |