EP3541558A1 - Verfahren zum reinigen eines werkstücks nach einem thermischen fügeprozess mit kathodischer reinigung, reinigungsvorrichtung und prozessgas - Google Patents
Verfahren zum reinigen eines werkstücks nach einem thermischen fügeprozess mit kathodischer reinigung, reinigungsvorrichtung und prozessgasInfo
- Publication number
- EP3541558A1 EP3541558A1 EP17800389.3A EP17800389A EP3541558A1 EP 3541558 A1 EP3541558 A1 EP 3541558A1 EP 17800389 A EP17800389 A EP 17800389A EP 3541558 A1 EP3541558 A1 EP 3541558A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- cleaning
- processing gas
- consumable electrode
- vol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 80
- 238000005304 joining Methods 0.000 title claims description 15
- 238000003466 welding Methods 0.000 claims abstract description 64
- 238000010891 electric arc Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 63
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 32
- 229910052786 argon Inorganic materials 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052734 helium Inorganic materials 0.000 claims description 12
- 239000001307 helium Substances 0.000 claims description 11
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 2
- 238000005219 brazing Methods 0.000 claims description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 11
- 239000011261 inert gas Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000007778 shielded metal arc welding Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/013—Arc cutting, gouging, scarfing or desurfacing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/32—Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
- B23K35/402—Non-consumable electrodes; C-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/164—Arc welding or cutting making use of shielding gas making use of a moving fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
Definitions
- the present invention concerns a method for cleaning a surface of a workpiece after a thermal joining process, wherein the cleaning is conducted by removing oxide from the surface of the workpiece which is formed on the weld or the weld heat-affected zone of the workpiece during the previous joining process.
- the welding is one of the well-known joining processes by causing fusion. The welding process use an energy sources in a proper way to melt the workpieces to be welded.
- a filler material is often added to the weld joint to form a pool of molten material that cools to a joint that can be strong, or even stronger than the workpiece itself.
- SMAW shielded metal arc welding
- GTAW gas tungsten arc welding
- GMAW Flux-cored arc welding
- FCAW Flux-cored arc welding
- SAW submerged arc welding
- ESW electro slag welding
- other fusion welding technologies use many different energy sources including gas flame, electrical arc, laser, electron beam, ultrasound, friction to adapt to different requirements of joining materials.
- the workpieces to be welded are usually made of metal which will form an oxide layer on its surface in the present of both oxygen and heat. This phenomenon is particular conspicuous during the welding process due to the high temperature of the workpieces and its contact with the atmosphere. This non-uniform oxide layer is performed as a rainbow of colors in the weld or the heat affected zone which is however not desirable as it causes change of the workpiece structure and reduces its corrosion resistance. Therefore, it is required to remove this oxide layer to achieve a better quality of the weld. There are various methods to remove such oxide layers as like some mechanical treatments which brush or grind the discoloring surface of the workpiece.
- the present invention provide a cleaning method according to claim 1 and a device according to claim 10 to achieve the aforementioned aim.
- an electric arc is generated between the joined workpiece and a non-consumable electrode to remove the oxide on the workpiece, wherein a power source is provided to electrically connect the workpiece and the non- consumable electrode and wherein the non-consumable electrode is essentially anodically polarized and the workpiece is essentially cathodically polarized.
- essentially anodically polarized it means that the non-consumable electrode is polarized anodically by more than 75% electrical energy in total which is supplied by the power source, preferably more than 85%, more preferably 100% and the workpiece is thus essentially cathodically polarized accordingly.
- the power source provides preferably a direct current (DC) circuit by which the non- consumable electrode is fully anodically polarized and the workpiece is fully cathodically polarized.
- the power source could be also an alternating current (AC) circuit which has very small anodic portion on the workpiece to be cleaned, maximal 25%, which means the AC circuit sets maximal 25% of the electrical energy in total for weld penetration action, when the workpiece is anodically polarized, and minimal 75% of the energy for cleaning action on the workpiece, when the workpiece is cathodically polarized. This percentage is adjusted by a balance control in the AC circuit.
- the thus arranged AC circuit is advantageous to be able to control the cleaning depth of the oxide layer and also to control the heat distribution between the electrode and the workpiece to be treated.
- the power source provides preferably a small current from 5A to 100A, preferable from 10 to 50A and more preferable from 10A to 30A.
- the polarity provides a cleaning effect on the workpiece which remove the oxide layer formed on the weld and the adjacent heat affected zone surface.
- the metallic workpiece and its oxide layer form a dielectric.
- a concentration of electrical field lines occurs to result in a highest density of energy on the cathode. This causes a local vaporization of the material including the oxide layer and a small amount of the underlying workpiece which then leaves the surface of the workpiece free of oxide.
- cathodic cleaning oxides which are ion bombardment and electron emission.
- the workpiece is usually anodic polarized which produces more heat than the electrode and thus built a high heat concentration on the workpiece to facilitate its melting and achieve a deep penetration.
- the non-consumable electrode of the cleaning method is preferably a tungsten electrode and has a conventional shape with a gradually reduced end, preferred a tip- like end towards the workpiece.
- the electrode has preferably a diameter of 1 to 10mm and more preferably from 1 to 5mm.
- the electrode is preferably surrounded by at least one coaxial processing gas nozzle which introduces a processing gas along the electrode towards the workpiece to enhance the cleaning effect as well as to prevent the arc and the heated area of the workpiece from contacting the atmosphere.
- the processing gas could be an inert gas as like argon or helium, and could also be a mixture of argon and helium in which the helium has an amount of 1 to 50 vol.-%, preferable 10 to 40 vol.-%, more preferable 20 to 30 vol.-% and the rest is argon.
- helium helps to achieve a better heat dissipation and to control the width of the cleaning zone by the helium admixture since it is more difficult to be ionized than Argon.
- the processing gas could also contain nitrogen having an amount from 0.01 vol.-% to 5 vol.-%, preferable 1 vol.-% to 4 vol.-% as like 2 or 3 vol.-% and the rest is helium or argon.
- This processing gas is especially well combined with a relatively low current from 5 to 50 A such as 10 A, 30 A to achieve a great cleaning performance.
- the processing gas could be a slightly reducing gas containing gas selected from H2, CO, NO, N20, CnHm having an amount from 0.01 to 10 vol.-%, preferable from 0.1 to 5 vol.-% and more preferably from 0.1 to 2 vol.-%, which is balanced by an inert gas selected from Ar, He, Xe, Kr, or by a gas mixture which contains inert gas as like argon and nitrogen in which the nitrogen has an amount of 0.5 vol.-% to 5 vol.-% as like 2 vol.-%, 3 vol.-% or 4 vol.-%.
- a slightly reducing gas containing gas selected from H2, CO, NO, N20, CnHm having an amount from 0.01 to 10 vol.-%, preferable from 0.1 to 5 vol.-% and more preferably from 0.1 to 2 vol.-%, which is balanced by an inert gas selected from Ar, He, Xe, Kr, or by a gas mixture which contains inert gas as like argon and nitrogen in
- the processing gas consists of H2 and Ar in which H2 has a concentration from 0.1 to 10 vol.-%, preferable from 0.1 to 5 vol.-% and more preferably from 0.1 to 2 vol.-%.
- Hydrogen as a part of the processing gas can be partially dissolved and partially ionized in the arc during the cleaning process which changes the temperature distribution in the arc and on the cathode. These changes affect the oxide removal with thermal- electro emission, tunnel-electro emission, ion- bombardment etc.
- the hydrogen is very oxygen-affine and can thus easily bond to the atomic 02 which is present in the heated zone or is released from oxide layer of the workpiece during the cathodic cleaning process.
- the application of hydrogen as a part of the processing gas prevents the workpiece from oxidizing under the high temperature and therefore achieves a better quality of the workpiece and a more reliable performance of the cleaning process.
- the processing gas could also contain a minor active gas selected from C02, 02 which has a concentration up to 0.1 vol.-%. It could be 10Oppm, 200ppm, 300ppm and the rest is inert gas as like argon.
- the cleaning method in accordance with the present invention is used to treat the weld generated by a previous welding process.
- the cleaning method is an independent control the cleaning depth of the oxide layer process which is separated from the previous welding process.
- the parameters of the cleaning method as like the arc length, current, processing gas composition and flowrate, electrode speed can be therefore set separately from the welding process which enables the cleaning process to clean the oxides more flexible and efficient. By applying this method the operator can adjust the cleaning process performance upon the weld characteristics such as the thickness of the oxide layer to achieve a best cleaning performance.
- the cleaning method is applied on the weld when it is cooled below 200°C, preferably below 100°C, more preferably at usual room temperatures.
- the cleaning can be performed on an additionally cooled weldment surface, to even further reduce heat impact from cathodic cleaning.
- the workpiece is made of a steel alloy, and preferably made of high alloyed stainless steel.
- Steels are Fe-C alloys with less than 2% C.
- High alloyed steels have a total of alloying elements which in sum exceeds 5%.
- the dominant alloying element is Chromium.
- Stainless steels obtain their anti-corrosive properties by the uniform Cr oxide layer on the surface.
- the workpiece could also be made of a high alloyed material, other than steels.
- High alloyed materials which are not steels are defined by having one alloying element in a higher concentration than Fe. Preferably this would be a Ni-based alloy. Ni based alloys have Ni as predominant alloying element and this exceeds Fe content.
- This oxide layer on a thermal joint and the adjacent surface area possesses an uneven thickness up to 300nm.
- the characteristics of the oxide layer are deviated differently which are depends on the workpiece, the type of the welding, the time, the temperature and other relevant parameters.
- This oxide layer is performed as colorful streaks which have irregular edges and are formed parallel to the weld and also on the weld or in the weld heat-affected zone.
- the oxide layer is formed due to the high temperature during the process as well as the contact with the oxidizing agent, especially the oxygen in the atmosphere.
- Thermal oxide layers on the weldment can reduce significantly the corrosion resistance of the workpiece, especially for a high- alloyed metal, and thus affects the quality of the component. This is a consequence of the somehow lowered Chromium concentration below the oxidized surface. Therefore, this oxide layer needs to be removed after the welding process, including the material with reduced Chromium content.
- the arc is transferred to the workpiece in the so-called "transferred" arc mode.
- the arc could be formed as a concentrated arc as in a conventional tungsten inert gas welding and could be also formed as a constricted arc as in a plasma welding.
- the arc has a preferable length 0.5 to 8mm and preferred from 2 to 4mm.
- the arc end on the surface of the workpiece can align itself automatically with the edge of the oxide layer due to its highest density of energy, so that the oxide layer can be efficiently removed by the cathodic cleaning.
- the cathodic cleaning can be adapted to the oxide layer whose properties, as like thickness, moisture, are dependent variable of the previous welding process by adjusting the electrical parameters as like current, voltage, pulse frequency, AC balance, processing gas composition, electrode diameter or geometry, arc length, travelling speed, etc. It should be appreciated for a skilled person that these parameters could be adjusted to provide a desirable arc that facilitates removal of the oxide layer from the workpiece.
- the cleaning intensity and cleaning area can also be controlled by an additional relative movement of the torch versus the weldment to be cleaned. This can be e.g. weaving, rotational movements of the torch.
- the cathodic cleaning method in accordance with the present invention enables a reliable and efficient cleaning to remove the oxide, particular the chromium oxide from the workpiece after the welding without costly and dangerous wet chemicals.
- the application of the cathodic cleaning is advantageous to remove oxide with relatively small area, uneven thickness and unstable property which is dependent of the previous welding.
- the cathodic cleaning can be independently adjusted from the welding process to remove the oxide layer of the workpiece more efficient and flexible. This is of particular advantage for manual welders who can first conclude a larger number of welds on a component, then change equipment parameter settings to cleaning and use the same equipment for cleaning the welds. For more demanding applications, the use of a specialized cathodic cleaning equipment separate from the one used for welding - is preferred.
- the cleaning method and the previous welding process could be connected in such a manner that the cleaning is carried out with a predetermined time interval behind the welding process.
- the welding process is implemented by a welding unit including an electrode and a gas nozzle surrounding the electrode and may include a filler wire as well, wherein the welding unit travels relatively along the joining seam.
- the cleaning electrode, or an array of electrodes can be arranged behind the welding unit with a predetermined distance in the welding direction so that the cleaning and the welding of the workpiece are successively completed in a compact and simple way.
- the oxide layer on the weld and the heat affected zone is directly removed by the following cleaning process and the welding quality is efficiently increased.
- the non-consumable electrode at least one gas nozzle to introduce the processing gas towards the workpiece and the power source which electrically communicates the non-consumable electrode and the workpiece.
- the cleaning device has preferably a control unit which analyses the input data from the previous welding process and evaluate it and then deliver the evaluated output data to the cleaning unit to adjust the parameter as like the processing gas composition or flowrate to adapt to the variable oxide layer on the welded workpiece.
- a cooling unit is arranged between the welding unit and the cleaning device to cool the weld before the cleaning process starts.
- the cooling unit uses gaseous or fluid median to cool down the weld and thus be prepared for the following cleaning process.
- direct contacting heat conduction e.g. copper fixings and plates, can be used to extract post weld heat.
- a trail follows the cleaning device in the welding direction to clean up the workpiece. The workpiece can thus be welded, cleaned and treated in a continuous line to achieve a fast and simple effect.
- Fig.1 a cleaning device in accordance with the present invention to remove the oxides Fig.2: an oxide layer formed in the welding process
- Fig.3 a cleaning device in accordance with the present invention in a vertical position
- Fig.4 a continuous line equipped with welding device, cleaning device and a trail.
- Figure 1 illustrates schematically a cleaning device for removing oxides which are formed during the previous welding process on the weld seam and the heat-affected zone of the workpiece.
- the workpiece 6 is a T-shaped piece which is constructed by two base materials which are vertically welded, also known as filet weld.
- the weld 8 finds itself on the place where the two substrates are connected by welding.
- the weld heat-affected zone 9 extends from the solidified weld interface to the termination of the sensitizing temperature in the substrates.
- the oxides are formed in this area in presence of both heat and oxygen.
- the oxides perform as a discoloration on the weld or the heat affected zone.
- the different colors e.g.
- the cleaning device contains a tungsten electrode 2, a gas nozzle 3 surrounding the electrode 2, a power source 7 electrically connecting the electrode 2 and the workpiece 6.
- the tungsten electrode 2 is anodic connected and the workpiece 6 is cathodic connected.
- An electric arc is struck between the electrode 2 and the workpiece 6.
- the end of the arc travels on the oxides to be removed.
- the gas nozzle 3 is arranged to introduce a processing gas 1 along the electrode 2 towards the workpiece 6.
- the workpiece is made of steel and preferable made of stainless steel.
- the oxide to be removed is mainly chromium oxide.
- the power source 7 generates a DC circuit and provides a current from 5 to 100 A, preferably 10 to 50A.
- the cleaning device is applied to this workpiece 6 to remove the chromium oxides.
- the arc length generated amounts about 3mm.
- the cleaning device moves relative to the weld 8 with a speed of 0,1 m/min to 6m/min to remove the oxides formed on the weld and in the vicinity of the weld 8.
- the processing gas fed by the gas nozzle 3 embraces the arc and the cleaning area.
- the composition of the process gas affects electrical arc discharge, plasma behavior, cathodic spot movement and plasma chemical reactions on the metal and metal oxides surface.
- the processing gas has a flowrate of about 5 to 20l/min, preferable 10 to 151/min.
- the composition of the processing gas could be
- - Inert gas selected from argon, helium,
- FIG. 2 shows schematic a cross section through chromium oxide layers 5 which are formed on the weld 8 and in the vicinity of the weld 8 on the workpiece 6 in the welding process.
- the oxide layer 5 has an uneven thickness due to the welding process, different temperatures and exposure times to oxidizing agents. The nearer to the weld 8, the thicker is the oxide layer 5 and the further from the weld 8, the thinner is it.
- the thickest area of the oxide layer 5 lies on the weld 8 which can have a thickness of about 175 to 275 nm. The thickness reduces gradually from the weld 8 outwards. The thinnest area of the oxide layer 5 has a thickness of about 5nm. During the cleaning process the cathodic foot point of the arc can align itself automatically with the edge of the oxide layer to the steel surface of the workpiece 6 due to its highest density of electric field energy.
- FIG. 3 shows schematically the cleaning device in accordance with the present invention.
- the cleaning device is employed to treat a workpiece 6 which was welded from two base materials adjacent to each other, also known as but weld.
- a power source 7 electrically connects the tungsten electrode 2 to the workpiece 6 to generate an electrical arc 4 therebetween, wherein the electrode 2 is anode and the workpiece 6 is cathode.
- the power source 6 provides a circuit having a current of 10 to 50A.
- a gas nozzle 3 is arranged surrounding the electrode 2 to introduce a processing gas 1 towards the workpiece 6 to enclose the arc 4, to control the cleaning and protect the area to be treated from surrounding atmosphere.
- Figure 4 shows an application of the cathodic cleaning device 14 in an automatically continuous line. In this embodiment, the workpiece 6 moves in direction from the welding unit 13 towards a treatment unit 15 to be continuously treated in the production line.
- the weld interface goes first under the welding unit 13 to be welded and the weld 8 generated goes then under the cleaning device 14 to remove the oxides which is formed during the welding process in the welding unit 13.
- the welding unit has a power source 12 which electrically connects an electrode 10 and the workpiece 6.
- the electrode is preferably cathodic connected and the workpiece 6 is anodic connected which built a high heat concentration on the workpiece to facilitate its melting and achieve a deep penetration.
- the welding unit 13 has straight polarity which is opposite to the polarity of the cleaning device 14.
- the cleaning device can be set with a predetermined time interval after the welding unit 13 to insure that the oxides can be removed efficiently.
- the weld 8 should be preferably cooled below 200°C before being cleaned by the cleaning device 14 to avoid generating extra oxides during the cleaning process.
- the weld goes further under a post-treatment unit 15 which introduces primarily inert or reducing gas onto the surface to protect it from contacting air and secondary oxidation, but also to further cool down the surface.
- this treatment unit 15 could be also arranged between the cleaning device 14 and the welding unit 13.
- the cleaning device 14 has preferably a control unit which analyses input data from the welding unit 13 and evaluate it and then deliver the evaluated output data to the cleaning device 14 to be able to adjust the parameters as like the processing gas composition, flowrate, current, electrode speed and so forth to adapt to the oxide layer formed on the workpiece 6 in the previous welding process.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Arc Welding In General (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Cleaning In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16020454.1A EP3323544A1 (de) | 2016-11-18 | 2016-11-18 | Verfahren zur kathodischen reinigung |
PCT/EP2017/025330 WO2018091147A1 (en) | 2016-11-18 | 2017-11-09 | Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3541558A1 true EP3541558A1 (de) | 2019-09-25 |
EP3541558B1 EP3541558B1 (de) | 2022-03-02 |
Family
ID=57354064
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16020454.1A Withdrawn EP3323544A1 (de) | 2016-11-18 | 2016-11-18 | Verfahren zur kathodischen reinigung |
EP17800389.3A Active EP3541558B1 (de) | 2016-11-18 | 2017-11-09 | Verfahren zur kathodischen reinigung eines werkstückes nach einem thermischen verbinden ; reinigungseinrichtung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16020454.1A Withdrawn EP3323544A1 (de) | 2016-11-18 | 2016-11-18 | Verfahren zur kathodischen reinigung |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190299314A1 (de) |
EP (2) | EP3323544A1 (de) |
CN (1) | CN110087811B (de) |
AU (1) | AU2017362454B2 (de) |
CA (1) | CA3043479A1 (de) |
MX (1) | MX2019005612A (de) |
WO (1) | WO2018091147A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021210335A1 (ja) * | 2020-04-15 | 2021-10-21 | Jfeスチール株式会社 | アーク溶接継手およびアーク溶接方法 |
CN112453652A (zh) * | 2020-11-16 | 2021-03-09 | 四川石油天然气建设工程有限责任公司 | 耐蚀合金复合管焊接用含氢混合保护气体及其焊接工艺 |
EP4079438A1 (de) * | 2021-04-23 | 2022-10-26 | Ewm Ag | Lichtbogenschweissgerät mit schweissnahtreinigungsfunktion |
CN114131155B (zh) * | 2021-12-10 | 2023-09-22 | 唐山松下产业机器有限公司 | 焊接装置及钨极清理方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS511339A (ja) * | 1974-06-17 | 1976-01-08 | Mitsubishi Heavy Ind Ltd | Aruminiumukeikinzokuzainoyosetsuhoho |
JPS58154460A (ja) * | 1982-03-08 | 1983-09-13 | Mitsui Eng & Shipbuild Co Ltd | Tig溶接方法 |
RU2028841C1 (ru) * | 1991-07-23 | 1995-02-20 | Научно-технический комплекс "Элион" | Способ обработки изделий и устройство для его осуществления |
JPH05131270A (ja) * | 1991-11-08 | 1993-05-28 | Nippon Steel Corp | 真空アーク処理装置 |
US5641417A (en) * | 1995-05-26 | 1997-06-24 | Reynolds Metals Company | Method and apparatus for gas tungsten arc welding tailored aluminum blanks |
JP2003181679A (ja) * | 2001-12-13 | 2003-07-02 | Mitsubishi Heavy Ind Ltd | 溶接方法、被覆物の除去方法、被覆物除去装置 |
JP3995194B2 (ja) * | 2002-01-11 | 2007-10-24 | 財団法人電力中央研究所 | 酸化皮膜除去装置 |
US6927361B2 (en) * | 2003-09-04 | 2005-08-09 | Thomas Joseph Kelly | Surface oxide weld penetration enhancement method and article |
US9050673B2 (en) * | 2009-06-19 | 2015-06-09 | Extreme Surface Protection Ltd. | Multilayer overlays and methods for applying multilayer overlays |
-
2016
- 2016-11-18 EP EP16020454.1A patent/EP3323544A1/de not_active Withdrawn
-
2017
- 2017-11-09 MX MX2019005612A patent/MX2019005612A/es unknown
- 2017-11-09 CA CA3043479A patent/CA3043479A1/en active Pending
- 2017-11-09 WO PCT/EP2017/025330 patent/WO2018091147A1/en unknown
- 2017-11-09 EP EP17800389.3A patent/EP3541558B1/de active Active
- 2017-11-09 AU AU2017362454A patent/AU2017362454B2/en active Active
- 2017-11-09 CN CN201780071748.2A patent/CN110087811B/zh active Active
- 2017-11-09 US US16/462,025 patent/US20190299314A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2018091147A1 (en) | 2018-05-24 |
MX2019005612A (es) | 2019-08-12 |
US20190299314A1 (en) | 2019-10-03 |
CN110087811A (zh) | 2019-08-02 |
CA3043479A1 (en) | 2018-05-24 |
EP3541558B1 (de) | 2022-03-02 |
AU2017362454A1 (en) | 2019-05-30 |
CN110087811B (zh) | 2022-08-23 |
EP3323544A1 (de) | 2018-05-23 |
AU2017362454B2 (en) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017362454B2 (en) | Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas | |
JP6714580B2 (ja) | 2つのブランクを接合する方法、ブランク、及び得られた製品 | |
US9718147B2 (en) | Method and system to start and use combination filler wire feed and high intensity energy source for root pass welding of the inner diameter of clad pipe | |
US5990446A (en) | Method of arc welding using dual serial opposed torches | |
EP2532466B1 (de) | Doppelelektrodenschweißverfahren | |
US20140027414A1 (en) | Hybrid welding system and method of welding | |
CN110385492B (zh) | 多层结构的激光热丝焊接 | |
JP6119940B1 (ja) | 立向き狭開先ガスシールドアーク溶接方法 | |
Lienert et al. | ASM handbook, volume 6A: welding fundamentals and processes | |
JP6216111B2 (ja) | 溶接システム、溶接プロセス及び溶接物品 | |
Ikpe et al. | Effects of arc voltage and welding current on the arc length of tungsten inert gas welding (TIG) | |
JP6439882B2 (ja) | 立向き狭開先ガスシールドアーク溶接方法 | |
US2761047A (en) | Joining aluminum and aluminum alloy to titanium and titanium alloy | |
JP4978121B2 (ja) | 金属板の突合せ接合方法 | |
JP6119948B1 (ja) | 立向き狭開先ガスシールドアーク溶接方法 | |
Cunat | The welding of stainless steels | |
WO2017098692A1 (ja) | 立向き狭開先ガスシールドアーク溶接方法 | |
RU2668625C1 (ru) | Способ лазерно-дуговой сварки плавящимся электродом в среде защитного газа стыкового соединения сформованной трубной заготовки | |
WO2020122855A1 (en) | Method of and an arc welding system for welding arc control by grounding modulation | |
KR20100129435A (ko) | 협 개선 수동 가스 텅스텐 아크 용접용 토치 | |
Al-Quenaei | Fusion welding techniques | |
WO2015022569A2 (en) | Method and system to start and use combination filler wire feed and high intensity energy source for welding aluminium to steel | |
JP2008272784A (ja) | アークスポット溶接方法 | |
Ikechukwu et al. | Effects of arc voltage and welding current on the arc length of tungsten inert gas welding (TIG) | |
JP3947422B2 (ja) | チタン又はチタン合金のmig溶接方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190507 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201029 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210924 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1471854 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017054112 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1471854 Country of ref document: AT Kind code of ref document: T Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220603 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220704 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220702 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017054112 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
26N | No opposition filed |
Effective date: 20221205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231130 Year of fee payment: 7 Ref country code: FR Payment date: 20231124 Year of fee payment: 7 Ref country code: DE Payment date: 20231120 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |