WO2022100604A1 - 采用了热力升压的热力系统及升压喷射器 - Google Patents

采用了热力升压的热力系统及升压喷射器 Download PDF

Info

Publication number
WO2022100604A1
WO2022100604A1 PCT/CN2021/129748 CN2021129748W WO2022100604A1 WO 2022100604 A1 WO2022100604 A1 WO 2022100604A1 CN 2021129748 W CN2021129748 W CN 2021129748W WO 2022100604 A1 WO2022100604 A1 WO 2022100604A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
booster
ejector
channel
injector
Prior art date
Application number
PCT/CN2021/129748
Other languages
English (en)
French (fr)
Inventor
张玉良
Original Assignee
张玉良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张玉良 filed Critical 张玉良
Publication of WO2022100604A1 publication Critical patent/WO2022100604A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type

Definitions

  • the invention belongs to the field of thermal power or fluid power machinery.
  • thermodynamic cycle has the same temperature as the furnace flue gas or the heat source temperature of the solar thermal collector. There is a large temperature difference, and there is a temperature difference loss; while the gas turbine or internal combustion engine has no heat source temperature difference loss, but because of the limited pressure expansion ratio and insufficient discharge temperature, there is a large discharge loss in the thermodynamic cycle.
  • thermal power units are faced with the pressure of deep peak regulation and frequency regulation, and a large reduction in load not only has a large throttling loss of the main steam valve, but also greatly deviates from the flow conditions. The decline is serious, and improving the flexibility and operating efficiency of steam units is a current industry problem.
  • the gas-steam combined cycle unit adopts the complex and low-efficiency waste heat steam unit to improve the efficiency, which occupies a large area and has a high cost. Influenced by the traditional steam cycle thinking, it relies on the development of large units to improve efficiency, and the flexible application in the industrial field is limited.
  • the purpose of the invention is to use the booster injector to make the thermal system easily realize the free matching of pressure and temperature, eliminate the temperature difference of the heat source and the heat loss, and greatly improve the thermal efficiency at low cost.
  • thermodynamic system using thermodynamic boosting belonging to the field of thermal energy power or fluid power machinery, using thermodynamic power to boost the fluid, and characterized in that a booster injector is used in the thermodynamic cycle system , using hot fluid to increase power through the injector to achieve thermal boosting.
  • the booster injector at least includes an inlet nozzle and a diffuser tube. The hot working fluid is injected into the booster injector through the inlet nozzle and then decelerates and diffuses in the diffuser tube.
  • the booster injector After the discharge; the booster injector passes the heat-absorbing medium into the interior through the heat-absorbing medium channel to mix with the working medium, so that the working medium heats up or adopts the heat-removing measures on the outer wall of the diffuser tube, or adopts both heat-removing measures;
  • the booster injector uses the hot gas working medium nozzle to generate expansion work that is greater than the compression work in the diffuser tube through heat exhaust and diffused to generate boosting power;
  • the hot working medium first works on its own compression in the diffuser tube of the booster ejector ,
  • the gas heat-absorbing medium is also compressed to do work, and the booster injector can take the following measures to ensure stable operation and expand its use,
  • a device or channel is used to keep the nozzle outlet pressure lower than the inlet pressure, and forced pressure stabilization measures are used to ensure sufficient pressure difference or pressure ratio before and after the hot working fluid nozzle;
  • a combination of two-stage or multi-stage booster injectors is adopted, and the outlet of the former stage booster injector is directly or indirectly connected to the inlet nozzle of the latter stage booster injector; the flexible combination of multi-stage booster can meet the needs of thermal work.
  • the various pressures can achieve the complete matching of temperature and pressure to the greatest extent, ensuring that the heat energy of the high-temperature thermal medium can be completely released to do work, and the parallel connection can be adapted to power systems of various capacities.
  • the heat-absorbing medium of the booster ejector used for working fluid heat removal can be water or other liquids, or a gas containing liquid, and the heat-absorbing medium can be used to evaporate and absorb heat.
  • the compressed gas enters the booster ejector through the nozzle to expand, cool down and absorb heat.
  • the present invention proposes a booster injector with various specific structures, which belongs to the field of thermal energy power or fluid machinery.
  • the booster injector is used to boost the pressure of the hot fluid.
  • the booster injector at least includes an inlet nozzle and a diffuser pipe to form a flow through.
  • the device, the hot working medium is injected into the booster injector through the inlet nozzle, and then decelerated and diffused in the diffuser pipe, and then discharged.
  • Heat removal structure, or both heat removal measures; the hot working fluid nozzle at the inlet of the ejector adopts a tapered nozzle or a scaling nozzle, and adopts a device or channel to maintain the outlet pressure of the hot fluid nozzle lower than the inlet pressure.
  • the booster injector has the advantages of simple and flexible application, and the specific structure and application will be described in detail in the embodiments.
  • booster ejector The essence of boosting pressure by using booster ejector is thermal boosting, which can replace various compressors at low cost to directly generate pressure with heat, and the application is simple and flexible. In the process of utilization, a large number of high-pressure vessels and piping systems can be saved, which not only reduces costs, but also reduces the amount of steel used to save energy and reduce emissions.
  • Heat sources including fuel heat sources, solar heat and electric heat can be used directly for compressed gas and energy storage and heat pump systems to replace compressors, because they do not require intermediate heat removal to cool down, plus the technical advantages of non-rotating machinery, which greatly reduces costs and is simple Efficient.
  • the booster injector can directly boost the thermal fluid in the thermal or chemical pipeline network to generate flow power during the transportation process, and can solve the gas compression by thermal boosting, etc. It is of general significance for energy saving and emission reduction in the industrial field. .
  • a booster injector is added in front of the combustion chamber and the first-stage nozzle of the gas turbine unit, which can reduce the high temperature environment of the primary blade and make it more efficient, and can also be used for waste heat utilization; for large-scale high-parameter
  • the steam unit can increase the boosting and reflux cycle, greatly improve the peak-shaving efficiency and flexibility of the unit, and can also improve the parameters to improve the efficiency or even expand the capacity of small and medium-sized units.
  • Fig. 1 is a schematic diagram of a steam thermodynamic cycle system using a two-stage booster ejector
  • Fig. 2 is a booster ejector with a straight-pipe injection chamber
  • Pressure injector
  • Figure 4 is a booster injector in which the heat-absorbing medium directly passes into the diffuser pipe
  • Figure 5 is a booster injector with the gap between the nozzle outlet and the diffuser pipe inlet arranged in the injection chamber
  • Figure 6 is the nozzle The outlet extends into the inlet of the diffuser pipe to make the annular gap between the two communicate with the injection chamber
  • Figure 7 is the booster injector with the nozzle outlet directly butting the inlet of the diffuser pipe
  • Figure 8 is the nozzle outlet extending
  • Figure 9 shows the gas thermodynamic cycle before the two-stage boost injector is installed in the expansion work device
  • Figure 10 shows the boost injector installed between the expansion work devices of the gas unit Gas thermodynamic cycle
  • Figure 11 uses a gas thermodynamic cycle system formed by the combination of two-stage or multi-stage booster
  • Embodiment 1 a thermodynamic cycle using a booster injector and its booster injector
  • a steam power cycle system with a two-stage thermal boosting injector added which utilizes thermal power to boost the fluid, is characterized in that: a first-stage boosting injector 9 is used in the thermal cycle. It is connected in series with the secondary booster ejector 10, and uses the method of increasing power through the ejector to achieve thermal boosting.
  • the booster ejector 9 at least includes an inlet nozzle 91 and a diffuser pipe 93, and the steam hot working medium passes through the inlet nozzle 91.
  • the booster injector 9 After the injection enters the booster injector 9, it is decelerated and diffused in the diffuser pipe 93 and then discharged; the booster injector feeds water into the interior through the heat-absorbing medium channel 3 as the heat-absorbing medium and mixes with the working medium, so that the working medium transfers heat.
  • the booster injector has at least the following characteristics one,
  • a device for maintaining the nozzle outlet pressure lower than the inlet pressure is adopted.
  • the maintenance pressure pipeline 6 is drawn out from the middle section of the steam turbine 11, and the maintenance pressure pipeline 4 of the primary booster injection 9 is connected to the maintenance secondary booster injection.
  • the maintenance pressure line 6 can be connected to the condenser 12 (here, the low pressure channel inside the maintenance injector is represented by a dashed line, and the same is the same without special description below).
  • a combination of two-stage or multi-stage booster injectors is adopted, and the outlet of the booster injector of the previous stage is directly or indirectly connected to the inlet nozzle of the booster injector of the latter stage, such as the two-stage booster injector 9 and 10. series connection.
  • the thermal cycle uses the feed pump 1 to boost the condensed water in the condenser 12 into the heater 2 to heat up, and then passes through the booster injector 9 to boost pressure and then enters the reheater 8 to heat up again, and then enters the secondary booster injector 10.
  • the pressure is boosted again, and then enters into the steam turbine 11 of the expansion power device to generate power, and finally the steam tail steam is discharged into the condenser 12 to condense to form a thermodynamic cycle. It is evident that the booster injector combination increases the steam parameters for the system before the turbine and therefore increases the efficiency.
  • the basic principle of the booster injector is to ensure that the expansion work of the working fluid in the nozzle is greater than the compression work in the diffuser tube to generate boosting power.
  • Its structure can be flexibly designed to meet engineering needs.
  • the Rafael nozzle of the zoom structure is used, but the tapered nozzle as shown in Figures 5, 6, 7, and 8 can also be used. If the pressure difference is large enough, the hot air flows from the tapered nozzle and enters the diffuser pipe. It will continue to accelerate and expand to supersonic speed, and then decelerate and expand.
  • Such a structure is more simplified, which is conducive to minimizing the resistance and simplifying the processing process.
  • the following structures can be used:
  • an injection chamber 6 is provided between the inlet nozzle 5 of the booster injector 9 and the diffuser pipe 7, and the injection chamber is a channel connecting the two;
  • the spray chamber adopts a straight pipe, and the straight pipe outlet is docked with the diffuser pipe inlet;
  • both the hot working medium channel and the channel for introducing the heat-absorbing medium into the interior adopt nozzles connected at the inlet of the booster injector;
  • the inlet for introducing the heat-absorbing medium inside the ejector is arranged in the diffuser pipe;
  • the nozzle outlet extends into the diffuser inlet so that the annular gap between the two is communicated with the injection chamber;
  • a booster injector provided with an injection chamber can open a suction channel in the injection chamber to become a booster type jet exhauster.
  • the device or channel of the booster injector to maintain the nozzle outlet pressure lower than the inlet pressure can be in the following ways: (1)
  • the injection chamber or the inlet section of the diffuser pipe has a pipeline connected to the low pressure system lower than the inlet pressure of the injector, such as The pipeline 6 in Fig.
  • the inlet section of the injection chamber or the diffuser has a channel to connect with the atmosphere , the internal stability can be controlled to atmospheric pressure in the simplest way; (3) The inlet section of the ejection chamber or the diffuser is maintained in vacuum by a vacuum pump or connected to the vacuum system through a vacuum pipeline; (4) One-way is used on the pipeline to control the pressure of the ejection chamber. Valve or regulating valve, so that the internal working medium of the injection chamber or the inlet of the diffuser can only go out but not in, which is beneficial to simplify the pressure control.
  • Booster injectors can be used in the following thermodynamic cycles:
  • the two-stage booster injector shown in FIG. 9 is installed in the gas thermodynamic cycle before the expansion work device 25, and the hot flue gas with pressure first enters the booster injectors 23 and 24 for cooling and boosting, and then directly enters the expansion
  • the work device 25 does work or enters the expansion work device after reburning and heating up; the air enters the combustion chamber 21 after being boosted by the compressor 20 and the fuel is burned and heated up to become a hot working medium with pressure, and then enters the booster injectors 23 and 24 to boost and cool down. Then, it enters into the gas turbine 25 of the expansion work device and discharges into the atmosphere after doing work.
  • the pump 26 provides water for the booster injector to become the heat-absorbing medium, and enters the booster injector through the nozzle; the valves 22 and 27 control the opening of the booster injector interior and the atmospheric channel, and maintain the injection chamber pressure at the atmospheric pressure level, simple reliable.
  • the booster injector is installed in the gas thermodynamic cycle between the expansion work devices of the gas unit, and the flue gas from the previous expansion work device enters the booster injector to cool down and increase the pressure, and then enters the The next-stage expansion work device; or the booster injector can also be installed after the expansion work device of the gas turbine unit, or both methods are available, wherein the pump 26 provides the booster injector with water as a heat-absorbing medium, and passes through the nozzle. Enter the booster injector to realize the exhaust heat temperature of the gas unit at one time and improve the efficiency.
  • thermodynamic gas turbine cycle shown in accompanying drawing 11 the pressureless hot working fluid produced by combustion or heating airflow first enters the first-stage booster injector to cool down and increase the pressure and then enters the first-stage expansion work device, from the first-stage expansion
  • the working medium from the work device enters the secondary booster injector, then enters the secondary expansion work device, and so on.
  • a thermodynamic cycle system formed by the combination of two or more stages of booster injector and expansion work device is adopted.
  • the pump 26 provides water for the booster ejector to become a heat-absorbing medium, and enters the booster ejector through the nozzle.
  • a vacuum pump 29, a vacuum tank 28, valves and pipelines are formed to provide startup and stable operation of the booster ejectors at all levels.
  • For the vacuum control device at least one stage of the booster ejector needs to be controlled to be in a vacuum state when it is activated.
  • a booster ejector is used for the interstage cooling of the multi-stage compressor, and the compressed hot gas enters the booster ejector for cooling and boosting. Then enter the next level of compression process.
  • the current disclosed solution is to cool down and store the heat through the inter-stage heat exchanger during the compression process, and recover the heat through the inter-stage heating of the heat exchanger in the expansion stage.
  • the use of a boost ejector can save the heat exchanger and reduce the heat storage container. , to simplify the system.
  • the steam thermodynamic cycle unit using the reflux cycle is characterized in that the booster injector 31 is installed in the steam thermodynamic cycle unit, and the steam is extracted from the inlet of the medium pressure cylinder of the steam turbine steam system through the pipeline 33 is connected to the inlet of the booster injector, and the outlet of the booster injector is connected to the higher pressure steam channel to form a steam extraction booster return cycle, and a check valve 32 and a steam exhaust valve 30 are added for startup.
  • the extraction steam from the low pressure section of the steam turbine steam system is connected to the inlet of the booster ejector through the pipeline, and the outlet of the booster ejector is connected to the feed water pipeline to form an extraction steam booster return cycle to heat the feed water; or two types of booster return
  • the circulation is adopted, and the feed water is connected to the heat-absorbing medium channel of the booster ejector through the pipeline, and the feedwater is injected into the booster ejector through the nozzle to become the heat-absorbing medium.
  • Increasing the flow rate of the extraction and return circulation can reduce the flow of the main steam entering the high-pressure cylinder of the steam turbine, so the flow can be adjusted or the flow reduced when the unit is reduced in load can be replaced, and the existing feed water extraction heater system can be replaced, which can achieve high-efficiency peak regulation .
  • Embodiment 3 Several application modes of booster injector
  • booster injectors One of the advantages of booster injectors is the flexibility of application, which can be exploited in the following ways:
  • the booster injector can be a one-stage booster injector or a one-stage booster injector.
  • the above multi-stage boosting injectors are connected in series to realize multi-stage boosting.
  • thermodynamic cycle a multi-stage booster injector thermodynamic system using a reflux cycle is used.
  • a one-stage booster injector or a multi-stage booster injector with more than one stage is used, such as As shown in FIG. 14 , there is a split flow in the outlet pipe of the first-stage booster injector, or as shown in FIG. 15 , there is a split flow in the outlet pipe of the second-stage booster injector, wherein a split pipe is set as the return branch 35 and the first-stage booster.
  • the inlet of the pressure ejector is connected to form a backflow cycle, and another branch branch pipe 38 is set as an outflow branch.
  • heating and warming devices 36 and 37 are used to heat up the working medium to become a hot working medium.
  • the heat-absorbing medium used by the booster ejector is evaporable liquid, and a jet splitter is added to the exhaust gas channel discharged from the thermal cycle to separate the liquid for recycling.
  • the jet diverter refers to a device with a high-speed inertial diversion process for components of different densities in the fluid, and the fluid with different components is injected through the inlet nozzle to generate a high-speed jet, and is forced to change the flow direction inside the jet diverter, and the fluid flowing at high speed.
  • Different components in the medium have different inertial force due to different densities, and stratified flow occurs after entering the exhaust channel and the liquid discharge channel respectively to achieve split flow; the exhaust channel and the liquid discharge channel can use a gradually expanding diffuser to make the fluid flow out of the separator.
  • the structure of the jet splitter to force the change of the fluid flow direction can be a curved pipe with a range of 0 to 360 degrees or more, or a jet cyclone structure to extend the splitting process.
  • Embodiment 4 The booster injector adopts several application modes of the return cycle:
  • thermodynamic booster cycle system using a booster injector
  • the booster injector adopts a return cycle
  • thermodynamic system can be applied in the following ways:
  • the outflow branch connection 38 is connected to the inlet of the next stage booster injector or is connected to the expansion work device;
  • a reflux cycle with the ratio of the reflux flow to the outflow flow (referred to as the reflux ratio) is greater than 1; taking the steam cycle as an example, the energy saving effect of the reflux ratio of the medium and low pressure cylinders less than 1 is similar to that of the extraction steam recuperation cycle, at least in In theory, when the return ratio of the high-pressure cylinder is greater than 1 and reaches twice or several times, it is close to the energy-saving effect of the reheat cycle. Increasing the circulation flow can increase the energy-saving effect.
  • the first-stage booster injector adopts a parallel combination of two or more booster injectors.
  • the first-stage booster injector adds a channel for extracting the low-pressure gas source in the injection chamber; the increase in the flow rate of the backflow can even double the flow rate, which can reduce the kinetic energy loss caused by the mixing of the velocity difference in the process of pumping the gas flow.
  • the outlet pressure of the first-stage ejector is also greater than that of the inlet, and at least the pressure difference is formed to generate the return flow.
  • thermodynamic cycle shown in FIG. 16 is a specific application on the basis of the thermodynamic cycle shown in FIG. 14 .
  • the first-stage booster injectors are arranged in a parallel combination and arranged in the outer cover 48.
  • a heating and warming device 49 is arranged on the housing end on the inlet side of the ejector, and the inlet and outlet of the first-stage booster ejector are both communicated with the inside of the housing 48, so that the housing becomes the common return passage of the first-stage booster ejector, and the working medium flows during the process. It is first heated by the heating and heating device and then enters the inlet of the first-stage booster injector.
  • thermodynamic cycle shown in FIG. 17 is a specific application on the basis of the thermodynamic cycle shown in FIG. 15 .
  • the first-stage booster injectors are arranged in a parallel combination and arranged in the outer cover 48.
  • a heating and heating device 49 is arranged on the cover end on the inlet side of the ejector.
  • the inlet of the first-stage booster ejector is connected with the inside of the cover, and the outlet is connected with the inlet channel of the expansion power device 40 installed on the cover, and the outlet channel of the expansion power device is connected with the inside of the cover. Connected to make the outer cover become the common return channel of the booster ejector combination.
  • the reflux working medium first absorbs heat from the heating and heating device 49 and then enters the inlet of the first-stage booster ejector to circulate and work.
  • the heating and heating device When used for solar thermal power, the heating and heating device is heated.
  • 49 is the photothermal receiver, the inner side of which can adopt a grid or grid-like structure to increase the heat exchange effect.
  • Embodiment 5 Exhaust exhaust heat and recovery of endothermic medium
  • thermodynamic cycle using a booster ejector to boost pressure to do work the thermal working medium is gas or steam or mixed gas, and the heat-absorbing medium of the booster ejector is water or other evaporable liquids, or gas Liquid mixed fluid
  • the heating and heating device 36 can be a solar thermal receiver or an electric heating device, or a burner or a combustion furnace; the outlet of the booster injector after the first-stage booster or after the multi-stage booster is connected to
  • the expansion power device 40 is connected to the combination of the jet splitter 42 and the condenser 43 at the outlet of the expansion power device, and the working medium discharged from the expansion power device is first injected into the jet splitter 42 through the nozzle; 44.
  • the discharged working medium enters the condenser to discharge heat and condense.
  • the lower part of the condenser is connected with the inlet of the jet splitter with a circulation pipe. After condensation, the low-temperature working medium enters the jet splitter again from the circulation pipe to form a circulation; at least one of the following application methods is adopted.
  • the discharge channel 41 of the jet flow splitter is connected to the gas-liquid separator 46, and the water or other liquid separated from the gas-liquid separator is directly or indirectly connected to the heat-absorbing medium channel 45 to become liters
  • the heat-absorbing medium of the pressure ejector, the gas (or steam) working medium separated from the gas-liquid separator is connected to the heating and heating device 36 and finally becomes the hot working medium of the inlet nozzle of the first-stage booster ejector; in general, the jet separation
  • the ejection and heat removal effect of the radiator can generate pressure in the discharge channel, and when the pressure is insufficient, a water replenishing device can be added to replenish water to the heat absorption medium channel;
  • the outlet of the discharge channel 41 of the jet splitter is directly or indirectly connected (for example, a storage container may be connected in the middle) to the heat absorption medium channel of the booster jet to split the jet splitter
  • the low temperature working medium to the drainage channel becomes the endothermic medium
  • thermodynamic refrigeration cycle using a booster ejector as shown in FIG. 18 is a specific application based on the thermodynamic cycle shown in FIG. 14 .
  • the changed working medium automatically generates endothermic medium in the cycle, or a non-condensable working medium adds a heat-absorbing medium that can undergo phase change; at the exit of the first-stage booster injector or through the multi-stage booster injection of more than one stage
  • the outlet channel after the booster is connected to the heat rejection heat exchanger 51 to output heat to the outside, and the jet splitter 52 is connected to the outlet channel of the heat rejection heat exchanger, or a booster injector is added again at the outlet of the heat rejection heat exchanger to make it work.
  • the working medium After the mass is further boosted, the working medium enters the jet splitter, which can adapt to the higher temperature thermal output;
  • the outlet channel of the discharge pipe of the jet splitter is directly or indirectly connected with the heat-absorbing medium channel of the booster ejector at all levels, so that the cold working medium separated by the jet splitter becomes the heat-absorbing medium of the booster ejector; or the discharge of the jet splitter
  • the liquid channel is connected to the vapor-liquid separation container (similar to the gas-liquid separator 46 in Figure 13), and the liquid working medium separated from the vapor-liquid separator is connected to the heat-absorbing medium channel to become the heat-absorbing medium of the booster ejector, and the separation
  • the outgoing gas working medium is connected to the heating and heating device and finally becomes the hot working medium of the inlet nozzle of the first-stage booster injector.
  • one of the following working methods can be adopted:
  • the heat pump system adopts a semi-open circulation mode.
  • the exhaust channel of the jet splitter discharges the low-temperature working medium to the outside, and the first-stage booster ejector increases the exhaust channel to absorb the working medium in the environment, which is generally directly connected to the atmosphere.
  • the connection between the exhaust channel of the injection splitter and the exhaust channel of the booster injector is indicated by a dotted line.
  • the heat pump system adopts a closed cycle mode.
  • the outlet of the exhaust passage of the jet splitter is connected to the heat-absorbing heat exchanger 53 to absorb heat from the outside at low temperature, and the outlet of the heat-absorbing heat exchanger is connected to the suction added by the booster jet.
  • the channel makes the low-temperature endothermic working fluid merge with the hot working fluid inside the booster ejector and the endothermic working fluid and is boosted and compressed, and then the confluent working fluid enters the heat rejection heat exchanger for high-temperature heat rejection; the so-called high-temperature heat rejection is relatively endothermic temperature.
  • the heat pump cycle shown in FIG. 19 adopts a closed cycle mode, the outlet of the exhaust channel of the jet splitter is connected to the heat-absorbing heat exchanger 53 to absorb heat from the outside at low temperature, and the outlet channel of the heat-absorbing heat exchanger is connected to the jet
  • the other inlet channel of the splitter works cyclically; the hot working medium in the booster injector is combined with the heat-absorbing medium and then boosted, and then enters the heat-extracting heat exchanger for high-temperature exhaust heat.
  • the heat pump circulation system as shown in FIG. 20 is added, the gas accumulator 54 for storing the starting compressed gas working medium and the gas accumulating valve 56 are connected to the heat-absorbing medium channel of the booster ejector, and the closed outer cylinder is added. 55. At least one of the heat-extracting heat exchanger 51 and the heat-absorbing heat-exchanger 53 is arranged outside the cylinder and is connected to the internal system through a pipeline; the outer cylinder can be set as a heat-dissipating heat-exchanging surface or a heat-absorbing heat-exchanging surface; An exhaust valve 57 is added to the exhaust channel of the jet splitter to communicate with the inside of the outer cylinder.
  • the control system controls the air storage valve, the exhaust valve and its associated valve to be in the activated state when the system is started.
  • the compressed gas provides power for the system startup, and the exhaust gas is discharged into the outer cylinder.
  • each valve After normal operation, each valve returns to normal operation; the first-stage booster injector adds an air extraction channel to maintain a low pressure or no pressure or a vacuum state inside the outer cylinder.
  • the pressurized working medium channel 58 can also be led out from the front of the jet splitter and connected to the gas accumulator to provide the compressed working medium.
  • the cost of the heat pump system that replaces the compressor with the booster ejector will be significantly reduced, and the expansion work can be used to generate the circulating pressure while the jet splitter is used, while the expansion work of the traditional heat pump is difficult to use.
  • Embodiment 7 Gas powered
  • the gas power cycle system using a booster injector can be regarded as a specific application based on the thermodynamic cycle shown in Figure 14.
  • the heating and heating device is the combustion chamber 61,
  • the flue gas generated by pressureless combustion or pressured combustion is used as the hot working medium, and the outlet of the first-stage booster injector or the outlet of the booster injector after multi-stage boosting is connected to the expansion power device, and the following application methods can be used:
  • the combustion chamber adopts traditional energy fuel or hydrogen, adopts water as the heat-absorbing medium of the booster injector, and adds a heat-extracting heat exchanger or a heat recovery of the heating air at the outlet of the expansion power device.
  • Heat exchanger 62 is then connected to a jet splitter to recover water;
  • the combustion chamber adopts traditional energy fuel or hydrogen, and water is used as the heat-absorbing medium of the booster injector.
  • Part or all of the exhaust gas discharged from the power device first enters the regenerator to exhaust heat, and then enters the jet splitter and the condenser to exhaust heat.
  • the separated condensed water is discharged from the discharge channel of the jet splitter and finally becomes the suction of the booster ejector
  • the heat medium works in circulation, and the remaining exhaust steam is exhausted through the exhaust pipe 64 added in the exhaust steam channel of the jet splitter.
  • the combination of jet splitter and condenser can improve the exhaust gas parameters of the thermodynamic cycle, and the condensed water can generate cycle pressure.
  • the gas thermodynamic cycle in which high-pressure carbon dioxide or compressed air is used as the heat-absorbing medium of the booster ejector is adopted, and the high-pressure heat exchange device 71 for externally outputting heat is connected to the outlet branch of the inlet channel of the expansion power device.
  • the outlet of the high pressure heat exchange device is directly or indirectly connected to the heat-absorbing medium channel of the booster injector, so that the mixed working medium mainly composed of pressurized carbon dioxide branched out from the branch becomes the heat-absorbing medium of the booster injector.
  • pressurized carbon dioxide is used instead of water as the heat-absorbing medium of the booster ejector, which saves the water outlet system, saves water and reduces operating costs.
  • the composite gas power cycle with the air thermodynamic cycle is added, and the boosting process of one-stage or multi-stage booster injector is adopted.
  • an air heater 74 is added to the flue, or the flue gas is drawn from the flue and branched into the air heater (similar to the heater 71 in FIG. 24 ), and the hot air heated by the air heater enters the air thermodynamic cycle.
  • the inlet nozzle of the first-stage booster ejector becomes its thermal working medium; the heat-absorbing medium of the air thermodynamic cycle adopts water, and the air thermodynamic cycle is boosted by the first-stage or multi-stage booster ejector 75 and then enters the heat exhaust device (jet diverter).
  • the biggest advantage of this solution is that the heat-absorbing medium water can be recycled, and the air heater can use the high-temperature flue gas as much as possible to avoid condensation and corrosion of the flue gas and generate higher pressure compressed air, that is, the air heater can be arranged in the high-temperature flue gas section as much as possible , and in general, to control the stable low pressure state inside the booster injector, it is only necessary to use the valve to control the injection chamber to keep connected to the atmosphere.
  • an air thermodynamic cycle can also be added to provide compressed air for the combustion chamber to become pressurized combustion, and pressurized combustion is beneficial to adopting a return cycle to improve efficiency.
  • thermodynamic boost cycle using the booster injector can become a gas jet power system, and can even be completely free of charge.
  • the power system of the shaft is low-cost, high-efficiency, and more flexible and safer to use.
  • a thermal boosting cycle system using a booster injector can adopt one of the following application modes:
  • the heating and heating device of the thermal system is a photothermal receiver or an electric heating device or a combustion chamber or furnace, or the waste heat of other thermal systems;
  • the multi-stage booster injector can continuously boost pressure from high temperature, and can do work and can be used as a gas compression device or heat pump, so it can be used to connect the working fluid to the expansion work device after boosting and heating, or connect the pressure of the stored compressed gas
  • the container is used for energy storage, or a heat exchanger that outputs heat is connected;
  • the expansion work device can use a steam turbine or a gas turbine or a nozzle, or a jet air extractor as a power device.
  • the present invention belongs to a wide range of basic innovation applications, and the specific solutions are not limited to the scope described in the above embodiments.

Abstract

一种采用了热力升压的热力系统及升压喷射器,属于热能动力或流体动力机械领域,利用热动力使流体实现升压,在热力循环系统中采用了升压喷射器,升压喷射器至少包括入口喷嘴与扩压管,热工质通过入口喷嘴喷射进入升压喷射器内部后在扩压管内减速扩压后排出;升压喷射器通过向内部通入吸热介质与工质混合使工质排热或者在扩压管外壁采用了排热措施,升压喷射器利用热气体工质喷嘴喷射产生的膨胀功大于在扩压管内经过排热扩压的压缩功产生升压动力,可以采用多级升压并增加装置控制升压喷射器内部稳定运行,以及同样原理设计的升压喷射器,可简单低成本提高热力循环效率。

Description

采用了热力升压的热力系统及升压喷射器 技术领域
本发明属于热能动力或流体动力机械领域。
背景技术
目前,无论火力发电厂的大型蒸汽机组还是光热与生物质发电的中小型蒸汽机组,由于受热面材料有升温极限,热力循环都存在着与炉膛烟气或光热集热器的热源温度有很大的温差,存在温差损失;而燃气机组或内燃机虽然没有热源温差损失却因为压力有限膨胀比不足有很高的排放温度,热力循环存在很大排放损失。还有,由于风电与光伏发电规模快速发展火电机组面临深度调峰与调频的压力,大幅度降负荷不仅主蒸汽阀门节流损失大,而且流量严重偏离工况汽轮机汽动效率明显降低,发电效率下降严重,提高蒸汽机组灵活性与运行效率是目前行业难题。
另外,燃气蒸汽联合循环机组采用增加复杂低效率的余热蒸汽机组提高效率,占地大成本高,受传统蒸汽循环思维影响为提高效率依赖发展大机组,工业领域的灵活应用受局限。
在热力喷射器领域,因为其结构简单成本低使用灵活,而且其内部生成真空时同时具有喷射膨胀过程与减速扩压过程,在工程领域主要用于喷射抽气(汽),但是因为动力气流与被抽气流之间的合流混合过程容易产生激波流动损失大。在发明专利申请号CN201510346819.8文件中提出了利用真空动力节能方法,利用喷射器特点在其扩压管内采用了排热降温措施使喷射器的节能应用有了实质性提升,在降压喷射中效果很好,但是真空动力喷射器在用于升压时,由于内部真空状态随工作负荷变化时容易波动随时失去真空而无法稳定工作,应用受到局限。还有发明专利申请号文件CN201711087698.5提出的循环升压方法,进一步使喷射器的节能应用有了实质性突破,但是与其它常用的热力循环一样都属于一次升压,无法直接实现高参数运行,而且同样也存在内部真空无法满足稳定升压工作的难题。
在现有技术局限下,大部分发动机余热都排放掉了,大量的供热锅炉、工业蒸汽锅炉以及干燥用的燃烧炉等,都是高温烟气直接加热低温工质,高温做功潜力全部浪费了,在当前环境污染破坏与气候治理挑战非常严重的时期,实属不应该的现象。
总之,虽然提高能源利用热效率一直是热力行业乃至整个工业领域不断研究的基本课题,但仍然面临的挑战很多,仍然需要实质性的重要突破,面对无穷无尽的太阳能与严重的环境气候问题以及严重贫富差距的社会发展问题,其根本在于,人类不缺最大希望的可再生能源,缺技术。
发明内容
本发明的目的:利用升压喷射器使热力系统实现轻松实现压力与温度自由匹配,消除热源温差与排热损失,低成本大幅度提高热效率。
本发明的技术方案:一种采用了热力升压的热力系统,属于热能动力或流体动力机械领域,利用热动力使流体实现升压,其特征是:在热力循环系统中采用了升压喷射器,利用热流体通过喷射器增加动力的方法实现热力升压,升压喷射器至少包括入口喷嘴与扩压管,热工质通过入口喷嘴喷射进入升压喷射器内部后在扩压管内减速扩压后排出;升压喷射器通过吸热介质通道向内部通入吸热介质与工质混合使工质排热或者在扩压管外壁采用了排热措施,或者两种排热措施都采用了;升压喷射器利用热气体工质喷嘴喷射产生的膨胀功大于在扩压管内经过排热扩压的压缩功产生升压动力;热工质在升压喷射器的扩压管内首先对自身压缩做功,另外对气体吸热介质也压缩做功,并且升压喷射器可以采用以下措施确保稳定工作并且扩大用途,
(1)采用了维持喷嘴出口压力低于入口压力的装置或通道,利用强制的稳压措施确保热工质喷嘴前后有足够的压差或压比;
(2)采用了两级或多级升压喷射器组合,前一级升压喷射器出口直接或间接与后一级升压喷射器入口喷嘴连接;灵活组合多级升压可以达到热力做功需要的各种压力,可最大程度达到温度与压力的完全匹配,确保高温热工质热能彻底释放做功,加上并联可适应各种容量的动力系统。
用于工质排热的升压喷射器吸热介质可以是水或其它液体,或含液体的气体,利用其中吸热介质蒸发吸热,事实上可发生相变的物质都可以;或者可以采用压缩气体使其通过喷嘴进入升压喷射器膨胀降温吸热。
以此原理,本发明提出多种具体结构的升压喷射器,属于热能动力或流体机械领域,利用喷射器使热流体实现升压,升压喷射器至少包括入口喷嘴与扩压管组成通流装置,热工质通过入口喷嘴喷射进入升压喷射器内部后在扩压管内减速扩压后排出,其特征是:喷射器有向内部通入吸热介质的通道或者在扩压管外壁采用了排热结构,或者两种排热措施都有;喷射器入口的热工质喷嘴采用了渐缩型喷嘴或缩放型喷嘴,采用了维持热流体喷嘴出口压力低于入口压力的装置或者通道。升压喷射器由简单灵活应用优势,具体结构与应用将在实施方式中详细介绍。
本发明的优点
1、采用强制措施使升压喷射器喷嘴后有足够低的压力,可确保喷嘴有稳定的喷射动力,确保其简单低成本升压工作优势,解决了升压喷射器最大问题。
2、利用升压喷射器升压的本质是热力升压,可以低成本取代各种压缩机直接用热力产生压力,而且应用简单灵活,一个热力循环系统可以多次升压做功,直到全部完成热利用过程,可大量省掉高压容器与管路系统,不仅降低成本而且减少钢材用量也是节能减排。
3、多级升压喷射器高温热力系统中采用回流循环或再热循环都可以明显提高热效率,形式不同但效果几乎一样可各自在适合的系统中发挥优势,尤其燃气动力当热源温度尤其燃烧温度摆脱传统的涡轮耐高温制约之后可尽可能提高,热力循环效率突破70%乃至上探80%成为现实可能。
4、通过升压喷射器的多级串并联组合,可以彻底避免蒸汽机组与燃气机组存在的热源温差损失与循环排热损失,使大小机组再无明显效率差别,而小机组高效率有更好的工程适应性与安全性,尤其现在高速发展的可再生能源发电都不稳定,灵活性发电机组意义重大。
5、可以利用热源包括燃料热源、光热以及电热等直接用于压缩气体与储能以及热泵系统取代压缩机,因其不用中间排热降温,加上非转动机械技术优势,大幅度降低成本简单高效。
6、升压喷射器可使热力或化工等管网中的热流体在输送过程中直接升压产生流动动力,可以热力升压解决气体压缩,可以等等,对工业领域节能减排具有普遍意义。
7、对现有工程项目的节能改造方面,燃气轮机组的燃烧室与首级喷嘴前增加升压喷射器,可降低初级叶片高温环境而效率更高,也可以用于余热利用;对大型高参数蒸汽机组可以增加升压回流循环,大幅度提高机组调峰效率与灵活性,对中小机组还可以提参数提高效率甚至扩容。
附图说明
图1是采用了二级升压喷射器的蒸汽热力循环系统示意图;图2是采用了直管喷射室的升压喷射器;图3是没有喷射室(只有入口喷嘴与扩压管)的升压喷射器;图4是吸热介质直接通入扩压管的升压喷射器;图5是喷嘴出口与扩压管入口之间的间隙布置于喷射室内的升压喷射器;图6是喷嘴出口延伸到扩压管入口内使二者之间的环形缝隙与喷射室相通的升压喷射器;图7是喷嘴出口直接和扩压管入口对接的升压喷射器;图8是喷嘴出口伸入扩压管入口内的升压喷射器;图9是两级升压喷射器安装于膨胀做功装置之前的燃气热力循环;图10是升压喷射器安装于燃气机组的膨胀做功装置之间的燃气热力循环;图11采用了两级或多级升压喷射器与膨胀做功装置的组合形成的燃气热力循环系统;图12是采用了回流循环的蒸汽热力循环机组;图13是采用了多级串联升压喷射器的热动力系统;图14与15是采用回流循环的多级升压喷射器热力系统;图16与17一级升压喷射器采用了四台并联组合布置于外罩内使外罩成为回流通道的热力循环系统;图18与19是采用了升压喷射器的热力制冷循环;图20是循环系统布置于外筒内的热力制冷系统;图21是采用了升压喷射器的燃气动力循环系统;图22是采用了升压喷射器的燃氢动力循环系统;图23是采用了高压二氧化碳为升压喷射器吸热介质的燃气热力循环;图24所示的采用了压缩空气为升压喷射器吸热介质 的燃气热力循环。
具体实施方式
实施方式1,采用了升压喷射器的热力循环及其升压喷射器
如附图1所示的一种增加了二级热力升压喷射器的蒸汽动力循环系统,利用热动力使流体实现升压,其特征是:在热力循环中采用了一级升压喷射器9与二级升压喷射器10串联连接,利用热流体通过喷射器增加动力的方法实现热力升压,升压喷射器9至少包括入口喷嘴91与扩压管93,蒸汽热工质通过入口喷嘴91喷射进入升压喷射器9内部后在扩压管93内减速扩压后排出;升压喷射器通过吸热介质通道3向内部通入给水作为吸热介质与工质混合使工质将热量传给吸热工质实现排热,或者在扩压管外壁采用了排热措施(例如散热翅片或水冷装置等),或者两种排热措施都采用了;并且升压喷射器至少具有以下特征之一,
(1)采用了维持喷嘴出口压力低于入口压力的装置,例如在汽轮机11的中段引出维持压力管路6,分别连接一级升压喷射9的维持压力管路4与维持二级升压喷射器10的维持压力管路5;如果系统是低压力循环,维持压力管路6可以连接凝汽器12(这里用虚线表示维持喷射器内部低压通道,以下没有专门说明都同此)。
(2)采用了两级或多级升压喷射器组合,前一级升压喷射器出口直接或间接与后一级升压喷射器入口喷嘴连接,如升压喷射器9与10的二级串联方式。
热力循环通过给水泵1使凝汽器12里的冷凝水升压进入加热器2升温,然后经过升压喷射器9升压后进入再热器8再次升温,然后进入二级升压喷射器10再次升压,然后进入膨胀做功装置汽轮机11做功发电,最后蒸汽尾汽排入凝汽器12冷凝形成热力循环。显然升压喷射器组合为系统提高了在汽轮机前的蒸汽参数,因此会提高效率。
如前所述,升压喷射器基本原理就是确保工质在喷嘴内膨胀功大于扩压管内的压缩功产生升压动力,其结构为适应工程需要可灵活设计,例如喷嘴虽然传统喷射器都采用了缩放结构的拉法尔喷嘴,但也可以采用如附图5、6、7、8所示的渐缩喷嘴,如果压差足够大,热气流从渐缩喷嘴喷出进入扩压管之后开始会继续加速膨胀达到超音速,然后才会减速扩压。这样的结构更简化,有利于最大程度减小阻力简化加工工艺,具体可以采用如下各种结构:
(1)如附图1所示在升压喷射器9的入口喷嘴5与扩压管7之间设置了喷射室6,喷射室是连接二者的通道;
(2)如附图2所示,喷射室采用直管,直管出口与扩压管入口对接;
(3)如附图2、3中所示的升压喷射器,热工质通道与向内部通入吸热介质的通道都采用了在升压喷射器入口连接喷嘴;
(4)没有喷射室,如附图3与8所示喷嘴出口伸入扩压管入口内,或者如附图7所示喷嘴出口直接和扩压管入口对接;
(5)如附图4~8所示喷射器内部引入吸热介质的入口布置在扩压管;
(6)如附图5所示喷嘴出口与扩压管入口之间的间隙布置于喷射室内
(7)如附图6所示,喷嘴出口延伸到扩压管入口内使二者之间的环形缝隙与喷射室相通;
(8)另外,设置有喷射室的升压喷射器,可以在喷射室可开通抽气通道成为升压式喷射抽气器。
另外,升压喷射器维持喷嘴出口压力低于入口压力的装置或通道可以采用以下方式,(1)喷射室或扩压管入口段有管路与低于喷射器入口压力的低压系统连接,如附图1中的管路6,或者与专门的低压控制系统连接,例如连接低压压力容器,由气泵与排气阀控制器压力;(2)喷射室或扩压管入口段有通道与大气连接,可以最简单的使内部稳定控制为大气压;(3)喷射室或扩压管入口段通过真空泵维持真空或通过真空管路与真空系统连接;(4)控制喷射室压力的管道上采用了单向阀或调节阀,使喷射室或扩压管入口的内部工质只可以出不可以进,有利于简化压力控制。
实施方式2,几种热力循环增加升压喷射器
升压喷射器可用于以下热力循环:
(1)如附图1所示的蒸汽热力循环,两级升压喷射器安装于蒸汽热力循环机组的膨胀做功装置之前,蒸汽工质先进入升压喷射器降温升压,然后直接进入膨胀做功装置,也可以经再热升温后进入膨胀做功装置。
(2)如附图9所示的两级升压喷射器安装于膨胀做功装置25之前的燃气热力循环,有压热烟气先进入升压喷射器23与24降温升压,然后直接进入膨胀做功装置25做功或者经过再燃升温后进入膨胀做功装置;空气经过压气机20升压后进入燃烧室21与燃料燃烧升温后成为有压热工质,然后进入升压喷射器23与24升压降温后进入膨胀做功装置气轮机25做功后排入大气。其中,由泵26为升压喷射器提供水成为吸热介质,通过喷嘴进入升压喷射器;阀22与27控制升压喷射器内部与大气通道的开通,维持喷射室压力在大气压水平,简单可靠。
(3)如附图10所示的升压喷射器安装于燃气机组的膨胀做功装置之间的燃气热力循环,从前一级膨胀做功装置出来的烟气进入升压喷射器降温升压,然后进入下一级膨胀做功装置;或者升压喷射器也可以安装于燃气轮机机组的膨胀做功装置之后,或者两种方式都可以有,其中由泵26为升压喷射器提供水成为吸热介质,通过喷嘴进入升压喷射器,一次实现燃气机组的排热温度提高效率。
(4)如附图11所示的热力气轮机循环,通过燃烧或加热气流产生的无压热工质先进入一级升压喷射器降温升压后进入一级膨胀做功装置,从一级膨胀做功装置出来的工质进入二级升压喷射器,然后进入二级膨胀做功装置,依次类推,采用了两级或多级升压喷射器与膨胀做功装置的组合形成的热力循环系统。其中,由泵26为升压喷射器提供水成为吸热介质, 通过喷嘴进入升压喷射器,有真空泵29与真空罐28及阀与管路组成为各级升压喷射器提供启动与稳定运行的真空控制装置,至少一级升压喷射器启动时其内部需要控制为真空状态。
(5)在利用压缩机使气体压缩升温储能与膨胀做功放能的热力循环系统中,多级压缩机的级间降温采用了升压喷射器,压缩热气体进入升压喷射器降温升压后进入下一级压缩过程。目前的公开的方案是在压缩过程通过换热器级间降温并将热量储存,在膨胀阶段通过换热器级间加热回收热量,采用升压喷射器可省掉换热器与减少储热容器,简化系统。
(6)如附图12所示的采用了回流循环的蒸汽热力循环机组,特征是,升压喷射器31安装于蒸汽热力循环机组,从汽轮机蒸汽系统的中压缸入口前抽出蒸汽通过管路33接入升压喷射器入口,升压喷射器的出口与更高压力蒸汽通道连接形成抽汽升压回流循环,增加单向阀32与排汽阀30用于启动,启动时先供汽与打开排气阀30,达到正常工作压力使单向阀自动打开;图示中,从中压缸出口引出低压通道(用虚线表示)与喷射器的喷射室连接维持喷嘴前后压差。类似的或者从汽轮机蒸汽系统低压段抽汽通过管路接入升压喷射器入口,升压喷射器的出口与给水管路连接形成抽汽升压回流循环,加热给水;或者两种升压回流循环都采用了,并且通过管路连接给水进入升压喷射器的吸热介质通道,给水通过喷嘴喷射进入升压喷射器内部成为吸热介质。增加抽气回流循环流量可以减少主蒸汽进入汽轮机高压缸的流量,所以可以调节流量或者补充机组降负荷时减少的流量,并且可以取代现有的给水抽汽加热器系统,可实现高效率调峰。
实施方式3升压喷射器的几种应用方式
升压喷射器的一个优势是应用方式灵活,可采用以下方式发挥优势:
(1)如附图13所示的采用了多级升压喷射器热动力系统,以及前述的附图1与附图9所示,升压喷射器可以采用一级升压喷射器或一级以上的多级升压喷射器串联实现多级升压。
(2)如附图14与15所示的采用回流循环的多级升压喷射器热力系统,在热力循环中采用了一级升压喷射器或一级以上的多级升压喷射器,如附图14所示在一级升压喷射器出口管道有分流,或者如附图15所示在二级升压喷射器出口管道有分流,其中一支分流管道设置为回流分支35与一级升压喷射器入口连接形成回流循环,另一支分流管道38设置为流出分支,回流循环过程有加热升温装置36与37为工质升温为热工质。
(3)在一级升压喷射器前有加热升温装置使工质升温,或者有多级再热升温。
(4)采用升压喷射器采用的吸热介质是可蒸发液体,在热力循环排出的尾气通道中增加了喷射分流器分离液体循环利用。
所述的喷射分流器是指具有使流体内不同密度成分高速惯性分流过程的装置,具有不同成分流体通过入口喷嘴喷射产生高速射流,并且在喷射分流器内部被强制改变流动方向,高速流动的流体中不同成分因密度不同导致惯性力轻重不同出现分层流动分别进入排气通道与排液通道后实现分流;排气通道与排液通道可采用渐扩的扩压管使流体在流出分离器前分别 实现减速扩压,喷射分流器强制改变流体流动方向结构可以是采用0~360度或更大范围的弯管,也可以是喷射旋流分离器结构延长分流过程。
实施方式4升压喷射器采用了回流循环的几种应用方式:
如附图14与15所示的采用了升压喷射器的热力升压循环系统,升压喷射器采用了回流循环,并且热力系统可以采用以下应用方式:
(1)流出分支连38接了下一级升压喷射器入口或连接了膨胀做功装置;
(2)采用了回流流量比流出流量比值(简称回流比)大于1的回流循环;以蒸汽循环为例,中低压缸回流比小于1的节能效果类似于抽汽回热循环的效果,至少在理论上高压缸的回流比大于1达到两倍或几倍时与再热循环节能效果接近,增大循环流量可增加节能效果。
(3)一级升压喷射器采用了两个或多个升压喷射器并联组合。
(4)一级升压喷射器在喷射室增加了抽取低压气源的通道;回流增大流量甚至可以成倍增大流量,可以减小抽吸气流过程有速度差混合出现的动能损失。另外,附图14所示的一级升压喷射器出口回流循环中,严格意义上说一级喷射器出口压力也是大于入口的,至少形成压差产生了回流,在其热力升压的过程中至少对气化后的吸热介质或包括抽气通道抽入的气体压缩做功了。
(5)如附图16所示的热力循环是在附图14所示热力循环基础上的具体应用,一级升压喷射器采用了四台并联组合布置于外罩48内,在一级升压喷射器入口侧的外罩端布置了加热升温装置49,一级升压喷射器入口与出口都与外罩48内部连通,使外罩成为一级升压喷射器的共同回流通道,并且使工质流动过程先经过加热升温装置加热后进入一级升压喷射器入口,是一种特别适合聚光光热动力的热力循环,也可以用于其它热源的热动力装置。
(6)在附图17所示的热力循环是在附图15所示热力循环基础上的具体应用,一级升压喷射器采用了4台并联组合布置于外罩48内,在一级升压喷射器入口侧的外罩端布置了加热升温装置49,一级升压喷射器入口与外罩内部连通,出口与安装于外罩上的膨胀做功装置40的入口通道连接,膨胀做功装置出口通道与外罩内部连通,使外罩成为升压喷射器组合的共同回流通道,回流工质先从加热升温装置49吸热升温后进入一级升压喷射器入口循环工作,用于太阳能光热动力时,加热升温装置49就是光热接收器,其内侧可采用格栅或网格状结构增加换热效果。
实施方式5尾气排热与回收吸热介质
如附图13~17所示的利用升压喷射器升压做功的热力循环,热工质为气体或蒸汽或混合气体,升压喷射器的吸热介质是水或其它可蒸发液体,或气液混合流体,加热升温装置36可以是太阳能光热接收器或电加热装置,或者是燃烧器或燃烧炉;在一级升压喷射器后或多级升压后的升压喷射器出口连接了膨胀做功装置40,在膨胀做功装置的出口连接了喷射分流 器42与凝汽器43的组合,膨胀做功装置排出的工质先通过喷嘴喷射进入喷射分流器42;从喷射分流器42排气通道44排出的工质进入冷凝器排热冷凝,冷凝器下部与喷射分流器入口有循环管道连接,冷凝后低温工质从循环管道再次进入喷射分流器形成循环;同时至少采用了以下应用方式之一
(1)如附图13所示,喷射分流器的排液通道41与气液分离器46连接,从气液分离器分离出的水或其它液体直接或间接接入吸热介质通道45成为升压喷射器的吸热介质,从气液分离器分离出的气体(或蒸汽)工质接入加热升温装置36升温后最终成为一级升压喷射器入口喷嘴的热工质;一般情况喷射分离器的喷射与排热作用可以使排液通道产生压力,压力不足时可增加补水装置向吸热介质通道补水;
(2)或者如附图14~17所示,喷射分流器的排液通道41出口直接或间接连接(例如中间可以有储存容器连接)了升压喷射器的吸热介质通道使喷射分流器分流到排液通道的低温工质成为吸热介质;
另外,增加储气压力容器47及其控制阀组方便用于启动系统。
实施方式6用于热泵
如附图18所示的采用了升压喷射器的热力制冷循环,是在附图14所示的热力循环基础上的具体应用,在用于热泵的这种热力循环中,采用了可发生相变的工质在循环中自动产生吸热介质,或者在不可凝工质中增加了可发生相变的吸热介质;在一级升压喷射器出口或经过一级以上的多级升压喷射器升压后的出口通道连接了排热换热器51对外输出热量,在排热换热器出口通道连接了喷射分流器52,或者在排热换热器出口再次增加升压喷射器使工质进一步升压后再使工质进入喷射分流器,可适应更高温的热力输出;
喷射分流器的排液管出口通道与各级升压喷射器的吸热介质通道直接或间接连接使喷射分流器分离出的冷工质成为升压喷射器吸热介质;或者喷射分流器的排液通道与汽液分离容器连接(类似如附图13中的气液分离器46),从汽液分离器分离出的液体工质接入吸热介质通道成为升压喷射器吸热介质,分离出的气体工质接入加热升温装置升温后最终成为一级升压喷射器入口喷嘴的热工质,同时可以采用了以下工作方式之一:
(1)热泵系统采用了半开式循环方式,喷射分流器排气通道对外排出低温工质,并且一级升压喷射器增加了抽气通道对外吸收环境中工质,一般为直接连接大气,这里喷射分流器排气通道与升压喷射器抽气通道之间用虚线连接表示可有可无。
(2)热泵系统采用了闭式循环方式,喷射分流器的排气通道出口连接了吸热换热器53从外部低温吸热,吸热换热器出口连接了升压喷射器增加的抽气通道,使低温吸热工质与升压喷射器内部热工质以及吸热工质合流并升压被压缩,然后合流工质进入排热换热器高温排热;所谓的高温排热近相对吸热温度而言。
(3)如附图19所示的热泵循环采用了闭式循环方式,喷射分流器排气通道出口连接了 吸热换热器53从外部低温吸热,吸热换热器出口通道连接了喷射分流器的另一个入口通道循环工作;升压喷射器内的热工质与吸热介质合流后升压,然后进入排热换热器高温排热。
(4)如附图20所示的热泵循环系统,增加了储存启动压缩气体工质的储气器54与储气阀56连接了升压喷射器的吸热介质通道,并且增加了封闭外筒55,排热换热器51与吸热换热器53至少有一个布置于筒外,通过管路与内部系统连接;外筒可设置为散热换热面也可以设置为吸热换热面;在喷射分流器的排气通道增加了排气阀57与外筒内部联通,由控制系统控制在系统启动时所述的储气阀与排气阀及其关联阀处于启动状态,储气器的压缩气体为系统启动提供动力,尾气排入外筒内,待正常运行后各阀恢复正常运行状态;在一级升压喷射器增加抽气通道维持外筒内部的低压或无压或真空状态,另外也可以从喷射分流器前引出有压工质通道58与储气器连接提供压缩工质。
用升压喷射器取代压缩机的热泵系统成本会明显下降,采用了喷射分流器分流的同时还可以利用膨胀功产生循环压力,而传统热泵膨胀功很难利用。
实施方式7燃气动力
如附图21、23、24所示的采用了升压喷射器的燃气动力循环系统,可视为是在附图14所示的热力循环基础上的具体应用,加热升温装置是燃烧室61,采用无压燃烧或有压燃烧产生的烟气成为热工质,一级升压喷射器出口或多级升压后的升压喷射器出口连接了膨胀做功装置,并且可以采用以下应用方式,
(1)如附图21所示,燃烧室采用传统能源的燃料或氢气,采用水作为升压喷射器的吸热介质,在膨胀做功装置出口增加了排热换热器或加热空气的回热换热器62然后连接了喷射分流器回收水;
(2)如附图22所示,燃烧室采用传统能源的燃料或氢气,采用水作为升压喷射器的吸热介质,喷射分流器前面连接了加热空气的回热器62,循环系统的膨胀做功装置排出的尾气部分或全部先进入回热器排热,然后进入喷射分流器与冷凝器排热组合,分离出的冷凝水从喷射分流器的排液通道排出最终成为升压喷射器的吸热介质循环工作,其余排汽通过在喷射分流器排汽通道增加的排气管64排出。增加了喷射分流器与冷凝器组合可以使热力循环的排汽气参数提高,冷凝水可以产生循环压力。
(3)如附图23所示,采用了高压二氧化碳或压缩空气为升压喷射器吸热介质的燃气热力循环,在膨胀做功装置入口通道引出支路连接了对外输出热量的高压换热装置71,从高压换热装置出口直接或间接连接了升压喷射器的吸热介质通道,使支路分流出的有压二氧化碳为主的混合工质成为升压喷射器吸热介质。本方案最大优势是用有压二氧化碳取代水做升压喷射器的吸热介质,省掉了出水系统,既节水又能降低运行成本。
(4)在如附图24所示的增加了空气热力循环的复合式燃气动力循环,都采用了一级或多级升压喷射器升压过程,在烟气热力循环的燃烧室(或炉膛)或烟道中增加了空气加热器 74,或者从烟道中引出烟气分支进入空气加热器(类似于附图24中的加热器71),被空气加热器加热了的热空气进入空气热力循环的一级升压喷射器入口喷嘴成为其热工质;空气热力循环的吸热介质采用了水,空气热力循环通过一级或多级升压喷射器75升压后进入排热装置(喷射分流器76与冷凝器78的组合)排热,然后进入气液分离装置分离,分离出的压缩空气通过管路79为烟气热力循环的升压喷射器提供吸热介质,或者同时通过管路79与81为升压喷射器与燃烧室提供压缩空气用于吸热介质与燃烧,分离出的水通过管路80连接用于空气热力循环升压喷射器的吸热介质。图示中用虚线表示了压缩空气管路81与回流管路82是可选择有或无的。
本方案最大的优势是吸热介质水可以循环利用,空气加热器可以尽量利用高温烟气避免烟气冷凝腐蚀同时可产生更高压力压缩空气,即空气加热器可以尽可能布置于高温烟气段,而且一般情况控制升压喷射器内部稳定低压状态只需用阀控制喷射室保持与大气接通即可。
类似的,在附图21~24的燃气循环中也可以增加空气热力循环为燃烧室提供压缩空气成为有压燃烧,而且有压燃烧有利于采用回流循环提高效率。
另外,类似的附图22、24、25的热力循环的膨胀做功装置都可以换为喷管或喷嘴,使采用升压喷射器的热力升压循环成为燃气喷气动力系统,甚至可以做到全无轴的动力系统,低成本高效率,而且使用会更灵活更安全。
实施方式8,几种具体应用方式
通过以上实施方式可以说明,采用了升压喷射器的热力升压循环系统,可以采用采用了以下应用方式之一,
(1)热力系统的加热升温装置是光热接收器或电热装置或燃烧室或炉膛,或其它热力系统的余热;
(2)多级升压喷射器可以从高温连续升压的特点,可以做功可以做气体压缩装置或热泵,因此可以用于升压升温后工质连接膨胀做功装置,或者连接存储压缩气体的压力容器用于储能,或者连接了输出热力的换热器;
(3)膨胀做功装置可以采用汽轮机或气轮机或喷管,或者是喷射抽气器都动力装置。
本发明属于基础创新应用范围很广,具体方案不局限于以上各实施方式所述范围。

Claims (10)

  1. 一种采用了热力升压的热力系统,属于热能动力或流体动力机械领域,利用热动力使流体实现升压,其特征是:在热力循环系统中采用了升压喷射器,利用热流体通过喷射器增加动力的方法实现热力升压,升压喷射器至少包括入口喷嘴与扩压管,热工质通过入口喷嘴喷射进入升压喷射器内部后在扩压管内减速扩压后排出;升压喷射器通过吸热介质通道向内部通入吸热介质与工质混合使工质排热,或者在扩压管外壁采用了排热措施,或者两种排热措施都采用了;并且升压喷射器至少具有以下特征之一,
    (1)采用了维持喷嘴出口压力低于入口压力的装置或通道;
    (2)采用了两级或多级升压喷射器组合,前一级升压喷射器出口直接或间接与后一级升压喷射器入口喷嘴连接。
  2. 如权利要求1所述的一种采用了热力升压的热力系统,其特征是:升压喷射器用于以下热力循环之一,
    (1)升压喷射器安装于蒸汽热力循环机组的膨胀做功装置之前,蒸汽工质先进入升压喷射器降温升压,然后直接进入膨胀做功装置或者经再热升温后进入膨胀做功装置;
    (2)升压喷射器安装于燃气轮机机组的膨胀做功装置之前,有压热烟气先进入升压喷射器降温升压,然后直接进入膨胀做功装置做功或者经过再燃升温后进入膨胀做功装置;
    (3)升压喷射器安装于燃气轮机机组的膨胀做功装置之间,从前一级膨胀做功装置出来的烟气进入升压喷射器降温升压,然后进入下一级膨胀做功装置;或者升压喷射器安装于燃气轮机机组的膨胀做功装置之后,或者两种特征都有;
    (4)通过燃烧或加热气流产生的无压热工质先进入一级升压喷射器降温升压后进入一级膨胀做功装置,从一级膨胀做功装置出来的工质进入二级升压喷射器,然后进入二级膨胀做功装置,依次类推,采用了两级或多级升压喷射器与膨胀做功装置的组合形成的热力循环系统;
    (5)在利用压缩机使气体压缩升温储能与膨胀做功放能的热力循环系统中,多级压缩机的级间降温采用了升压喷射器,压缩热气体进入升压喷射器降温升压后进入下一级压缩过程;
    (6)升压喷射器安装于蒸汽热力循环机组,从汽轮机蒸汽系统抽出蒸汽通过管路接入升压喷射器入口,升压喷射器的出口与更高压力蒸汽通道连接形成抽汽升压回流循环,或者从汽轮机蒸汽系统低压段抽汽通过管路接入升压喷射器入口,升压喷射器的出口与给水管路连接形成抽汽升压回流循环,加热给水,或者两种升压回流循环都采用了;并且通过管路连接给水进入升压喷射器的吸热介质通道,给水通过喷嘴喷射进入升压喷射器内部成为吸热介质。
  3. 如权利要求1所述的一种采用了热力升压的热力系统,其特征是:热力系统至少采用了以下应用方式之一,
    (1)在热力系统中采用了一级升压喷射器或一级以上的多级升压喷射器串联实现多级升压;
    (2)在热力循环中采用了一级升压喷射器或一级以上的多级升压喷射器,在一级升压喷射器出口或二级升压喷射器出口通道有分流,一支分流管道设置为回流分支与一级升压喷射器入口连接形成回流循环,另一支分流管道设置为流出分支,回流循环过程有加热升温装置使工质升温为热工质;
    (3)在一级升压喷射器前有加热升温装置使工质升温,或者有多级再热升温;
    (4)采用升压喷射器采用的吸热介质有可蒸发液体,在热力循环排出的尾气通道中增加了喷射分流器分离液体循环利用;
    所述的喷射分流器是指具有使流体内不同密度成分高速惯性分流过程的装置,具有不同成分流体通过入口喷嘴喷射产生高速射流,并且在喷射分流器内部被强制改变流动方向,高速流动的流体中不同成分因密度不同导致惯性力轻重不同出现分层流动分别进入排气通道与排液通道后实现分流;排气通道与排液通道可采用渐扩的扩压管使流体在流出分离器前分别实现减速扩压,喷射分流器强制改变流体流动方向结构可以是采用0~360度或更大范围的弯管,也可以是喷射旋流分离器结构延长分流过程。
  4. 如权利要求3所述的一种采用了热力升压的热力系统,其特征是:升压喷射器采用了回流循环,并且热力系统至少采用了以下应用方式之一,
    (1)流出分支连接了下一级升压喷射器入口或连接了膨胀做功装置;
    (2)采用了回流流量比流出流量比值大于1的回流循环;
    (3)一级升压喷射器采用了两个或多个升压喷射器并联组合;
    (4)一级升压喷射器在喷射室增加了抽取低压气源的通道;
    (5)一级升压喷射器采用了并联组合布置于外罩内,在一级升压喷射器入口侧的外罩端布置了加热升温装置,一级升压喷射器入口与出口都与外罩内部连通,使外罩成为一级升压喷射器的共同回流通道,并且使工质流动过程先经过加热升温装置加热后进入一级升压喷射器入口;
    (6)一级升压喷射器采用了并联组合布置于外罩内,在一级升压喷射器入口侧的外罩端布置了加热升温装置,一级升压喷射器入口与外罩内部连通,出口与安装于外罩上的膨胀做功装置的入口通道连接,膨胀做功装置出口通道与外罩内部连通,使外罩成为升压喷射器组合的共同回流通道,回流工质先从加热升温装置吸热升温后进入一级升压喷射器入口循环工作。
  5. 如权利要求3述的一种采用了热力升压的热力系统,其特征是:热工质为气体或蒸汽或混合气体,升压喷射器的吸热介质是水或其它可蒸发液体,或气液混合流体,热力循环系统的尾气工质出口通道连接了喷射分流器与凝汽器的组合,尾气工质先通过喷嘴喷射进入喷射分流器,从喷射分流器排气通道排出的工质进入冷凝器排热冷凝,冷凝器下部与喷射分 流器入口有循环管道连接,冷凝后低温工质从循环管道再次进入喷射分流器形成循环;并且热力循环系统采用了以下应用方式之一,
    (1)喷射分流器的排液通道与气液分离器连接,从气液分离器分离出的水或其它液体直接或间接接入吸热介质通道成为升压喷射器的吸热介质,从气液分离器分离出的气体工质接入加热升温装置升温后最终成为一级升压喷射器入口喷嘴的热工质;
    (2)喷射分流器的排液通道出口直接或间接连接了升压喷射器的吸热介质通道使喷射分流器分流到排液通道的低温工质成为吸热介质。
  6. 如权利要求3所述的一种采用了热力升压的热力系统,其特征是:在用于热泵的热力循环系统中,采用了可发生相变的工质在循环中自动产生吸热介质,或者在不可凝工质中增加了可发生相变的吸热介质;在一级升压喷射器出口或经过一级以上的多级升压喷射器升压后的出口通道连接了排热换热器对外输出热量,在排热换热器出口通道连接了喷射分流器,或者在排热换热器出口再次增加升压喷射器使工质进一步升压后再使工质进入喷射分流器;
    喷射分流器的排液管出口通道与各级升压喷射器的吸热介质通道直接或间接连接使喷射分流器分离出的冷工质成为升压喷射器吸热介质;或者喷射分流器的排液通道与汽液分离容器连接,从汽液分离器分离出的液体工质接入吸热介质通道成为升压喷射器吸热介质,分离出的气体工质接入加热升温装置升温后最终成为一级升压喷射器入口喷嘴的热工质,同时至少采用了以下工应用之一,
    (1)热泵循环系统采用了半开式循环方式,喷射分流器排气通道对外排出低温工质,并且一级升压喷射器增加了抽气通道对外吸收环境中工质,一般为直接连接大气,这里喷射分流器排气通道与升压喷射器抽气通道之间用虚线连接表示可有可无;
    (2)热泵循环系统采用了闭式循环方式,喷射分流器的排气通道出口连接了吸热换热器53从外部低温吸热,吸热换热器出口连接了升压喷射器增加的抽气通道,使低温吸热工质与升压喷射器内部热工质以及吸热工质合流并升压被压缩,然后合流工质进入排热换热器高温排热;
    (3)热泵循环采用了闭式循环方式,喷射分流器排气通道出口连接了吸热换热器53从外部低温吸热,吸热换热器出口通道连接了喷射分流器的另一个入口通道循环工作;升压喷射器内的热工质与吸热介质合流后升压,然后进入排热换热器高温排热;
    (4)热泵循环系统增加了储存启动压缩气体工质的储气器与储气阀连接了升压喷射器的吸热介质通道,或者从喷射分流器前引出有压工质通道与储气器连接提供压缩工质;增加了封闭外筒,排热换热器与吸热换热器至少有一个布置于筒外,通过管路与内部系统连接;在喷射分流器的排气通道增加了排气阀与外筒内部联通,由控制系统控制在系统启动时所述的储气阀与排气阀及其关联阀处于启动状态,储气器的压缩气体为系统启动提供动力,尾气排入外筒内,待正常运行后各阀恢复正常运行状态;在一级升压喷射器增加抽气通道维持外筒内部的低压或无压或真空状态
  7. 如权利要求3所述的一种采用了热力升压的热力系统,其特征是:加热升温装置是燃烧室,采用无压燃烧或有压燃烧产生的烟气成为热工质,一级升压喷射器出口或多级升压后的升压喷射器出口连接了膨胀做功装置,并且采用了以下应用方式之一,
    (1)燃烧室采用传统能源的燃料或氢气,采用水作为升压喷射器的吸热介质,在膨胀做功装置出口增加了排热换热器或加热空气的回热换热器,然后连接了喷射分流器使气水分离回收水;
    (2)燃烧室采用传统能源的燃料或氢气,采用水作为升压喷射器的吸热介质,喷射分流器前面连接了加热空气的回热器,循环系统的膨胀做功装置排出的尾气部分或全部先进入回热器排热,然后进入喷射分流器与冷凝器排热组合,分离出的冷凝水从喷射分流器的排液通道排出最终成为升压喷射器的吸热介质循环工作,其余排汽通过在喷射分流器排汽通道增加的排气管排出
    (3)采用了高压二氧化碳或压缩空气为升压喷射器吸热介质的燃气热力循环,在膨胀做功装置入口通道引出支路连接了对外输出热量的高压换热装置,从高压换热装置出口直接或间接连接了升压喷射器的吸热介质通道,使支路分流出的有压二氧化碳为主的混合工质成为升压喷射器吸热介质。
    (4)增加了利用升压喷射器升压的空气热力循环成为复合式燃气动力循环,空气热力循环采用了一级或多级升压喷射器;在烟气热力循环的燃烧室或烟道中增加了空气加热器,或者从燃烧室或烟道中引出烟气分支进入空气加热器,被空气加热器加热了的热空气进入空气热力循环的一级升压喷射器入口喷嘴成为热工质;空气热力循环的吸热介质采用了水,空气热力循环通过一级或多级升压喷射器升压后进入排热装置排热,然后进入气液分离装置分离,分离出的压缩空气通过管路为烟气热力循环的升压喷射器提供吸热介质,或者同时通过管路为升压喷射器与燃烧室提供压缩空气用于吸热介质与燃烧,分离出的水通过管路连接用于空气热力循环升压喷射器的吸热介质。
  8. 如权利要求3所述的一种采用了热力升压的热力系统,其特征是:热力循环系统至少采用了以下应用方式之一,
    (1)热力系统的加热升温装置是光热接收器或电热装置或燃烧室或炉膛;
    (2)升压升温后工质连接了膨胀做功装置,或者连接了存储压缩气体的压力容器,或者连接了输出热力的换热器;
    (3)膨胀做功装置采用了汽轮机或气轮机或喷管,或者是喷射抽气器。
  9. 一种升压喷射器,属于热能动力或流体机械领域,利用喷射器使热流体实现升压,升压喷射器至少包括入口喷嘴与扩压管组成通流装置,热工质通过入口喷嘴喷射进入升压喷射器内部后在扩压管内减速扩压后排出,其特征是:喷射器有向内部通入吸热介质的通道或者在扩压管外壁采用了排热结构,或者两种排热措施都有;喷射器入口的热工质喷嘴采用了渐缩喷嘴或缩放喷嘴,采用了维持热流体喷嘴出口压力低于入口压力的装置或者通道,并且 喷射器采用了以下结构之一,
    (1)在升压喷射器入口喷嘴与扩压管之间设置了喷射室,喷射室是连接二者的通道;
    (2)喷嘴出口与扩压管入口之间的间隙布置于喷射室内
    (3)喷嘴出口延伸到扩压管入口内使二者之间的环形缝隙与喷射室相通;
    (4)喷射室采用直管,直管出口与扩压管入口对接;
    (5)没有喷射室,喷嘴出口直接和扩压管入口对接或者喷嘴出口布置在扩压管入口内;
    (6)喷射器向内部通入吸热介质的通道采用了在喷射器入口增加喷嘴;
    (7)喷射器向内部通入吸热介质的通道采用了在扩压管增加了通道;
    (8)喷射器设置有喷射室,喷射室开通有抽气通道成为升压式喷射抽气器。
  10. 如权利要求1所述的一种热力升压循环系统以及如权利要求9所述的一种升压喷射器,其特征是:升压喷射器维持喷嘴出口压力低于入口压力的装置或通道至少采用了以下方式之一,
    (1)喷射室或扩压管入口段有管路与低于喷射器入口压力的低压系统或专门的低压控制系统连接;
    (2)喷射室或扩压管入口段有通道与大气连接;
    (3)喷射室或扩压管入口段通过真空泵维持真空或通过真空管路与真空系统连接;
    (4)控制喷射室压力的管道上采用了单向阀或调节阀;
    (5)喷射器出口流体与入口热流体之间有循环管路连接。
PCT/CN2021/129748 2020-11-10 2021-11-10 采用了热力升压的热力系统及升压喷射器 WO2022100604A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011248933 2020-11-10
CN202011248933.4 2020-11-10
CN202110243710.7 2021-03-05
CN202110243710 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022100604A1 true WO2022100604A1 (zh) 2022-05-19

Family

ID=81406094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129748 WO2022100604A1 (zh) 2020-11-10 2021-11-10 采用了热力升压的热力系统及升压喷射器

Country Status (2)

Country Link
CN (1) CN114458392A (zh)
WO (1) WO2022100604A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890789A (en) * 1972-12-07 1975-06-24 Waagner Biro Ag Thermal power plants
US4631004A (en) * 1982-07-13 1986-12-23 The Garrett Corporation Jet pump having pressure responsive motive fluid control valve
US6109037A (en) * 1997-07-30 2000-08-29 Kabushiki Kaisha Toshiba Feed water heating system for power-generating plant
US20090320478A1 (en) * 2006-01-04 2009-12-31 General Electric Company Reduced boundary layer separation steam jet air ejector assembly and method
CN102519069A (zh) * 2011-12-08 2012-06-27 北京中科华誉能源技术发展有限责任公司 基于多效复叠喷射式换热的乏汽余热回收热电联产系统
CN102797515A (zh) * 2011-05-27 2012-11-28 张玉良 热力过程采用喷射抽气节能方法
CN102852567A (zh) * 2011-05-16 2013-01-02 张玉良 热力过程采用喷射抽气节能方法
CN103775148A (zh) * 2012-10-22 2014-05-07 张玉良 自冷式热力做功方法
CN105317484A (zh) * 2014-06-20 2016-02-10 张玉良 利用真空动力节能方法
CN108071431A (zh) * 2016-11-14 2018-05-25 张玉良 利用循环升压升温节能方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890789A (en) * 1972-12-07 1975-06-24 Waagner Biro Ag Thermal power plants
US4631004A (en) * 1982-07-13 1986-12-23 The Garrett Corporation Jet pump having pressure responsive motive fluid control valve
US6109037A (en) * 1997-07-30 2000-08-29 Kabushiki Kaisha Toshiba Feed water heating system for power-generating plant
US20090320478A1 (en) * 2006-01-04 2009-12-31 General Electric Company Reduced boundary layer separation steam jet air ejector assembly and method
CN102852567A (zh) * 2011-05-16 2013-01-02 张玉良 热力过程采用喷射抽气节能方法
CN102797515A (zh) * 2011-05-27 2012-11-28 张玉良 热力过程采用喷射抽气节能方法
CN102519069A (zh) * 2011-12-08 2012-06-27 北京中科华誉能源技术发展有限责任公司 基于多效复叠喷射式换热的乏汽余热回收热电联产系统
CN103775148A (zh) * 2012-10-22 2014-05-07 张玉良 自冷式热力做功方法
CN105317484A (zh) * 2014-06-20 2016-02-10 张玉良 利用真空动力节能方法
CN108071431A (zh) * 2016-11-14 2018-05-25 张玉良 利用循环升压升温节能方法

Also Published As

Publication number Publication date
CN114458392A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN102878603B (zh) 燃气-蒸汽循环联合双级耦合热泵供暖装置
WO2012163082A1 (zh) 热力过程采用喷射抽气节能方法
WO2015192648A1 (zh) 利用真空动力节能方法
CN103775148A (zh) 自冷式热力做功方法
WO2018086238A1 (zh) 利用循环升压升温节能方法
CN113153462A (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统及方法
CN110552750B (zh) 一种非共沸有机朗肯-双喷射冷热电联供系统
CN216408920U (zh) 一种双热源热工混合压缩热泵蒸汽系统
CN108362026A (zh) 一种二氧化碳跨临界循环冷热电组合系统
US20070157659A1 (en) Multi-stage refrigerant turbine
CN208222902U (zh) 一种二氧化碳跨临界循环冷热电组合系统
CN204693371U (zh) 一种直接回收汽轮机排汽余热并加热凝结水系统
CN213807777U (zh) 火力发电系统和压缩空气储能系统的耦合系统
WO2022100604A1 (zh) 采用了热力升压的热力系统及升压喷射器
RU2616148C2 (ru) Электрогенерирующее устройство с высокотемпературной парогазовой конденсационной турбиной
CN101788141B (zh) 一种吸收式回热器在电厂回热循环系统中的应用
CN206889110U (zh) 一种集高效、节水、可控于一体的燃气轮机四联产系统
CN214745672U (zh) 一种电厂多阶余热综合利用装置
CN211925720U (zh) 一种余热蒸汽发电装置
CN110388241B (zh) 一种汽车发动机废热回收热力循环系统
CN114216110A (zh) 热泵辅助升温梯级余热回收蒸汽发生系统及其工作方法
TWI399512B (zh) 利用低階熱能產生電力及冷凍之裝置與方法
CN219932274U (zh) 一种供能系统
CN114251643B (zh) 一种多能互补综合能源系统
CN114151297B (zh) 基于太阳能驱动的湿氦气循环水电联产系统及工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21891124

Country of ref document: EP

Kind code of ref document: A1