EP3546826B1 - Dampfwärmepumpe und verfahren zur nutzung von niederdruckdampf durch ergänzung von enthalpie und druckerhöhung - Google Patents
Dampfwärmepumpe und verfahren zur nutzung von niederdruckdampf durch ergänzung von enthalpie und druckerhöhung Download PDFInfo
- Publication number
- EP3546826B1 EP3546826B1 EP17878307.2A EP17878307A EP3546826B1 EP 3546826 B1 EP3546826 B1 EP 3546826B1 EP 17878307 A EP17878307 A EP 17878307A EP 3546826 B1 EP3546826 B1 EP 3546826B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vapor
- section
- inner cavity
- tslb
- tornado
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 71
- 230000001502 supplementing effect Effects 0.000 title claims description 50
- 229920006395 saturated elastomer Polymers 0.000 claims description 244
- 239000000463 material Substances 0.000 claims description 122
- 239000007788 liquid Substances 0.000 claims description 97
- 238000010438 heat treatment Methods 0.000 claims description 83
- 230000001133 acceleration Effects 0.000 claims description 69
- 230000001965 increasing effect Effects 0.000 claims description 61
- 238000001704 evaporation Methods 0.000 claims description 57
- 230000008020 evaporation Effects 0.000 claims description 57
- 238000005507 spraying Methods 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 33
- 238000004064 recycling Methods 0.000 claims description 28
- 230000002708 enhancing effect Effects 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000005265 energy consumption Methods 0.000 description 9
- 239000002918 waste heat Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229940097139 perfect choice Drugs 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006244 Medium Thermal Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
- F22G1/005—Steam superheating characterised by heating method the heat being supplied by steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/26—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/16—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/42—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow characterised by the input flow of inducing fluid medium being radial or tangential to output flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/06—Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
Definitions
- the invention relates to the field of vapor heat pumps (VHP), in particular to a vapor heat pump and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost.
- VHP vapor heat pumps
- US 2007/245736 discloses process for the preparation of superheated of steam by transferring heat from at least a fraction of a high pressure steam to a lower pressure steam to produce a superheated, lower pressure steam.
- the high pressure steam can be generated by recovering heat from a heat producing chemical process.
- the lower pressure steam can be generated by reducing the pressure of a portion of the high pressure steam or by recovering heat from one or more chemical processes.
- the superheated, lower pressure steam may be used to generate electricity in a steam turbine, operate a steam turbine drive, or as a heat source. Also disclosed is a process for driving a steam turbine using superheated steam produced by the process of the invention.
- CN 103908788 discloses an MVR heat pump evaporation system, which comprises a water vapor compression system, an evaporator, a separator, an energy storage water tank and a waste heat recovery system.
- the vapor outlet of the energy storage water tank and the vapor outlet of the separator are both in connection with the vapor inlet of the water vapor compression system, the vapor outlet of which is connected to the vapor inlet of the evaporator.
- the vapor outlet of the evaporator is connected to the vapor inlet of the separator, and the stock solution inlet and the concentrated solution outlet of the evaporator are both in connection with the waste heat recovery system.
- the MVR heat pump evaporation system recovers low grade waste heat, i.e.
- CN 105523597 discloses liquid medium thermal compression evaporation purification system.
- the system mainly comprises a heater, a high pressure water pump, a jet flow inhalation device, a high pressure steam separator, an evaporation chamber, a separation chamber and a reflux pump.
- Material enters the evaporation chamber to be evaporated enters the separation chamber to undergo gas-liquid separation so as to obtain secondary steam, and the secondary steam enters the jet flow inhalation device; a high pressure liquid obtained by the high pressure water pump passes through the jet flow inhalation device while being mixed with the inhaled secondary steam, and the mixture is discharged into the high pressure steam separator to undergo gas-liquid separation; high pressure steam released after the gas-liquid separation enters the evaporation chamber to be used as a heat transfer medium for heating evaporation of the material; and a liquid medium produced from the high pressure steam separator is sent into the electric heater through the reflux pump, and the liquid medium heated by the electric heater is sent into the high pressure water pump.
- the secondary steam is fully utilized and there is no discharge of the secondary steam.
- CN 202902754 discloses a device for converting waste heat steam by a steam jet pump and belongs to the field of drying technology.
- the device comprises an internally-heated fluidized bed, a flash tank, a dry duster, a steam jet pump and a humidifier.
- a steam inlet of the internally-heated fluidized bed is communicated with a steam outlet of the humidifier.
- a condensate outlet of the internally-heated fluidized bed is communicated with an inlet of the flash tank.
- a condensate outlet of the flash tank is communicated with a condensate inlet of the humidifier.
- a waste heat steam outlet of the internally-heated fluidized bed is communicated with the dry duster.
- a steam outlet of the dry duster and a steam outlet of the flash tank are communicated with a low-temperature steam inlet of the steam jet pump.
- a high-temperature steam inlet of the steam jet pump is communicated with a steam master pipe.
- a steam outlet of the steam jet pump is provided with two pipes respectively communicated with the internally-heated fluidized bed and the humidifier. Superheated steam is used as fluidizing drying medium, so that moisture evaporated by material can be brought away and non-condensable gas is avoided.
- the temperature of the secondary vapor generated during evaporation is always lower than the liquid temperature due to the rising boiling point, which creates technical difficulties for the energy-saving utilization of the secondary vapor.
- the multi-effect evaporator uses the latent heat of vaporization of externally supplied vapor for many times. However, whatever happens, the externally supplied vapor enters and flows out of the system in a steam state so that the enthalpy difference of the steam entering and leaving the system is very small. For example, after the saturated steam (1.0MPa(G), 185°C) enters the evaporation system for multi-effect evaporation, it will become 45° C secondary steam and then be discharged from the system, with the enthalpy difference less than 250kJ/kg and the heat utilization rate of the externally supplied vapor less than 9%. Not only that, a large amount of circulating water will be used to condense the secondary steam with the purpose of ensuring the vacuum degree during evaporation. The circulating water consumption as well as other energy consumption decreases the heat utilization rate of second law of thermodynamics.
- MVR is an energy-saving technology aiming to reduce the demand for external energy by reusing the energy of the secondary steam. Its working process is to compress the steam (secondary steam) at low temperature through a compressor, increase the temperature, pressure and the enthalpy, and then condensate steam in an evaporator to make full use of the latent heat of steam. Except for start-up, the externally supplied steam is not used in the whole evaporation process, so as to fully utilize the secondary steam, recover latent heat and improve thermal efficiency, thus the economy is equal to 20-effect evaporation. However, one-time investment of MVR is greater than that of multi-effect evaporation, which is generally 1.5 times more than multi-effect evaporation.
- the steam-jet heat pump requires expanding the externally supplied high-pressure Steam in Laval nozzle (nozzle jet) of the steam ejector to generate supersonic flow so that the pressure energy and phase change energy are converted into kinetic energy of jet flow, so as to drive and eject the secondary steam or low pressure steam, and realize their pressure boosted utilization.
- the pressure of mixed steam is less than that of the externally supplied vapor.
- the injection driving coefficient is generally less than 1 so that the secondary Steam or low pressure Steam has been rarely used due to very low utilization rate and very high energy consumption.
- the technical solution to be provided by the invention is to provide a vapor heat pump (VHP) and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost, so as to efficiently utilize the low pressure vapor.
- VHP vapor heat pump
- the invention provides a method for utilizing low pressure vapor through enthalpy supplement and pressure boost, comprising the following steps:
- an artificial tornado method is used by reference to the formation theory of tornado in nature and its strong suction force, so as to generate tornado vortex in the low pressure vapor for superheating and then spraying-liquid boost pressure or superheating and spraying-liquid boost pressure.
- the method comprises the following steps:
- the material heater is an evaporator and the low pressure vapor is secondary vapor, comprising the following steps:
- a vapor heat pump comprising a material heater and a superheat and spraying-liquid booster (SHSLB) with a low pressure vapor inlet and a saturated vapor outlet;
- the material heater has a saturated vapor inlet in connected with the saturated vapor outlet of the SHSLB;
- step 1) the low pressure vapor flows into the SHSLB and is heated into the superheated vapor; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure;
- step 2) the condensate is sprayed into the SHSLB to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater for heating the material to archive the utilization or recycling.
- the vapor heat pump used in the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost is one capable of a tornado vapor heat pump(TVHP), which comprises a material heater and a tornado superheat and spraying-liquid booster (TSHSLB), wherein the TSHSLB has a low pressure vapor inlet and a saturated vapor outlet; the material heater has a saturated vapor inlet connected with the saturated vapor outlet of the TSHSLB; in step 1), the low pressure vapor is fed into the TSHSLB and heated into the superheated vapor; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater, the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force; a tornado is generated from the superheated vapor obtained in step 1) in the TSHSLB for enhancing the suction force; the conden
- the SHSLB comprises a superheater (SH) and a spraying-liquid booster (SLB); wherein the SH has a low pressure vapor inlet and a superheated vapor outlet, and the SLB has a superheated vapor inlet and a saturated vapor outlet; the superheated vapor outlet of the SH is connected with the superheated vapor inlet of the SLB, and the saturated vapor outlet of the SLB is connected with the saturated vapor inlet of the material heater; in step 1), the low pressure vapor flows through SH and is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SLB to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater for heating the material to archive the utilization or recycling.
