EP3544003A1 - Dispositif et procédé de détermination d'une valeur d'évaluation - Google Patents
Dispositif et procédé de détermination d'une valeur d'évaluation Download PDFInfo
- Publication number
- EP3544003A1 EP3544003A1 EP19167397.9A EP19167397A EP3544003A1 EP 3544003 A1 EP3544003 A1 EP 3544003A1 EP 19167397 A EP19167397 A EP 19167397A EP 3544003 A1 EP3544003 A1 EP 3544003A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- energy
- measure
- band
- signal
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000009826 distribution Methods 0.000 claims abstract description 36
- 230000003595 spectral effect Effects 0.000 claims description 56
- 238000004590 computer program Methods 0.000 claims description 6
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 230000005236 sound signal Effects 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 description 21
- 238000013139 quantization Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/022—Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
- G10L19/025—Detection of transients or attacks for time/frequency resolution switching
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/002—Dynamic bit allocation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
Definitions
- the present invention relates to encoders for encoding a signal comprising audio and / or video information, and more particularly to estimating a need for information units to encode that signal.
- an audio signal to be coded is fed. This is first supplied to a scaling stage 1002 in which a so-called AAC gain control is performed to set the level of the audio signal. Scaling page information is provided to a bitstream formatter 1004, as indicated by the arrow between block 1002 and block 1004. The scaled audio signal is then applied to an MDCT filter bank 1006.
- the filter bank implements a modified discrete cosine transform with 50% overlapping windows, the window length being determined by a block 1008.
- block 1008 is for windowing transient signals with shorter windows, and for windowing stationary signals with longer windows. This serves to achieve a higher time resolution (at the expense of frequency resolution) due to the shorter transient signal windows, while for more stationary signals, higher frequency resolution (at the expense of time resolution) is achieved by longer windows is achieved, with longer windows tend to be preferred because they promise a larger Codier stand.
- temporally successive blocks of spectral values are present, which, depending on the embodiment of the filter bank, may be MDCT coefficients, Fourier coefficients or even subband signals, each subband signal having a certain limited bandwidth passing through the corresponding subband channel in the filter bank 1006, and wherein each subband signal has a certain number of subband samples.
- the filter bank outputs temporally successive blocks of MDCT spectral coefficients, which generally represent successive short-term spectra of the audio signal to be encoded at input 1000.
- a block of MDCT spectral values is then fed to a TNS processing block 1010 where temporal noise shaping (TNS) takes place.
- TNS temporal noise shaping
- the TNS technique is used to shape the temporal shape of the quantization noise within each window of the transform. This is achieved by applying a filtering process to parts of the spectral data of each channel.
- the coding is performed on a window basis. In particular, the following steps are performed to apply the TNS tool to a window of spectral data, that is, to a block of spectral values.
- a frequency range is selected for the TNS tool.
- a suitable choice is to cover a frequency range of 1.5 kHz up to the highest possible scale factor band with a filter. It should be noted that this frequency range of the sampling rate depends as specified in the AAC standard (ISO / IEC 14496-3: 2001 (E)).
- LPC linear predictive coding
- the expected prediction gain PG is obtained. Further, the reflection coefficients or Parcor coefficients are obtained.
- the TNS tool is not applied. In this case, control information is written in the bit stream for a decoder to know that no TNS processing has been performed.
- TNS processing is applied.
- the reflection coefficients are quantized.
- the order of the noise shaping filter used is determined by removing all the reflection coefficients having an absolute value less than a threshold from the "tail" of the reflection coefficient array. The number of remaining reflection coefficients is on the order of the noise shaping filter.
- a suitable threshold is 0.1.
- the remaining reflection coefficients are typically converted to linear prediction coefficients, which technique is also known as a "step-up" procedure.
- the calculated LPC coefficients are then used as coder noise shaping filter coefficients, ie as prediction filter coefficients.
- This FIR filter is routed over the specified target frequency range.
- the decoding uses an autoregressive filter, while the coding uses a so-called moving average filter.
- the page information for the TNS tool is also supplied to the bit stream formatter, as shown by the arrow between the block TNS processing 1010 and the bit stream formatter 1004 in FIG Fig. 3 is shown.
- the center / side encoder 1012 is active when the audio signal to be encoded is a multi-channel signal, that is, a stereo signal having a left channel and a right channel. So far, ie in the processing direction before block 1012 in FIG Fig. 3 For example, the left and right stereo channels were processed separately, that is, scaled, transformed by the filter bank, or not subjected to TNS processing, etc.
- middle / side encoder In the middle / side encoder is then first checked whether a middle / side encoding makes sense, that brings a coding gain at all. A middle / side encoding will then bring a coding gain if the left and the right channel are more similar, because then the center channel, that is the sum of the left and the right channel is almost equal to the left or the right channel, apart from the scaling by the factor 1/2, while the page channel has only very small values, since it is equal to the difference between the left and the right channel.
- the left and right channels are approximately equal, the difference is approximately zero, or includes only very small values that are hopefully quantized to zero in a subsequent quantizer 1014, and thus since the quantizer 1014 is followed by an entropy encoder 1016.
- the quantizer 1014 is given a allowed perturbation per scale factor band by a psycho-acoustic model 1020.
- the quantizer operates iteratively, ie it first calls an outer iteration loop, which then calls an inner iteration loop.
- a quantization of a block of values is made at the input of the quantizer 1014.
- the inner loop quantizes the MDCT coefficients, consuming a certain number of bits.
- the outer loop calculates the distortion and modified energy of the coefficients using the scale factor to again invoke an inner loop. This process is iterated until a certain conditional set is satisfied.
- the signal is reconstructed to compute the perturbation introduced by the quantization and to compare it with the allowable perturbation provided by the psycho-acoustic model 1020. Furthermore, the scale factors are increased from iteration to iteration by one step, for each iteration of the outer iteration loop.
- the iteration ie the analysis-by-synthesis method is terminated, and the resulting scale factors are encoded as set forth in block 1014 and supplied in coded form to the bitstream formatter 1004 as indicated by the arrow between block 1014 and the block Block 1004 is drawn.
- the quantized values are then fed to entropy coder 1016, which typically performs entropy coding using several Huffman code tables for different scale factor bands to transmit the quantized values into a binary format.
- entropy coding in the form of Huffman coding relies on code tables that are created on the basis of expected signal statistics, and that frequently occurring values get shorter code words than less frequent values.
- the entropy-coded values are then also supplied as actual main information to the bitstream formatter 1004, which then outputs the coded audio signal on the output side according to a specific bit stream syntax.
- the data reduction of audio signals is now a known technique that is the subject of a number of international standards (e.g., ISO / MPEG-1, MPEG-2 AAC, MPEG-4).
- the input signal by means of a so-called encoder taking advantage of perceptual effects (psychoacoustics, psycho-optics) is brought into a compact, data-reduced representation.
- a spectral analysis of the signal is usually carried out and the corresponding signal components are quantized taking into account a perceptual model and then coded in a compact manner as so-called bitstream.
- PE perceptual entropy
- the perceptual entropy or demand estimate of information units for encoding a signal may be used to estimate whether the signal is transient or stationary, since transient signals also require more bits to encode than more stationary signals.
- the estimation of a transient property For example, a signal is used to make a window length decision, such as at block 1008 in FIG Fig. 3 is suggested to perform.
- Fig. 6 is the Perceptual Entropy calculated according to ISO / IEC IS 13818-7 (MPEG-2 advanced audio coding (AAC)).
- AAC MPEG-2 advanced audio coding
- the in Fig. 6 illustrated equation used.
- the parameter pe stands for the perceptual entropy.
- width (b) stands for the number of spectral coefficients in the respective band b.
- e (b) is the energy of the signal in this band.
- nb (b) is the appropriate masking threshold, or more generally, the allowable disturbance that can be introduced into the signal, for example, by quantization, so that a human listener still hears no or only a negligible disturbance.
- the bands may differ from the band division of the psychoacoustic model (block 1020 in Fig. 3 ), or it is the so-called scale factor bands (scfb) used in the quantization.
- the psychoacoustic masking threshold is the energy value that the quantization error should not exceed.
- FIG. 6 The figure shows how well such a Perceptual Entropy works as an estimate of the number of bits needed for encoding.
- the respective perceptual entropy was plotted as a function of the consumed bits using the example of an AAC coder at different bit rates for each individual block.
- the test piece used contains a typical mix of music, language and individual instruments.
- the points would gather along a straight line through the zero point.
- the extension of the point sequence with the deviations from the ideal line illustrates the inaccurate estimate.
- a disadvantage of the in Fig. 6 The concept shown here is therefore the deviation that manifests itself as resulting, for example, in too great a value for the perceptual entropy, which in turn means that the quantizer is signaled that more bits than actually required are needed. This results in the quantizer being too finely quantized that it does not exploit the amount of allowed disturbance, resulting in a reduced coding gain.
- the value for the Perceptual Entropy is determined to be too small, then the quantizer is signaled that fewer bits than actually required are needed to encode the signal. This, in turn, causes the quantizer to be coarsely quantized, which would immediately result in an audible disturbance in the signal unless countermeasures are taken.
- the countermeasures can be that the quantizer still requires one or more further iteration loops, which increases the computation time of the coder.
- Fig. 7 To improve the calculation of Perceptual Entropy you could, as in Fig. 7 is shown, introduce a constant term, such as 1.5, in the logarithmic expression. Then there is already a better result, ie a smaller deviation up or down, although it can still be seen that in the consideration of a constant term in the logarithmic expression, although the case is reduced, the Perceptual Entropy signals too optimistic a need for bits. On the other hand is off Fig. 7 however, it can be clearly seen that significantly too many bits are signaled, which leads to the quantizer always becoming too finely quantized, ie that the bit requirement is assumed to be greater than it actually is, which in turn results in a reduced coding gain.
- the constant in the logarithmic expression is a rough estimate of the bits needed for the page information.
- FIG. 8 Another, but very time-consuming computation of Perceptual Entropy is in Fig. 8 shown.
- Fig. 8 the case is shown in which the perceptual entropy is calculated line by line.
- the disadvantage lies in the higher computational complexity of the line-by-line calculation.
- spectral coefficients X (k) are used, where kOffset (b) designates the first index of band b.
- Fig. 8 With Fig. 7 is compared it can be seen clearly in the range between 2000 and 3000 bits, a reduction of the "rashes" upwards.
- the PE estimate will therefore be more accurate, so not too pessimistic, but rather at the optimum, so that the coding gain in comparison to the in Fig. 6 and 7 shown Calculation method may increase, or the number of iterations in the quantizer is reduced.
- the object of the present invention is to provide an efficient yet accurate concept for determining an estimate of a need for information units to encode a signal.
- the present invention is based on the finding that it must be noted in a frequency band-wise calculation of the estimate for a need for information units for computing time reasons, however, that in order to obtain an accurate determination of the estimated value, the distribution the energy in the frequency band, which has to be calculated band by band.
- the entropy coder following the quantizer is implicitly "involved" in determining the estimate of the demand for information units.
- the entropy coding makes it possible that a smaller number of bits is required to transmit smaller spectral values than to transmit larger spectral values.
- the entropy coder is particularly efficient when it is possible to transmit to-zero-quantized spectral values. Since these will typically occur most frequently, the codeword for transmitting a zero-quantized spectral line is the shortest codeword, and the codeword for transmitting an increasingly larger quantized spectral line becomes longer and longer.
- the measure of the distribution of energy in the frequency band can be determined based on the actual amplitudes, or by estimating the frequency lines that are not quantized to zero by the quantizer.
- This measure which is also referred to as "nl", where nl stands for “number of active lines", ie for the number of active lines, is preferred for computing efficiency reasons.
- the number of spectral lines quantized to zero or a finer subdivision can also be taken into account, and this estimate becomes more and more accurate as more information from the downstream entropy coder is taken into account.
- the entropy coder is constructed on the basis of Huffman code tables, properties of these codetables can be integrated particularly well, since the codetables are not calculated on-line on the basis of the signal statistics, but because the codetables are fixed independently of the actual signal anyway.
- the measure of the distribution of the energy in the frequency band is carried out by determining the lines still surviving after the quantization, ie the number of active lines.
- the present invention is advantageous in that an estimate of a need for information content is determined which is more accurate and more efficient than the prior art.
- the present invention is scalable to various applications because, depending on the desired accuracy of the estimate, more and more characteristics of the entropy coder, but at the cost of increased computation time, can be included in the estimation of the bit demand.
- the signal which may be an audio and / or a video signal, is input via an input 100.
- the signal is already present as a spectral representation with spectral values.
- this is not absolutely necessary since some calculations with a time signal can be carried out by appropriate eg bandpass filtering.
- the signal is provided to a device 102 for providing a measure of allowable interference to a frequency band of the signal.
- the allowed disturbance can, for example, by means of a psycho-acoustic model, as shown by Fig. 3 (Block 1020) has been explained.
- the device 102 is also operative to also provide a measure of the energy of the signal in the frequency band.
- the prerequisite for a band-wise calculation is that a frequency band for which an allowable disturbance or a signal energy is specified contains at least two or more spectral lines of the spectral representation of the signal.
- the frequency band will preferably be a scale factor band, since the bit demand estimate is needed directly by the quantizer to determine if a done quantization satisfies a bit criterion or not.
- the device 102 is designed to supply both the allowed disturbance nb (b) and the signal energy e (b) of the signal in the band to a device 104 for calculating the demand for bits.
- the means 104 for calculating the demand for bits is designed to take into account, in addition to the allowed disturbance and the signal energy, a measure nl (b) for a distribution of the energy in the frequency band, the distribution of the energy in the frequency band of deviates from a completely uniform distribution.
- the measure of the energy distribution is computed in a device 106, wherein the device 106 requires at least one band, namely the considered frequency band of the audio or video signal, either as a bandpass signal or directly as a series of spectral lines, e.g. to perform a spectral analysis of the band to get the measure of the distribution of energies in the frequency band.
- the audio or video signal may be supplied to the device 106 as a time signal, the device 106 then performing band filtering as well as analysis in the band.
- the audio or video signal supplied to the device 106 may already be in the frequency domain, such as MDCT coefficients, or as a bandpass signal in the filterbank with a smaller bandpass compared to an MDCT filterbank -Filter.
- means 106 for calculating is adapted to take into account current amounts of spectral values in the frequency band to calculate the estimate.
- the means for calculating the measure of the distribution of the energy can be designed to determine as a measure of the distribution of energy a number of spectral values whose magnitude is greater than or equal to a predetermined magnitude threshold, or whose magnitude is less than or equal to the magnitude threshold wherein the magnitude threshold is preferably an estimated quantizer level that causes a quantizer to quantize values less than or equal to the quantizer level to zero.
- the measure of the energy is the number of active lines, that is, the number of lines that survive after quantization or not equal to zero.
- Fig. 2a shows a preferred embodiment of the means 106 for calculating the measure of the distribution of energy in the frequency band.
- the measure of the distribution of energy in the frequency band is in Fig. 2a denoted by nl (b).
- the form factor ffac (b) is already a measure of the distribution of the energy in the frequency band.
- the measure of the spectral distribution nl from the form factor ffac (b) is weighted by the 4th root of the signal energy e (b) divided by the bandwidth width (b) and number of lines, respectively determined in the scale factor band b.
- the form factor is also an example of a quantity which gives a measure of the distribution of the energies
- nl (b) is an example of is a quantity representing an estimate of the number of lines relevant to quantization.
- the form factor ffac (b) is calculated by absolute value formation of a spectral line and subsequent rooting of this spectral line and subsequent summation of the "rooted" amounts of the spectral lines in the band.
- Fig. 2b shows a preferred embodiment of the means 104 for calculating the estimated value pe, wherein in Fig. 2b another case distinction is introduced, namely, when the base 2 logarithm of the energy to allowed disturbance ratio is greater than a constant factor c1 or equal to the constant factor.
- the alternative above in block 104 is taken, ie the measure of the spectral distribution n1 is multiplied by the logarithm expression.
- the lower alternative in block 104 of FIG Fig. 2b is used, which additionally has an additive constant c2 and a multiplicative constant c3, which is calculated from the constants c2 and c1.
- Fig. 4a shows Fig. 4a a band with four spectral lines, all of the same size. The energy in this band is thus distributed evenly across the band.
- Fig. 4b shows a situation where the energy in the band resides in one spectral line while the other three spectral lines are the same are zero.
- the band shown could be before quantization, or could be obtained after quantization, if the in Fig. 4b zero spectral lines before quantization are smaller than the first quantizer level and thus set to zero by the quantizer, thus not "survive".
- the number of active lines in Fig. 4b is thus equal to 1, with the parameter n1 in Fig. 4b is calculated to the square root of 2.
- the value nl, ie the measure of the spectral distribution of energy in Fig. 4a calculated to 4. This means that the spectral distribution of the energy is more uniform when the measure of the distribution of the spectral energy is greater.
- the invention thus takes into account how the energy is distributed within the band. This is done as it is done by replacing the number of lines per band in the known equation ( Fig. 6 ) by estimating the number of lines that are nonzero after quantization. This estimate is in Fig. 2a shown.
- Fig. 2a is also required elsewhere in the encoder, for example within the quantization block 1014 to determine the quantization step size. Then, if the form factor is already computed elsewhere, it need not be recalculated for bit estimation, so that the inventive concept of improved estimation of the measure of the required bits requires a minimum of additional computational overhead.
- X (k) is the spectral coefficient to be quantized later, while the variable kOffset (b) designates the first index in band b.
- the new formula for calculating improved band-wise perceptual entropy is thus based on multiplying the measure of the spectral distribution of energy and the logarithmic expression by giving the signal energy e (b) in the numerator and the allowed error in the denominator, as needed a term is used within the logarithm can be, as it is already in Fig. 7 is shown. For example, this term may also be 1.5, but may also be zero, as in FIG Fig. 2b shown case, this z. B. can be determined empirically.
- the method according to the invention can be implemented in hardware or in software.
- the implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is performed.
- the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention, when the computer program product runs on a computer.
- the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Control Of Ac Motors In General (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Radar Systems Or Details Thereof (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Measurement Of Current Or Voltage (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL19167397T PL3544003T3 (pl) | 2004-03-01 | 2005-02-17 | Urządzenie i sposób ustalania szacowanej wartości |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004009949A DE102004009949B4 (de) | 2004-03-01 | 2004-03-01 | Vorrichtung und Verfahren zum Ermitteln eines Schätzwertes |
EP05707481A EP1697931B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procede pour determiner une valeur estimee |
PCT/EP2005/001651 WO2005083680A1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procede pour determiner une valeur estimee |
EP08021083.4A EP2034473B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé destinés à déterminer une valeur d'évaluation |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08021083.4A Division EP2034473B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé destinés à déterminer une valeur d'évaluation |
EP08021083.4A Division-Into EP2034473B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé destinés à déterminer une valeur d'évaluation |
EP05707481A Division EP1697931B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procede pour determiner une valeur estimee |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3544003A1 true EP3544003A1 (fr) | 2019-09-25 |
EP3544003B1 EP3544003B1 (fr) | 2020-12-23 |
Family
ID=34894902
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707481A Active EP1697931B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procede pour determiner une valeur estimee |
EP08021083.4A Active EP2034473B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé destinés à déterminer une valeur d'évaluation |
EP19167397.9A Active EP3544003B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé de détermination d'une valeur d'évaluation |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707481A Active EP1697931B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procede pour determiner une valeur estimee |
EP08021083.4A Active EP2034473B1 (fr) | 2004-03-01 | 2005-02-17 | Dispositif et procédé destinés à déterminer une valeur d'évaluation |
Country Status (19)
Country | Link |
---|---|
US (1) | US7318028B2 (fr) |
EP (3) | EP1697931B1 (fr) |
JP (1) | JP4673882B2 (fr) |
KR (1) | KR100852482B1 (fr) |
CN (1) | CN1938758B (fr) |
AT (1) | ATE532173T1 (fr) |
AU (1) | AU2005217507B2 (fr) |
BR (1) | BRPI0507815B1 (fr) |
CA (1) | CA2559354C (fr) |
DE (1) | DE102004009949B4 (fr) |
DK (1) | DK1697931T3 (fr) |
ES (3) | ES2376887T3 (fr) |
HK (1) | HK1093813A1 (fr) |
IL (1) | IL176978A (fr) |
NO (1) | NO338917B1 (fr) |
PL (2) | PL3544003T3 (fr) |
PT (2) | PT2034473T (fr) |
RU (1) | RU2337414C2 (fr) |
WO (1) | WO2005083680A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2707873B1 (fr) | 2011-05-09 | 2015-04-08 | Dolby International AB | Procédé et codeur de traitement de signal audio stéréo numérique |
FR2977439A1 (fr) * | 2011-06-28 | 2013-01-04 | France Telecom | Fenetres de ponderation en codage/decodage par transformee avec recouvrement, optimisees en retard. |
CN110998722B (zh) * | 2017-07-03 | 2023-11-10 | 杜比国际公司 | 低复杂性密集瞬态事件检测和译码 |
EP3483884A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Filtrage de signal |
WO2019091573A1 (fr) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Appareil et procédé de codage et de décodage d'un signal audio utilisant un sous-échantillonnage ou une interpolation de paramètres d'échelle |
EP3483880A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Mise en forme de bruit temporel |
EP3483879A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fonction de fenêtrage d'analyse/de synthèse pour une transformation chevauchante modulée |
EP3483886A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sélection de délai tonal |
WO2019091576A1 (fr) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Codeurs audio, décodeurs audio, procédés et programmes informatiques adaptant un codage et un décodage de bits les moins significatifs |
EP3483882A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Contrôle de la bande passante dans des codeurs et/ou des décodeurs |
EP3483883A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Codage et décodage de signaux audio avec postfiltrage séléctif |
EP3483878A1 (fr) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Décodeur audio supportant un ensemble de différents outils de dissimulation de pertes |
CN111405419B (zh) * | 2020-03-26 | 2022-02-15 | 海信视像科技股份有限公司 | 音频信号处理方法、装置及可读存储介质 |
CN116707557B (zh) * | 2022-12-20 | 2024-05-03 | 荣耀终端有限公司 | 信道选择方法、接收机及存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020103637A1 (en) * | 2000-11-15 | 2002-08-01 | Fredrik Henn | Enhancing the performance of coding systems that use high frequency reconstruction methods |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69127842T2 (de) * | 1990-03-09 | 1998-01-29 | At & T Corp | Hybride wahrnehmungsgebundene Kodierung von Audiosignalen |
US5285498A (en) * | 1992-03-02 | 1994-02-08 | At&T Bell Laboratories | Method and apparatus for coding audio signals based on perceptual model |
CA2090052C (fr) * | 1992-03-02 | 1998-11-24 | Anibal Joao De Sousa Ferreira | Methode et appareil de codage di signaux audio |
EP0559348A3 (fr) * | 1992-03-02 | 1993-11-03 | AT&T Corp. | Processeur ayant une boucle de réglage du débit pour un codeur/décodeur perceptuel |
ES2122021T3 (es) * | 1992-06-24 | 1998-12-16 | British Telecomm | Metodo y aparato para la medicion objetiva de la calidad del habla de equipos de telecomunicacion. |
JP2927660B2 (ja) * | 1993-01-25 | 1999-07-28 | シャープ株式会社 | 樹脂封止型半導体装置の製造方法 |
US5632003A (en) * | 1993-07-16 | 1997-05-20 | Dolby Laboratories Licensing Corporation | Computationally efficient adaptive bit allocation for coding method and apparatus |
US5623577A (en) * | 1993-07-16 | 1997-04-22 | Dolby Laboratories Licensing Corporation | Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions |
US5956674A (en) * | 1995-12-01 | 1999-09-21 | Digital Theater Systems, Inc. | Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels |
DE19736669C1 (de) * | 1997-08-22 | 1998-10-22 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Erfassen eines Anschlags in einem zeitdiskreten Audiosignal sowie Vorrichtung und Verfahren zum Codieren eines Audiosignals |
DE19747132C2 (de) * | 1997-10-24 | 2002-11-28 | Fraunhofer Ges Forschung | Verfahren und Vorrichtungen zum Codieren von Audiosignalen sowie Verfahren und Vorrichtungen zum Decodieren eines Bitstroms |
US6351730B2 (en) * | 1998-03-30 | 2002-02-26 | Lucent Technologies Inc. | Low-complexity, low-delay, scalable and embedded speech and audio coding with adaptive frame loss concealment |
WO2000060575A1 (fr) * | 1999-04-05 | 2000-10-12 | Hughes Electronics Corporation | Une mesure vocale en tant qu'estimation d'un signal de periodicite pour un systeme codeur-decodeur de parole interpolatif a domaine de frequence |
JP3762579B2 (ja) * | 1999-08-05 | 2006-04-05 | 株式会社リコー | デジタル音響信号符号化装置、デジタル音響信号符号化方法及びデジタル音響信号符号化プログラムを記録した媒体 |
JP2001166797A (ja) * | 1999-12-07 | 2001-06-22 | Nippon Hoso Kyokai <Nhk> | オーディオ信号の符号化装置 |
US6937979B2 (en) * | 2000-09-15 | 2005-08-30 | Mindspeed Technologies, Inc. | Coding based on spectral content of a speech signal |
EP1199711A1 (fr) * | 2000-10-20 | 2002-04-24 | Telefonaktiebolaget Lm Ericsson | Codage de signaux audio utilisant une expansion de la bande passante |
US6636830B1 (en) * | 2000-11-22 | 2003-10-21 | Vialta Inc. | System and method for noise reduction using bi-orthogonal modified discrete cosine transform |
US6996523B1 (en) * | 2001-02-13 | 2006-02-07 | Hughes Electronics Corporation | Prototype waveform magnitude quantization for a frequency domain interpolative speech codec system |
US6871176B2 (en) * | 2001-07-26 | 2005-03-22 | Freescale Semiconductor, Inc. | Phase excited linear prediction encoder |
US6912495B2 (en) * | 2001-11-20 | 2005-06-28 | Digital Voice Systems, Inc. | Speech model and analysis, synthesis, and quantization methods |
-
2004
- 2004-03-01 DE DE102004009949A patent/DE102004009949B4/de not_active Expired - Fee Related
-
2005
- 2005-02-17 PL PL19167397T patent/PL3544003T3/pl unknown
- 2005-02-17 PT PT08021083T patent/PT2034473T/pt unknown
- 2005-02-17 CN CN2005800067994A patent/CN1938758B/zh active Active
- 2005-02-17 DK DK05707481.7T patent/DK1697931T3/da active
- 2005-02-17 EP EP05707481A patent/EP1697931B1/fr active Active
- 2005-02-17 ES ES05707481T patent/ES2376887T3/es active Active
- 2005-02-17 PT PT191673979T patent/PT3544003T/pt unknown
- 2005-02-17 CA CA2559354A patent/CA2559354C/fr active Active
- 2005-02-17 ES ES19167397T patent/ES2847237T3/es active Active
- 2005-02-17 EP EP08021083.4A patent/EP2034473B1/fr active Active
- 2005-02-17 BR BRPI0507815A patent/BRPI0507815B1/pt active IP Right Grant
- 2005-02-17 RU RU2006134638/09A patent/RU2337414C2/ru active
- 2005-02-17 ES ES08021083T patent/ES2739544T3/es active Active
- 2005-02-17 JP JP2007501149A patent/JP4673882B2/ja active Active
- 2005-02-17 PL PL08021083T patent/PL2034473T3/pl unknown
- 2005-02-17 AT AT05707481T patent/ATE532173T1/de active
- 2005-02-17 WO PCT/EP2005/001651 patent/WO2005083680A1/fr active Application Filing
- 2005-02-17 KR KR1020067016835A patent/KR100852482B1/ko active IP Right Grant
- 2005-02-17 EP EP19167397.9A patent/EP3544003B1/fr active Active
- 2005-02-17 AU AU2005217507A patent/AU2005217507B2/en active Active
-
2006
- 2006-07-20 IL IL176978A patent/IL176978A/en active IP Right Grant
- 2006-08-31 US US11/469,418 patent/US7318028B2/en active Active
- 2006-09-29 NO NO20064432A patent/NO338917B1/no unknown
-
2007
- 2007-01-25 HK HK07100908.4A patent/HK1093813A1/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020103637A1 (en) * | 2000-11-15 | 2002-08-01 | Fredrik Henn | Enhancing the performance of coding systems that use high frequency reconstruction methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1697931B1 (fr) | Dispositif et procede pour determiner une valeur estimee | |
EP1687810B1 (fr) | Dispositif et procede pour determiner un pas de quantification | |
EP1697930B1 (fr) | Dispositif et procede pour traiter un signal multicanal | |
DE60014363T2 (de) | Verringerung der von der quantisierung verursachten datenblock-diskontinuitäten in einem audio-kodierer | |
DE19811039B4 (de) | Verfahren und Vorrichtungen zum Codieren und Decodieren von Audiosignalen | |
EP2022043B1 (fr) | Codage de signaux d'information | |
DE69915400T2 (de) | Vorrichtung zur Kodierung und Dekodierung von Audiosignalen | |
DE69518452T2 (de) | Verfahren für die Transformationskodierung akustischer Signale | |
DE60004814T2 (de) | Quantisierung in perzeptuellen audiokodierern mit kompensation des durch den synthesefilter verschmierten rauschens | |
DE60317722T2 (de) | Verfahren zur Reduzierung von Aliasing-Störungen, die durch die Anpassung der spektralen Hüllkurve in Realwertfilterbanken verursacht werden | |
EP1495464B1 (fr) | Dispositif et procede pour coder un signal audio a temps discret et dispositif et procede pour decoder des donnees audio codees | |
DE69810361T2 (de) | Verfahren und Vorrichtung zur mehrkanaligen akustischen Signalkodierung und -dekodierung | |
DE60308567T2 (de) | Dekodierungsgerät, Kodierungsgerät, Dekodierungsverfahren und Kodierungsverfahren | |
EP1397799B1 (fr) | Procede et dispositif de traitement de valeurs d'echantillonnage audio discretes dans le temps | |
EP1525576B1 (fr) | Dispositif et procede permettant de generer une representation spectrale complexe d'un signal a valeurs discretes en temps | |
DE10010849C1 (de) | Vorrichtung und Verfahren zum Analysieren eines Analyse-Zeitsignals | |
DE19742201C1 (de) | Verfahren und Vorrichtung zum Codieren von Audiosignalen | |
DE10065363B4 (de) | Vorrichtung und Verfahren zum Decodieren eines codierten Datensignals | |
MXPA06009934A (es) | Metodo y aparato para determinar un estimado |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1697931 Country of ref document: EP Kind code of ref document: P Ref document number: 2034473 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200312 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G10L 19/025 20130101AFI20200624BHEP Ipc: G10L 19/002 20130101ALI20200624BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200716 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2034473 Country of ref document: EP Kind code of ref document: P Ref document number: 1697931 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005016168 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1348495 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3544003 Country of ref document: PT Date of ref document: 20210204 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20210128 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210323 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2847237 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005016168 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210217 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
26N | No opposition filed |
Effective date: 20210924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1348495 Country of ref document: AT Kind code of ref document: T Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201223 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240220 Year of fee payment: 20 Ref country code: ES Payment date: 20240319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240219 Year of fee payment: 20 Ref country code: DE Payment date: 20240216 Year of fee payment: 20 Ref country code: GB Payment date: 20240222 Year of fee payment: 20 Ref country code: PT Payment date: 20240212 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240208 Year of fee payment: 20 Ref country code: SE Payment date: 20240221 Year of fee payment: 20 Ref country code: PL Payment date: 20240205 Year of fee payment: 20 Ref country code: IT Payment date: 20240229 Year of fee payment: 20 Ref country code: FR Payment date: 20240222 Year of fee payment: 20 Ref country code: BE Payment date: 20240219 Year of fee payment: 20 |