EP3542224B1 - Watch escapement with optimized torque transmission - Google Patents

Watch escapement with optimized torque transmission Download PDF

Info

Publication number
EP3542224B1
EP3542224B1 EP17801690.3A EP17801690A EP3542224B1 EP 3542224 B1 EP3542224 B1 EP 3542224B1 EP 17801690 A EP17801690 A EP 17801690A EP 3542224 B1 EP3542224 B1 EP 3542224B1
Authority
EP
European Patent Office
Prior art keywords
escapement
face
impulsion
escapement wheel
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17801690.3A
Other languages
German (de)
French (fr)
Other versions
EP3542224A1 (en
Inventor
Alexis HERAUD
Valentin MOLINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Priority to EP21169122.5A priority Critical patent/EP3869279A1/en
Publication of EP3542224A1 publication Critical patent/EP3542224A1/en
Application granted granted Critical
Publication of EP3542224B1 publication Critical patent/EP3542224B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements

Definitions

  • the present invention relates to the field of watchmaking. It relates, more particularly, to an exhaust with optimized torque transmission.
  • a conventional escapement such as a Swiss lever escapement, English lever escapement, Daniels escapement, or the like, comprises a lever which intermittently locks an escape wheel, and transmits energy from the going train to the regulating organ when the wheel is released. Oscillations of the regulating organ, such as a balance-spring, actuate the anchor in order to perform this periodic release of the escape wheel, and again supply an impulse to the regulating organ to maintain its oscillations.
  • the anchor comprises at least two pallets, one - entry - located upstream with respect to the direction of rotation of the escape wheel, the other - exit - located downstream.
  • the pallet which is engaged with the escapement wheel is raised, releasing the escapement wheel and transmitting an impulse to the regulating organ via an impulse face that includes each palette.
  • the other pallet is moved into the path of the teeth of the escape wheel, and blocks it. Then, the cycle starts again for the other pallet.
  • impulse faces consist of planes. Although these simple shapes are easy to manufacture, the torque transmission varies along the pulse phase, which is detrimental to the performance of the escapement.
  • planar impulse faces often give rise to detachment of the pallet, in particular when it makes the transition from the impulse phase on the pallet to the impulse phase on the tooth, which also impairs the exhaust performance.
  • the document CH702689 describes an escapement in which the output vane and/or the input vane has an impulse face which is curved such that, during a whole part of the impulse phase, the angle defined by the impulse faces of the tooth and the pallet at the point of contact between these faces is at most equal to 7°.
  • This certainly represents an improvement over flat impulse faces, but the shape chosen does not eliminate variations in torque transmission.
  • a modeling study has shown that the derivative of the torque ratio between that of the lever and that of the escape wheel with respect to the angle of the escape wheel changes sign several times, and said torque ratio varies on the order of 25% to 35% along the concave part of the vane.
  • the convex part at the start of the pulse face has an entirely conventional radius of curvature, which results from current manufacturing methods, and has in no way been optimized.
  • the object of the present invention is therefore to at least partially overcome the drawbacks mentioned above.
  • the invention relates to an escapement for a timepiece.
  • This escapement comprises an escapement wheel mounted to pivot around an axis of rotation and intended to be driven by a driving source, said escapement wheel comprising a plurality of teeth.
  • the escapement further comprises an anchor mounted pivoting around an axis of rotation, and comprises an input pallet as well as an output pallet.
  • Each pallet comprises a rest face arranged to block said escapement wheel during rest phases, as well as an impulse face arranged to interact with said escapement wheel in order to transmit impulses received from the latter to a member regulator arranged to perform oscillations, said lever being arranged to release said escape wheel periodically under the control of said regulating member.
  • the escape wheel comprises teeth having convex impulse faces.
  • the transition between the various phases is thus smoothed, which prevents the pallet from lifting off the wheel during the cycle.
  • the invention also relates to an escapement which comprises an escapement wheel mounted to pivot around an axis of rotation and intended to be driven by a power source, said escapement wheel comprising a plurality of teeth.
  • the escapement further comprises an anchor mounted pivoting around an axis of rotation, and comprises an input pallet as well as an output pallet.
  • Each pallet comprises a rest face arranged to block said escapement wheel as well as an impulse face arranged to interact with said escapement wheel in order to transmit impulses received from the latter to a regulating member arranged to perform oscillations , said anchor being arranged to release said escape wheel periodically under the control of said regulating member.
  • said Threshold value is a function of the first derivative of the speed ratio of the anchor on the escape wheel during the impulse on the beak of said pallet.
  • this value can be set arbitrarily.
  • the escapement according to the invention comprises each of the aforementioned optimizations, that is to say that relating to the impulse faces of the pallets, as well as that relating to the impulse face of the teeth of the wheel. exhaust.
  • the invention also relates to a timepiece movement comprising an escapement as defined above, as well as to a timepiece comprising such a movement.
  • the figure 1 illustrates an escapement 1 according to the invention.
  • This escapement 1 takes the general form of a Swiss lever escapement, in which each pallet takes part in providing an impulse to the regulating organ.
  • the escapement includes an escape wheel 3, arranged to be driven by a power source not shown.
  • This driving source can be for example a mainspring or an electric motor, which is in kinematic connection with the escapement wheel 3 via a going train (also not shown).
  • the escapement wheel 3 is pivotally mounted on a shaft (not shown), the theoretical axis of which is indicated by the reference sign 5.
  • the teeth of the escapement wheel 7 each have an upstream face 7a, which interacts with the pallets when the escape wheel 3 is blocked, and an impulse face.
  • the invention applies to other shapes of escape wheel, for example with pointed teeth (English lever escapement), or to less conventional shapes.
  • the teeth 7 of the escape wheel 3 interact in a known way with an anchor 9, which pivots around a theoretical axis of rotation 11.
  • this theoretical axis 11 coincides with a shaft (not illustrated), but an anchor of the “suspended” type as described in the document CH708113 , or any other suitable type is also possible.
  • the line joining the axis of rotation 5 of the escape wheel 3 and that of the lever defines a center distance 12.
  • the general shape of the illustrated anchor 9 is conventional. To this end, it comprises a rod 9a extending from the axis of rotation 11 and ending in a fork 9c, which interacts with a regulating member (not shown) in a known manner in order to cause it to oscillate with a predetermined periodicity, which need not be described here in detail. Furthermore, a pair of arms 9b extend on either side of the axis of rotation 11 in directions substantially perpendicular to the rod 9a, and end in pallets 13, 15. It goes without saying that d other forms of anchor less usual can also be used within the scope of the invention.
  • Each of these pallets 13, 15 is arranged to block and to periodically release the escape wheel, the latter being blocked by one of the pallets 13, 15, then re-blocked by the other, in sequence.
  • Pallet 13 shown on the right in the figure 1 is the input pallet, located upstream with respect to the direction of rotation of the escape wheel 3 indicated by the arrow, and the pallet 15, located downstream, is the output pallet.
  • each pallet 13, 15 comprises, as generally known, a rest face 13a respectively 15a, and a pulse face 13b respectively 15b.
  • the rest faces 13a, 15a serve to block the escape wheel 3 during phases of rest, and the impulse faces 13b, 15b cooperate with the teeth 7 to transmit an impulse to the lever and thus to the regulating organ during the impulse phase.
  • Each of these teeth 7 comprises a resting beak 7c, which interacts with the resting faces 13a, 15a of the pallets 13, 15, as well as an oblique impulse face 7b.
  • the resting beak 7c which is located between the upstream face 7a and the impulse face 7b, as well as this impulse face 7b, contribute to transmitting an impulse to the anchor 9.
  • the rest faces 13a, 15a are typically planes, the angle of which is chosen so that, during the phases of rest, the force F resulting from the contact between the rest face 13a, 15a and tooth 7 comprises a component which tends to keep pallet 13 or 15, as the case may be, engaged with escape wheel 3.
  • This force F consequently generates a torque around the axis of rotation 11 of the anchor 9 which tends to cause the anchor to rotate counterclockwise (depending on the orientation of the figure 1 ) when the input paddle 13 is engaged, and clockwise when the output paddle 15 is engaged.
  • the impulse faces of the pallets 13b, 15b are typically planes, which leads, during the impulses, to a reduction in the torque transmitted from the escapement wheel 3 to the lever 9 along of each pulse phase. This torque variation is inefficient, and limits the performance of exhaust 1.
  • the invention therefore relates mainly to the shape of the impulse faces 13b, 15b of the pallets 13, 15, as well as that of the impulse face 7b of the teeth 7 of the escape wheel 3. Since the active faces 13a, 13b, 15a, 15b of the paddles are not, or at least should not be, planar, the terminology of "face” is used instead of the usual formulation "plane of".
  • the figure 4 illustrates schematic modeling that can be used to calculate the shape of vane impulse faces.
  • the geometric relationship between the point of contact C' between the impulse face 13b of the input pallet and a tooth 7 of the escapement wheel 3, the escapement wheel 3, and center distance 12 is shown.
  • is the angle between a line joining said point of contact and the axis of rotation of said escape wheel 3, and said center distance 12, defined mathematically. This angle therefore decreases along the pulse phase on the input paddle 13 since the point of contact C′ approaches the center distance 12 when the wheel exhaust 3 spins.
  • COF is the trigonometric tangent (in radians) of the coefficient of friction between the escapement wheel and said impulse face, that is to say tan( ⁇ ) according to conventional notation
  • R is the distance between the axis of rotation of said escape wheel and said point of contact, with a tolerance of +/- 10%, preferably +/- 7%, more preferably +/- 5% or even +/- 3% or +/- 2% in order to present realistic manufacturing tolerances
  • C is the torque ratio between that of the anchor relative to that of the escape wheel, ie C anchor / C wheel
  • L is the length of said center distance 12.
  • the invention encompasses a family of possible curves. This is inevitable given the manufacturing tolerances, since it is very difficult to manufacture, in a reproducible manner, a curve which is mathematically perfect.
  • the figure 5 illustrates, in an exaggerated way, the development of ⁇ orientation of the impulse face 13b of the input pallet 13 along its impulse phase. It is clear that, when the escape wheel 3 rotates and the contact point C′ evolves along an arc of a circle, that the orientation angle ⁇ increases when ⁇ decreases for the reasons explained above.
  • the figure 7 illustrates this growth as a function of the angle a(t) of the contact point C' over time, and the values of the orientation angle ⁇ thus calculated at a plurality of points can be used to define tangents which can be combined in a smoothed manner to define the shape of the impulse face 13b of the input vane 13, over at least part of its length. This part can extend over for example at least 20%, at least 40%, at least 50%, at least 60% or even at least 80% or 90% of the length of said pulse face 13b. From these figures, it is clear that said impulse face 13 will be convex.
  • the figure 6 illustrates, also exaggeratedly, the development of ⁇ orientation of the impulse face 15b of the output vane 15 along its pulse phase.
  • the orientation angle ⁇ decreases.
  • the figure 8 illustrates this decrease as a function of the angle ⁇ of the contact point C′; indeed during the movement a moves away from the center distance or ⁇ is strictly negative in the counterclockwise sense, so ⁇ (t) decreases during the movement.
  • the angles ⁇ orientation thus calculated can be used to define tangents which can be combined in order to define the shape of the impulse face 15b of the output vane 15, over at least part of its length.
  • This part can extend over for example at least 20%, at least 40%, at least 50%, at least 60% or even at least 80% or 90% of the length of said pulse face 15b.
  • the angle ⁇ increases during the corresponding pulse phase, since the point of contact C' moves away from the center distance 12. From these figures, it is clear that said impulse face 15 will be concave.
  • the shapes of the impulse planes 13b, 15b, of the pallets can be determined for an escapement having a given geometry, and this by taking into account the shape of the impulse faces 7b of the teeth 7 of the escapement wheel 3, which determines the development of the position of the point of contact with the pallets 13, 15 along the impulse phases.
  • ⁇ orientation represents the angle formed between the tangent of the impulse face 7b of the tooth 7 at the contact point C' and the center distance 12, the other variables being as described above in the context of the profile of the impulse faces 13b, 15b of the vanes 13, 15.
  • the value C must be lower than a predefined threshold value (see below).
  • the angle ⁇ orientation can be calculated at several points, in order to determine the profile of said impulse face 7b in the manner mentioned above.
  • the figure 11 is a normalized graph illustrating a comparison of the speed ratio of the lever 9 on the escapement wheel 3 on a clearance and an impulse, for a conventional escapement (“Rv Standard Profiles”) and an escapement according to the invention (“ Rv Curved profiles”).
  • This graph illustrates both the effect of the shape of the impulse faces 13b, 15b which ensures constant torque transmission during the impulse phase on the impulse face 7b of a tooth 7, as well as the effect of the curved profile of the teeth 7 of the escape wheel.
  • This graph also illustrates the effect of the curved profile of the impulse face 7b of the teeth 7 of the escapement wheel 3. Since this face 7b is curved, the slope of the gear ratio curve has a slope significantly less than that which occurs in the classic case “Rv standard profiles”. Detachment can thus be avoided.
  • the anchor 9 and/or the escape wheel 3 described above can, for example, be manufactured by micro-machining processes, such as LIGA, 3D printing, masking and engraving from a slab of material, stereolithography, or the like.
  • Suitable materials can, for example, be chosen from monocrystalline, polycrystalline or amorphous metals (such as steel, nickel-phosphorus, brass or similar), non-metals such as silicon, its oxide, its nitride or its carbide, alumina in all its forms, diamond (including adamantine carbon), these non-metallic materials being monocrystalline or polycrystalline. All these materials may optionally be coated with another hard and/or anti-friction material, such as adamantine carbon or silicon oxide.

Description

Domaine techniqueTechnical area

La présente invention se rapporte au domaine de l'horlogerie. Elle porte, plus particulièrement, sur un échappement à transmission de couple optimisé.The present invention relates to the field of watchmaking. It relates, more particularly, to an exhaust with optimized torque transmission.

Etat de la techniqueState of the art

Un échappement classique, tel qu'un échappement à ancre suisse, à ancre anglais, un échappement Daniels, ou similaire, comporte une ancre qui bloque de manière intermittente une roue d'échappement, et transmet de l'énergie du rouage de finissage à l'organe réglant lorsque la roue est libérée. Des oscillations de l'organe réglant, tel qu'un balancier-spiral, actionnent l'ancre afin d'effectuer cette libération périodique de la roue d'échappement, et fournir à nouveau une impulsion à l'organe réglant pour entretenir ses oscillations.A conventional escapement, such as a Swiss lever escapement, English lever escapement, Daniels escapement, or the like, comprises a lever which intermittently locks an escape wheel, and transmits energy from the going train to the regulating organ when the wheel is released. Oscillations of the regulating organ, such as a balance-spring, actuate the anchor in order to perform this periodic release of the escape wheel, and again supply an impulse to the regulating organ to maintain its oscillations.

À cet effet, l'ancre comporte au moins deux palettes, l'une - d'entrée - se situant en amont par rapport au sens de rotation de la roue d'échappement, l'autre - de sortie - se situant en aval. À chaque alternance de l'organe réglant, la palette qui est engagée avec la roue d'échappement est soulevée, libérant la roue d'échappement et transmettant une impulsion à l'organe réglant par l'intermédiaire d'une face d'impulsion que comporte chaque palette. En même temps, l'autre palette est déplacée dans la trajectoire des dents de la roue d'échappement, et la bloque. Puis, le cycle recommence pour l'autre palette.To this end, the anchor comprises at least two pallets, one - entry - located upstream with respect to the direction of rotation of the escape wheel, the other - exit - located downstream. At each alternation of the regulating organ, the pallet which is engaged with the escapement wheel is raised, releasing the escapement wheel and transmitting an impulse to the regulating organ via an impulse face that includes each palette. At the same time, the other pallet is moved into the path of the teeth of the escape wheel, and blocks it. Then, the cycle starts again for the other pallet.

Typiquement, les faces d'impulsion sont constituées par des plans. Bien que ces formes simples soient faciles à fabriquer, la transmission de couple varie le long de la phase d'impulsion, ce qui est néfaste pour le rendement de l'échappement.Typically, impulse faces consist of planes. Although these simple shapes are easy to manufacture, the torque transmission varies along the pulse phase, which is detrimental to the performance of the escapement.

Par ailleurs, de telles faces d'impulsion planes donnent lieu souvent à un décollement de la palette notamment lorsqu'elle effectue la transition de la phase d'impulsion sur la palette à la phase d'impulsion sur la dent, ce qui nuit également au rendement de l'échappement.Furthermore, such planar impulse faces often give rise to detachment of the pallet, in particular when it makes the transition from the impulse phase on the pallet to the impulse phase on the tooth, which also impairs the exhaust performance.

Le document CH702689 décrit un échappement dans lequel la palette de sortie et/ou la palette d'entrée présente une face d'impulsion qui est courbée de telle sorte que, pendant toute une partie de la phase d'impulsion, l'angle défini par les faces d'impulsion de la dent et de la palette au point de contact entre ces faces soit au plus égal à 7°. Ceci représente certes une amélioration par rapport à des faces d'impulsion planes, mais la forme choisie n'élimine pas les variations de la transmission de couple. Une étude de modélisation a montré que la dérivée du rapport de couple entre celui de l'ancre et celui de la roue d'échappement par rapport à l'angle de la roue d'échappement change de signe plusieurs fois, et ledit rapport de couple varie de l'ordre de 25% à 35% le long de la partie concave de la palette. De plus, la partie convexe en début de la face d'impulsion présente un rayon de courbure tout à fait classique, qui résulte des procédés de fabrication actuels, et n'a nullement été optimisé.The document CH702689 describes an escapement in which the output vane and/or the input vane has an impulse face which is curved such that, during a whole part of the impulse phase, the angle defined by the impulse faces of the tooth and the pallet at the point of contact between these faces is at most equal to 7°. This certainly represents an improvement over flat impulse faces, but the shape chosen does not eliminate variations in torque transmission. A modeling study has shown that the derivative of the torque ratio between that of the lever and that of the escape wheel with respect to the angle of the escape wheel changes sign several times, and said torque ratio varies on the order of 25% to 35% along the concave part of the vane. In addition, the convex part at the start of the pulse face has an entirely conventional radius of curvature, which results from current manufacturing methods, and has in no way been optimized.

L'objet de la présente invention est donc d'au moins partiellement surmonter les inconvénients mentionnés ci-dessus.The object of the present invention is therefore to at least partially overcome the drawbacks mentioned above.

Divulgation de l'inventionDisclosure of Invention

À cet effet, l'invention concerne un échappement pour pièce d'horlogerie. Cet échappement comprend une roue d'échappement montée pivotante autour d'un axe de rotation et destinée à être entraînée par une source motrice, ladite roue d'échappement comportant une pluralité de dents.To this end, the invention relates to an escapement for a timepiece. This escapement comprises an escapement wheel mounted to pivot around an axis of rotation and intended to be driven by a driving source, said escapement wheel comprising a plurality of teeth.

L'échappement comprend en outre une ancre montée pivotante autour d'un axe de rotation, et comprend une palette d'entrée ainsi qu'une palette de sortie. Chaque palette comprend une face de repos agencée pour bloquer ladite roue d'échappement pendant les phases de repos, ainsi qu'une face d'impulsion agencée pour interagir avec ladite roue d'échappement afin de transmettre des impulsions reçues de cette dernière à un organe réglant agencé pour effectuer des oscillations, ladite ancre étant agencée pour libérer ladite roue d'échappement périodiquement sous la commande dudit organe réglant.The escapement further comprises an anchor mounted pivoting around an axis of rotation, and comprises an input pallet as well as an output pallet. Each pallet comprises a rest face arranged to block said escapement wheel during rest phases, as well as an impulse face arranged to interact with said escapement wheel in order to transmit impulses received from the latter to a member regulator arranged to perform oscillations, said lever being arranged to release said escape wheel periodically under the control of said regulating member.

Selon l'invention, au moins l'une, de préférence chacune, desdites faces d'impulsion est conformée de telle sorte que, sur au moins une partie de ladite face d'impulsion, et considérée à chaque point de contact entre la roue d'échappement et ladite face d'impulsion, la tangente de ladite face d'impulsion intersecte l'entraxe entre la roue d'échappement et l'ancre selon un angle qui observe la relation α orientation = α COF + tan 1 C R + cos α θ R 2 R 2 sin α θ + / 10 %

Figure imgb0001
avec R 2 = R 2 sin 2 α + R cos α + L 2
Figure imgb0002
et avec θ = tan 1 R sin α L R cos α .
Figure imgb0003
According to the invention, at least one, preferably each, of said impulse faces is shaped such that, on at least part of said impulse face, and considered at each point of contact between the wheel of escapement and said impulse face, the tangent of said impulse face intersects the center distance between the escapement wheel and the lever at an angle which observes the relationship α orientation = α COF + tan 1 VS R + cos α θ R 2 R 2 sin α θ + / 10 %
Figure imgb0001
with R 2 = R 2 sin 2 α + R cos α + L 2
Figure imgb0002
and with θ = tan 1 R sin α L R cos α .
Figure imgb0003

Dans ces équations, tous les angles s'expriment en radians, et

  • αorientation est l'angle entre ladite tangente et ledit entraxe ;
  • α est l'angle entre une ligne joignant ledit point de contact et l'axe de rotation de ladite roue d'échappement et ledit entraxe ;
  • COF est la tangente trigonométrique du coefficient de frottement entre la roue d'échappement et ladite face d'impulsion (c'est-à-dire tan(µ) selon la notation habituelle) ;
  • R est la distance entre l'axe de rotation de ladite roue d'échappement et ledit point de contact, +/- 10% ;
  • C est le rapport de couple entre celui de l'ancre et celui de la roue d'échappement (c'est-à-dire Cancre/Croue) audit point de contact ; et
  • L est la longueur dudit entraxe.
In these equations, all angles are expressed in radians, and
  • α orientation is the angle between said tangent and said spacing;
  • α is the angle between a line joining said point of contact and the axis of rotation of said escape wheel and said center distance;
  • COF is the trigonometric tangent of the coefficient of friction between the escapement wheel and said impulse face (that is to say tan(μ) according to the usual notation);
  • R is the distance between the axis of rotation of said escape wheel and said point of contact, +/- 10%;
  • C is the torque ratio between that of the anchor and that of the escape wheel (that is to say C anchor /C wheel ) at said point of contact; and
  • L is the length of said center distance.

Ce faisant, la transmission de couple entre la roue d'échappement et l'ancre est améliorée, puisqu'elle reste constante le long de la phase d'impulsion. Cette transmission constante maximise le couple transmis, améliore le rendement de l'échappement et minimise la perturbation de l'organe réglant. Il faut noter qu'une étude a montré que la forme de la palette du document CH702689 ne correspond pas à la forme définie ci-dessus, et que la transmission de couple n'est pas substantiellement constante, comme mentionné en préambule. Ceci est dû principalement (mais pas exclusivement) au fait que l'angle défini par les faces d'impulsion de la dent et de la palette au point de contact entre ces faces est constant et est au plus égal à 7° (de préférence au plus égale à 5°), ce qui ne peut jamais être cohérent avec les équations susmentionnées.By doing so, the torque transmission between the escape wheel and the lever is improved, since it remains constant along the impulse phase. This constant transmission maximizes the torque transmitted, improves the efficiency of the escapement and minimizes disturbance to the regulating organ. It should be noted that a study has shown that the shape of the document palette CH702689 does not correspond to the shape defined above, and that the torque transmission is not substantially constant, as mentioned in the preamble. This is mainly (but not exclusively) due to the fact that the angle defined by the impulse faces of the tooth and the pallet at the point of contact between these faces is constant and is at most equal to 7° (preferably at plus equal to 5°), which can never be consistent with the above equations.

Si on applique ces équations à un échappement de géométrie conventionnelle, la face d'impulsion de la palette d'entrée est ainsi convexe, et celle de la palette de sortie est concave, sur la partie de chaque face pour laquelle les relations sont valides.If we apply these equations to an escapement of conventional geometry, the impetus face of the inlet pallet is thus convex, and that of the output palette is concave, on the part of each face for which the relations are valid.

Avantageusement, la forme d'au moins une partie de chacune desdites faces d'impulsion observe ladite relation, ce qui a pour effet que la transmission de couple est constante pour chaque palette.Advantageously, the shape of at least a part of each of said impulse faces observes said relationship, which has the effect that the transmission of torque is constant for each pallet.

Avantageusement, la roue d'échappement comporte des dents ayant des faces d'impulsion convexes. La transition entre les diverses phases est ainsi lissée, ce qui évite à la palette de décoller de la roue pendant le cycle.Advantageously, the escape wheel comprises teeth having convex impulse faces. The transition between the various phases is thus smoothed, which prevents the pallet from lifting off the wheel during the cycle.

Dans le même but, l'invention concerne également un échappement qui comprend une roue d'échappement montée pivotante autour d'un axe de rotation et destinée à être entraînée par une source motrice, ladite roue d'échappement comportant une pluralité de dents. L'échappement comprend en outre une ancre montée pivotante autour d'un axe de rotation, et comprend une palette d'entrée ainsi qu'une palette de sortie. Chaque palette comprend une face de repos agencée pour bloquer ladite roue d'échappement ainsi qu'une face d'impulsion agencée pour interagir avec ladite roue d'échappement afin de transmettre des impulsions reçues de cette dernière à un organe réglant agencé pour effectuer des oscillations, ladite ancre étant agencée pour libérer ladite roue d'échappement périodiquement sous la commande dudit organe réglant.For the same purpose, the invention also relates to an escapement which comprises an escapement wheel mounted to pivot around an axis of rotation and intended to be driven by a power source, said escapement wheel comprising a plurality of teeth. The escapement further comprises an anchor mounted pivoting around an axis of rotation, and comprises an input pallet as well as an output pallet. Each pallet comprises a rest face arranged to block said escapement wheel as well as an impulse face arranged to interact with said escapement wheel in order to transmit impulses received from the latter to a regulating member arranged to perform oscillations , said anchor being arranged to release said escape wheel periodically under the control of said regulating member.

Selon l'invention, sur au moins une partie d'une face d'impulsion que comporte chacune desdites dents, et considérée à chaque point de contact entre ladite face d'impulsion et une desdites palettes (notamment le bec aval de l'une de ces dernières), la tangente de ladite face d'impulsion intersecte l'entraxe entre la roue d'échappement et l'ancre selon un angle qui observe la relation α orientation = tan 1 R Seuil α cos α + C R cos α + R cos α L R sin α Seuil α + C 1 + / 10 %

Figure imgb0004
According to the invention, on at least part of an impulse face that each of said teeth comprises, and considered at each point of contact between said impulse face and one of said pallets (in particular the downstream beak of one of the latter), the tangent of said impulse face intersects the center distance between the escapement wheel and the lever at an angle which observes the relationship α orientation = tan 1 R Threshold α cos α + VS R cos α + R cos α L R sin α Threshold α + VS 1 + / 10 %
Figure imgb0004

Dans cette équation,

  • αorientation est l'angle entre ladite tangente et ledit entraxe ;
  • α est l'angle entre une ligne joignant ledit point de contact et l'axe de rotation de ladite roue d'échappement et ledit entraxe ;
  • Seuil est est une valeur d'un seuil de décollement entre la roue d'échappement et l'ancre choisi par exemple par expérimentation ou par modélisation qui est égale ou inférieure à 0.01 ;
  • R est la distance entre l'axe de rotation de ladite roue d'échappement et ledit point de contact, +/- 10% ;
  • C est le rapport de couple entre celui de l'ancre et celui de la roue d'échappement audit point de contact ;
  • L est la longueur dudit entraxe.
In this equation,
  • α orientation is the angle between said tangent and said spacing;
  • α is the angle between a line joining said point of contact and the axis of rotation of said escape wheel and said center distance;
  • Threshold is a value of a separation threshold between the escape wheel and the anchor chosen for example by experimentation or by modeling which is equal to or less than 0.01;
  • R is the distance between the axis of rotation of said escape wheel and said point of contact, +/- 10%;
  • C is the torque ratio between that of the anchor and that of the escape wheel at said point of contact;
  • L is the length of said center distance.

Ce faisant, un décollement de la palette par rapport à la dent peut être éliminé lorsque la palette effectue la transition de la phase dite « impulsion sur la palette » à la phase « impulsion sur la dent », puisque la forte accélération qui se produit avec des formes typiques de dents est significativement réduite. Puisque la palette reste constamment en contact avec la dent et ne décolle pas, la transmission de couple de la roue d'échappement vers l'ancre, et ainsi le rendement de l'échappement, sont améliorés. Même si le document CH702689 mentionne génériquement que les dents de la roue d'échappement peuvent être légèrement courbes, ceci ne correspond pas à la forme spécifique définie ci-dessus. Par ailleurs, et comme mentionné en préambule, la combinaison de la forme des dents ainsi que celle des palettes est particulièrement susceptible à un décollement lors la transition de la dent entre la face de repos et celui d'impulsion, et ne peut donc jamais être conforme à l'équation susmentionnée.By doing so, a detachment of the pallet from the tooth can be eliminated when the pallet makes the transition from the so-called "impulse on the pallet" phase to the "impulse on the tooth" phase, since the strong acceleration which occurs with typical tooth shapes is significantly reduced. Since the pallet remains constantly in contact with the tooth and does not lift off, the transmission of torque from the escape wheel to the lever, and thus the efficiency of the escapement, is improved. Even if the document CH702689 generically mentions that the escape wheel teeth may be slightly curved, this does not correspond to the specific shape defined above. Moreover, and as mentioned in the preamble, the combination of the shape of the teeth as well as that of the blades is particularly susceptible to detachment during the transition of the tooth between the rest face and the impulse face, and can therefore never be conforms to the above equation.

Si on applique cette équation à un échappement présentant une géométrie conventionnelle, les faces d'impulsion des dents de la roue d'échappement seront convexes.If this equation is applied to an escapement having a conventional geometry, the impulse faces of the teeth of the escape wheel will be convex.

Avantageusement, ladite valeur Seuil est une fonction de la première dérivée du rapport de vitesse de l'ancre sur la roue d'échappement lors de l'impulsion sur le bec de ladite palette. Alternativement, cette valeur peut être définie arbitrairement.Advantageously, said Threshold value is a function of the first derivative of the speed ratio of the anchor on the escape wheel during the impulse on the beak of said pallet. Alternatively, this value can be set arbitrarily.

Avantageusement, l'échappement selon l'invention comprend chacune des optimisations susmentionnées, c'est-à-dire celle portant sur les faces d'impulsion des palettes, ainsi que celle portant sur la face d'impulsion des dents de la roue d'échappement.Advantageously, the escapement according to the invention comprises each of the aforementioned optimizations, that is to say that relating to the impulse faces of the pallets, as well as that relating to the impulse face of the teeth of the wheel. exhaust.

L'invention porte également sur un mouvement d'horlogerie comprenant un échappement comme défini ci-dessus, ainsi que sur une pièce d'horlogerie comprenant un tel mouvement.The invention also relates to a timepiece movement comprising an escapement as defined above, as well as to a timepiece comprising such a movement.

Brève description des dessinsBrief description of the drawings

L'invention sera mieux comprise à la lecture de la description qui va suivre, d'un mode de réalisation, donné à titre d'exemple et fait en référence aux dessins dans lesquels :

  • la figure 1 représente une vue schématique en plan d'un échappement selon l'invention ;
  • la figure 2 représente une vue agrandie d'une dent de la roue d'échappement et de la palette d'entrée ;
  • la figure 3 représente une vue agrandie de la palette de sortie ;
  • la figure 4 représente une modélisation schématique du point de contact entre l'ancre et la roue d'échappement ;
  • la figure 5 représente une vue schématique exagérée du développement de la tangente du profil de la face d'impulsion de la palette d'entrée le long de la phase d'impulsion ;
  • la figure 6 représente une vue schématique exagérée du développement de la tangente du profil de la face d'impulsion de la palette de sortie le long de la phase d'impulsion ;
  • la figure 7 représente un graphique du développement de la tangente du profil de la face d'impulsion de la palette d'entrée le long de la phase d'impulsion, en termes d'angle et en termes du temps ;
  • la figure 8 représente un graphique du développement de la tangente du profil de la face d'impulsion de la palette de sortie le long de la phase d'impulsion, en termes d'angle et en termes du temps ;
  • la figure 9 représente une vue schématique exagérée du développement de la tangente du profil de la face d'impulsion d'une dent de la roue d'échappement le long de la phase d'impulsion ;
  • la figure 10 représente un graphique du développement de la tangente du profil de la face d'impulsion d'une dent de la roue d'échappement le long de la phase d'impulsion ; et
  • la figure 11 représente un graphique du développement du rapport de vitesse de l'ancre sur la roue d'échappement au cours de la phase d'impulsion.
The invention will be better understood on reading the following description of an embodiment, given by way of example and made with reference to the drawings in which:
  • the figure 1 shows a schematic plan view of an escapement according to the invention;
  • the picture 2 shows an enlarged view of an escape wheel tooth and the entrance pallet;
  • the picture 3 represents a magnified view of the output palette;
  • the figure 4 represents a schematic model of the point of contact between the lever and the escapement wheel;
  • the figure 5 shows an exaggerated schematic view of the development of the tangent of the input vane impulse face profile along the impulse phase;
  • the figure 6 shows an exaggerated schematic view of the development of the tangent of the output vane impulse face profile along the impulse phase;
  • the figure 7 plots the development of the tangent of the input vane impulse face profile along the impulse phase, in terms of angle and in terms of time;
  • the figure 8 shows a graph of the development of the tangent of the output vane impulse face profile along the impulse phase, in terms of angle and in terms of time;
  • the figure 9 shows an exaggerated schematic view of the development of the tangent of the impulse face profile of an escape wheel tooth along the impulse phase;
  • the figure 10 shows a graph of the development of the tangent of the profile of the impulse face of an escape wheel tooth along the impulse phase; and
  • the figure 11 represents a graph of the development of the velocity ratio of the anchor on the escape wheel during the impulse phase.

Mode(s) de réalisation de l'inventionEmbodiment(s) of the Invention

La figure 1 illustre un échappement 1 selon l'invention. Cet échappement 1 reprend la forme générale d'un échappement à ancre suisse, dans lequel chaque palette participe à fournir une impulsion à l'organe réglant.The figure 1 illustrates an escapement 1 according to the invention. This escapement 1 takes the general form of a Swiss lever escapement, in which each pallet takes part in providing an impulse to the regulating organ.

Comme généralement connu, l'échappement comporte une roue d'échappement 3, agencée pour être entraînée par une source motrice non illustrée. Cette source motrice peut être par exemple un ressort moteur ou un moteur électrique, qui est en liaison cinématique avec la roue d'échappement 3 par l'intermédiaire d'un rouage de finissage (également non illustré).As generally known, the escapement includes an escape wheel 3, arranged to be driven by a power source not shown. This driving source can be for example a mainspring or an electric motor, which is in kinematic connection with the escapement wheel 3 via a going train (also not shown).

La roue d'échappement 3 est montée pivotante sur un arbre (non illustré), dont l'axe théorique est indiqué par la signe de référence 5. Dans la variante illustrée, les dents de la roue d'échappement 7 comportent chacune une face amonte 7a, qui interagit avec les palettes lorsque la roue d'échappement 3 est bloquée, et une face d'impulsion. Cependant, l'invention s'applique à d'autres formes de roue d'échappement, par exemple à dents pointues (échappement à ancre anglais), ou à des formes moins conventionnelles.The escapement wheel 3 is pivotally mounted on a shaft (not shown), the theoretical axis of which is indicated by the reference sign 5. In the variant illustrated, the teeth of the escapement wheel 7 each have an upstream face 7a, which interacts with the pallets when the escape wheel 3 is blocked, and an impulse face. However, the invention applies to other shapes of escape wheel, for example with pointed teeth (English lever escapement), or to less conventional shapes.

Les dents 7 de la roue d'échappement 3 interagissent de façon connue avec une ancre 9, qui pivote autour d'un axe de rotation théorique 11. Dans la variante illustrée, cet axe théorique 11 coïncide avec un arbre (non illustré), mais une ancre du type « suspendue » comme décrit dans le document CH708113 , ou de n'importe quel autre type approprié est également possible. La ligne joignant l'axe de rotation 5 de la roue d'échappement 3 et celui de l'ancre définit un entraxe 12.The teeth 7 of the escape wheel 3 interact in a known way with an anchor 9, which pivots around a theoretical axis of rotation 11. In the variant illustrated, this theoretical axis 11 coincides with a shaft (not illustrated), but an anchor of the “suspended” type as described in the document CH708113 , or any other suitable type is also possible. The line joining the axis of rotation 5 of the escape wheel 3 and that of the lever defines a center distance 12.

La forme générale de l'ancre 9 illustrée est classique. À cet effet, elle comporte une baguette 9a s'étendant depuis l'axe de rotation 11 et se terminant par une fourchette 9c, qui interagit avec un organe réglant (non illustré) de façon connue afin de lui faire osciller avec une périodicité prédéterminée, ce qui ne doit pas être décrit ici en détail. Par ailleurs, une paire de bras 9b s'étendent de part et d'autre de l'axe de rotation 11 selon des directions substantiellement perpendiculaires à la baguette 9a, et se terminent par des palettes 13, 15. Il va sans dire que d'autres formes d'ancre moins habituelles peuvent également être utilisées dans le cadre de l'invention.The general shape of the illustrated anchor 9 is conventional. To this end, it comprises a rod 9a extending from the axis of rotation 11 and ending in a fork 9c, which interacts with a regulating member (not shown) in a known manner in order to cause it to oscillate with a predetermined periodicity, which need not be described here in detail. Furthermore, a pair of arms 9b extend on either side of the axis of rotation 11 in directions substantially perpendicular to the rod 9a, and end in pallets 13, 15. It goes without saying that d other forms of anchor less usual can also be used within the scope of the invention.

Chacun de ces palettes 13, 15 est agencée pour bloquer et pour libérer périodiquement la roue d'échappement, cette dernière étant bloquée par l'une des palettes 13, 15, puis re-bloquée par l'autre, en séquence.Each of these pallets 13, 15 is arranged to block and to periodically release the escape wheel, the latter being blocked by one of the pallets 13, 15, then re-blocked by the other, in sequence.

La palette 13 illustrée à droite sur la figure 1 est la palette d'entrée, située en amont par rapport au sens de rotation de la roue d'échappement 3 indiqué par la flèche, et la palette 15, située en aval, est la palette de sortie.Pallet 13 shown on the right in the figure 1 is the input pallet, located upstream with respect to the direction of rotation of the escape wheel 3 indicated by the arrow, and the pallet 15, located downstream, is the output pallet.

Dans la variante illustrée, les palettes 13, 15 sont venues d'une pièce avec l'ancre 9, mais l'invention s'applique également à des palettes rapportées sur les bras 9b. Chaque palette 13, 15 comporte, comme généralement connu, une face de repos 13a respectivement 15a, et une face d'impulsion 13b respectivement 15b. Les faces de repos 13a, 15a, servent pour bloquer la roue d'échappement 3 pendant des phases de repos, et les faces d'impulsion 13b, 15b coopèrent avec les dents 7 pour transmettre une impulsion à l'ancre et ainsi à l'organe réglant pendant la phase d'impulsion. Chacune de ces dents 7 comporte un bec de repos 7c, qui interagit avec les faces de repos 13a, 15a des palettes 13, 15, ainsi qu'une face d'impulsion oblique 7b. Le bec de repos 7c qui se trouve entre la face amonte 7a et la face d'impulsion 7b, ainsi que cette face d'impulsion 7b, contribuent à transmettre une impulsion à l'ancre 9.In the variant illustrated, the pallets 13, 15 come in one piece with the anchor 9, but the invention also applies to pallets attached to the arms 9b. Each pallet 13, 15 comprises, as generally known, a rest face 13a respectively 15a, and a pulse face 13b respectively 15b. The rest faces 13a, 15a serve to block the escape wheel 3 during phases of rest, and the impulse faces 13b, 15b cooperate with the teeth 7 to transmit an impulse to the lever and thus to the regulating organ during the impulse phase. Each of these teeth 7 comprises a resting beak 7c, which interacts with the resting faces 13a, 15a of the pallets 13, 15, as well as an oblique impulse face 7b. The resting beak 7c which is located between the upstream face 7a and the impulse face 7b, as well as this impulse face 7b, contribute to transmitting an impulse to the anchor 9.

Dans un échappement typique du genre qui vient d'être défini, les faces de repos 13a, 15a sont typiquement des plans, dont l'angle est choisi de telle sorte que, pendant les phases de repos, la force F résultant du contact entre la face de repos 13a, 15a et la dent 7 comprend une composante qui tend à maintenir la palette 13 ou 15, le cas échéant, engagée avec la roue d'échappement 3. Cette force F engendre par conséquent un couple autour de l'axe de rotation 11 de l'ancre 9 qui tend à faire pivoter l'ancre dans le sens antihoraire (selon l'orientation de la figure 1) lorsque la palette d'entrée 13 est engagée, et dans le sens horaire lorsque la palette de sortie 15 est engagée.In a typical escapement of the type which has just been defined, the rest faces 13a, 15a are typically planes, the angle of which is chosen so that, during the phases of rest, the force F resulting from the contact between the rest face 13a, 15a and tooth 7 comprises a component which tends to keep pallet 13 or 15, as the case may be, engaged with escape wheel 3. This force F consequently generates a torque around the axis of rotation 11 of the anchor 9 which tends to cause the anchor to rotate counterclockwise (depending on the orientation of the figure 1 ) when the input paddle 13 is engaged, and clockwise when the output paddle 15 is engaged.

Dans un échappement typique, les faces d'impulsion des palettes 13b, 15b sont typiquement des plans, ce qui entraîne, lors des impulsions, une diminution du couple transmis de la roue d'échappement 3 à l'ancre 9 le long de chaque phase d'impulsion. Cette variation de couple est inefficace, et limite le rendement de l'échappement 1.In a typical escapement, the impulse faces of the pallets 13b, 15b are typically planes, which leads, during the impulses, to a reduction in the torque transmitted from the escapement wheel 3 to the lever 9 along of each pulse phase. This torque variation is inefficient, and limits the performance of exhaust 1.

L'invention concerne, par conséquent, principalement la forme des faces d'impulsion 13b, 15b des palettes 13, 15, ainsi que celle de la face d'impulsion 7b des dents 7 de la roue d'échappement 3. Puisque les faces actives 13a, 13b, 15a, 15b des palettes ne sont pas, ou au moins ne doivent pas être, planaires, la terminologie de «face» est utilisée au lieu de la formulation habituelle « plan de ... ».The invention therefore relates mainly to the shape of the impulse faces 13b, 15b of the pallets 13, 15, as well as that of the impulse face 7b of the teeth 7 of the escape wheel 3. Since the active faces 13a, 13b, 15a, 15b of the paddles are not, or at least should not be, planar, the terminology of "face" is used instead of the usual formulation "plane of...".

La figure 4 illustre une modélisation schématique qui peut être utilisée pour calculer la forme des faces d'impulsion des palettes. Dans le diagramme qui constitue cette figure, la relation géométrique entre le point de contact C' entre la face d'impulsion 13b de la palette d'entrée et une dent 7 de la roue d'échappement 3, la roue d'échappement 3, et l'entraxe 12 est illustrée.The figure 4 illustrates schematic modeling that can be used to calculate the shape of vane impulse faces. In the diagram that constitutes this figure, the geometric relationship between the point of contact C' between the impulse face 13b of the input pallet and a tooth 7 of the escapement wheel 3, the escapement wheel 3, and center distance 12 is shown.

Pour que la force F qu'exerce la roue d'échappement 3 sur la palette d'entrée 13 engendre un couple qui est constant le long de la phase d'impulsion, l'angle αorientation entre la tangente de la face d'impulsion 13b de la palette d'entrée et l'entraxe 12 doit observer la relation suivante, obtenue en résolvant les forces, à chaque point le long de la phase d'impulsion : α orientation = α COF + tan 1 C R + cos α θ R 2 R 2 sin α θ

Figure imgb0005

avec R 2 = R 2 sin 2 α + R cos α + L 2
Figure imgb0006

et avec θ = tan 1 R sin α L R cos α
Figure imgb0007
So that the force F exerted by the escapement wheel 3 on the input pallet 13 generates a torque which is constant along the impulse phase, the angle α orientation between the tangent of the impulse face 13b of the input vane and center distance 12 must observe the following relationship, obtained by solving the forces, at each point along the momentum phase: α orientation = α COF + tan 1 VS R + cos α θ R 2 R 2 sin α θ
Figure imgb0005

with R 2 = R 2 sin 2 α + R cos α + L 2
Figure imgb0006

and with θ = tan 1 R sin α L R cos α
Figure imgb0007

À la relation qui définit αorientation, on peut ajouter une tolérance de +/- 10%, de préférence +/- 7%, encore de préférence +/- 5% ou même +/- 3% ou +/- 2% afin de présenter des tolérances de manufacture réalistes.To the relation which defines α orientation , one can add a tolerance of +/- 10%, preferably +/- 7%, more preferably +/- 5% or even +/- 3% or +/- 2% in order to to present realistic manufacturing tolerances.

Dans ces équations, tous les angles s'expriment en radians. α est l'angle entre une ligne joignant ledit point de contact et l'axe de rotation de ladite roue d'échappement 3, et ledit entraxe 12, défini mathématiquement. Cet angle décroit donc le long de la phase d'impulsion sur la palette d'entrée 13 puisque le point de contact C' se rapproche de l'entraxe 12 lorsque la roue d'échappement 3 tourne. COF est la tangente trigonométrique (en radians) du coefficient de frottement entre la roue d'échappement et ladite face d'impulsion, c'est-à-dire tan(µ) selon la notation conventionnelle ; R est la distance entre l'axe de rotation de ladite roue d'échappement et ledit point de contact, avec une tolérance de +/- 10%, de préférence +/- 7%, encore de préférence +/- 5% ou même +/- 3% ou +/- 2% afin de présenter des tolérances de manufacture réalistes; C est le rapport de couple entre celui de l'ancre par rapport à celui de la roue d'échappement, c'est-à-dire Cancre /Croue ; et L est la longueur dudit entraxe 12.In these equations, all angles are expressed in radians. α is the angle between a line joining said point of contact and the axis of rotation of said escape wheel 3, and said center distance 12, defined mathematically. This angle therefore decreases along the pulse phase on the input paddle 13 since the point of contact C′ approaches the center distance 12 when the wheel exhaust 3 spins. COF is the trigonometric tangent (in radians) of the coefficient of friction between the escapement wheel and said impulse face, that is to say tan(μ) according to conventional notation; R is the distance between the axis of rotation of said escape wheel and said point of contact, with a tolerance of +/- 10%, preferably +/- 7%, more preferably +/- 5% or even +/- 3% or +/- 2% in order to present realistic manufacturing tolerances; C is the torque ratio between that of the anchor relative to that of the escape wheel, ie C anchor / C wheel ; and L is the length of said center distance 12.

Il faut noter que, au vu de la tolérance sur la valeur de R ainsi que celle sur αorientation, l'invention englobe une famille de courbes possibles. Ceci est inévitable au vu des tolérances de manufacture, puisqu'il est très difficile de fabriquer, de manière reproductible, une courbe qui soit mathématiquement parfaite.It should be noted that, in view of the tolerance on the value of R as well as that on α orientation , the invention encompasses a family of possible curves. This is inevitable given the manufacturing tolerances, since it is very difficult to manufacture, in a reproducible manner, a curve which is mathematically perfect.

Pour la palette de sortie 15, la même relation est également valable, car la géométrie est similaire, le point de contact C' se situant bien entendu sur l'autre côté de l'entraxe 12.For the output pallet 15, the same relation is also valid, because the geometry is similar, the point of contact C′ being of course located on the other side of the center distance 12.

La figure 5 illustre, de façon exagérée, le développement de αorientation de la face d'impulsion 13b de la palette d'entrée 13 le long de sa phase d'impulsion. Il est clair que, lorsque la roue d'échappement 3 tourne et le point de contact C' évolue selon un arc de cercle, que l'angle αorientation croit lorsque α décroit pour les raisons expliquées ci-dessus. La figure 7 illustre cette croissance en fonction de l'angle a(t) du point de contact C' au cours du temps, et les valeurs de l'angle αorientation ainsi calculées à une pluralité de points peuvent être utilisées pour définir des tangentes qui peuvent être combinées d'une manière lissée afin de définir la forme de la face d'impulsion 13b de la palette d'entrée 13, sur au moins une partie de sa longueur. Cette partie peut s'étendre sur par exemple au moins 20%, au moins 40%, au moins 50%, au moins 60% ou même au moins 80% or 90% de la longueur de ladite face d'impulsion 13b. D'après ces figures, il est clair que ladite face d'impulsion 13 sera convexe.The figure 5 illustrates, in an exaggerated way, the development of α orientation of the impulse face 13b of the input pallet 13 along its impulse phase. It is clear that, when the escape wheel 3 rotates and the contact point C′ evolves along an arc of a circle, that the orientation angle α increases when α decreases for the reasons explained above. The figure 7 illustrates this growth as a function of the angle a(t) of the contact point C' over time, and the values of the orientation angle α thus calculated at a plurality of points can be used to define tangents which can be combined in a smoothed manner to define the shape of the impulse face 13b of the input vane 13, over at least part of its length. This part can extend over for example at least 20%, at least 40%, at least 50%, at least 60% or even at least 80% or 90% of the length of said pulse face 13b. From these figures, it is clear that said impulse face 13 will be convex.

De la même façon, la figure 6 illustre, également de façon exagérée, le développement de αorientation de la face d'impulsion 15b de la palette de sortie 15 le long de sa phase d'impulsion. Il est clair que, lorsque la roue d'échappement 3 tourne et le point de contact C' évolue selon un arc de cercle, que l'angle αorientation décroit. La figure 8 illustre cette décroissance en fonction de l'angle α du point de contact C' ; en effet au cours du mouvement a s'éloigne de l'entraxe or α est strictement négatif au sens trigonométrique, donc α(t) décroit au cours du mouvement. À nouveau, les angles αorientation ainsi calculés peuvent être utilisés pour définir des tangentes qui peuvent être combinées afin de définir la forme de la face d'impulsion 15b de la palette de sortie 15, sur au moins une partie de sa longueur. Cette partie peut s'étendre sur par exemple au moins 20%, au moins 40%, au moins 50%, au moins 60% ou même au moins 80% ou 90% de la longueur de ladite face d'impulsion 15b. Dans le cas de la palette de sortie 15, l'angle α croît pendant la phase d'impulsion correspondante, puisque le point de contact C' s'éloigne de l'entraxe 12. D'après ces figures, il est clair que ladite face d'impulsion 15 sera concave.In the same way, the figure 6 illustrates, also exaggeratedly, the development of α orientation of the impulse face 15b of the output vane 15 along its pulse phase. It is clear that, when the escape wheel 3 rotates and the contact point C′ evolves according to an arc of a circle, the orientation angle α decreases. The figure 8 illustrates this decrease as a function of the angle α of the contact point C′; indeed during the movement a moves away from the center distance or α is strictly negative in the counterclockwise sense, so α(t) decreases during the movement. Again, the angles α orientation thus calculated can be used to define tangents which can be combined in order to define the shape of the impulse face 15b of the output vane 15, over at least part of its length. This part can extend over for example at least 20%, at least 40%, at least 50%, at least 60% or even at least 80% or 90% of the length of said pulse face 15b. In the case of the output pallet 15, the angle α increases during the corresponding pulse phase, since the point of contact C' moves away from the center distance 12. From these figures, it is clear that said impulse face 15 will be concave.

Par le biais de ce qui précède, les formes des plans d'impulsion 13b, 15b, des palettes peuvent être déterminées pour un échappement présentant une géométrie donnée, et ce en tenant compte de la forme des faces d'impulsion 7b des dents 7 de la roue d'échappement 3, ce qui détermine le développement de la position du point de contact avec les palettes 13, 15 le long des phases d'impulsion.By means of the above, the shapes of the impulse planes 13b, 15b, of the pallets can be determined for an escapement having a given geometry, and this by taking into account the shape of the impulse faces 7b of the teeth 7 of the escapement wheel 3, which determines the development of the position of the point of contact with the pallets 13, 15 along the impulse phases.

Même si les formes des palettes 13, 15 comme déterminées ci-dessus peuvent être utilisées en lien avec une roue d'échappement de forme connue, il est avantageux d'adapter la forme des faces d'impulsion 7b de telle sorte qu'un décollement de la palette de la roue d'échappement est évité.Even if the shapes of the pallets 13, 15 as determined above can be used in conjunction with an escapement wheel of known shape, it is advantageous to adapt the shape of the impulse faces 7b so that a separation of the escape wheel pallet is avoided.

En effet, dans le cas d'un échappement conventionnel, lorsque la dent 7 de la roue d'échappement 3 effectue la transition depuis la face de repos 13a, 15a d'une palette à sa face d'impulsion 13b, 15b (connu sous le nom « impulsion sur la palette » puisque la dent 7 interagit avec la face d'impulsion 13b, 15b de la palette), il y a une accélération de la roue d'échappement 3 et de l'ancre 9. Par ailleurs, pendant la dernière partie de la phase d'impulsion, lorsque la dent interagit avec le bec aval 13c, 15c de la palette 13, 15 (connu sous le nom « impulsion sur la dent », puisque c'est le bec aval 13c, 15c de la palette qui interagit avec la dent 7), une deuxième accélération encore plus forte est créée. Si ces accélérations sont trop importantes, la palette 13, 15 peut décoller de la roue d'échappement 3, ce qui a pour effet que le contact entre ces deux éléments est rompu.Indeed, in the case of a conventional escapement, when tooth 7 of escape wheel 3 makes the transition from the rest face 13a, 15a of a pallet to its impulse face 13b, 15b (known as the name "impulse on the pallet" since the tooth 7 interacts with the impulse face 13b, 15b of the pallet), there is an acceleration of the escape wheel 3 and of the anchor 9. Moreover, during the last part of the impulse phase, when the tooth interacts with the downstream beak 13c, 15c of the pallet 13, 15 (known as the "impulse on the tooth", since it is the downstream nose 13c, 15c of the pallet which interacts with the tooth 7), a second, even stronger acceleration is created. If these accelerations are too high, the pallet 13, 15 can take off from the escape wheel 3, which has the effect that the contact between these two elements is broken.

En partant du même modèle illustré dans la figure 4, on peut déterminer le profil de la face d'impulsion 7b des dents 7 de la roue d'échappement qui évite un tel décollement lors de la transition de la face d'impulsion 7b au bec aval 7d.Starting from the same model illustrated in the figure 4 , it is possible to determine the profile of the impulse face 7b of the teeth 7 of the escapement wheel which avoids such separation during the transition from the impulse face 7b to the downstream beak 7d.

D'après la géométrie du contact entre la roue d'échappement 3 et la face d'impulsion 13b, 15b de l'une des palettes, on peut calculer un rapport de couple C entre le couple de l'ancre et le couple de la roue d'échappement en fonction de l'angle α comme suit : C α = R 2 R cos α orientation θ + COF cos α orientation α + COF

Figure imgb0008
From the geometry of the contact between the escapement wheel 3 and the impulse face 13b, 15b of one of the pallets, it is possible to calculate a torque ratio C between the torque of the lever and the torque of the escapement wheel as a function of the angle α as follows: VS α = R 2 R cos α orientation θ + COF cos α orientation α + COF
Figure imgb0008

Dans ce cas, αorientation représente l'angle formé entre la tangente de la face d'impulsion 7b de la dent 7 au point de contact C' et l'entraxe 12, les autres variables étant comme décrit ci-dessus dans le contexte du profil des faces d'impulsion 13b, 15b des palettes 13, 15. Pour éviter un décollement, il faut que la valeur C soit inférieure à une valeur seuil prédéfini (voir ci-dessous).In this case, α orientation represents the angle formed between the tangent of the impulse face 7b of the tooth 7 at the contact point C' and the center distance 12, the other variables being as described above in the context of the profile of the impulse faces 13b, 15b of the vanes 13, 15. To avoid separation, the value C must be lower than a predefined threshold value (see below).

Pendant la phase d'impulsion sur la dent, c'est-à-dire lorsque le bec aval 13c, 15c est en contact avec la face d'impulsion 7b d'une dent 7 de la roue d'échappement 3, C α Seuil α + C

Figure imgb0009

où C est le rapport de couple à ce changement de bec et Seuil est une valeur d'un seuil de décollement calculé par expérimentation ou par modélisation, ou même défini arbitrairement. Plus concrètement, on peut par exemple définir un dérivé limite du rapport de vitesse de l'ancre 9 sur la roue 3, par modélisation. Le paramètre Seuil est tellement influencé par la géométrie de l'échappement, mais des modélisations ont indiqués qu'une valeur d'au maximum 0.01, de préférence au maximum 0.005 sont généralement applicables, ou peut servir en tout cas comme points de départ.During the impulse phase on the tooth, that is to say when the downstream beak 13c, 15c is in contact with the impulse face 7b of a tooth 7 of the escape wheel 3, VS α Threshold α + VS
Figure imgb0009

where C is the torque ratio at this change of beak and Seuil is a value of a separation threshold calculated by experimentation or by modeling, or even defined arbitrarily. More concretely, it is possible for example to define a limit derivative of the speed ratio of the anchor 9 on the wheel 3, by modeling. The Threshold parameter is so influenced by the geometry of the escapement, but modeling has indicated that a value of at most 0.01, preferably at most 0.005 are generally applicable, or can serve as starting points anyway.

Par conséquent, Seuil α + C = R 2 R cos α orientation θ + COF cos α orientation α + COF

Figure imgb0010

et α orientation = tan 1 R Seuil α cos α + C R cos α + R cos α L R sin α Seuil α + C 1
Figure imgb0011
As a result, Threshold α + VS = R 2 R cos α orientation θ + COF cos α orientation α + COF
Figure imgb0010

and α orientation = tan 1 R Threshold α cos α + VS R cos α + R cos α L R sin α Threshold α + VS 1
Figure imgb0011

À cette relation, on peut ajouter une tolérance de +/- 10%, de préférence +/-7%, encore de préférence +/- 5% ou même +/- 3% ou +/- 2% à la valeur de αorientation, afin de présenter des tolérances de manufacture réalistes. Il faut noter que, au vu de la tolérance sur la valeur de R ainsi que celle sur αorientation, l'invention englobe une famille de courbes possibles. Ceci est inévitable au vu des tolérances de manufacture, puisqu'il est très difficile de fabriquer, de manière reproductible, une courbe qui soit mathématiquement parfaite.To this relation, we can add a tolerance of +/- 10%, preferably +/-7%, more preferably +/- 5% or even +/- 3% or +/- 2% to the value of α orientation , in order to present realistic manufacturing tolerances. It should be noted that, in view of the tolerance on the value of R as well as that on α orientation , the invention encompasses a family of possible curves. This is inevitable given the manufacturing tolerances, since it is very difficult to manufacture, in a reproducible manner, a curve which is mathematically perfect.

Par conséquent, lorsque α croît le long de la phase d'impulsion, αorientation croît également, de façon approximativement linéaire. Ainsi, le profil de la face d'impulsion 7b des dents 7 est convexe, comme illustré sous forme exagéré sur la figure 9. Le développement de αorientation en fonction de l'angle α est également illustré sur la figure 10.Consequently, when α increases along the momentum phase, α orientation also increases, approximately linearly. Thus, the profile of the impulse face 7b of the teeth 7 is convex, as illustrated in exaggerated form on the figure 9 . The development of α orientation as a function of the angle α is also illustrated in the figure 10 .

À nouveau, comme c'est le cas pour les palettes 13, 15, l'angle αorientation peut être calculé en plusieurs points, afin de déterminer le profil de ladite face d'impulsion 7b de la façon mentionnée ci-dessus.Again, as is the case for the vanes 13, 15, the angle α orientation can be calculated at several points, in order to determine the profile of said impulse face 7b in the manner mentioned above.

La figure 11 est un graphique normalisé illustrant une comparaison du rapport de vitesse de l'ancre 9 sur la roue d'échappement 3 sur un dégagement et une impulsion, pour un échappement conventionnel (« Rv Profils standards ») et un échappement selon l'invention (« Rv Profils courbes »). Ce graphique illustre à la fois l'effet de la forme des faces d'impulsion 13b, 15b qui assure une transmission de couple constant pendant la phase d'impulsion sur la face d'impulsion 7b d'une dent 7, ainsi que l'effet du profil courbé des dents 7 de la roue d'échappement.The figure 11 is a normalized graph illustrating a comparison of the speed ratio of the lever 9 on the escapement wheel 3 on a clearance and an impulse, for a conventional escapement (“Rv Standard Profiles”) and an escapement according to the invention (“ Rv Curved profiles”). This graph illustrates both the effect of the shape of the impulse faces 13b, 15b which ensures constant torque transmission during the impulse phase on the impulse face 7b of a tooth 7, as well as the effect of the curved profile of the teeth 7 of the escape wheel.

En ce qui concerne la transmission de couple constant, en regardant la partie du graphique indiquée par « impulsion sur la palette », pour l'échappement conventionnel, le rapport de vitesse « Rv Profils standards » décroit le long de cette phase, pour les raisons évoquées ci-dessus. Par contre, pour l'échappement selon l'invention, le rapport de vitesse « Rv Profils courbes » reste constant, puisque le rapport de couple reste constant. Il est également clair de ce graphique que l'intégrale de la fonction « Rv Profils courbes » pendant la phase d'impulsion sur la face est supérieure à celle de « Rv Profils standards », et que par conséquent plus d'énergie est fournie à l'ancre pendant cette phase de l'impulsion. En effet, la valeur Seuil susmentionnée peut être déterminée en considérant la pente voulue pour la ligne « Rv Profils courbes » pendant l'impulsion sur la dent, ce qui représente la première dérivée du rapport de vitesse angulaire.With regard to the transmission of constant torque, looking at the part of the graph indicated by "impulse on the pallet", for the conventional escapement, the speed ratio "Rv Standard profiles" decreases along this phase, for the reasons mentioned above. On the other hand, for the escapement according to the invention, the speed ratio “Rv Curved Profiles” remains constant, since the torque ratio remains constant. It is also clear from this graph that the integral of the function "Rv Curved Profiles" during the impulse phase on the face is greater than that of "Rv Standard Profiles", and therefore more energy is supplied to the anchor during this phase of the impulse. Indeed, the aforementioned Threshold value can be determined by considering the desired slope for the “Rv Curved Profiles” line during the impulse on the tooth, which represents the first derivative of the angular velocity ratio.

Ce graphique illustre également l'effet du profil courbé de la face d'impulsion 7b des dents 7 de la roue d'échappement 3. Puisque cette face 7b est courbée, la pente de la courbe du rapport de vitesse présente une pente significativement inférieure à celle qui se présente dans le cas classique « Rv Profils standards ». Un décollement peut ainsi être évité.This graph also illustrates the effect of the curved profile of the impulse face 7b of the teeth 7 of the escapement wheel 3. Since this face 7b is curved, the slope of the gear ratio curve has a slope significantly less than that which occurs in the classic case “Rv standard profiles”. Detachment can thus be avoided.

Dans le cas où la forme des plans d'impulsion 7b des dents 7 de la roue d'échappement 3 est droite, la courbe correspondante suivra celle du « Rv Profils courbes » jusqu'à l'intersection avec la ligne verticale ayant la valeur normalisé 800, et puis sera confondue avec celle de « Rv Profils standards » jusqu'à la fin de la phase d'impulsion.In the case where the shape of the impulse planes 7b of the teeth 7 of the escapement wheel 3 is straight, the corresponding curve will follow that of "Rv Curved profiles" up to the intersection with the vertical line having the standardized value 800, and then will be confused with that of "Rv Standard Profiles" until the end of the pulse phase.

Bien que ce profil des faces d'impulsion 7b des dents 7 de la roue d'échappement 3 soit illustré ici en combinaison avec les formes optimisées des palettes 13, 15, il peut néanmoins être utilisé avec des palettes connues, par exemple des palettes présentant des plans standards.Although this profile of the impulse faces 7b of the teeth 7 of the escapement wheel 3 is illustrated here in combination with the optimized shapes of the pallets 13, 15, it can nevertheless be used with known pallets, for example pallets having standard plans.

Des calculs ont montré que la forme des faces d'impulsion 13b, 15b des palettes 13, 15 augmente le rendement d'environ 2 à 3 points, et la forme de la face d'impulsion 7b des dents 7 de la roue d'échappement l'augmente d'environ 2 à 3 points supplémentaires. La combinaison des deux optimisations ajoute par conséquent environ 4 à 6 points de rendement à l'échappement.Calculations have shown that the shape of the impulse faces 13b, 15b of the pallets 13, 15 increases the efficiency by about 2 to 3 points, and the shape of the impulse face 7b of the teeth 7 of the escape wheel increases it by about 2 to 3 additional points. The combination of the two optimizations therefore adds approximately 4 to 6 points of efficiency to the exhaust.

L'ancre 9 et/ou la roue d'échappement 3 décrits ci-dessus peuvent, par exemple, être fabriquées par des procédés de micro-usinage, tel que le LIGA, l'imprimerie 3D, le masquage et gravure à partir d'une plaque de matériau, de la stéréolithographie, ou similaire. Des matériaux appropriés peuvent, par exemple, être choisis parmi les métaux monocristallins, polycristallins ou amorphes (tels que l'acier, le nickel-phosphore, le laiton ou similaire), des non-métaux tels que le silicium, son oxyde, son nitrure ou sa carbure, l'alumine sous toutes ses formes, le diamant (y compris le carbone adamantin), ces matériaux non-métalliques étant monocristallins ou polycristallins. Tous ces matériaux peuvent éventuellement être revêtus d'un autre matériau dur et/ou anti-frottements, tel que le carbone adamantin ou l'oxyde de silicium.The anchor 9 and/or the escape wheel 3 described above can, for example, be manufactured by micro-machining processes, such as LIGA, 3D printing, masking and engraving from a slab of material, stereolithography, or the like. Suitable materials can, for example, be chosen from monocrystalline, polycrystalline or amorphous metals (such as steel, nickel-phosphorus, brass or similar), non-metals such as silicon, its oxide, its nitride or its carbide, alumina in all its forms, diamond (including adamantine carbon), these non-metallic materials being monocrystalline or polycrystalline. All these materials may optionally be coated with another hard and/or anti-friction material, such as adamantine carbon or silicon oxide.

L'utilisation de ces profils courbes entraîne une amélioration du rendement de l'échappement 1 de l'ordre de 5% si les profils sont adoptés sur les palettes 13, 15 et sur la roue d'échappement 3.The use of these curved profiles leads to an improvement in the efficiency of the escapement 1 of the order of 5% if the profiles are adopted on the pallets 13, 15 and on the escape wheel 3.

Bien que l'invention ait été décrite ci-dessus en lien avec des modes de réalisation spécifiques, des variantes supplémentaires sont également envisageables sans sortir de la portée de l'invention comme définie par les revendications.Although the invention has been described above in connection with specific embodiments, additional variants are also possible without departing from the scope of the invention as defined by the claims.

Claims (11)

  1. Escapement (1) for a timepiece, comprising:
    - an escapement wheel (3) mounted in a pivotable manner about a corresponding axis of rotation (5) and intended to be driven by a power source, said escapement wheel (3) including a plurality of teeth (7);
    - an anchor (9) mounted in a pivotable manner about a corresponding axis of rotation (11), said anchor (9) comprising an entry pallet (13) and an exit pallet (15), each pallet (13, 15) comprising a rest face (13a, 15a) arranged to block said escapement wheel (3), as well as an impulsion face (13b, 15b) arranged to interact with said escapement wheel (3) in order to transmit impulsions received from the latter to a regulating member arranged to produce oscillations, said anchor (9) being arranged to release said escapement wheel (3) periodically under the control of said regulating member,
    characterized in that at least one of said impulsion faces (13b, 15b) is configured in such a way that, on at least one part of said impulsion face (13b, 15b), and considered at each point of contact (C') between the escapement wheel (3) and said impulsion face (13b, 15b), the tangent of said impulsion face (13b, 15b) intersects the center-to-center line (12) between the escapement wheel (3) and the anchor (9) at an angle (αorientation) which observes the relationship: α orientation = α COF + tan 1 C R + cos α θ R 2 R 2 sin α θ + / 10 %
    Figure imgb0020
    where R 2 = R 2 sin 2 α + R cos α + L 2
    Figure imgb0021
    and where θ = tan 1 R sin α L R cos α
    Figure imgb0022
    in which all the angles are expressed in radians, and
    - αorientation is the angle between said tangent with said center-to-center line (12);
    - α is the angle between a line joining said point of contact (C') and the axis of rotation (5) of said escapement wheel and said center-to-center line (12);
    - COF is the trigonometric tangent of the coefficient of friction between the escapement wheel (3) and said impulsion face (13b, 15b);
    - R is the distance between the axis of rotation (5) of said escapement wheel (3) and said point of contact (C'), +/- 10%;
    - C is the torque ratio between that of the anchor (9) and that of the escapement wheel (3);
    - L is the length of said center-to-center line (12).
  2. Escapement (1) according to Claim 1, in which the impulsion face (13b) of the entry pallet (13) is convex.
  3. Escapement (1) according to one of Claims 1 and 2, in which the impulsion face (15b) of the exit pallet (15) is concave.
  4. Escapement (1) according to one of the preceding claims, in which the form of at least one part of each of said impulsion faces (13b, 15b) observes said relationship.
  5. Escapement (1) according to one of the preceding claims, in which the escapement wheel (3) includes teeth (7) having convex impulsion faces (7b).
  6. Escapement (1) for a timepiece, comprising:
    - an escapement wheel (3) mounted in a pivotable manner about a corresponding axis of rotation (5) and intended to be driven by a power source, said escapement wheel (3) including a plurality of teeth (7);
    - an anchor (9) mounted in a pivotable manner about a corresponding axis of rotation (11), said anchor (9) comprising an entry pallet (13) and an exit pallet (15), each pallet (13, 15) comprising a rest face (13a, 15a) arranged to block said escapement wheel (3), as well as an impulsion face (13b, 15b) arranged to interact with said escapement wheel (3) in order to transmit impulsions received from the latter to a regulating member arranged to produce oscillations, said anchor (9) being arranged to release said escapement wheel (3) periodically under the control of said regulating member,
    characterized in that, on at least one part of an impulsion face (7b) that each of said teeth (7) includes, and considered at each point of contact (C') between said impulsion face (7b) and one of said pallets (13, 15), the tangent of said impulsion face (7b) intersects the center-to-center line (12) between the escapement wheel (3) and the anchor (9) at an angle (αorientation) which observes the relationship α orientation = tan 1 R Seuil α cos α + C R cos α + R cos α L R sin α Seuil × α + C 1 + / 10 %
    Figure imgb0023
    in which
    - αorientation is the angle between said tangent and said center-to-center line (12);
    - α is the angle between a line joining said point of contact (C') and the axis of rotation (5) of said escapement wheel (3) and said center-to-center line (12);
    - Seuil is a value for a loss of contact threshold between the escapement wheel (3) and the anchor (9), and is less than or equal to 0.01;
    - R is the distance between the axis of rotation (5) of said escapement wheel (3) and said point of contact (C'), +/- 10%;
    - C is the torque ratio between that of the anchor (9) and that of the escapement wheel (3);
    - L is the length of said center-to-center line (12).
  7. Escapement (1) according to the preceding claim, in which the escapement wheel (3) includes teeth (7) having convex impulsion faces (7b).
  8. Escapement (1) according to one of Claims 6 and 7, in which said value Seuil is a function of the first derivative of the speed ratio of the anchor (9) on the escapement wheel (3) at the time of the impulsion on the lip of said pallet (13, 15).
  9. Escapement (1) according to one of Claims 1 to 4 and according to one of Claims 6 to 8.
  10. Timepiece movement comprising an escapement (1) according to one of the preceding claims.
  11. Timepiece comprising a movement according to Claim 10.
EP17801690.3A 2016-11-17 2017-11-16 Watch escapement with optimized torque transmission Active EP3542224B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21169122.5A EP3869279A1 (en) 2016-11-17 2017-11-16 Exhaust system with optimised torque transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01521/16A CH713143A1 (en) 2016-11-17 2016-11-17 Exhaust for timepiece.
PCT/EP2017/079518 WO2018091616A1 (en) 2016-11-17 2017-11-16 Escapement for a timepiece with optimized torque transmission

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21169122.5A Division-Into EP3869279A1 (en) 2016-11-17 2017-11-16 Exhaust system with optimised torque transmission
EP21169122.5A Division EP3869279A1 (en) 2016-11-17 2017-11-16 Exhaust system with optimised torque transmission

Publications (2)

Publication Number Publication Date
EP3542224A1 EP3542224A1 (en) 2019-09-25
EP3542224B1 true EP3542224B1 (en) 2022-05-18

Family

ID=57485268

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17801690.3A Active EP3542224B1 (en) 2016-11-17 2017-11-16 Watch escapement with optimized torque transmission
EP21169122.5A Pending EP3869279A1 (en) 2016-11-17 2017-11-16 Exhaust system with optimised torque transmission

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21169122.5A Pending EP3869279A1 (en) 2016-11-17 2017-11-16 Exhaust system with optimised torque transmission

Country Status (6)

Country Link
US (1) US11480923B2 (en)
EP (2) EP3542224B1 (en)
JP (1) JP7016360B2 (en)
CN (1) CN109997084B (en)
CH (1) CH713143A1 (en)
WO (1) WO2018091616A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103041B2 (en) * 2018-08-03 2022-07-20 セイコーエプソン株式会社 Ankles, movements, watches

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH9351A (en) 1894-10-15 1895-05-31 Hermann Fischer Improved anchor for all kinds of clocks
US3538705A (en) * 1968-11-07 1970-11-10 Hamilton Watch Co Escapement
US3628327A (en) * 1969-04-14 1971-12-21 Suwa Seikosha Kk Clubtooth lever escapement
EP1770452A1 (en) * 2005-09-30 2007-04-04 Peter Baumberger Detent escapement for timepieces
CH702689B1 (en) * 2006-11-13 2011-08-31 Patek Philippe Sa Geneve Shared impulsion pallet escapement for timepiece, has concave part conformed so that angle defined by pulse faces at contact point between faces is of specific degrees during part of pulse phase where rest lip is slid on concave part
CN201083966Y (en) * 2007-07-02 2008-07-09 天津中鸥表业集团有限公司 Mechanical wristwatch escapement mechanism
CH708113B1 (en) 2007-09-13 2014-12-15 Stéphane Von Gunten Anchor for a watch escapement.
EP2336832B1 (en) * 2009-12-21 2020-12-02 Rolex Sa Swiss lever escapement
CN102971678B (en) * 2010-04-01 2015-07-22 劳力士有限公司 Immobilizing device for a toothed wheel
EP2431823A1 (en) * 2010-09-16 2012-03-21 Blancpain S.A. Blancpain escapement with improved anchor for a timepiece movement
JP5485859B2 (en) * 2010-11-17 2014-05-07 セイコーインスツル株式会社 Uncle escapement and mechanical watch with the same
CH704764A2 (en) * 2011-03-31 2012-10-15 Cartier Creation Studio Sa Exhaust mechanism in particular for a timepiece movement.
EP2607968B1 (en) * 2011-12-21 2014-10-08 Vaucher Manufacture Fleurier S.A. Escapement mechanism
JP5891076B2 (en) 2012-03-09 2016-03-22 セイコーインスツル株式会社 Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method
EP2706416B1 (en) * 2012-09-07 2015-11-18 The Swatch Group Research and Development Ltd Constant force flexible anchor

Also Published As

Publication number Publication date
CH713143A1 (en) 2018-05-31
CN109997084A (en) 2019-07-09
US20200064776A1 (en) 2020-02-27
JP7016360B2 (en) 2022-02-21
US11480923B2 (en) 2022-10-25
WO2018091616A1 (en) 2018-05-24
EP3542224A1 (en) 2019-09-25
EP3869279A1 (en) 2021-08-25
CN109997084B (en) 2021-03-12
JP2019536031A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP2977829B1 (en) Assembly with timepiece braking mobile
EP2950165B1 (en) System for quick correction of calendar information
EP2132604A1 (en) Tourbillon movement for timepiece
EP3542224B1 (en) Watch escapement with optimized torque transmission
EP3542225B1 (en) Watch escapement with optimized draft
EP3084529B1 (en) Hairspring with device to prevent coils from moving close together
US6802645B2 (en) Escapement for timekeeper
EP3690556B1 (en) Timepiece comprising a display with variable pitch
EP2607968B1 (en) Escapement mechanism
EP2677372B1 (en) Wheel with clearance compensation
EP2859411A1 (en) Escapement device for timepiece
EP2718769B1 (en) Source of mechanical energy for a clock movement with preset output torque
CH706224A2 (en) Dent escape, escape wheel, pallet escapement clockwork, mechanical timepiece and torque transmission method.
EP3382468B1 (en) Movement with extension of running reserve
FR2742011A1 (en) ROTOR / STATOR INTERFACE VIBRATION MOTOR WITH SHAPE MEMORY ALLOY
EP2798413B1 (en) Spring for clock movement
EP3781994B1 (en) Rest anchor escapment mechanism and timepiece comprising such an escapment mechanism
CH710925B1 (en) Exhaust mechanism.
EP2515185B1 (en) Engine with constant torque
EP3435170B1 (en) Timepiece oscillator having flexible guides with wide angular travel
CH716705B1 (en) Watchmaker escapement.
EP3761122B1 (en) Timepiece escapement component, associated escapement mechanism and timepiece
EP3399373A1 (en) Clock device with positioning member
CH706670A2 (en) Backlash clockwork wheel for use in clockwork gear train of movement of timepiece, has toothing comprising pairs of teeth, where each pair includes flexible teeth on either side of radial axis, and distances between teeth are different
CH712715B1 (en) Exhaust mechanism using a leaf spring working in buckling.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERAUD, ALEXIS

Inventor name: MOLINA, VALENTIN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017057678

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1493516

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017057678

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

Ref country code: CH

Payment date: 20231201

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511