- SH superheater
- SLB spraying-liquid booster
- the SH is a tornado superheater (TSH)
- the SLB is a tornado spraying-liquid booster (TSLB)
- a heater is arranged on the TSH; in step 1), the low pressure vapor is fed into the TSH to generate a tornado vortex; meanwhile, in the TSH low pressure vapor is heated into superheated vapor by the heater, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater, the saturated vapor will be condensed to generate a strong suction force; the superheated vapor obtained in step 1) is sucked into the TSLB to generate a tornado vortex for enhancing the suction force; meanwhile, the condensate is sprayed through the nozzle assembly at the direction opposite to the rotating direction of the TSLB tornado vortex, the superheated vapor and the condensate are fully mixed to generate the pressure boosted and quantity increased saturated
- Low pressure vapor is the low-level thermal energy saturated vapor relative to the pressurized high temperature and rich in thermal energy saturated vapor.
- the material of the invention means evaporable solution or pure liquid, of which the solvent can be either water or organic solvent.
- the method of the invention is based on the principle that saturated steam at different temperature has small enthalpy difference; for example, since the enthalpy difference of saturated steam at 100°C and 120°C is only 29kJ/kg, the secondary steam at 100°C can reach the saturated state at 120°C only through supplementing enthalpy of 29kJ/kg and pressure increase.
- the supplementing enthalpy and pressure increase of steam can be performed in many ways such as mechanical vapor recompression (MVR). Steam is difficult to compress and will eventually be in a superheated state, of which more than 80% of the energy is consumed for increase temperature and less than 20% for increase pressure. Therefore, the energy consumption is high.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the invention is based on the one-to-one correspondence characteristic of temperature, pressure and enthalpy of saturated vapor; that is, given the enthalpy value, the vapor pressure and temperature can be determined.
- the low pressure vapor or secondary vapor can be converted into superheated vapor through supplementing enthalpy , but vapor cannot be pressurized.
- Heat energy and pressure energy are both energy. Under certain conditions, heat energy can be converted into pressure energy such as spraying liquid boost pressure(SLBP), which is an excellent choice.
- SLBP spraying liquid boost pressure
- the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force.
- the low pressure vapor can be converted into the pressure boosted and quantity increased saturated vapor, that is, the high temperature and rich in thermal energy saturated vapor, so as to utilize the low pressure vapor.
- an artificial tornado is generated from vapor in corresponding equipment according to an artificial tornado method, so as to enhance the condensation suction force of vapor and further improve the thermal efficiency and compression ratio.
- the invention can effectively reduce the energy consumption and save the cost owing to small enthalpy difference between the low pressure vapor and pressurized saturated vapor, small enthalpy supplement required for superheated vapor, and high efficiency of spraying liquid boost pressure.
- the invention further provides a vapor heat pump, which is not a separate equipment but a device system, comprising a material heater and a SHSLB, wherein the low pressure vapor is heated into superheated vapor in the SHSLB for spraying liquid boost pressure and converted into the pressure boosted and quantity increased saturated vapor; the material heater has a saturated vapor inlet; the SHSLB has a saturated vapor outlet, a low pressure vapor inlet, and a condensate inlet; and the saturated vapor inlet of the material heater is connected with the saturated vapor outlet of the SHSLB.
- a vapor heat pump which is not a separate equipment but a device system, comprising a material heater and a SHSLB, wherein the low pressure vapor is heated into superheated vapor in the SHSLB for spraying liquid boost pressure and converted into the pressure boosted and quantity increased saturated vapor; the material heater has a saturated vapor inlet; the SHSLB has a saturated vapor outlet, a low pressure vapor inlet, and
- the SHSLB is a TSHSLB; and TSHSLB comprises a TSHSLB vortex generation superheat section, a TSHSLB acceleration section, a TSHSLB high-speed mixing section and a TSHSLB diffuser section; wherein the TSHSLB vortex generation superheat section has a circular drum or a cylindrical inner cavity, the TSHSLB acceleration section has a conical inner cavity, the TSHSLB high-speed mixing section has a cylindrical inner cavity, and the TSHSLB diffuser section has a conical inner cavity; the larger diameter end of the conical inner cavity of the TSHSLB acceleration section is connected with a circular drum or a cylindrical inner cavity of the TSHSLB vortex generation superheat section, and the smaller diameter end of the conical inner cavity of the TSHSLB acceleration section is connected with the smaller diameter end of the conical inner cavity of the TSHSLB diffuser section through the cylindrical inner cavity of the TSHSLB high-speed mixing section; the TSHSLB vortex generation superheat section
- the material heater is an evaporator
- the SHSLB comprises a SH and a SLB
- the SH has a secondary vapor inlet pipe and a superheated vapor outlet
- the evaporator comprises a heating chamber and an evaporation chamber
- the evaporator has a secondary vapor outlet connected with the evaporation chamber and a saturated vapor inlet connected with the heating chamber
- the SLB has a superheated vapor inlet and a saturated vapor outlet
- the secondary vapor inlet pipe of the SH is connected with the secondary vapor outlet of the evaporation chamber of the evaporator
- the superheated vapor outlet of the SH is connected with the superheated vapor inlet of the SLB
- the saturated vapor outlet of the SLB is connected with the saturated vapor inlet of the heating chamber
- the SLB has a nozzle assembly comprising a liquid ejection nozzle arranged in the SLB; and the ejection direction of the liquid ejection nozzle is the same as that of
- the SH comprises a TSH and a heater; wherein the TSH comprises a tornado vortex generation section, a tornado acceleration section, a high-speed section and a diffuser superheat section; the tornado vortex generation section has a circular drum or a cylindrical inner cavity; the tornado acceleration section has a conical inner cavity; the high-speed section has a cylindrical inner cavity; and the diffuser superheat section has a conical inner cavity; the larger diameter end of the conical inner cavity of the tornado acceleration section is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section, and the smaller diameter end of the conical inner cavity of the tornado acceleration section is connected with the smaller diameter end of the conical inner cavity of the diffuser superheat section through the cylindrical inner cavity of the high-speed section; the centerline of the circular drum or cylindrical inner cavity of the tornado vortex generation section, the centerline of the conical inner cavity of the tornado acceleration section, the centerline of the cylindrical inner cavity of the high-speed section and the centerline of the conical inner cavity of the diffuser superheat
- the SLB is a TSLB comprising a TSLB vortex generation section, a TSLB acceleration section, a TSLB high-speed mixing section and a TSLB diffuser section;
- the TSLB vortex generation section has a circular drum or cylindrical inner cavity;
- the TSLB acceleration section has a conical inner cavity;
- the TSLB high-speed mixing section has a cylindrical inner cavity;
- the TSLB diffuser section has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section through the cylindrical inner cavity of the TSLB high-speed mixing section;
- a superheated vapor inlet pipe is arranged on the TSLB vortex generation section;
- the centerline of the superheated vapor inlet pipe
- the length-diameter ratio of the cylindrical inner cavity of the TSLB high-speed mixing section is 1-4: 1; and the taper of the conical inner cavity of the TSLB diffuser section is 6-10°.
- the vapor heat pump comprises a condensate discharge tank and a condensate pump; the material heater or evaporator is provided with a condensate outlet connected with the inlet of the condensate discharge tank, wherein the outlet of the condensate discharge tank is connected with the inlet of the condensate pump, and the outlet of the condensate pump is connected with the tornado nozzle assembly or the nozzle assembly so that the heat energy of the condensate can be utilized.
- the vapor heat pump comprises a first temperature control loop, and a control valve is arranged on the connecting pipe between the nozzle assembly of the SLB or the TSLB and the condensate pump;
- a temperature sensor for pressure boosted and quantity increased saturated vapor is arranged at the outlet of the SLB or the TSLB, and the valve opening of the control valve is controlled by the first temperature control loop according to the saturated vapor temperature at the outlet of the SLB or the TSLB detected by the temperature sensor for pressure boosted and quantity increased saturated vapor, thereby maintaining stable temperature of the pressure boosted and quantity increased saturated vapor.
- the heater is provided with a second temperature control loop, and a second temperature sensor is arranged at the outlet of the SH or the TSH; and the heating amount of the heater is regulated by the second temperature control loop according to the superheated vapor temperature at the outlet of the SH or the TSH detected by the second temperature sensor to stabilize superheated vapor temperature.
- a control valve is arranged on the connecting pipe between the tornado nozzle assembly of the SHSLB or the TSHSLB and the condensate pump; and the second heater is provided with a temperature regulator; an temperature automatic selective control loop and a temperature sensor for pressure boosted and quantity increased saturated vapor are arranged at the outlet of the SHSLB or the TSHSLB; the temperature sensor for pressure boosted and quantity increased saturated vapor is connected to the temperature automatic selective control loop; and the valve opening of the control valve as well as the temperature regulator is controlled by the temperature automatic selective control loop to maintain stable temperature of the pressure boosted and quantity increased saturated vapor.
- the control principle for temperature automatic selective adjustment loop is as follow: if the temperature is higher than set value, the temperature of saturated vapor at the target pressure was reached by increasing the flow rate of condensate and/or reducing the heating amount of the heater; conversely if the temperature is lower than set value, the temperature of saturated vapor at the target pressure was reached by reducing the flow rate of condensate and/or increasing the heating amount of the heater .
- the vapor heat pump of the invention has the following advantages especially when the SHSLB is a TSHSLB or the SHSLB is a combined TSH and TSLB mode for a tornado vapor heat pump (TVHP):
- SHSLB 2- superhe
- the 100°C low pressure vapor or secondary vapor can reach the 120°C saturation state steam and reused through supplementing enthalpy of 29kJ/kg and pressure boosting based on the technology of the invention.
- the enthalpy of superheated steam increases with the amount of heat supplemented, superheat degree or superheated steam temperature, which is the mode and principle of supplementing enthalpy of the superheated steam.
- the superheated steam cannot be pressure increased during supplementing enthalpy.
- heat energy and pressure energy are both energy. Under certain conditions, heat energy can be converted into pressure energy by spraying liquid boost pressure. will be a perfect choice.
- the supplementing enthalpy requirements can be met by exceeding the high temperature and rich in thermal energy saturated steam temperature at the target pressure; and the principle of superheated steam rising is the same as that of hot air balloon rising.
- the spraying liquid boost pressure of the invention is different from adiabatic compression, of which steam will eventually be in a superheated state because more than 80% of the energy is consumed for temperature increase and less than 20% of the energy is used for pressure increase; meanwhile, it is also different from isothermal compression.
- the isothermal compression of gas will release heat to the outside, i.e. the compression heat shall be taken away by cooling water or air, resulting in a decrease in enthalpy of energy.
- the characteristics of spraying liquid boost pressure lie in that the pressure boosted or compressed vapor is the pressure boosted saturated vapor instead of superheated vapor, and no heat is released so as not to reduce the enthalpy value.
- the system acquires heat from the outside, i.e. spraying liquid heat; thus the spraying liquid absorbs this part of enthalpy higher than the temperature of pressure boosted saturated vapor and becomes the incremental saturated vapor.
- spraying liquid boost pressure is to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, with low energy consumption and large pressure ratio.
- an artificial tornado is generated in relevant equipment by reference to the formation principle of tornado in nature and its strong suction to further enhance the strong suction force generated during condensation and sharp volume reduction of vapor, so as to improve the thermal efficiency and compression ratio.
- the technical scheme provided by the invention is a vapor heat pump and a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost comprises the following steps:
- the low pressure vapor may be the secondary vapor generated in the evaporator, or the industrial by-product vapor, the waste heat boiler steam, etc.
- the low pressure vapor is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at target pressure; in particular, the superheated vapor shall be at 2-30°C higher than the high temperature and rich in thermal energy saturated vapor
- step 1) the low pressure vapor can be directly heated, or heated by an external heater after being made into tornadoes according to the principle of artificial tornadoes.
- the material heater 1 in step 2) refers to the equipment where the material can be heated by vapor; and the material heater may be an evaporator, a heat exchanger, a heater, etc. Meanwhile, when the saturated vapor is condensed in step 2, it will sharply shrink in volume to generate a strong suction force so that the superheated vapor obtained in step 1) can be sucked for spraying liquid boost pressure. Alternatively, under the action of the strong suction force generated when the saturated vapor is condensed and sharply shrinks in volume, a tornado vortex is generated from the superheated vapor for spraying liquid boost pressure.
- the material heater 1 is an evaporator.
- the method comprises the following steps:
- the superheat and spraying liquid boost pressure of low pressure vapor can be realized through many ways; for example, a heater or a heat exchanger can be used in the process of heating the low pressure vapor; or the diffuser and booster can be directly used in the process of pressurizing the low pressure vapor.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost is a preferred embodiment, adopting a vapor heat pump comprising a material heater 1 and a SHSLB 2; wherein the SHSLB2 has a saturated vapor outlet and a low pressure vapor inlet; the material heater 1 has a saturated vapor inlet in connected with the saturated vapor outlet of the SHSLB2; in step 1), the low pressure vapor is heated into the superheated vapor in the SHSLB2; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SHSLB2 at 3-16m/s to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater 1 for heating the material to archive the utilization or recycling.
- the SHSLB2 can be an integrated combination mode of a common heater and a diffuser, or a separate connection combination of the common heater and the diffuser.
- the SHSLB2 is used for easy installation. Further, in order to improve the efficiency of superheat and spraying liquid boost pressure of secondary vapor, the SHSLB2 is a TSHSLB capable of realizing supplementing enthalpy and spraying liquid boost pressure of secondary vapor.
- step 1) the secondary vapor formed in an evaporation chamber of the evaporator is heated into superheated vapor, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the evaporable solution or pure liquid is heated by the saturated vapor in the heating chamber of the evaporator, the saturated vapor will be condensed and sharply shrink in volume to generate a strong suction force; a tornado is generated from the superheated vapor obtained in step 1) in the TSHSLB for enhancing the suction force, with the central speed of the tornado vortex more than 200m/s; meanwhile, the condensate is sprayed through the nozzle assembly 206 at 3-16m/s and at the rotating direction opposite to that of the tornado vortex in the TSHSLB; the superheated vapor and the condensate are fully mixed to generate the pressure boosted and quantity increased saturated vapor, which is then fed into the heating chamber of the evaporator for heating
- the SHSLB2 preferably comprises a SH21 and a SLB22; wherein the SH21 has a low pressure vapor inlet and a superheated vapor outlet, and the SLB22 has a superheated vapor inlet and a saturated vapor outlet.
- the superheated vapor outlet of the SH21 is connected with the superheated vapor inlet of the SLB22, and the saturated vapor outlet of the SLB22 is connected with the saturated vapor inlet of the material heater 1; in step 1), the low pressure vapor is heated into the superheated vapor in the SH21; and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), the condensate is sprayed into the SLB22 at 3-16m/s to convert the superheated vapor into the pressure boosted and quantity increased saturated vapor, which is then fed into the material heater 1 for heating the material to archive the utilization or recycling.
- the SHSLB2 further comprises a SH21 and a SLB22; wherein the SH21 is a TSH through which a tornado vortex can be generated from vapor, and the SLB22 is a TSLB through which a tornado vortex can be generated from vapor, and TSH is provided with a heater 6 for heating vapor; in step 1), the low pressure vapor is fed into the TSH to generate a tornado vortex; meanwhile, the TSH low pressure vapor is heated into superheated vapor by the heater 6 arranged on the TSH, and the superheated vapor shall be at a temperature higher than that of the high temperature and rich in thermal energy saturated vapor at the target pressure; in step 2), when the material is heated by the saturated vapor in the material heater 1, the saturated vapor will be condensed to generate a strong suction force so that the superheated vapor obtained in step 1) is sucked into the TSLB for spraying-liquid boost pressure
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump comprising a material heater 1 and a SHSLB2, wherein the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11; and the secondary vapor outlet 18 of the evaporation chamber 12, the SHSLB2, and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- a vapor heat pump comprising a material heater 1 and a SHSLB2
- the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11
- the secondary vapor outlet 18 of the evaporation chamber 12 the SHSLB2
- the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump comprising a material heater 1 and a SHSLB2, wherein the material heater 1 is an evaporator comprising an evaporation chamber 12 and a heating chamber 11; the SHSLB2 comprised a SH21 and a SLB22; and the secondary vapor outlet 18 of the evaporation chamber 12, the SH21, the SLB22 and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method further comprises the following steps:
- the SH21 is a heat exchanger and the SLB22 is a diffuser.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising an evaporator and a TSHSLB, wherein the evaporator comprised an evaporation chamber 12 and a heating chamber 11; and the secondary vapor outlet 18 of the evaporation chamber 12, the TSHSLB, and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected.
- the method comprises the following steps:
- the SHSLB2 is a TSHSLB comprising a TSHSLB vortex generation superheat section 202, a TSHSLB acceleration section 203, a TSHSLB high-speed mixing section 204 and a TSHSLB diffuser section 205; wherein the TSHSLB vortex generation superheat section 202 has a circular drum or a cylindrical inner cavity, the TSHSLB acceleration section 203 has a conical inner cavity, the TSHSLB high-speed mixing section 204 has a cylindrical inner cavity, and the TSHSLB diffuser section 205 has a conical inner cavity; the larger diameter end of the conical inner cavity of the TSHSLB acceleration section 203 is connected with the circular drum or cylindrical inner cavity of the TSHSLB vortex generation superheat section 202, and the smaller diameter end of the conical inner cavity of the TSHSLB acceleration section 203 is connected with the smaller diameter end of the conical inner cavity of the TSHSLB
- step 1) the secondary vapor is heated into the superheated vapor on the TSHSLB vortex generation superheat section 202.
- step 2) the condensate is sprayed into the TSHSLB to convert the superheated secondary vapor into the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor.
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the evaporator comprised an evaporation chamber 12 and a heating chamber 11; the secondary vapor outlet 18 of the evaporation chamber 12, the TSH, the TSLB and the saturated vapor inlet 15 of the heating chamber 11 are sequentially connected; a tornado vortex is generated from vapor in the TSH; and a heater 6 is arranged on the TSH for heating vapor.
- a tornado vapor heat pump in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost adopting a vapor heat pump, in particular to a tornado vapor heat pump comprising a material heater 1, a SH21 and a SLB22; wherein the material heater 1 is an evaporator, the SH21 is a TSH and the SLB22 is a TSLB; the SH21 comprised a TSH and a heater 6; wherein the TSH comprised a tornado vortex generation section 212, a tornado acceleration section 213, a high-speed section 214 and a diffuser superheat section 215; the tornado vortex generation section 212 has a circular drum or a cylindrical inner cavity; the tornado acceleration section 213 has a conical inner cavity; the high-speed section 214 has a cylindrical inner cavity; and the diffuser superheat section 215 has a conical inner cavity; the larger diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section
- the SLB22 is a TSLB comprising a TSLB vortex generation section 222, a TSLB acceleration section 223, a TSLB high-speed mixing section 224 and a TSLB diffuser section 225;
- the TSLB vortex generation section 222 has a circular drum or a cylindrical inner cavity;
- the TSLB acceleration section 223 has a conical inner cavity;
- the TSLB high-speed mixing section 224 has a cylindrical inner cavity;
- the TSLB diffuser section 225 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section 222, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section 225 through the cylindrical inner cavity of the high-speed mixing section 224;
- a superheated vapor inlet pipe 221 is
- the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the example comprising following steps:
- the method, technique, system and regulation of using artificial tornadoes are as follows: the solution in the evaporation chamber of the evaporator is evaporated to generate the secondary vapor (low-level thermal energy vapor), which is discharged from the outlet 18, entered the secondary vapor inlet pipe 211 of the TSH, and then tangentially flowed into the vortex generation section 212 to generate the initial tornado vortex. Next, the tornado vortex is accelerated in the acceleration section 213 with the central wind speed more than 100 m/s, thus creating favorable conditions for the superheating of the secondary vapor.
- the secondary vapor low-level thermal energy vapor
- the secondary vapor is superheated by the heater 6 into the superheated vapor for supplementing enthalpy in the high-speed section 214 and the diffuser superheat section 215.
- the supplementing enthalpy is satisfactory when the superheated vapor temperature exceeded the temperature of saturated vapor at the target pressure.
- the superheated vapor can reach the required superheat degree by adjusting the heat supply amount of the heater 6 at the outlet of the diffuser superheat section 215 of the TSH.
- the rising principle of superheated vapor is similar to that of a hot air balloon, and produced corresponding suction force (or pumping force) to the secondary vapor at the same time.
- the superheated vapor at the outlet of the diffuser superheat section 215 can only be used for supplementing enthalpy rather than pressure boosting according to the nature of the superheated vapor.
- the superheated vapor at the outlet of the diffuser superheat section 215 entered the TSLB superheated vapor inlet pipe 221 by means of its lift force, and then tangentially flowed into the TSLB vortex generation section 222 to generate an initial tornado vortex.
- the circular drum or cylindrical shell is required for the TSLB vortex generation section, and its diameter can allow the superheated vapor to enter and boosted pressure at the outlet. Its tornado vortex is accelerated in the TSLB acceleration section 223, with the central wind speed more than 200 m/s, thus creating favorable conditions for the spraying liquid boost pressure of the superheated vapor.
- the counter-rotating condensate is sprayed through the nozzle assembly 226 and mixed with the superheated vapor violently at high speed, so as to generate a strong suction force under the combined action of the circulation area, diffuser, spraying liquid boost pressure and vapor condensation.
- the tornado formation method is used to enhance the suction force so that the superheated vapor is converted into the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor, and then flowed out of the TSLB diffuser section 225. Since the saturated vapor can reach the required temperature by controlling the flow rate of condensate, the spraying liquid boost pressure technology can avoid the situation that over 80% of the energy consumed by conventional technology, namely adiabatic compression is consumed for temperature increasing .
- the high temperature and rich in thermal energy saturated vapor entered the heating chamber of the evaporator through the inlet pipe 15 for heating the solution to be evaporated, and changing itself into condensate after releasing latent heat.
- the saturated vapor sharply shrank in volume to generate a strong suction force, which is also the motive power of the tornado vapor heat pump. Therefore, the secondary vapor (low-level thermal energy vapor) can be changed into the high temperature and rich in thermal energy saturated vapor for reuse.
- the SHSLB2 was a TSHSLB in example 3, and the SHSLB2 is a combination of a TSH and a TSLB in example 5.
- the TSHSLB in example 3 has basically the same structure as that of the TSLB in example 5.
- the TSH in example 5 is not provided, the second heater 207 is arranged on the TSLB vortex generation section 222 to act as the TSHSLB, and the rest remained unchanged.
- the method in example 5 differs from that in example 3 in that: in example 3, the TSH is not provided; the secondary vapor discharged from the secondary vapor outlet 18 of the evaporation chamber 12 is directly fed into the TSHSLB, and the temperature of saturated vapor at its outlet is controlled by an temperature automatic selective adjustment loop.
- the temperature of saturated vapor at the target pressure is reached by increasing the flow rate of condensate and/or reducing the heating amount of the second heater 207; conversely if the temperature is lower than set value, the temperature of saturated vapor at the target pressure is reached by reducing the flow rate of condensate and/or increasing the heating amount of the second heater 207.
- the invention provides a method for utilizing low pressure vapor through supplementing enthalpy and pressure boost, adopting a tornado vapor heat pump system.
- the strong suction force formed through the self-condensation of saturated vapor during heating in the evaporator can be provided for forming a tornado, and the suction force further enhanced by the artificial tornado for supplementing enthalpy and spraying liquid boost pressure, so as to realize the recycling of secondary vapor.
- This method has low energy consumption due to small enthalpy difference of saturated vapor at different temperature, thus small supplementing enthalpy heat is needed , but large suction force and high pressure ratio for spraying liquid boost pressure is reached, so it can achieve the goal of the energy save and emission reduction.
- Example 1 to Example 5 Based on Example 1 to Example 5, as shown in Fig. 1 and Fig. 4 , the secondary vapor is replaced with the low pressure vapor, the evaporator is replaced with the material heater 1, the corresponding vapor heat pump and the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost remained unchanged, and low pressure vapor is fed through the low pressure vapor pipe 9.
- the vapor heat pump is a tornado vapor heat pump, comprising a material heater 1 and a SHSLB2; wherein the SHSLB2 comprised a SH21 and a SLB22; the SH21 is a TSH as shown in Fig. 6 to Fig.
- the TSH comprised a tornado vortex generation section 212, a tornado acceleration section 213, a high-speed section 214 and a diffuser superheat section 215;
- the tornado vortex generation section 212 has a circular drum or a cylindrical inner cavity;
- the tornado acceleration section 213 has a conical inner cavity;
- the high-speed section 214 has a cylindrical inner cavity;
- the diffuser superheat section 215 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the circular drum or cylindrical inner cavity of the tornado vortex generation section 212, and the smaller diameter end of the conical inner cavity of the tornado acceleration section 213 is connected with the smaller diameter end of the conical inner cavity of the diffuser superheat section 215 through the cylindrical inner cavity of the high-speed section 214;
- the length-diameter ratio of the cylindrical inner cavity of the high-speed section 214 is 1.5 - 4:1 and the taper of the conical inner cavity of the diffuser superheat section 215 is set at 2 - 8°.
- the supplementing enthalpy can be satisfactory when the superheated vapor temperature exceeded the saturated vapor temperature at the target pressure.
- the superheated vapor can reach the superheat degree by adjusting the heat supply amount of the heater 6 at the outlet of the diffuser superheat section 215.
- the principle of superheated vapor discharging is similar to that of a hot air balloon, and corresponding suction force (or pumping force) will be produced for the secondary vapor in the above process.
- the superheated vapor at the outlet of the diffuser superheat section 215 can only be used for supplementing enthalpy rather than pressure boosting according to the property of superheated vapor.
- the vapor heat pump is a tornado vapor heat pump, comprising a material heater 1 and a SHSLB2; wherein the SHSLB2 comprised a SH21 and a SLB22; the SH21 is a TSH; the SLB22 is a TSLB as shown in Fig. 10 to Fig.
- the TSLB comprised a TSLB vortex generation section 222, a TSLB acceleration section 223, a TSLB high-speed mixing section 224 and a TSLB diffuser section 225;
- the TSLB vortex generation section 222 has a circular drum or a cylindrical inner cavity;
- the TSLB acceleration section 223 has a conical inner cavity;
- the TSLB high-speed mixing section 224 has a cylindrical inner cavity;
- the TSLB diffuser section 225 has a conical inner cavity;
- the larger diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the circular drum or cylindrical inner cavity of the TSLB vortex generation section 222, and the smaller diameter end of the conical inner cavity of the TSLB acceleration section 223 is connected with the smaller diameter end of the conical inner cavity of the TSLB diffuser section 225 through the cylindrical inner cavity of the high-speed mixing section 224;
- a superheated vapor inlet pipe 221 is arranged on the TS
- the length-diameter ratio of the cylindrical inner cavity of the TSLB high-speed mixing section 224 is 1 ⁇ 4: 1; and the taper of the conical inner cavity of the TSLB diffuser section 225 is 6 ⁇ 10°.
- Principle of spraying liquid boost pressure for the superheated vapor in TSLB The superheated vapor at the outlet of the TSH diffuser superheat section 215 entered the TSLB superheated vapor inlet pipe 221 due to its lift force, and then tangentially flowed into the TSLB vortex generation section 222 to generate an initial tornado vortex.
- Requirements for the TSLB vortex generation section the diameter of a circular drum or cylindrical shell can allow the superheated vapor to enter and be pressure boosted at the outlet.
- the tornado vortex is accelerated in the TSLB acceleration section 223, with the central wind speed more than 200 m/s, thus creating favorable internal conditions for the spraying liquid boost pressure of the superheated vapor.
- the counter-rotating condensate is sprayed through the nozzle assembly 226 and mixed with the TSLB tornado vortex violently at high speed to generate a strong suction force under the combined action of the circulation area, diffuser, spraying liquid boost pressure and vapor condensation, which is enhanced by the tornado formation method so that the pressure boosted and quantity increased high temperature and rich in thermal energy saturated vapor flowed out of the diffuser section 225.
- the saturated vapor can reach the required temperature by controlling the flow rate of condensate.
- the vapor heat pump further comprised a condensate discharge tank 10 and a condensate pump 3; the condensate outlet 16 of the evaporator or the condensate outlet of the material heater 1 is connected with the inlet of the condensate discharge tank 10, the condensate outlet of the condensate discharge tanklO is connected with the inlet of the condensate pump 3, and the outlet of the condensate pump 3 is connected with the tornado nozzle assembly 206 or the nozzle assembly 226.
- the condensate in the condensate discharge tank 10 is pumped out and pressurized by the condensate pump 3, and then sprayed into the SHSLB2, the TSHSLB, the SLB22 and the TSLB through the tornado nozzle assembly 206 or the nozzle assembly 226 respectively, so as to change the superheated vapor into the pressure boosted and quantity increased saturated vapor, and achieve the purpose of utilizing condensate heat energy and saving cost.
- the vapor heat pump further comprised a first temperature control loop 7; and a control valve 4 is arranged on the connecting pipe between the condensate pump 3 and the nozzle assembly 226 of the SLB22 or the TSLB; a temperature sensor is arranged at the outlet of the SLB22 or the TSLB, and the valve opening of the control valve 4 is controlled according to the vapor temperature at the outlet of the SLB22 or the TSLB by the first temperature control loop 7, so as to regulate the flow rate of condensate and maintain stable temperature of the pressure boosted and quantity increased saturated vapor.
- the first temperature control loop 7 can be of DCS centralized control.
- the heater 6 is provided with a second temperature control loop 8, and a second temperature sensor is arranged at the outlet of the SH21 or the TSH; the heating amount of the heater 6 is adjusted by the second temperature control loop 8 according to the temperature of the superheated vapor at the outlet of the SH21 or the TSH detected by the second temperature sensor to maintain stable temperature of the superheated vapor.
- the second temperature control loop 8 can be of DCS centralized control.
- the vapor heat pump further comprised a temperature automatic selective control loop 5 arranged at the outlet of the SHSLB2 or the TSHSLB.
- the pressure boosted and quantity increased saturated vapor temperature sensor is arranged at the outlet of the SHSLB2 or the TSHSLB.
- the temperature automatic selective control loop can be of DCS centralized control.
- the vapor heat pump and the method for utilizing low pressure vapor through supplementing enthalpy and pressure boost in the Examples 1 to 10, especially the more efficient tornado vapor heat pump(TVHP), have the following advantages:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Air Humidification (AREA)
Claims (15)
- Verfahren zum Nutzen von Niederdruckdampf durch Ergänzen von Enthalpie und eine Druckerhöhung, gekennzeichnet durch Umfassen der folgenden Schritte:1) Erhitzen von Niederdruckdampf zu überhitztem Dampf, wobei der überhitzte Dampf eine höhere Temperatur als die eines gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei einem Zieldruck besitzt;2) wenn ein Material durch den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie in einem Materialheizelement (1) erhitzt wird, wird der gesättigte Dampf kondensiert und sein Volumen nimmt deutlich ab, um eine starke Saugkraft zu erzeugen, so dass der in Schritt 1) erhaltene überhitzte Dampf für einen Sprühflüssigkeitserhöhungsdruck (spraying liquid boost pressure - SLBP) gesaugt wird und in gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge, das heißt, den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie umgewandelt wird, der dann dem Materialheizelement (1) zum Erhitzen zugeführt wird, um die Nutzung oder die Wiederverwertung zu erreichen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Künstlicher-Tornado-Verfahren unter Bezugnahme auf die Ausbildungstheorie eines Tornados in der Natur und dessen starke Saugkraft verwendet wird, um einen Tornado-Wirbel in dem Niederdruckdampf zum Überhitzen und anschließenden Sprühflüssigkeitserhöhungsdruck oder zum Überhitzen und Sprühflüssigkeitserhöhungsdruck zu erzeugen,
umfassend die folgenden Schritte:1) ein Tornado-Wirbel wird aus dem Niederdruckdampf erzeugt und zu überhitztem Dampf erhitzt; und der überhitzte Dampf soll eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen;2) wenn ein Material durch den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie an einem Materialheizelement (1) erhitzt wird, wird der gesättigte Dampf kondensiert und sein Volumen nimmt deutlich ab, um eine starke Saugkraft zu erzeugen; basierend auf dem Künstlicher-Tornado-Verfahren wird ein Tornado-Wirbel aus dem überhitzten Dampf zum Heben der Saugkraft erzeugt, sodass der überhitzte Dampf für den Sprühflüssigkeitserhöhungsdruck (SLBP) gesaugt wird, um den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge, das heißt, den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie auszubilden, der dann dem Materialheizelement (1) zum Erhitzen zugeführt wird, um einen thermischen Wirkungsgrad und ein Erhöhungsdruckverhältnis zu verbessern und die Nutzung oder die Wiederverwertung zu erzielen. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Materialheizelement (1) ein Verdampfer ist und der Niederdruckdampf Sekundärdampf ist, umfassend die folgenden Schritte:1) der Sekundärdampf, der ausgebildet wird und aus einer Verdampfungskammer (12) des Verdampfers abgelassen wird, wird zu überhitztem Dampf erhitzt, und der überhitzte Dampf soll eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen;2) wenn ein Material durch den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie in einer Heizkammer (11) des Verdampfers erhitzt wird, wird der gesättigte Dampf kondensiert und sein Volumen nimmt deutlich ab, um eine starke Saugkraft zu erzeugen, so dass der überhitzte Dampf für den Sprühflüssigkeitserhöhungsdruck (SLBP) gesaugt wird und den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge, das heißt, den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie erzeugt, der dann der Heizkammer (11) des Verdampfers zum Erhitzen des Materials zugeführt wird, um die Wiederverwertung zu erreichen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Dampfwärmepumpe (vaporheat pump -VHP) verwendet wird, die ein Materialheizelement (1) und einen Überhitzungs- und Sprühflüssigkeitserhöher (2) (superheat and spraying-liquid booster-SHSLB(2)) umfasst; und
der SHSLB(2) einen Niederdruckdampfeinlass und einen Auslass für gesättigten Dampf aufweist;
das Materialheizelement (1) einen Einlass für gesättigten Dampf aufweist, der mit einem Auslass für gesättigten Dampf des SHSLB(2) verbunden ist;
in Schritt 1) der Niederdruckdampf zu einem überhitzten Dampf in dem SHSLB(2) erhitzt wird und der überhitzte Dampf eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen soll;
in Schritt 2) das Kondensat in den SHSLB(2) gesprüht wird, um den überhitzten Dampf in den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge umzuwandeln, der dann dem Materialheizelement (1) zum Erhitzen des Materials zugeführt wird, um die Nutzung oder die Wiederverwertung zu archivieren. - Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Dampfwärmepumpe eine Tornado-Dampfwärmepumpe (tornado vapor heat pump - TVHP), die das Materialheizelement (1) und einen Tornado-Überhitzungs- und Sprühflüssigkeitserhöher (tornado superheat and spraying-liquid booster - TSHSLB) umfasst, wobei der TSHSLB einen Niederdruckdampfeinlass und einen Auslass für gesättigten Dampf aufweist;
die Materialwärme (1) einen Einlass für gesättigten Dampf aufweist, der mit dem Auslass für gesättigten Dampf des TSHSLB verbunden ist;
in Schritt 1) der Niederdruckdampf zu dem TSHSLB zugeführt wird und durch ein Heizelement (207), das an der Außenoberfläche des TSHSLB eingerichtet ist, zu dem überhitzten Dampf erhitzt wird; und der überhitzte Dampf eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen soll;
in Schritt 2), wenn das Material durch den gesättigten Dampf in dem Materialheizelement (1) erhitzt wird, der gesättigte Dampf kondensiert wird und sein Volumen deutlich abnimmt, um eine starke Saugkraft zu erzeugen, ein Tornado aus dem in Schritt 1) erhaltenen überhitzten Dampf in dem TSHSLB zum Heben der Saugkraft erzeugt und beschleunigt wird; das Kondensat in den TSHSLB gesprüht wird, um etwas der Enthalpie des überhitzten Dampfs zu absorbieren und den gesättigten Dampf in den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge, das heißt den gesättigten Dampf mit hoher Temperatur und reich an thermischer Energie umzuwandeln, der dann dem Materialheizelement (1) zum Erhitzen des Materials zugeführt wird, um die Nutzung oder die Wiederverwertung zu erreichen. - Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der SHSLB(2) einen Überhitzer (21) (superheater- SH(21)) und einen Sprühflüssigkeitserhöher (22) (spray liquid booster- SLB(22)) umfasst; wobei der SH(21) einen Niederdruckdampfeinlass und einen Auslass für überhitzten Dampf aufweist und der SLB(22) einen Auslass für überhitzten Dampf und einen Auslass für gesättigten Dampf aufweist;
der Auslass für überhitzten Dampf des SH(21) mit dem Einlass für überhitzten Dampf des SLB(22) verbunden ist, und der Auslass für gesättigten Dampf des SLB(22) mit dem Einlass für gesättigten Dampf des Materialheizelements (1) verbunden ist;
in Schritt 1) der Niederdruckdampf zu einem überhitzten Dampf in dem SH(21) erhitzt wird und der überhitzte Dampf eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen soll;
in Schritt 2) das Kondensat in den SHSLB(22) gesprüht wird, um den überhitzten Dampf in den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge umzuwandeln, der dann dem Materialheizelement (1) zum Erhitzen des Materials zugeführt wird, um die Nutzung oder die Wiederverwertung zu archivieren. - Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der SH(21) ein Tornado-Überhitzer (tornado superheater- TSH) ist, der SLB(22) ein Tornado-Sprühflüssigkeitserhöher (tornado spraying liquid booster- TSLB) ist und ein Heizelement (6) an dem TSH eingerichtet ist;
in Schritt 1) der Niederdruckdampf dem TSH zugeführt wird, um einen Tornado-Wirbel zu erzeugen;
währenddessen der Niederdruckdampf zu einem überhitzten Dampf durch das Heizelement (6) erhitzt wird und dann abgelassen wird und der überhitzte Dampf eine höhere Temperatur als die des gesättigten Dampfs mit hoher Temperatur und reich an thermischer Energie bei dem Zieldruck besitzen soll;
in Schritt 2), wenn das Material durch den gesättigten Dampf in dem Materialheizelement (1) erhitzt wird, der gesättigte Dampf kondensiert wird, um eine starke Saugkraft zu erzeugen; der in Schritt 1) erhaltene überhitzte Dampf in den TSLB, um eines Tornado-Wirbels zum Heben der Saugkraft gesaugt wird; währenddessen das Kondensat durch die Düsenanordnung (226) in die Richtung entgegengesetzt zu der Drehrichtung des TSLB-Tornado-Wirbels gesprüht wird, und der überhitzte Dampf und das Kondensat vollständig gemischt werden, um den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge auszubilden, der dann dem Materialheizelement (1) zum Erhitzen des Materials zugeführt wird, um die Nutzung oder die Wiederverwertung zu erreichen. - Dampfwärmepumpe, die zum Erzielen des Verfahrens zum Nutzen von Niederdruckdampf durch Ergänzen von Enthalpie und die Druckerhöhung nach den Ansprüchen 1, 2, 3, 4, 5, 6 oder 7 verwendet wird, gekennzeichnet durch Umfassen eines Materialheizelements (1) und eines SHSLB(2); wobei der Niederdruckdampf zu überhitztem Dampf in dem SHSLB(2) für den Sprühflüssigkeitserhöhungsdruck erhitzt wird, um den gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge zu erzeugen; das Materialheizelement (1) einen Einlass für gesättigten Dampf aufweist und der SHSLB(2) einen Auslass für gesättigten Dampf, einen Niederdruckdampfeinlass und einen Kondensateinlass aufweist; und der Einlass für gesättigten Dampf des Materialheizelements (1) mit dem Auslass für gesättigten Dampf des SHSLB(2) verbunden ist.
- Dampfwärmepumpe nach Anspruch 8, dadurch gekennzeichnet, dass der SHSLB(2) ein Tornado-Überhitzungs- und Sprühflüssigkeitserhöher (TSHSLB) ist; und der TSHSLB einen TSHSLB-Überhitzungsbereich zur Wirbel-Erzeugung (202), einen TSHSLB-Beschleunigungsbereich (203), einen TSHSLB-Hochgeschwindigkeitsmischbereich (204) und einen TSHSLB-Diffusorbereich (205) umfasst; wobei der TSHSLB-Überhitzungsbereich zur Wirbel-Erzeugung (202) eine kreisförmige Trommel oder einen zylindrischen Innenhohlraum aufweist, der TSHSLB-Beschleunigungsbereich (203) einen konischen Innenhohlraum aufweist, der TSHSLB-Hochgeschwindigkeitsmischbereich (204) einen zylindrischen Innenhohlraum aufweist und der TSHSLB-Diffusorbereich (205) einen konischen Innenhohlraum aufweist;
das Ende des konischen Innenhohlraums des TSHSLB-Beschleunigungsbereichs (203) mit größerem Durchmesser mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) verbunden ist und das Ende des konischen Innenhohlraums des TSHSLB-Beschleunigungsbereichs (203) mit kleinerem Durchmesser mit dem Ende des konischen Innenhohlraums des TSHSLB-Diffusorbereichs (205) mit kleinerem Durchmesser durch den zylindrischen Innenhohlraum des TSHSLB-Hochgeschwindigkeitsmischbereichs (204) verbunden ist;
der TSHSLB-Überhitzungsbereich zur Wirbel-Erzeugung mit einem Niederdruckdampf-Einlassrohr (201) versehen ist; die Mittellinie des Niederdruckdampfeinlassrohrs (201) zu der der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) senkrecht ist; das Niederdruckdampfeinlassrohr (201) mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) verbunden ist; und die Innenwand des Niederdruckdampfeinlassrohrs (201) die des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) berührt;
der TSHSLB-Überhitzungsbereich zur Wirbel-Erzeugung (202) mit einer Tornado-Düsenanordnung (206) in Verbindung mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) versehen ist; die Tornado-Düsenanordnung (206) und der TSHSLB-Beschleunigungsbereich (203) jeweils an zwei gegenüberliegenden Seiten des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) eingerichtet sind;
die Mittellinie der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202), die Mittellinie des konischen Innenhohlraums des TSHSLB-Beschleunigungsbereichs (203), die Mittellinie des zylindrischen Innenhohlraums des TSHSLB-Hochgeschwindigkeitsmischbereichs (204), die Mittellinie des konischen Innenhohlraums des TSHSLB-Diffusorbereichs (205) und die Einspritzmittellinie der Tornado-Düsenanordnung (206) kollinear sind;
ein zweites Heizelement (207) an der Außenoberfläche des TSHSLB-Überhitzungsbereichs zur Wirbel-Erzeugung (202) eingerichtet ist;
der TSHSLB-Diffusorbereich (205) mit dem Einlass für gesättigten Dampf des Materialheizelements (1) verbunden ist. - Dampfwärmepumpe nach Anspruch 8, dadurch gekennzeichnet, dass das Materialheizelement (1) ein Verdampfer ist und der SHSLB(2) einen SH(21) und einen SLB(22) umfasst; der SH(21) ein Sekundärdampfeinlassrohr und einen Auslass für überhitzten Dampf aufweist; der Verdampfer eine Heizkammer (11) und eine Verdampfungskammer (12) umfasst; der Verdampfer einen Sekundärdampfauslass (18) in Verbindung mit der Verdampfungskammer (12) und einen Einlass für gesättigten Dampf (15) in Verbindung mit der Heizkammer (11) aufweist; der SLB(22) einen Einlass für überhitzten Dampf und einen Auslass für gesättigten Dampf aufweist; der Sekundärdampfauslass (18) der Verdampfungskammer (12) des Verdampfers mit dem Sekundärdampfeinlassrohr des SH(21) verbunden ist, und der Auslass für überhitzten Dampfs des SH(21) mit dem Einlass für überhitzten Dampf des SLB(22) verbunden ist; der Auslass für gesättigten Dampf des SLB(22) mit dem Einlass für gesättigten Dampf (15) der Heizkammer (11) verbunden ist; der SLB(22) eine Düsenanordnung (226) aufweist, die einen Flüssigkeitsausstoß umfasst, der in dem SLB(22) eingerichtet ist; und die Ausstoßrichtung der Flüssigkeitsausstoßdüse dieselbe wie die des Auslasses des gesättigten Dampfs des SLB(22) ist.
- Dampfwärmepumpe nach Anspruch 10, dadurch gekennzeichnet, dass der SH(21) einen TSH und ein Heizelement (6) umfasst; wobei der TSH einen Tornado-Wirbel-Erzeugungsbereich (212), einen Tornado-Beschleunigungsbereich (213), einen Hochgeschwindigkeitsbereich (214) und einen Diffusorüberhitzungsbereich (215) umfasst; der Tornado-Wirbel-Erzeugungsbereich (212) eine kreisförmige Trommel oder einen zylindrischen Innenhohlraum aufweist; der Tornado-Beschleunigungsbereich (213) einen konischen Innenhohlraum aufweist; der Hochgeschwindigkeitsbereich (214) einen zylindrischen Innenhohlraum aufweist; und der Diffusorüberhitzungsbereich (215) einen konischen Innenhohlraum aufweist;
das Ende des konischen Innenhohlraums des Tornado-Beschleunigungsbereichs (213) mit größerem Durchmesser mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des Tornado-Wirbel-Erzeugungsbereichs (212) verbunden ist und das Ende des konischen Innenhohlraums des Tornado-Beschleunigungsbereichs (213) mit kleinerem Durchmesser mit dem Ende des konischen Innenhohlraums des Diffusorüberhitzungsbereichs (215) mit kleinerem Durchmesser durch den zylindrischen Innenhohlraum des Hochgeschwindigkeitsbereichs (214) verbunden ist;
die Mittellinie der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des Tornado-Wirbel-Erzeugungsbereichs (212), die Mittellinie des konischen Innenhohlraums des Tornado-Beschleunigungsbereichs (213), die Mittellinie des zylindrischen Innenhohlraums des Hochgeschwindigkeitsbereichs (214) und die Mittellinie des konischen Innenhohlraums des Diffusorüberhitzungsbereichs (215) kollinear sind;
ein Sekundärdampfeinlassrohr (211) an dem Tornado-Wirbel-Erzeugungsbereich (212) eingerichtet ist; die Mittellinie des Sekundärdampfeinlassrohrs (211) zu der der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des Tornado-Wirbel-Erzeugungsbereichs (212) senkrecht ist; das Sekundärdampfeinlassrohr (211) mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des Tornado-Wirbel-Erzeugungsbereichs (212) verbunden ist und die Innenwand des Sekundärdampfeinlassrohrs (211) die des Tornado-Wirbel-Erzeugungsbereichs (212) berührt;
das Heizelement (6) an dem Diffusorüberhitzungsbereich (215) oder an dem Hochgeschwindigkeitsbereich (214) und dem Diffusorüberhitzungsbereich (215) eingerichtet ist. - Dampfwärmepumpe nach Anspruch 10, wobei der SLB(22) ein TSLB ist; der TSLB einen TSLB-Wirbel-Erzeugungsbereich (222), einen TSLB-Beschleunigungsbereich (223), einen TSLB-Hochgeschwindigkeitsmischbereich (224) und einen TSLB-Diffusorbereich (225) umfasst; der TSLB-Wirbel-Erzeugungsbereich (222) eine kreisförmige Trommel oder einen zylindrischen Innenhohlraum aufweist; der TSLB-Beschleunigungsbereich (223) einen konischen Innenhohlraum aufweist; der TSLB-Hochgeschwindigkeitsmischbereich (224) einen zylindrischen Innenhohlraum aufweist; und der TSLB-Diffusorbereich (225) einen konischen Innenhohlraum aufweist;
das Ende des konischen Innenhohlraums des TSLB-Beschleunigungsbereichs (223) mit größerem Durchmesser mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSLB-Wirbel-Erzeugungsbereichs (222) verbunden ist und das Ende des konischen Innenhohlraums des TSLB-Beschleunigungsbereichs (223) mit kleinerem Durchmesser mit dem Ende des konischen Innenhohlraums des TSLB-Diffusorbereichs (225) mit kleinerem Durchmesser durch den zylindrischen Innenhohlraum des TSLB-Hochgeschwindigkeitsmischbereichs (224) verbunden ist;
ein Einlassrohr für überhitzten Dampf (221) an dem TSLB-Wirbel-Erzeugungsbereich (222) eingerichtet ist; die Mittellinie des Einlassrohrs für überhitzten Dampf (221) zu der der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des TSLB-Wirbel-Erzeugungsbereichs (222) senkrecht ist; das Einlassrohr für überhitzten Dampf (221) mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSLB-Wirbel-Erzeugungsbereichs (222) verbunden ist und die Innenwand des Einlassrohrs für überhitzten Dampf (221) die des TSLB-Wirbel-Erzeugungsbereichs (222) berührt;
die Düsenanordnung (226) an dem TSLB-Wirbel-Erzeugungsbereich (222) eingerichtet ist und mit der kreisförmigen Trommel oder dem zylindrischen Innenhohlraum des TSLB-Wirbel-Erzeugungsbereichs (222) verbunden ist; die Düsenanordnung (226) und der TSLB-Beschleunigungsbereich (223) jeweils an zwei gegenüberliegenden Seiten des TSLB-Wirbel-Erzeugungsbereichs (222) eingerichtet sind;
die Mittellinie der kreisförmigen Trommel oder des zylindrischen Innenhohlraums des TSLB-Wirbel-Erzeugungsbereichs (222), die Mittellinie des konischen Innenhohlraums des TSLB-Beschleunigungsbereichs (223), die Mittellinie des zylindrischen Innenhohlraums des TSLB-Hochgeschwindigkeitsmischbereichs (224), die Mittellinie des konischen Innenhohlraums des TSLB-Diffusorbereichs (225) und die Einspritzmittellinie der Düsenanordnung (226) kollinear sind;
der Sekundärdampfauslass (18) der Verdampfungskammer (12) des Verdampfers mit dem Sekundärdampfeinlassrohr (211) des TSH verbunden ist und der Auslass des TSH-Diffusorüberhitzungsbereichs (215) mit dem TSLB-Einlassrohr für überhitzten Dampf (221) verbunden ist; und der Auslass des TSLB-Diffusorbereichs (225) mit dem Einlass für gesättigten Dampf (15) der Heizkammer (11) des Verdampfers verbunden ist; optional
dadurch gekennzeichnet, dass das Längen-Durchmesser-Verhältnis des zylindrischen Innenhohlraums des TSLB-Hochgeschwindigkeitsmischbereichs (224) 1-4 : 1 beträgt; und die Verjüngung des konischen Innenhohlraums des TSLB-Diffusorbereichs (225) 6-10° beträgt. - Dampfwärmepumpe nach Anspruch 8, 9, 10, 11 oder 12, gekennzeichnet dadurch, dass sie ferner einen Kondensatablassbehälter (10) und eine Kondensatpumpe (3) umfasst;
das Materialheizelement (1) oder der Verdampfer mit einem Kondensatauslass in Verbindung mit dem Einlass des Kondensatablassbehälters (10) versehen ist, wobei der Auslass des Kondensatablassbehälters (10) mit dem Einlass der Kondensatpumpe (3) verbunden ist und der Auslass der Kondensatpumpe (3) mit der Tornado-Düsenanordnung (206) oder der Düsenanordnung (226) verbunden ist, so dass die thermische Energie des Kondensats genutzt werden kann. - Dampfwärmepumpe nach Anspruch 10, 11 oder 12, ferner umfassend einen ersten Temperaturregelkreis (7) und ein Steuerventil (4), das an dem Verbindungsrohr zwischen der Düsenanordnung (226) des SLB(22) oder dem TSLB und der Kondensatpumpe (3) eingerichtet ist;
der Auslass des SLB(22) oder des TSLB mit einem Sensor für gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge versehen ist und die Ventilöffnung des Steuerventils (4) durch den ersten Temperaturregelkreis (7) gemäß der Dampftemperatur an dem Auslass des SLB(22) oder des TSLB gesteuert wird, die durch den Sensor für gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge erfasst wird, wobei dadurch die Kondensatströmungsgeschwindigkeit eingestellt und die Temperatur des gesättigten Dampfs mit erhöhtem Druck und gesteigerter Menge stabilisiert wird; optional
dadurch gekennzeichnet, dass das Heizelement (6) mit einem zweiten Temperaturregelkreis (8) versehen ist und ein zweiter Temperatursensor an dem Auslass des SH(21) oder des TSH eingerichtet ist; und der zweite Temperaturregelkreis (8) den Erwärmungsbetrag des Heizelements (6) gemäß der Temperatur des überhitzten Dampfs an dem Auslass des SH(21) oder des TSH einstellen kann, die durch den zweiten Temperatursensor erfasst wird, um eine stabile überhitzte Temperatur zu erzielen. - Dampfwärmepumpe nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein Steuerventil (4) an dem Verbindungsrohr zwischen der Tornado-Düsenanordnung (206) oder der Düsenanordnung (226) und der Kondensatpumpe (3) eingerichtet ist; und das zweite Heizelement (207) mit einem Temperaturregler versehen ist; ein automatischer, selektiver Temperaturregelkreis (5) und ein Temperatursensor für gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge an dem Auslass des SHSLB(2) oder des TSHSLB eingerichtet sind;
der Temperatursensor für gesättigten Dampf mit erhöhtem Druck und gesteigerter Menge mit dem automatischen, selektiven Temperaturregelkreis (5) verbunden ist; und die Ventilöffnung des Steuerventils (4) sowie der Temperaturregler durch den automatischen, selektiven Temperaturregelkreis (5) gesteuert werden, um die stabile Temperatur des Dampfs mit erhöhtem Druck und gesteigerter Menge zu halten.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611103728.2A CN106765049B (zh) | 2016-12-05 | 2016-12-05 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
PCT/CN2017/112817 WO2018103539A1 (zh) | 2016-12-05 | 2017-11-24 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3546826A1 EP3546826A1 (de) | 2019-10-02 |
EP3546826A4 EP3546826A4 (de) | 2020-01-22 |
EP3546826B1 true EP3546826B1 (de) | 2021-04-28 |
Family
ID=58874012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17878307.2A Active EP3546826B1 (de) | 2016-12-05 | 2017-11-24 | Dampfwärmepumpe und verfahren zur nutzung von niederdruckdampf durch ergänzung von enthalpie und druckerhöhung |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3546826B1 (de) |
CN (1) | CN106765049B (de) |
WO (1) | WO2018103539A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106765049B (zh) * | 2016-12-05 | 2019-06-18 | 四川大学 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
DE102021104052B3 (de) * | 2021-02-19 | 2022-03-31 | Fachhochschule Westküste | Warmwasserspeicher-Beladungsverfahren an einem Fernwärmeanschluss und Warmwasser-Beladungsanordnung sowie Warmwasserbeladungs-Wärmepumpe |
CN113266609B (zh) * | 2021-06-02 | 2023-04-07 | 傅朝清 | 热液喷射多单元蒸气压缩装置及热泵 |
CN114151389B (zh) * | 2021-12-07 | 2024-05-28 | 宁波金发新材料有限公司 | 一种低压蒸汽回收利用装置 |
CN114405432B (zh) * | 2022-01-29 | 2024-08-09 | 山东科川节能环保科技有限公司 | 一种基于蒸汽的全工况精准智控装备 |
CN114804489A (zh) * | 2022-04-25 | 2022-07-29 | 倍杰特集团股份有限公司 | 一种气化浓水的节能水处理系统及方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3541418A1 (de) * | 1985-11-23 | 1987-05-27 | Steinmueller Gmbh L & C | Rohrbuendel und waermetauschvorrichtung mit diesem rohrbuendel |
DE10212480A1 (de) * | 2002-03-21 | 2003-10-02 | Trupp Andreas | Wärmepumpverfahren auf der Basis der Effekte der Siedepunkterhöhung bzw. Dampfdruckreduzierung |
US20070245736A1 (en) * | 2006-04-25 | 2007-10-25 | Eastman Chemical Company | Process for superheated steam |
DE102006028007A1 (de) * | 2006-06-14 | 2007-12-20 | Siemens Ag | Dampfkraftanlage |
CN102705273A (zh) * | 2012-06-05 | 2012-10-03 | 天津大学 | 吸入段机械加压引射回收废蒸汽的方法及装置 |
CN202902754U (zh) * | 2012-11-07 | 2013-04-24 | 石家庄工大化工设备有限公司 | 利用蒸汽喷射泵转化废热蒸汽的装置 |
CN103908788B (zh) * | 2012-12-31 | 2015-12-23 | 中国科学院理化技术研究所 | 一种mvr热泵蒸发系统 |
CN104399267B (zh) * | 2014-12-01 | 2016-04-13 | 大连理工大学 | 一种闪蒸气波蒸汽再压缩连续蒸发系统 |
CN105523597B (zh) * | 2015-12-11 | 2018-08-21 | 上海朴是环境科技股份有限公司 | 一种高效液媒热压蒸发净化系统 |
CN106765049B (zh) * | 2016-12-05 | 2019-06-18 | 四川大学 | 蒸气热泵及低压蒸气补焓增压利用的方法 |
-
2016
- 2016-12-05 CN CN201611103728.2A patent/CN106765049B/zh active Active
-
2017
- 2017-11-24 WO PCT/CN2017/112817 patent/WO2018103539A1/zh active Search and Examination
- 2017-11-24 EP EP17878307.2A patent/EP3546826B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN106765049B (zh) | 2019-06-18 |
WO2018103539A1 (zh) | 2018-06-14 |
CN106765049A (zh) | 2017-05-31 |
EP3546826A1 (de) | 2019-10-02 |
EP3546826A4 (de) | 2020-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3546826B1 (de) | Dampfwärmepumpe und verfahren zur nutzung von niederdruckdampf durch ergänzung von enthalpie und druckerhöhung | |
CN102797515B (zh) | 热力过程采用喷射抽气节能方法 | |
CN102852567B (zh) | 热力过程采用喷射抽气节能方法 | |
CN1097151C (zh) | 燃气轮机发电设备及空气加湿器 | |
CN101968299B (zh) | 一种利用过热蒸汽干燥物料的方法 | |
CN107165723B (zh) | 集高效、节水、可控于一体的燃气轮机四联产系统 | |
CN101464069B (zh) | 热力喷射及涡流复合型空调机 | |
CN105927299B (zh) | 一种二氧化碳储能及供能系统 | |
US11199361B2 (en) | Method and apparatus for net zero-water power plant cooling and heat recovery | |
WO2015192648A1 (zh) | 利用真空动力节能方法 | |
CN103775148A (zh) | 自冷式热力做功方法 | |
CN104061706B (zh) | 基于分馏冷凝氨动力/制冷循环和sofc/gt的联供系统 | |
CN110185511A (zh) | 一种中低温余热驱动闪蒸-喷射-吸收复合循环冷热电联供系统 | |
CN110186220B (zh) | 梯级余热回收的水工质喷射式热泵系统及其工作方法 | |
CN106337789B (zh) | 一种集光放大太阳能光热发电系统及发电方法 | |
RU2616148C2 (ru) | Электрогенерирующее устройство с высокотемпературной парогазовой конденсационной турбиной | |
CN1237261C (zh) | 燃气轮机发电设备及空气加湿器 | |
CN216521584U (zh) | 一种多热源热工混合压缩蒸汽发生系统 | |
CN206889110U (zh) | 一种集高效、节水、可控于一体的燃气轮机四联产系统 | |
WO2019231400A1 (en) | A combined cooling and power system and method | |
CN106523050B (zh) | 复合动力循环系统及其运行方法及发电系统 | |
CN114216113A (zh) | 太阳能双效蒸发引射与机械两级压缩热泵蒸汽系统及其工作方法 | |
CN113418320A (zh) | 提升低温热源温度的装置及其使用方法 | |
CN113266609B (zh) | 热液喷射多单元蒸气压缩装置及热泵 | |
WO2022100604A1 (zh) | 采用了热力升压的热力系统及升压喷射器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190627 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20191220 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 3/26 20060101ALI20191216BHEP Ipc: F25B 1/06 20060101ALI20191216BHEP Ipc: F04F 5/42 20060101ALI20191216BHEP Ipc: F22G 1/00 20060101AFI20191216BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017037840 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F22G0001000000 Ipc: F04F0005160000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04F 5/16 20060101AFI20200902BHEP Ipc: F01K 3/26 20060101ALI20200902BHEP Ipc: F22G 1/00 20060101ALI20200902BHEP Ipc: F25B 1/06 20060101ALI20200902BHEP Ipc: F25B 30/00 20060101ALI20200902BHEP Ipc: F04F 5/42 20060101ALI20200902BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017037840 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1387375 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1387375 Country of ref document: AT Kind code of ref document: T Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210729 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210830 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017037840 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211124 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231123 Year of fee payment: 7 Ref country code: DE Payment date: 20231124 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |