EP3523524B1 - Internal combustion engine - Google Patents
Internal combustion engine Download PDFInfo
- Publication number
- EP3523524B1 EP3523524B1 EP17777250.6A EP17777250A EP3523524B1 EP 3523524 B1 EP3523524 B1 EP 3523524B1 EP 17777250 A EP17777250 A EP 17777250A EP 3523524 B1 EP3523524 B1 EP 3523524B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- internal combustion
- combustion engine
- main
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 133
- 239000002826 coolant Substances 0.000 claims description 194
- 238000001816 cooling Methods 0.000 claims description 130
- 238000010438 heat treatment Methods 0.000 claims description 43
- 230000001105 regulatory effect Effects 0.000 claims description 28
- 230000033001 locomotion Effects 0.000 claims description 9
- 238000007789 sealing Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims 1
- 239000003570 air Substances 0.000 description 9
- 239000012080 ambient air Substances 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 5
- 239000010705 motor oil Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000013022 venting Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 244000027321 Lychnis chalcedonica Species 0.000 description 1
- 241000282342 Martes americana Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/0204—Filling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/161—Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/08—Cabin heater
Definitions
- the invention relates to an internal combustion engine with a cooling system.
- the invention also relates to a method for filling the cooling system of such an internal combustion engine with coolant.
- Internal combustion engines for motor vehicles usually have a cooling system in which a coolant is pumped into at least one cooling circuit by means of one or more pumps and absorbs thermal energy from components integrated in the cooling circuit, in particular an internal combustion engine and an oil cooler and / or a charge air cooler. This heat energy is then released in an ambient heat exchanger, the so-called main cooler or main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the ambient air provided for air conditioning the interior of the motor vehicle.
- a coolant is pumped into at least one cooling circuit by means of one or more pumps and absorbs thermal energy from components integrated in the cooling circuit, in particular an internal combustion engine and an oil cooler and / or a charge air cooler.
- This heat energy is then released in an ambient heat exchanger, the so-called main cooler or main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the ambient air provided for air conditioning the interior of the motor vehicle.
- Cooling systems of modern motor vehicles often have several cooling circuits.
- a so-called large cooling circuit or main cooling circuit as well as a small cooling circuit, which are integrally formed in sections, and wherein the coolant is passed through either the large or the small cooling circuit by means of a thermostat-controlled valve.
- the coolant is pumped into the large cooling circuit by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by heat transfer from the coolant to the ambient air.
- the heating heat exchanger as a second ambient heat exchanger is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.
- the (main) coolant pump of the cooling system is regularly driven mechanically by the internal combustion engine of the internal combustion engine. Your delivery rate is thus basically proportional to the speed at which a crankshaft of the internal combustion engine rotates.
- the cooling power requirement tends to increase with increasing speed of the internal combustion engine, the cooling power theoretically achievable by operating the pump does not correspond to the actual cooling power requirement in many operating states. Since a sufficiently high cooling capacity should be available in all operating states, such mechanically driven pumps are often overdimensioned. The efforts to reduce the fuel consumption of motor vehicles has therefore led to the development of mechanically driven coolant pumps which can be regulated within limits with regard to the volume flow.
- Such a controllable mechanically driven coolant pump is for example from the DE 10 2010 044 167 A1 known.
- the main regulation of the volume flow of the coolant can take place by means of controllable coolant pumps, while the distribution of the volume flow to the individual components, each with a different cooling requirement, can be controlled by means of valves that are actively controlled, in particular via thermostats.
- the DE 103 42 935 A1 an internal combustion engine with a cooling circuit which comprises a pump mechanically driven by an internal combustion engine. The delivery volume flow of the pump is therefore dependent on the speed of the internal combustion engine.
- a plurality of individually controllable control valves are in the Integrated cooling circuit.
- the DE 103 42 935 A1 further discloses that the channels of the cylinder crankcase and the cylinder head are connected in parallel, which makes it possible to control the cooling capacity for these components individually. That from the DE 103 42 935 A1 known cooling system is relatively complex.
- An internal combustion engine according to the preamble of claim 1 is in the DE 10 2014 219 252 A1 described.
- This internal combustion engine comprises a control device which, by means of an actuator that moves a first locking slide and a second, second locking slide, which is moved in phases by the first locking slide, enables the implementation of an operationally adapted coolant supply to the various components of a cooling system of the internal combustion engine in a comparatively simple manner.
- a similar internal combustion engine is in the FR 2 800 125 described.
- the air contained in the cooling circuit which is displaced by the inflowing coolant, must be removed as completely as possible during the filling process of the cooling circuit, in particular during an initial filling or a new filling as part of maintenance.
- gas can be produced by evaporation processes that should be safely discharged. This is particularly true if the cooling circuit is designed for an operating temperature of the coolant which is above the (pressure-dependent) boiling temperature of water. Water that has accumulated or settled in the cooling circuit then evaporates and should be drained away accordingly.
- a cooling system of a motor vehicle is vented via a so-called expansion tank.
- Such an expansion tank also has the task of compensating for changes in the volume of the coolant caused by thermal effects and is partially filled with air for this purpose.
- at least one vent line can lead from a generally high point of the cooling system to the equalization tank, which is arranged even higher.
- To compensate for the thermally induced change in volume of the at least one overflow line is also provided, through which an exchange of coolant between the expansion tank and the cooling circuit connected to it via the overflow line can take place.
- the invention was based on the object in an internal combustion engine according to DE 10 2014 219 252 A1 adjust the cooling performance of the cooling system even better according to requirements. Furthermore, a possibility should be shown, a cooling system of an internal combustion engine according to DE 10 2014 219 252 A1 to be able to advantageously fill with coolant.
- the invention is based on the knowledge that even during a warm-up phase of the internal combustion engine, in which the primary goal is to reach defined operating temperature ranges as quickly as possible for at least some of the components integrated in the cooling system, a not inconsiderable exchange of coolant between a then small cooling circuit , in which the cooling system is operated, and the expansion tank. This leads to unwanted losses of thermal energy in the expansion tank, which in particular can delay the heating of an internal combustion engine of the internal combustion engine until the operating temperature range is reached. This delayed heating can be associated with increased fuel consumption and increased exhaust gas emissions.
- a basic idea of the invention is therefore to delay an exchange of coolant during a warm-up phase between the then actively used cooling circuit and the expansion tank as much as possible in order to minimize the described losses of thermal energy. Accordingly, it should be provided that the functionality of the expansion tank can be switched on in the cooling system as required. In order not to increase the structural complexity of the cooling system to the relevant extent despite this functionality, the invention provides that this functionality is advantageously provided by an additional switch position for the control device from the DE 10 2014 219 252 A1 to realize known internal combustion engine.
- This embodiment of the internal combustion engine enables advantageous regulation and distribution of the coolant in the cooling system by means of just one actuator.
- the control device in the first position of the control device only a relatively small volume flow of the coolant is conveyed by means of the coolant pump through a small cooling circuit (bypassing the main cooler) of the cooling system, with only the internal combustion engine (at least partially) and the heating heat exchanger being flowed through . Because only a relatively small volume flow of the coolant is conveyed through the internal combustion engine, after a cold start of the internal combustion engine, the corresponding partial quantity of the coolant can be quickly warmed up and consequently the heating heat exchanger and thus the heating of a motor vehicle, which is driven by the internal combustion engine, become effective relatively early is preferably provided to be achieved.
- heating system heat exchanger is understood to mean a heat exchanger in which heat is transferred from the coolant of the cooling system to ambient air that is provided for heating an interior of a motor vehicle.
- a needs-based (fluid-conducting) integration of a coolant expansion tank into the cooling system is also achieved by means of the control device.
- the release of the connecting line by the control device only in the second main position can make it possible to vent or compensate for a change in volume of the coolant by means of the expansion tank after a cold start of the internal combustion engine only if this is necessary due to the already considerable heating of the coolant in the internal combustion engine is. This can prevent the internal combustion engine from warming up as quickly as possible after a cold start of the internal combustion engine from being negatively influenced by a loss of thermal energy in the expansion tank.
- the main cooler In the third main position of the control device, the main cooler is then switched on, which prevents overheating of the cooling system or the components integrated in it by transferring heat from the coolant to ambient air, in particular with the sole purpose of cooling the coolant.
- the coolant is conveyed in a large cooling circuit of the cooling system.
- the connecting line connecting the expansion tank to the control device can preferably be a vent line which connects the control device to a section of the expansion tank that is provided for receiving air during operation of the internal combustion engine. Effective venting of the control device can thereby be achieved at the same time.
- the connecting line it is also possible for the connecting line to be an overflow line which connects the control device to a section of the expansion tank that is provided for receiving coolant when the internal combustion engine is in operation.
- an internal combustion engine according to the invention not only enables the cooling system to be advantageously vented as required when the internal combustion engine is in operation, but also advantageously allows the cooling system to be filled with coolant, in particular when the internal combustion engine is not in operation, for example during assembly or maintenance work.
- the control device for filling the cooling system is adjusted to the third main position in which not only an essentially complete distribution of the coolant within the cooling system but also a venting of the air displaced by the coolant introduced from the Cooling system is guaranteed via the connecting line still released in the third main position.
- bypass bypassing the heating system heat exchanger can be advantageous because the maximum volume flow through the heating heat exchanger, which is limited by the cross sections of the flow guides of the heating heat exchanger and the lines of the cooling system leading to and away from it, is preferably relatively small and consequently not the entire volume flow of the coolant in the second position of the control device can and should be passed through the heating system heat exchanger. This applies in particular because it can be provided that the heating system heat exchanger is flowed through by the coolant in the first main position and in all of these subsequent positions of the control device.
- control device in the third main position again prevents coolant flow through the bypass.
- a zero position can also be provided for the control device, which is before the first main position. It is provided that the control device in this zero position prevents a coolant flow through the cooling system as a whole. This can particularly preferably be achieved in that the control device in the zero position interrupts the cooling system in a section which is arranged between the coolant pump and the internal combustion engine and in particular on the pressure side of the coolant pump.
- Advantageous cooling of the internal combustion engine of the internal combustion engine according to the invention can be achieved if both a cylinder housing (in particular a cylinder crankcase) and a cylinder head of the internal combustion engine each have at least one cooling duct, the cooling ducts being controlled by the regulating device and having the coolant flow through them as required. It can be provided in particular that the control device in the first main position allows a coolant flow through the coolant channel of the cylinder head and prevents it through the coolant channel of the cylinder housing.
- the coolant in operation of the internal combustion engine after a cold start, the coolant only passes through the cylinder head (and the heating heat exchanger) of the internal combustion engine, which is more thermally stressed than the cylinder housing and, in this operating state of the internal combustion engine, possibly still less thermal energy the coolant absorbing Has mass, as a result of which not only the rapid warming up of the coolant, which is advantageous for the heating output of the heating system, but also cooling for the cylinder head can be achieved at the same time.
- a flow through the coolant channel of the cylinder housing is not yet provided, whereby it can be achieved that in this operating state a faster heating of the cylinder walls of the cylinder housing can be achieved, which has a positive effect on friction losses between cylinder and piston as well as on the emission behavior of the internal combustion engine.
- the coolant channel of the cylinder housing is switched on into the cooling system preferably only in a (second) intermediate position of the control device located between the second main position and the third main position, particularly preferably in a (second) intermediate position of the control device located between the first intermediate position and the third main position, in which case the operating temperature of the internal combustion engine can already be so high that cooling of the cylinder housing is useful or necessary.
- the internal combustion engine according to the invention, it can also be provided that an adjustment between at least two of the positions of the control device is possible in stages or continuously so that the control device can be set in one or more sub-stages and can also be held in them.
- a further improved adaptation of a flow through the individual components by means of the coolant can be achieved as a function of the actual requirement.
- Such a configuration of the internal combustion engine can be particularly useful when the coolant pump cannot be regulated with regard to the delivery volume flow independently of its delivery speed. This can be the case in particular with a coolant pump driven directly by the internal combustion engine.
- control device is adjustable between at least two positions of the control device and in particular between the second intermediate position and the third position as a function of an operating map of the internal combustion engine.
- an operating map in particular the load can be plotted against the speed at which the internal combustion engine is operated.
- a heat transfer from the coolant to ambient air in the main cooler can be controlled in an advantageous manner as a function of the operating state and consequently as a function of the heat generation of the internal combustion engine.
- This makes it possible, for example, to keep a temperature of the coolant as constant as possible or, if necessary, to a defined value (range), which in particular also depends on the operating state of the Internal combustion engine can be dependent to regulate.
- a higher coolant temperature can be regulated, which can lead to a correspondingly high oil temperature and thus relatively low friction losses.
- the coolant temperature can be reduced to protect the internal combustion engine from thermal overload.
- This also enables predictive regulation of a temperature of the coolant which, unlike, for example, a corresponding regulation by means of a temperature sensor, is not (only) designed to react to a temperature change that has already occurred. It can particularly preferably be provided that the adjustment between the at least two positions is provided in a stepped or stepless manner as a function of the operating map of the internal combustion engine.
- the control device comprises a locking slide which is moved translationally and / or rotationally by the actuator, the movement of which is brought about by the actuator to a closing or opening of inlets and / or corresponding to the positions of the control device Outlets that connect the control device to the corresponding components of the cooling system in a fluid-conducting manner.
- the locking slide can preferably have a section within which the locking slide is controlled by the actuator achievable movement area is in overlap with an outlet of the connecting line, a section of this section being formed by a through opening which is in fluid-conducting connection with a volume of the regulating device provided for guiding coolant.
- the outlet is formed by a tubular connection piece, one end of which is guided in a sliding manner on the locking slide directly or with the interposition of a sealing element, which can in particular be made of an elastic material, when the locking slide is operated by the actuator is moved.
- the sealing element can be designed as a pipe plug which is inserted into the end of the connection piece.
- control device comprises more than one locking slide, in which case it is preferably provided that only a first of the locking slides is moved by the actuator while the other locking slide or slides are moving (in at least one section of the movement of the first locking slide) is effected by the first locking slide.
- the control device comprises a first locking slide moved by the actuator and a second locking slide moved by the first locking slide, the second locking slide (preferably exclusively) for reaching a preferably provided zero position of the Control device is provided in which it prevents a coolant flow through the cooling system in a closed position.
- the first locking slide only partially moves the second locking slide in its range of motion. This enables in particular a simplified configuration of the second locking slide, which in the preferred configuration of the internal combustion engine according to the invention is only moved when the control device is adjusted between the zero position and the first main position, while the second locking slide is moved when the control device is moved between the other positions by means of of the first locking slide is no longer provided.
- Such a coupling of the first locking slide and the second locking slide can be achieved, for example, by means of a coupling lever mechanism, a Maltese cross mechanism and / or a cam mechanism.
- Securing the position of the second locking slide which may not be permanently coupled to the first locking slide, can in particular be based on a frictional connection, in that forces that overcome the frictional connection are required for moving the second locking slide that are greater than those forces that arise as a result of the mass of the second locking slide , ie Due to inertia or gravity and / or due to a hydraulic pressure of the coolant on the second locking slide in the directions of movement made possible by the mounting of the second locking slide.
- a form-fitting position lock can also be provided.
- the second locking slide can be secured in the bearings by the first locking slide.
- a structurally simple embodiment of the internal combustion engine according to the invention which is advantageous in particular with regard to the required installation space is characterized in that the locking slide or slides are designed as rotary slides.
- the actuation of the actuator of the control device is also preferably carried out as a function of a local temperature assigned to the internal combustion engine, which is particularly preferably in a coolant channel (particularly preferably at a point that is closer to an outlet of this coolant channel than to an inlet) and / or in a an outlet of this coolant channel connected section of the cooling system is measured.
- the internal combustion engine according to the invention can have a coolant temperature sensor arranged in the coolant duct of the internal combustion engine or in a coolant line directly adjoining this coolant duct in the flow direction of the coolant.
- a first coolant temperature sensor arranged in a coolant channel of the cylinder head and a second coolant temperature sensor arranged in a coolant channel of the cylinder housing can be provided.
- the Fig. 1 shows schematically an internal combustion engine according to the invention.
- This includes an internal combustion engine 10, which can be designed, for example, as a reciprocating piston internal combustion engine operating on the Otto or diesel principle and which includes a cylinder housing 12 and a cylinder head 14.
- the internal combustion engine also has a main cooling system and a secondary cooling system.
- the main cooling system primarily serves to cool the internal combustion engine 10, while the secondary cooling system serves to cool an exhaust gas turbocharger 16 and a charge air cooler 18 of the charged internal combustion engine 10.
- the temperature of the coolant during regular operation of the internal combustion engine in the main cooling system can, at least in sections, be significantly higher than in the secondary cooling system, so that the former can also be referred to as a high-temperature cooling system and the latter as a low-temperature system.
- the main cooling system further comprises a regulating device 20 with a first locking slide 22, a second locking slide 24 and an actuator 26.
- the first locking slide 22 can be moved by means of the actuator 26, while the second locking slide 24 would be moved by the first locking slide 22 in a section of the possible overall movement of the latter.
- the main cooling system also includes coolant channels 28, 30 of the cylinder housing 12 and the cylinder head 14, the coolant channels 30 of the cylinder head 14 also flowing through a coolant channel 32 of an exhaust manifold integrated in the cylinder head 14 for cooling purposes.
- the main cooling system also includes an engine oil cooler 34 through which coolant can flow parallel to the coolant ducts 30 of the cylinder head 14, a heating heat exchanger 36, a main cooler 38 and a coolant pump 40.
- the main cooling system still includes a bypass 42 integrated into the control device 20, which serves to connect a first inlet 44 of the control device 20 to a first inlet 46 of the coolant pump 40 while bypassing both the heating system 36 and the main cooler 38.
- the Figs. 2 to 6 show a possible structural configuration of the control device 20 of the internal combustion engine according to FIG Fig. 1 .
- the locking slides 22, 24 are designed in the form of rotary slides which, depending on their respective rotational orientations, close or release inlets and outlets for the coolant flowing through the control device 20 and for a vent line.
- the control device 20 accordingly comprises a housing 48 in which a pump wheel 50 of a coolant pump 40 designed as an impeller pump is also rotatably integrated.
- a rotation of the pump wheel 50 and thus a conveyance of coolant in the main cooling system is caused, for example, by the internal combustion engine 10, for which a crankshaft (not shown) of the internal combustion engine 10 is connected to a shaft 52 for the pump wheel 50 via a belt drive.
- a belt drive is only in the Fig. 2 and 3 a belt pulley 54 of the coolant pump 40 connected to the shaft 52 is shown.
- coolant is fed to the pump wheel 50 via the first inlet 46 and / or a second inlet 56 of the coolant pump 40.
- the first inlet 46 is connected on the one hand to an outlet 58 of the main cooler 38 via a coolant line and on the other hand to the bypass 42. It is provided here that the coolant line forming the bypass 42 is integrated as a channel in the housing 48 of the control device 20.
- the second inlet 56 of the coolant pump 40 is connected to an outlet 60 of the heating system heat exchanger 36 via a coolant line.
- the coolant is guided through a coolant channel 62 formed within the housing 48 to a first outlet 64 of the regulating device 20.
- This first outlet 64 is closed in a zero position 66 of the regulating device 20 by means of a closure element 68 of the second locking slide 24 which is in a closed position.
- the first locking slide 22 is in an orientation in which a second outlet 70 of the control device 20, which is connected via a coolant line to an inlet 72 of the heating system heat exchanger 36, is by means of a first closure element 74 of the first locking slide 22 is locked.
- the zero position 66 of the control device 20 is for provided a short period after a cold start of the internal combustion engine.
- a cold start of the internal combustion engine is characterized in that the components of the internal combustion engine and in particular also the coolant of the main cooling system have temperatures that essentially correspond to the ambient temperature, but are at least below a defined limit temperature.
- the control device 20 After a cold start of the internal combustion engine and a defined first limit value for a local coolant temperature has been reached, which is measured by means of a first coolant temperature sensor 78 integrated in the coolant duct 30 near an outlet 76 of the cylinder head 14, the control device 20 is adjusted Zero position 66 into a first main position 80 by means of the actuator 26.
- the actuator 26 is controlled by an engine control 82 of the internal combustion engine, to which the measurement signal from the first coolant temperature sensor 78 is transmitted.
- the adjustment of the control device 20 from the zero position 66 to the first main position 80 as a function of the local coolant temperature measured by the first coolant temperature sensor 78 is graduated or stepless by turning the first locking slide 22 and thus the temperature increase rotatably coupled second locking slide 24 is effected (cf. Fig. 7 ). It may also be possible to turn back the locking slides 22, 24 in the meantime.
- the first locking slide 22 is rotated by means of the actuator 26, which is connected to the first locking slide 22 via a shaft 84.
- the second locking slide 24 is in an open position in which the first outlet 64 of the control device 20 is no longer closed by the closure element 68, but is essentially completely released.
- the first locking slide 22 is in an orientation in which its first closure element 74 no longer closes the second outlet 70, but essentially completely releases it.
- a second closure element 86 of the first locking slide 22 closes a second inlet 90 of the control device 20 that is connected to an outlet 88 of the cylinder housing 12, a third outlet 94 of the control device 20 that is connected to an inlet 92 of the main cooler 38 via a coolant line, and the Bypass 42 integrated in the control device 20.
- the coolant is conveyed by the coolant pump 40 only in a small cooling circuit comprising the coolant pump 40, the control device 20, the cylinder head 14 and the heater core 36 .
- the control device 20 is moved from the first main position 80 to a second main position 96.
- the first locking slide 22 is rotated into an orientation in which a fourth outlet 98 of the regulating device 20 is increasingly released by a third closure element 100 of the first locking slide 22, whereby a first vent line 102 (with integrated check valve 104) which connects the fourth outlet 98 the regulating device 20 connects to an expansion tank 106 (in an overhead section of the expansion tank 106), is accordingly increasingly released.
- the control device 20 is vented via the first vent line 102, which also with at least a slight overflow of coolant between the control device 20 and the expansion tank 106 via a first overflow line emerging from a lower section of the expansion tank 106 108 can be connected, allows. Due to the relatively late connection of the expansion tank 106 (after a cold start of the internal combustion engine), heat losses in the expansion tank 106, which delay the reaching of an operating temperature range for the cylinder head 14 and delay the heating effect of the heater core 36, are kept low.
- the Fig. 6 indicates an in the (in the Fig. 6
- the tubular connector 112 is integrated into the housing 48 of the regulating device 20 and is provided for connection to the first vent line 102.
- One end of the connection piece 112 is slidably mounted on a section of the first locking slide 22 forming the third closure element 100 (as a result of a rotation of the first locking slide 22), this end of the connection piece 112 in the second main position 96 in overlap with a slot-shaped through opening of the first locking slide 22 is arranged, whereby the connection piece 112 is then in fluid-conducting connection with a coolant-carrying volume of the control device. This enables the first vent line 102 to be released.
- a sealing element 114 in the form of a pipe plug (ie a tubular plug) made of an elastic material ensures sufficient sealing of the connection piece 112 with respect to the third closure element 100 if the first vent line 102 is not to be released.
- the material of the sealing element 114 is preferably selected so that low-friction sliding on the corresponding section of the first locking slide 22 is ensured.
- the control device 20 is moved from the second main position 96 to a first intermediate position 110.
- the first locking slide 22 is rotated into an orientation in which the bypass 42 is increasingly released by the second closure element 86, whereby the bypass 42 is integrated into the small cooling circuit parallel to the heating system heat exchanger 36.
- the second inlet 90 and the third outlet 94 of the regulating device 20 are still closed by the first locking slide 22.
- the second locking slide 24 remains in its open position during this movement of the first locking slide 22, since it is no longer rotationally coupled to the first locking slide 22.
- the total volume flow of the coolant conveyed in the main cooling system can be increased in order to achieve a correspondingly high cooling capacity for the cylinder head 14 and the engine oil cooler 34.
- the only phased rotary coupling of the first locking slide 22 to the second locking slide 24 is brought about by segment teeth 116, which only mesh with one another when the first locking slide 22 is rotated (back or forth) between the zero position 66 and the first main position 80.
- Securing the position of the second locking slide 24 in its open position is positively achieved by the first locking slide 22 in that a ring section 118 adjoining the segment toothing 116 of the first locking slide 22 engages in a concave recess 120 adjoining the segment toothing 116 of the second locking slide 24 and in this is slid relative to the rotation of the first locking slide 22 and thus held globally fixed in terms of rotation.
- the control device 20 After reaching a defined fourth limit value for the local coolant temperature measured by means of the first coolant temperature sensor 78 in the cylinder head 14 and / or after reaching a defined first limit value for a coolant temperature sensor 122 measured by means of a second coolant temperature sensor 122 arranged in the vicinity of the outlet 88 of the cylinder housing 12 local coolant temperature in the cylinder housing 12, the control device 20 is adjusted from the first intermediate position 110 into a second intermediate position 124.
- the first locking slide 22 is rotated into an orientation in which the second closure element 86 also (increasingly) releases the second inlet 90 of the control device 20 (cf. Fig. 7 ).
- the second intermediate position 124 is therefore also provided that the coolant flows through the cylinder housing 12.
- the control device 20 After reaching a defined fifth limit value for the local coolant temperature measured by means of the first coolant temperature sensor 78 in the cylinder head 14 and / or after reaching a defined second limit value for the local coolant temperature measured by means of the second coolant temperature sensor 122 in the cylinder housing 12 and / or as a function
- the control device 20 is shifted from the second intermediate position 124 into a third main position 126 by an operating map of the internal combustion engine stored in the engine controller 82.
- the third outlet 94 of the control device 20 is (increasingly) released and consequently the main cooler 38 is integrated into what is then a large cooling circuit, while at the same time the bypass 42 integrated in the control device 20 is increasingly restored through the second closure element 86 of the first locking slide 22 is closed (cf. Fig. 7 ).
- the third main position 126 of the control device 20 is also provided for non-operation of the internal combustion engine. This is intended on the one hand to implement a "failsafe" function through which, in the event of a defect in the cooling system, which may have been caused, for example, by a marten bite when a motor vehicle driven by the internal combustion engine is not in operation, the functionality of the main cooling system can still be guaranteed, although functional is limited, but always provides sufficient (because the maximum possible) cooling capacity.
- the third main position 126 of the control device 20 facilitates the filling and emptying of the main cooling system in the context of assembly or maintenance work when the internal combustion engine is not in operation, because the coolant filled in via the expansion tank 106 and supplied to the components of the main cooling system via the first overflow line 108 is essentially unhindered can distribute in the main cooling system and thereby air contained in the main cooling system over the first vent line 102, the second vent line 128 and then the expansion tank 106 can escape.
- the secondary cooling system of the internal combustion engine comprises a cooling circuit in which the two components to be supplied with cooling power, ie the exhaust gas turbocharger 16 and the charge air cooler 18, are integrated in parallel. Coolant is conveyed in this cooling circuit by means of an additional coolant pump 132, which can in particular be driven by an electric motor. A separate (low-temperature) cooler 134 is used to recool the coolant of the auxiliary cooling system.
- the expansion tank 106 of the internal combustion engine is also integrated into the auxiliary cooling system, for which a third vent line 136 is provided, which is arranged in a section which, with respect to the flow direction of the coolant, is located behind the exhaust gas turbocharger 16 and the charge air cooler 18 and in front of the (low-temperature) cooler 134 , emerges from the cooling circuit of the auxiliary cooling system and is in turn connected to the upper section of the expansion tank 106 with the involvement of a throttle element 138 and a check valve 140.
- a second overflow line 142 is provided, which connects the lower, coolant receiving section of the expansion tank 106 with a section of the cooling circuit of the mist cooling system, which is arranged between the (low-temperature) cooler 134 and the additional coolant pump 132.
- the control device 20 When the internal combustion engine is not in operation (both when the coolant is still warm and has already cooled down completely), the control device 20 is in the third main position 126. This realizes the described "failsafe" function if the control device 20 should be adjusted due to a defect after a start the internal combustion engine not be possible. Furthermore, this enables the main cooling system to be filled and vented during assembly or maintenance work without the internal combustion engine having to be operated.
- the control device 20 For a cold start of the internal combustion engine, the control device 20 is moved into the zero position 66.
- the zero position 66 is maintained during a first warm-up phase 144.
- circulation of the coolant within the main cooling system is essentially prevented, so that a relatively rapid warming up of the coolant contained in the internal combustion engine 10 and in particular in the cylinder head 14 can be achieved.
- a second warm-up phase 146 the control device 20 is adjusted from the zero position 66 to the first main position 80, whereby the cylinder head 14 and the engine oil in the engine oil cooler 34 are increasingly cooled as well as a heating functionality by means of of the heating heat exchanger 36 is realized.
- a third warm-up phase 148 the control device is increasingly displaced from the first main position 80 into the second main position 96, whereby the control device 20 can be vented via the first vent line 102 and the expansion tank 106.
- the venting which starts relatively late, reduces heat losses during the first two warm-up phases 144, 146.
- a fourth warm-up phase 150 the control device 20 is increasingly displaced from the second main position 96 into the first intermediate position 110.
- the bypass 42 then increasingly integrated into the small cooling circuit can increase the volume flow of the coolant in the small cooling circuit and thereby avoid the formation of so-called hot spots, in particular in the cylinder head 14 of the internal combustion engine 10.
- a fifth warm-up phase 152 the regulating device 20 is increasingly displaced from the first intermediate position 110 into the second intermediate position 124, as a result of which the cylinder housing 12 is also increasingly cooled.
- the volume flow of the coolant that is guided via the bypass 42 can be increased further at least at the beginning of the fifth warm-up phase 152.
- the control device 20 is adjusted between the second intermediate position 124 and the third main position 126 as a function of an operating map of the internal combustion engine by means of the engine controller 82 third main position 126 increasing reduction in the volume flow of the coolant passed through the bypass 42 and a simultaneously increasing increase in the volume flow of the coolant passed through the main cooler 38, through a defined setting of any intermediate positions between the second intermediate position 124 and the third main position 126 a needs-based cooling performance for the components of the main cooling system can be realized.
- the control device 20 When the internal combustion engine is switched off, ie when the internal combustion engine is switched from operation to non-operation, it can be provided that the control device 20 initially goes beyond the third main position 126, which represents an upper, electrically implemented stop (OEA) when the control device 20 is in operation briefly up to an upper (mechanical) end stop (OMA), then up to the zero position 66, which represents a lower, electrically implemented stop (UEA) during operation of the control device 20, and furthermore briefly up to a lower (mechanical) end stop ( UMA) and then briefly again until it is moved towards the upper end stop (OMA) in order to carry out an end stop diagnosis.
- OPA electrically implemented stop
- UMA lower (mechanical) end stop
- control device 20 can then be adjusted into the third main position 126 (OEA) provided for non-operation.
- OOA third main position 126
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft eine Brennkraftmaschine mit einem Kühlsystem. Die Erfindung betrifft weiterhin ein Verfahren zum Befüllen des Kühlsystems einer solchen Brennkraftmaschine mit Kühlmittel.The invention relates to an internal combustion engine with a cooling system. The invention also relates to a method for filling the cooling system of such an internal combustion engine with coolant.
Brennkraftmaschinen für Kraftfahrzeuge weisen in der Regel ein Kühlsystem auf, in dem ein Kühlmittel mittels einer oder mehrerer Pumpen in mindestens einem Kühlkreis gepumpt wird und dabei Wärmeenergie von in den Kühlkreis integrierten Komponenten, insbesondere einem Verbrennungsmotor sowie einem Ölkühler und/oder einem Ladeluftkühler, aufnimmt. Diese Wärmeenergie wird anschließend in einem Umgebungswärmetauscher, dem sogenannten Hauptkühler oder Hauptwasserkühler, sowie zeitweise in einem Heizungswärmetauscher an die Umgebungsluft, im Fall des Heizungswärmetauschers an die zur Klimatisierung des Innenraums des Kraftfahrzeugs vorgesehene Umgebungsluft, abgegeben.Internal combustion engines for motor vehicles usually have a cooling system in which a coolant is pumped into at least one cooling circuit by means of one or more pumps and absorbs thermal energy from components integrated in the cooling circuit, in particular an internal combustion engine and an oil cooler and / or a charge air cooler. This heat energy is then released in an ambient heat exchanger, the so-called main cooler or main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the ambient air provided for air conditioning the interior of the motor vehicle.
Kühlsysteme moderner Kraftfahrzeuge weisen vielfach mehrere Kühlkreise auf. Beispielsweise ist es bekannt, einen so genannten großen Kühlkreis beziehungsweise Hauptkühlkreis sowie einen kleinen Kühlkreis vorzusehen, die abschnittsweise integral ausgebildet sind, und wobei mittels eines thermostatgesteuerten Ventils das Kühlmittel entweder über den großen oder den kleinen Kühlkreis geführt wird. Dies erfolgt in Abhängigkeit von der Temperatur des Kühlmittels, so dass beispielsweise in einer Warmlaufphase der Brennkraftmaschine, wenn das Kühlmittel einen vorgesehenen Betriebstemperaturbereich noch nicht erreicht hat, dieses in dem kleinen Kühlkreis gefördert wird, wodurch der Hauptkühler, d.h. derjenige Umgebungswärmetauscher, in dem das Kühlmittel durch Wärmeübergang auf die Umgebungsluft hauptsächlich gekühlt wird, umgangen wird. Hat das Kühlmittel dagegen den vorgesehenen Betriebstemperaturbereich erreicht, wird mittels des thermostatgesteuerten Ventils das Kühlmittel in dem großen Kühlkreis gefördert, so dass durch einen Wärmeübergang von dem Kühlmittel auf die Umgebungsluft ein Überhitzten des Kühlsystems vermieden wird. Der Heizungswärmetauscher als zweiter Umgebungswärmetauscher ist dagegen regelmäßig in den kleinen Kühlkreis integriert, wodurch auch schon in der Warmlaufphase der Brennkraftmaschine eine Beheizung des Innenraums des Kraftfahrzeugs ermöglicht wird.Cooling systems of modern motor vehicles often have several cooling circuits. For example, it is known to provide a so-called large cooling circuit or main cooling circuit as well as a small cooling circuit, which are integrally formed in sections, and wherein the coolant is passed through either the large or the small cooling circuit by means of a thermostat-controlled valve. This takes place as a function of the temperature of the coolant, so that, for example, in a warm-up phase of the internal combustion engine, when the coolant has not yet reached a specified operating temperature range, it is conveyed in the small cooling circuit, whereby the main cooler, i.e. the ambient heat exchanger in which the coolant is mainly cooled by heat transfer to the ambient air is bypassed. If, on the other hand, the coolant has reached the intended operating temperature range, the coolant is pumped into the large cooling circuit by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by heat transfer from the coolant to the ambient air. The heating heat exchanger as a second ambient heat exchanger, on the other hand, is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.
Die (Haupt-)Kühlmittelpumpe des Kühlsystems wird regelmäßig mechanisch von dem Verbrennungsmotor der Brennkraftmaschine angetriebenen. Ihre Förderleistung ist somit grundsätzlich proportional zu der Drehzahl, mit der eine Kurbelwelle des Verbrennungsmotors rotiert. Obwohl mit steigender Drehzahl des Verbrennungsmotors tendenziell auch der Kühlleistungsbedarf steigt, entspricht die durch den Betrieb der Pumpe theoretisch erzielbare Kühlleistung in vielen Betriebszuständen nicht dem tatsächlichen Kühlleistungsbedarf. Da in allen Betriebszuständen eine ausreichend hohe Kühlleistung zur Verfügung stehen soll, sind solche mechanisch angetriebenen Pumpen vielfach überdimensioniert. Die Bestrebungen, den Kraftstoffbedarf von Kraftfahrzeugen zu reduzieren, hat daher zu der Entwicklung von mechanisch angetriebenen Kühlmittelpumpen geführt, die in Grenzen hinsichtlich des Volumenförderstroms regelbar sind. Eine solche regelbare mechanisch angetriebene Kühlmittelpumpe ist beispielsweise aus der
Bei den Kühlsystemen moderner Kraftfahrzeuge kann die Hauptregelung des Volumenstroms des Kühlmittels mittels regelbarer Kühlmittelpumpen erfolgen, während die Verteilung des Volumenstroms auf die einzelnen, jeweils einen unterschiedlichen Kühlbedarf aufweisenden Komponenten mittels aktiv und insbesondere über Thermostate angesteuerte Ventile gesteuert werden kann. Beispielsweise offenbart die
Eine Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1 ist in der
Für eine gute und insbesondere effiziente Kühlleistung eines Kühlsystems eines Kraftfahrzeugs ist es relevant, dass dieses möglichst vollständig entlüftet ist. Demnach muss zum einen während des Befüllvorgangs des Kühlkreises, insbesondere bei einer Erstbefüllung oder einer Neubefüllung im Rahmen einer Wartung, die im Kühlkreis enthaltene Luft, die von dem einströmenden Kühlmittel verdrängt wird, möglichst vollständig abgeführt werden. Zudem kann im Betrieb des Kraftfahrzeugs und damit des Kühlsystems Gas durch Verdampfungsprozesse entstehen, das sicher abgeführt werden sollte. Dies gilt insbesondere, wenn der Kühlkreis für eine Betriebstemperatur des Kühlmittels ausgelegt ist, die oberhalb der (druckabhängigen) Siedetemperatur von Wasser liegt. Wasser, das sich in dem Kühlkreislauf angesammelt oder abgesetzt hat, verdampft dann und sollte entsprechend abgeführt werden.For a good and, in particular, efficient cooling performance of a cooling system of a motor vehicle, it is relevant that it is vented as completely as possible. Accordingly, on the one hand, the air contained in the cooling circuit, which is displaced by the inflowing coolant, must be removed as completely as possible during the filling process of the cooling circuit, in particular during an initial filling or a new filling as part of maintenance. In addition, during operation of the motor vehicle and thus of the cooling system, gas can be produced by evaporation processes that should be safely discharged. This is particularly true if the cooling circuit is designed for an operating temperature of the coolant which is above the (pressure-dependent) boiling temperature of water. Water that has accumulated or settled in the cooling circuit then evaporates and should be drained away accordingly.
Eine Entlüftung eines Kühlsystems eines Kraftfahrzeugs erfolgt über einen sogenannten Ausgleichsbehälter. Ein solcher Ausgleichsbehälter hat zudem noch die Aufgabe, thermische bedingte Volumenänderungen des Kühlmittels zu kompensieren und ist dazu teilweise mit Luft gefüllt. Zur Entlüftung kann mindestens eine Entlüftungsleitung von einer in der Regel der hoch gelegenen Stelle des Kühlsystems zu dem noch höher angeordneten Ausgleichsbehälter führen. Für den Ausgleich der thermisch bedingten Volumenänderung des ist weiterhin zumindest eine Überströmleitung vorgesehen, durch die ein Austausch von Kühlmittel zwischen dem Ausgleichsbehälter und dem mit diesem über die Überströmleitung verbunden Kühlkreis erfolgen kann.A cooling system of a motor vehicle is vented via a so-called expansion tank. Such an expansion tank also has the task of compensating for changes in the volume of the coolant caused by thermal effects and is partially filled with air for this purpose. For venting, at least one vent line can lead from a generally high point of the cooling system to the equalization tank, which is arranged even higher. To compensate for the thermally induced change in volume of the at least one overflow line is also provided, through which an exchange of coolant between the expansion tank and the cooling circuit connected to it via the overflow line can take place.
Ausgehend von diesem Stand der Technik lag der Erfindung die Aufgabe zugrunde, bei einer Brennkraftmaschine gemäß der
Diese Aufgaben werden mittels einer Brennkraftmaschine gemäß dem Patentanspruch 1 gelöst. Ein durch die erfindungsgemäße Ausgestaltung einer Brennkraftmaschine ermöglichtes Verfahren zum Befüllen des Kühlsystems der Brennkraftmaschine mit Kühlmittel ist Gegenstand des Patentanspruchs 10. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Brennkraftmaschine und bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind Gegenstände der weiteren Patentansprüche und/oder ergeben sich aus der nachfolgenden Beschreibung der Erfindung.These objects are achieved by means of an internal combustion engine according to patent claim 1. A method for filling the cooling system of the internal combustion engine with coolant made possible by the inventive design of an internal combustion engine is the subject matter of
Der Erfindung basiert auf der Erkenntnis, dass auch schon während einer Warmlaufphase der Brennkraftmaschine, in der das primäre Ziel ein möglichst schnelles Erreichen von definierten Betriebstemperaturbereichen für zumindest einige der in das Kühlsystem integrierten Komponenten ist, ein nicht unerheblicher Austausch von Kühlmittel zwischen einem dann kleinen Kühlkreis, in dem das Kühlsystem betrieben wird, und dem Ausgleichsbehälter erfolgt. Dies führt zu ungewollten Verlusten von Wärmeenergie in dem Ausgleichsbehälter, durch die sich insbesondere eine Erwärmung eines Verbrennungsmotors der Brennkraftmaschine bis zum Erreichen des Betriebstemperaturbereichs verzögern kann. Diese verzögerte Erwärmung kann mit einem erhöhten Kraftstoffverbrauch sowie mit erhöhten Abgasemissionen verbunden sein.The invention is based on the knowledge that even during a warm-up phase of the internal combustion engine, in which the primary goal is to reach defined operating temperature ranges as quickly as possible for at least some of the components integrated in the cooling system, a not inconsiderable exchange of coolant between a then small cooling circuit , in which the cooling system is operated, and the expansion tank. This leads to unwanted losses of thermal energy in the expansion tank, which in particular can delay the heating of an internal combustion engine of the internal combustion engine until the operating temperature range is reached. This delayed heating can be associated with increased fuel consumption and increased exhaust gas emissions.
Ein Grundgedanke der Erfindung ist daher, einen Austausch von Kühlmittel während einer Warmlaufphase zwischen dem dann aktiv genutzten Kühlkreis und dem Ausgleichsbehälter so weit wie möglich zu verzögern, um die beschriebenen Verluste von Wärmeenergie zu minimieren. Demnach soll vorgesehen sein, die Funktionalität des Ausgleichsbehälters bedarfsgerecht in dem Kühlsystem zuschalten zu können. Um gleichzeitig trotz dieser Funktionalität die konstruktive Komplexität des Kühlsystems nicht im relevanten Maße zu erhöhen, ist erfindungsgemäß vorgesehen, diese Funktionalität in vorteilhafter Weise durch eine zusätzliche Schaltstellung für die Regelvorrichtung der aus der
Dazu ist erfindungsgemäß eine Brennkraftmaschine vorgesehen, die zumindest einen Verbrennungsmotor und ein Kühlsystem aufweist, wobei das Kühlsystem zumindest eine Kühlmittelpumpe, einen Hauptkühler, einen Heizungswärmetauscher, Kühlmittelkanäle in dem Verbrennungsmotor sowie eine Regelvorrichtung mit einem (vorzugsweise elektrischen, gegebenenfalls hydraulischen und/oder pneumatischen) Aktor zur geregelten Verteilung des Kühlmittels in Abhängigkeit von mindestens einer lokalen Kühlmitteltemperatur umfasst. Bei einer solchen Brennkraftmaschine ist erfindungsgemäß zusätzlich vorgesehen, dass die Regelvorrichtung über eine Verbindungsleitung mit dem Kühlmittelausgleichsbehälter verbindbar ist und die Regelvorrichtung bei einer Ansteuerung des Aktors in einer (Ansteuer- oder Bewegungs-)Richtung
- in einer ersten Hauptstellung eine Kühlmittelströmung durch die Kühlmittelkanäle des Verbrennungsmotors sowie durch den Heizungswärmetauscher zulässt und durch den Hauptkühler unterbindet und weiterhin die Verbindungsleitung verschließt;
- in einer zweiten Hauptstellung zusätzlich die Verbindungsleitung freigibt; und
- in einer dritten Hauptstellung zusätzlich eine Kühlmittelströmung durch den Hauptkühler zulässt.
- in a first main position allows a coolant flow through the coolant channels of the internal combustion engine and through the heating heat exchanger and prevents it by the main cooler and continues to close the connecting line;
- in a second main position additionally releases the connecting line; and
- in a third main position additionally allows a coolant flow through the main cooler.
Diese Ausgestaltung der Brennkraftmaschine ermöglicht bereits mittels lediglich eines Aktors eine vorteilhafte Regelung und Verteilung des Kühlmittels in dem Kühlsystem.This embodiment of the internal combustion engine enables advantageous regulation and distribution of the coolant in the cooling system by means of just one actuator.
Insbesondere kann dabei vorgesehen sein, dass in der ersten Stellung der Regelvorrichtung lediglich ein relativ kleiner Volumenstrom des Kühlmittels mittels der Kühlmittelpumpe durch einen (den Hauptkühler umgehenden) kleinen Kühlkreis des Kühlsystems gefördert wird, wobei lediglich der Verbrennungsmotor (zumindest teilweise) und der Heizungswärmetauscher durchströmt werden. Dadurch, dass nur ein relativ kleiner Volumenstrom des Kühlmittels durch den Verbrennungsmotor gefördert wird, kann nach einem Kaltstart der Brennkraftmaschine ein schnelles Aufwärmen der entsprechenden Teilmenge des Kühlmittels und folglich ein relativ frühes Wirksamwerden des Heizungswärmetauschers und damit einer Heizung eines Kraftfahrzeugs, für dessen Antrieb die Brennkraftmaschine vorzugsweise vorgesehen ist, erreicht werden.In particular, it can be provided that in the first position of the control device only a relatively small volume flow of the coolant is conveyed by means of the coolant pump through a small cooling circuit (bypassing the main cooler) of the cooling system, with only the internal combustion engine (at least partially) and the heating heat exchanger being flowed through . Because only a relatively small volume flow of the coolant is conveyed through the internal combustion engine, after a cold start of the internal combustion engine, the corresponding partial quantity of the coolant can be quickly warmed up and consequently the heating heat exchanger and thus the heating of a motor vehicle, which is driven by the internal combustion engine, become effective relatively early is preferably provided to be achieved.
Unter einem "Heizungswärmetauscher" wird ein Wärmetauscher verstanden, in dem ein Wärmeübergang von dem Kühlmittel des Kühlsystems auf Umgebungsluft, die zum Beheizen eines Innenraums eines Kraftfahrzeugs vorgesehen ist, erfolgt.A “heating system heat exchanger” is understood to mean a heat exchanger in which heat is transferred from the coolant of the cooling system to ambient air that is provided for heating an interior of a motor vehicle.
Im Vergleich zu der Brennkraftmaschine gemäß der
In der dritten Hauptstellung der Regelvorrichtung erfolgt dann ein Zuschalten des Hauptkühlers, der durch einen Wärmeübergang von dem Kühlmittel an Umgebungsluft mit insbesondere dem ausschließlichen Zweck einer Kühlung des Kühlmittels ein Überhitzen des Kühlsystems beziehungsweise der darin integrierten Komponenten verhindert. Somit kann vorgesehen sein, dass in der dritten Stellung der Regelvorrichtung das Kühlmittel in einem großen Kühlkreis des Kühlsystems gefördert wird.In the third main position of the control device, the main cooler is then switched on, which prevents overheating of the cooling system or the components integrated in it by transferring heat from the coolant to ambient air, in particular with the sole purpose of cooling the coolant. Thus it can be provided that in the third position of the control device, the coolant is conveyed in a large cooling circuit of the cooling system.
Bei der den Ausgleichsbehälter mit der Regelvorrichtung verbindenden Verbindungsleitung kann es sich vorzugsweise um eine Entlüftungsleitung handeln, die die Regelvorrichtung mit einem Abschnitt des Ausgleichsbehälters verbindet, der zur Aufnahme von Luft im Betrieb der Brennkraftmaschine vorgesehen ist. Dadurch kann gleichzeitig eine wirkungsvolle Entlüftung der Regelvorrichtung erreicht werden. Grundsätzlich möglich ist jedoch auch, dass es sich bei der Verbindungsleitung um eine Überströmleitung handelte, die die Regelvorrichtung mit einem Abschnitt des Ausgleichsbehälters verbindet, der im Betrieb der Brennkraftmaschine zur Aufnahme von Kühlmittel vorgesehen ist.The connecting line connecting the expansion tank to the control device can preferably be a vent line which connects the control device to a section of the expansion tank that is provided for receiving air during operation of the internal combustion engine. Effective venting of the control device can thereby be achieved at the same time. In principle, however, it is also possible for the connecting line to be an overflow line which connects the control device to a section of the expansion tank that is provided for receiving coolant when the internal combustion engine is in operation.
Eine erfindungsgemäße Brennkraftmaschine ermöglicht jedoch nicht nur ein vorteilhaftes bedarfsgerechtes Entlüften des Kühlsystems im Betrieb der Brennkraftmaschine, sondern auch ein vorteilhaftes Befüllen des Kühlsystems mit Kühlmittel, insbesondere in einem Nichtbetrieb der Brennkraftmaschine, beispielsweise im Rahmen von Montage- oder Wartungsarbeiten. Hierzu kann gemäß einem erfindungsgemäßen Verfahren vorgesehen sein, dass die Regelvorrichtung zum Befüllen des Kühlsystems in die dritte Hauptstellung verstellt wird, in der nicht nur eine im Wesentlichen vollständige Verteilung des Kühlmittels innerhalb des Kühlsystems sondern auch eine Entlüftung der durch das eingeführte Kühlmittel verdrängten Luft aus dem Kühlsystem über die in der dritten Hauptstellung weiterhin freigegebene Verbindungsleitung gewährleistet ist.However, an internal combustion engine according to the invention not only enables the cooling system to be advantageously vented as required when the internal combustion engine is in operation, but also advantageously allows the cooling system to be filled with coolant, in particular when the internal combustion engine is not in operation, for example during assembly or maintenance work. For this purpose, it can be provided according to a method according to the invention that the control device for filling the cooling system is adjusted to the third main position in which not only an essentially complete distribution of the coolant within the cooling system but also a venting of the air displaced by the coolant introduced from the Cooling system is guaranteed via the connecting line still released in the third main position.
Eine erfindungsgemäße Brennkraftmaschine kann vorzugsweise zusätzlich einen den Heizungswärmetauscher umgehenden Bypass umfassen, wobei dann zudem vorgesehen sein kann, dass die Regelvorrichtung bei der Ansteuerung des Aktors
- in der ersten Hauptstellung und vorzugsweise auch in der zweiten Hauptstellung eine Kühlmittelströmung durch den Bypass sowie den Hauptkühler unterbindet und
- in einer sich an die zweite Hauptstellung anschließenden ersten Zwischenstellung zusätzlich eine Kühlmittelströmung durch den Bypass zulässt.
- in the first main position and preferably also in the second main position, a coolant flow through the bypass and the main cooler is prevented and
- in a first intermediate position following the second main position, additionally allows a coolant flow through the bypass.
Durch das Hinzuschalten des Bypasses in der ersten Zwischenstellung der Regelvorrichtung kann bei zunehmender Betriebstemperatur der Brennkraftmaschine ein Überhitzten des Kühlsystems vermieden werden, indem, weiterhin in dem kleinen Kühlkreis und somit unter Umgehung des Hauptkühlers, durch den Verbrennungsmotor ein größerer Volumenstrom des Kühlmittels gefördert wird. Der den Heizungswärmetauscher umgehende Bypass kann dabei vorteilhaft sein, weil der maximale Volumenstrom durch den Heizungswärmetauscher, der durch die Querschnitte der Strömungsführungen des Heizungswärmetauschers und der zu diesem hin und von diesem weg führenden Leitungen des Kühlsystems begrenzt ist, vorzugsweise relativ klein dimensioniert ist und folglich nicht der gesamte Volumenstrom des Kühlmittels in der zweiten Stellung der Regelvorrichtung durch den Heizungswärmetauscher geführt werden kann und soll. Dies gilt insbesondere, weil vorgesehen sein kann, dass der Heizungswärmetauscher in der ersten Hauptstellung und allen diesen nachfolgenden Stellungen der Regelvorrichtung von dem Kühlmittel durchströmt wird.By switching on the bypass in the first intermediate position of the control device, overheating of the cooling system can be avoided when the operating temperature of the internal combustion engine increases, by continuing to convey a larger volume flow of coolant through the internal combustion engine in the small cooling circuit and thus bypassing the main cooler. The bypass bypassing the heating system heat exchanger can be advantageous because the maximum volume flow through the heating heat exchanger, which is limited by the cross sections of the flow guides of the heating heat exchanger and the lines of the cooling system leading to and away from it, is preferably relatively small and consequently not the entire volume flow of the coolant in the second position of the control device can and should be passed through the heating system heat exchanger. This applies in particular because it can be provided that the heating system heat exchanger is flowed through by the coolant in the first main position and in all of these subsequent positions of the control device.
Um sicherzustellen, dass in der dritten Hauptstellung das gesamte Kühlmittel durch den Heizungswärmetauscher und den Hauptkühler geführt wird, kann in einer bevorzugten Ausgestaltung der erfindungsgemäßen Brennkraftmaschine vorgesehen sein, dass die Regelvorrichtung in der dritten Hauptstellung eine Kühlmittelströmung durch den Bypass wieder unterbindet.In order to ensure that in the third main position all of the coolant is passed through the heating system heat exchanger and the main cooler, in a preferred embodiment of the internal combustion engine according to the invention it can be provided that the control device in the third main position again prevents coolant flow through the bypass.
In einer weiterhin bevorzugten Ausgestaltung der erfindungsgemäßen Brennkraftmaschine kann zudem eine Nullstellung für die Regelvorrichtung vorgesehen sein, die vor der ersten Hauptstellung liegt. Dabei ist vorgesehen, dass die Regelvorrichtung in dieser Nullstellung eine Kühlmittelströmung durch das Kühlsystem insgesamt unterbindet. Dies kann besonders bevorzugt dadurch erreicht werden, dass die Regelvorrichtung in der Nullstellung das Kühlsystem in einem Abschnitt, der zwischen der Kühlmittelpumpe und dem Verbrennungsmotor und insbesondere auf der Druckseite der Kühlmittelpumpe angeordnet ist, unterbricht.In a further preferred embodiment of the internal combustion engine according to the invention, a zero position can also be provided for the control device, which is before the first main position. It is provided that the control device in this zero position prevents a coolant flow through the cooling system as a whole. This can particularly preferably be achieved in that the control device in the zero position interrupts the cooling system in a section which is arranged between the coolant pump and the internal combustion engine and in particular on the pressure side of the coolant pump.
Eine vorteilhafte Kühlung des Verbrennungsmotors der erfindungsgemäßen Brennkraftmaschine kann erreicht werden, wenn sowohl ein Zylindergehäuse (insbesondere ein Zylinderkurbelgehäuse) als auch ein Zylinderkopf des Verbrennungsmotors jeweils mindestens einen Kühlkanal aufweisen, wobei die Kühlkanäle, gesteuert durch die Regelvorrichtung, bedarfsgerecht von dem Kühlmittel durchströmt werden. Dabei kann insbesondere vorgesehen sein, dass die Regelvorrichtung in der ersten Hauptstellung eine Kühlmittelströmung durch den Kühlmittelkanal des Zylinderkopfs zulässt und durch den Kühlmittelkanal des Zylindergehäuses unterbindet. Dadurch kann erreicht werden, dass in einem Betrieb der Brennkraftmaschine nach einem Kaltstart das Kühlmittel lediglich durch den Zylinderkopf (und den Heizungswärmetauscher) der Brennkraftmaschine, der im Vergleich zu dem Zylindergehäuse höher thermisch belastet und eine geringere, in diesem Betriebszustand der Brennkraftmaschine gegebenenfalls noch Wärmeenergie aus dem Kühlmittel aufnehmende Masse aufweist, wodurch nicht nur das für die Heizleistung des Heizungswärmetauschers vorteilhafte schnelle Aufwärmen des Kühlmittels sondern gleichzeitig auch schon eine Kühlung für den Zylinderkopf erreicht werden kann. Ein Durchströmen des Kühlmittelkanals des Zylindergehäuses ist dagegen noch nicht vorgesehen, wodurch erreicht werden kann, dass in diesem Betriebszustand ein schnelleres Erwärmen von Zylinderwänden des Zylindergehäuses erreicht werden kann, was sich positiv auf Reibungsverluste zwischen Zylinder und Kolben sowie auf das Emissionsverhalten der Brennkraftmaschine auswirkt.Advantageous cooling of the internal combustion engine of the internal combustion engine according to the invention can be achieved if both a cylinder housing (in particular a cylinder crankcase) and a cylinder head of the internal combustion engine each have at least one cooling duct, the cooling ducts being controlled by the regulating device and having the coolant flow through them as required. It can be provided in particular that the control device in the first main position allows a coolant flow through the coolant channel of the cylinder head and prevents it through the coolant channel of the cylinder housing. In this way, it can be achieved that in operation of the internal combustion engine after a cold start, the coolant only passes through the cylinder head (and the heating heat exchanger) of the internal combustion engine, which is more thermally stressed than the cylinder housing and, in this operating state of the internal combustion engine, possibly still less thermal energy the coolant absorbing Has mass, as a result of which not only the rapid warming up of the coolant, which is advantageous for the heating output of the heating system, but also cooling for the cylinder head can be achieved at the same time. A flow through the coolant channel of the cylinder housing, however, is not yet provided, whereby it can be achieved that in this operating state a faster heating of the cylinder walls of the cylinder housing can be achieved, which has a positive effect on friction losses between cylinder and piston as well as on the emission behavior of the internal combustion engine.
Ein Zuschalten des Kühlmittelkanals des Zylindergehäuses in das Kühlsystem erfolgt vorzugsweise erst in einer zwischen der zweiten Hauptstellung und der dritten Hauptstellung liegenden, besonders bevorzugt in einer zwischen der ersten Zwischenstellung und der dritten Hauptstellung liegenden (zweiten) Zwischenstellung der Regelvorrichtung, wobei dann die Betriebstemperatur der Brennkraftmaschine bereits so hoch sein kann, dass eine Kühlung auch des Zylindergehäuses sinnvoll oder notwendig ist.The coolant channel of the cylinder housing is switched on into the cooling system preferably only in a (second) intermediate position of the control device located between the second main position and the third main position, particularly preferably in a (second) intermediate position of the control device located between the first intermediate position and the third main position, in which case the operating temperature of the internal combustion engine can already be so high that cooling of the cylinder housing is useful or necessary.
In einer weiterhin bevorzugten Ausgestaltung der erfindungsgemäßen Brennkraftmaschine kann zudem vorgesehen sein , dass eine Verstellung zwischen zumindest zwei der Stellungen der Regelvorrichtung abgestuft oder stufenlos möglich ist, so dass die Regelvorrichtung in eine oder mehrere Teilstufen stellbar und in diesen auch gehalten werden kann. Dadurch kann eine weiter verbesserte Anpassung einer Durchströmung der einzelnen Komponenten mittels des Kühlmittels in Abhängigkeit von dem tatsächlichen Bedarf erreicht werden. Eine solche Ausgestaltung der Brennkraftmaschine kann insbesondere dann sinnvoll sein, wenn die Kühlmittelpumpe nicht unabhängig von Ihrer Förderdrehzahl hinsichtlich des Fördervolumenstroms regelbar ist. Dies kann insbesondere bei einer von dem Verbrennungsmotor direkt angetriebenen Kühlmittelpumpe der Fall sein.In a further preferred embodiment of the internal combustion engine according to the invention, it can also be provided that an adjustment between at least two of the positions of the control device is possible in stages or continuously so that the control device can be set in one or more sub-stages and can also be held in them. As a result, a further improved adaptation of a flow through the individual components by means of the coolant can be achieved as a function of the actual requirement. Such a configuration of the internal combustion engine can be particularly useful when the coolant pump cannot be regulated with regard to the delivery volume flow independently of its delivery speed. This can be the case in particular with a coolant pump driven directly by the internal combustion engine.
Weiterhin kann vorgesehen sein, dass die Regelvorrichtung in Abhängigkeit von einem Betriebskennfeld der Brennkraftmaschine zwischen mindestens zwei Stellungen der Regelvorrichtung und insbesondere zwischen der zweiten Zwischenstellung und der dritten Stellung verstellbar ist. In einem solchen Betriebskennfeld kann insbesondere die Last über der Drehzahl, mit der die Brennkraftmaschine betrieben wird, aufgetragen sein. Dadurch kann in vorteilhafter Weise ein Wärmeübergang von dem Kühlmittel auf Umgebungsluft in dem Hauptkühler in Abhängigkeit von dem Betriebszustand und folglich in Abhängigkeit von der Wärmeerzeugung der Brennkraftmaschine gesteuert werden. Dies ermöglicht beispielsweise, eine Temperatur des Kühlmittels möglichst konstant zu halten oder bedarfsweise auf einen definierten Wert(ebereich), der insbesondere auch von dem Betriebszustand der Brennkraftmaschine abhängig sein kann, einzuregeln. Insbesondere kann bei relativ geringer Last und/oder Drehzahl eine höhere Kühlmitteltemperatur eingeregelt werden, die zu einer entsprechend hohen Öltemperatur und damit relativ geringen Reibungsverlusten führen kann. Bei höherer Last und/oder Drehzahl kann die Kühlmitteltemperatur dagegen zum Schutz des Verbrennungsmotors vor thermischer Überlastung verringert werden. Ermöglicht werden kann dadurch auch eine vorausschauende Regelung einer Temperatur des Kühlmittels, die, anders als beispielsweise eine entsprechende Regelung mittels eines Temperatursensors, nicht (nur) auf eine bereits erfolgte Temperaturänderung reagierend ausgebildet ist. Besonders bevorzugt kann dabei vorgesehen sein, dass das Verstellen zwischen den mindestens zwei Stellungen in Abhängigkeit von dem Betriebskennfeld der Brennkraftmaschine abgestuft oder stufenlos vorgesehen ist.Furthermore, it can be provided that the control device is adjustable between at least two positions of the control device and in particular between the second intermediate position and the third position as a function of an operating map of the internal combustion engine. In such an operating map, in particular the load can be plotted against the speed at which the internal combustion engine is operated. As a result, a heat transfer from the coolant to ambient air in the main cooler can be controlled in an advantageous manner as a function of the operating state and consequently as a function of the heat generation of the internal combustion engine. This makes it possible, for example, to keep a temperature of the coolant as constant as possible or, if necessary, to a defined value (range), which in particular also depends on the operating state of the Internal combustion engine can be dependent to regulate. In particular, at a relatively low load and / or speed, a higher coolant temperature can be regulated, which can lead to a correspondingly high oil temperature and thus relatively low friction losses. At higher loads and / or speeds, however, the coolant temperature can be reduced to protect the internal combustion engine from thermal overload. This also enables predictive regulation of a temperature of the coolant which, unlike, for example, a corresponding regulation by means of a temperature sensor, is not (only) designed to react to a temperature change that has already occurred. It can particularly preferably be provided that the adjustment between the at least two positions is provided in a stepped or stepless manner as a function of the operating map of the internal combustion engine.
In einer konstruktiv vorteilhaft umsetzbaren Ausgestaltung der erfindungsgemäßen Brennkraftmaschine kann vorgesehen sein, dass die Regelvorrichtung einen von dem Aktor translatorisch und/oder rotatorisch bewegten Sperrschieber umfasst, dessen mittels des Aktors bewirkte Bewegung zu einem den Stellungen der Regelvorrichtung entsprechenden Verschließen oder Freigeben von Einlässen und/oder Auslässen, die die Regelvorrichtung fluidleitend mit den entsprechenden Komponenten des Kühlsystems verbinden, führt.In a structurally advantageous embodiment of the internal combustion engine according to the invention, it can be provided that the control device comprises a locking slide which is moved translationally and / or rotationally by the actuator, the movement of which is brought about by the actuator to a closing or opening of inlets and / or corresponding to the positions of the control device Outlets that connect the control device to the corresponding components of the cooling system in a fluid-conducting manner.
Um ein Verschließen der Verbindungsleitung in der ersten Hauptstellung und eine Freigabe in der zweiten Hauptstellung (und vorzugsweise in jeder Stellung mit Ausnahme der ersten Hauptstellung) die Regelvorrichtung zu realisieren, kann der Sperrschieber vorzugsweise einen Abschnitt aufweisen, innerhalb dessen der Sperrschieber in einem durch den Aktor bewirkbaren Bewegungsbereich mit einem Auslass der Verbindungsleitung in Überdeckung steht, wobei ein Teilabschnitt dieses Abschnitt von einer Durchgangsöffnung ausgebildet ist, die mit einem zur Führung von Kühlmittel vorgesehenen Volumen der Regelvorrichtung in fluidleitender Verbindung steht.In order to close the connecting line in the first main position and release it in the second main position (and preferably in every position with the exception of the first main position) the control device, the locking slide can preferably have a section within which the locking slide is controlled by the actuator achievable movement area is in overlap with an outlet of the connecting line, a section of this section being formed by a through opening which is in fluid-conducting connection with a volume of the regulating device provided for guiding coolant.
Dabei kann besonders bevorzugt vorgesehen sein, dass der Auslass von einem rohrförmigen Anschlussstück ausgebildet ist, dessen eines Ende direkt oder und Zwischenschaltung eines Dichtelements, das insbesondere aus einem elastischen Werkstoff ausgebildet sein kann, auf dem Sperrschieber gleitend geführt ist, wenn der Sperrschieber von dem Aktor bewegt wird.It can particularly preferably be provided that the outlet is formed by a tubular connection piece, one end of which is guided in a sliding manner on the locking slide directly or with the interposition of a sealing element, which can in particular be made of an elastic material, when the locking slide is operated by the actuator is moved.
Das Dichtelement kann in konstruktiv vorteilhafter Ausgestaltung als Rohrstopfen ausgebildet sein, der in das Ende des Anschlussstücks eingesteckt ist.In a structurally advantageous embodiment, the sealing element can be designed as a pipe plug which is inserted into the end of the connection piece.
Möglicherweise kann es auch vorteilhaft sein, wenn die Regelvorrichtung mehr als einen Sperrschieber umfasst, wobei dann bevorzugt vorgesehen ist, dass nur ein erster der Sperrschieber von dem Aktor bewegt wird, während eine Bewegung des oder der anderen Sperrschieber (in zumindest einem Abschnitt der Bewegung des ersten Sperrschieber) durch den ersten Sperrschieber bewirkt wird.It may also be advantageous if the control device comprises more than one locking slide, in which case it is preferably provided that only a first of the locking slides is moved by the actuator while the other locking slide or slides are moving (in at least one section of the movement of the first locking slide) is effected by the first locking slide.
In einer in konstruktiver und funktionaler Hinsicht vorteilhaften Ausgestaltung kann vorgesehen sein, dass die Regelvorrichtung einen von dem Aktor bewegten ersten Sperrschieber und einen von dem ersten Sperrschieber bewegten zweiten Sperrschieber umfasst, wobei der zweite Sperrschieber (vorzugsweise ausschließlich) für das Erreichen einer vorzugsweise vorgesehenen Nullstellung der Regelvorrichtung vorgesehen ist, in dem dieser in einer Verschlussstellung eine Kühlmittelströmung durch das Kühlsystem insgesamt unterbindet. Besonders bevorzugt kann dabei vorgesehen sein, dass der erste Sperrschieber den zweiten Sperrschieber in seinem Bewegungsbereich nur teilweise mitbewegt. Dies ermöglicht insbesondere eine vereinfachte Ausgestaltungen des zweiten Sperrschieber, der in der bevorzugten Ausgestaltung der erfindungsgemäßen Brennkraftmaschine lediglich bei einem Verstellen der Regelvorrichtung zwischen der Nullstellung und der ersten Hauptstellung bewegt wird, während eine Bewegung des zweiten Sperrschiebers bei einem Verstellen der Regelvorrichtung zwischen den anderen Stellungen mittels des ersten Sperrschiebers nicht mehr vorgesehen ist. Eine solche Koppelung von erstem Sperrschieber und zweitem Sperrschieber kann beispielsweise mittels eines Koppelhebelgetriebes, eines Malteserkreuzgetriebes und/oder eines Kurvengetriebe erreicht werden.In a structurally and functionally advantageous embodiment, it can be provided that the control device comprises a first locking slide moved by the actuator and a second locking slide moved by the first locking slide, the second locking slide (preferably exclusively) for reaching a preferably provided zero position of the Control device is provided in which it prevents a coolant flow through the cooling system in a closed position. It can particularly preferably be provided that the first locking slide only partially moves the second locking slide in its range of motion. This enables in particular a simplified configuration of the second locking slide, which in the preferred configuration of the internal combustion engine according to the invention is only moved when the control device is adjusted between the zero position and the first main position, while the second locking slide is moved when the control device is moved between the other positions by means of of the first locking slide is no longer provided. Such a coupling of the first locking slide and the second locking slide can be achieved, for example, by means of a coupling lever mechanism, a Maltese cross mechanism and / or a cam mechanism.
Eine Lagesicherung für den gegebenenfalls nicht dauerhaft an den ersten Sperrschieber gekoppelten zweiten Sperrschieber kann insbesondere auf einem Kraftschluss beruhen, indem für ein Bewegen des zweiten Sperrschiebers den Kraftschluss überwindende Kräfte erforderlich sind, die größer sind als diejenigen Kräfte, die sich infolge der Masse des zweiten Sperrschieber, d.h. trägheits- oder schwerkraftbedingt, und/oder aufgrund eines hydraulischen Drucks des Kühlmittels auf den zweiten Sperrschieber in den durch die Lagerung des zweiten Sperrschiebers ermöglichten Bewegungsrichtungen ergeben. Alternativ oder ergänzend kann auch eine formschlüssige Lagesicherung vorgesehen sein. Dabei kann insbesondere eine Lagersicherung des zweiten Sperrschiebers durch den ersten Sperrschieber erfolgen.Securing the position of the second locking slide, which may not be permanently coupled to the first locking slide, can in particular be based on a frictional connection, in that forces that overcome the frictional connection are required for moving the second locking slide that are greater than those forces that arise as a result of the mass of the second locking slide , ie Due to inertia or gravity and / or due to a hydraulic pressure of the coolant on the second locking slide in the directions of movement made possible by the mounting of the second locking slide. As an alternative or in addition, a form-fitting position lock can also be provided. In particular, the second locking slide can be secured in the bearings by the first locking slide.
Eine konstruktiv einfache und insbesondere hinsichtlich des erforderlichen Bauraums vorteilhafte Ausgestaltungen der erfindungsgemäßen Brennkraftmaschine ist dadurch gekennzeichnet, dass der oder die Sperrschieber als Drehschieber ausgebildet sind.A structurally simple embodiment of the internal combustion engine according to the invention which is advantageous in particular with regard to the required installation space is characterized in that the locking slide or slides are designed as rotary slides.
Die Ansteuerung des Aktors der Regelvorrichtung erfolgt weiterhin bevorzugt in Abhängigkeit von einer dem Verbrennungsmotor zugeordneten lokalen Temperatur, die besonders bevorzugt in einem Kühlmittelkanal (besonders bevorzugt an einer Stelle, die einem Auslass dieses Kühlmittelkanals näher gelegen ist als einem Einlass) und/oder in einem an einen Auslass dieses Kühlmittelkanals angeschlossenen Abschnitt des Kühlsystems gemessen wird. Hierzu kann die erfindungsgemäße Brennkraftmaschine einen in dem Kühlmittelkanal des Verbrennungsmotors oder in einer sich in Strömungsrichtung des Kühlmittels direkt an diesen Kühlmittelkanal anschließenden Kühlmittelleitung angeordneten Kühlmitteltemperatursensor aufweisen.The actuation of the actuator of the control device is also preferably carried out as a function of a local temperature assigned to the internal combustion engine, which is particularly preferably in a coolant channel (particularly preferably at a point that is closer to an outlet of this coolant channel than to an inlet) and / or in a an outlet of this coolant channel connected section of the cooling system is measured. For this purpose, the internal combustion engine according to the invention can have a coolant temperature sensor arranged in the coolant duct of the internal combustion engine or in a coolant line directly adjoining this coolant duct in the flow direction of the coolant.
Sofern dabei lediglich ein Temperatursensor vorgesehen sein soll, ist dieser vorzugsweise in einem Kühlmittelkanal des Zylinderkopfs angeordnet. Eine verbesserte Regelung der Verteilung des Kühlmittels mittels der Regelvorrichtung kann jedoch dadurch erzielt werden, dass diese in Abhängigkeit von sowohl einer lokalen Temperatur des Kühlmittels in dem Zylinderkopf sowie von einer lokalen Temperatur des Kühlmittels in dem Zylindergehäuse angesteuert wird. Demnach kann ein erster, in einem Kühlmittelkanal des Zylinderkopfs angeordneter Kühlmitteltemperatursensor und ein zweiter, in einem Kühlmittelkanal des Zylindergehäuses angeordneter Kühlmitteltemperatursensor vorgesehen sein.If only one temperature sensor is to be provided, this is preferably arranged in a coolant channel of the cylinder head. An improved regulation of the distribution of the coolant by means of the regulating device can, however, be achieved in that it is controlled as a function of both a local temperature of the coolant in the cylinder head and a local temperature of the coolant in the cylinder housing. Accordingly, a first coolant temperature sensor arranged in a coolant channel of the cylinder head and a second coolant temperature sensor arranged in a coolant channel of the cylinder housing can be provided.
Die unbestimmten Artikel ("ein", "eine", "einer" und "eines"), insbesondere in den Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.The indefinite articles ("a", "an", "an" and "an"), in particular in the claims and in the description that generally explains the claims, are to be understood as such and not as numerals. Components specified in this way are therefore to be understood in such a way that they are present at least once and can be present several times.
Die erfindungsgemäße Brennkraftmaschine wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. In den Zeichnungen:
- Fig. 1:
- eine erfindungsgemäße Brennkraftmaschine schematisch in einem Blockschaltbild;
- Fig. 2:
- eine Regelvorrichtung für eine erfindungsgemäße Brennkraftmaschine in einer Explosionsdarstellung;
- Fig. 3:
- die Regelvorrichtung in einer Seitenansicht;
- Fig. 4:
- die Regelvorrichtung mit nur teilweise gezeigtem Gehäuse;
- Fig. 5:
- einen Aktor und die von diesem direkt oder indirekt betätigten Sperrschieber der Regelvorrichtung in isolierter Darstellung;
- Fig. 6:
- eine Abschnitt des ersten Sperrschiebers und eines mit diesem zusammenwirkenden Anschlussstücks; und
- Fig. 7:
- die Durchströmung einzelner Komponenten einer erfindungsgemäßen Brennkraftmaschine gemäß der
Fig. 1 mit Kühlmittel in Abhängigkeit von den verschiedenen Stellungen der Regelvorrichtung.
- Fig. 1:
- an internal combustion engine according to the invention schematically in a block diagram;
- Fig. 2:
- a control device for an internal combustion engine according to the invention in an exploded view;
- Fig. 3:
- the control device in a side view;
- Fig. 4:
- the control device with only partially shown housing;
- Fig. 5:
- an actuator and the gate valve of the control device actuated directly or indirectly by this in an isolated illustration;
- Fig. 6:
- a portion of the first locking slide and a connector cooperating therewith; and
- Fig. 7:
- the flow through individual components of an internal combustion engine according to the invention according to FIG
Fig. 1 with coolant depending on the various positions of the control device.
Die
Das Hauptkühlsystem umfasst weiterhin eine Regelvorrichtung 20 mit einem ersten Sperrschieber 22, einem zweiten Sperrschieber 24 und einem Aktor 26 auf. Der erste Sperrschieber 22 ist mittels des Aktors 26 bewegbar, während der zweite Sperrschieber 24 in einem Abschnitt der möglichen Gesamtbewegung des ersten Sperrschiebers 22 von diesem mitbewegt würde. Das Hauptkühlsystem umfasst zudem noch Kühlmittelkanäle 28, 30 des Zylindergehäuses 12 und des Zylinderkopfs 14, wobei die Kühlmittelkanäle 30 des Zylinderkopfs 14 auch einen Kühlmittelkanal 32 eines in den Zylinderkopf 14 integrierten Abgaskrümmers zu Kühlungszwecken durchströmen. Weiterhin umfasst das Hauptkühlsystem einen Motorölkühler 34, der parallel zu den Kühlmittelkanälen 30 des Zylinderkopfs 14 mit Kühlmittel durchströmbar ist, einen Heizungswärmetauscher 36, einen Hauptkühler 38 sowie eine Kühlmittelpumpe 40. Die einzelnen Komponenten des Hauptkühlsystems sind dabei über Kühlmittelleitungen fluidleitend verbunden. Und schließlich umfasst das Hauptkühlsystem noch einen in die Regelvorrichtung 20 integrierten Bypass 42, der dazu dient, unter Umgehung sowohl des Heizungswärmetauschers 36 als auch des Hauptkühlers 38 einen ersten Einlass 44 der Regelvorrichtung 20 mit einem ersten Einlass 46 der Kühlmittelpumpe 40 zu verbinden.The main cooling system further comprises a regulating
Die
Die Regelvorrichtung 20 umfasst demnach ein Gehäuse 48, in das auch ein Pumpenrad 50 einer als Flügelradpumpe ausgebildeten Kühlmittelpumpe 40 drehbar integriert ist. Eine Rotation des Pumpenrads 50 und damit ein Fördern von Kühlmittel in dem Hauptkühlsystem wird beispielsweise durch den Verbrennungsmotor 10 bewirkt, wozu eine Kurbelwelle (nicht dargestellt) des Verbrennungsmotors 10 über einen Riementrieb mit einer Welle 52 für das Pumpenrad 50 verbunden ist. Von dem Riementrieb ist lediglich in den
Zur Förderung des Kühlmittels wird dem Pumpenrad 50 Kühlmittel über den ersten Einlass 46 und/oder einen zweiten Einlass 56 der Kühlmittelpumpe 40 zugeführt. Der erste Einlass 46 ist einerseits über eine Kühlmittelleitung mit einem Auslass 58 des Hauptkühlers 38 und andererseits mit dem Bypass 42 verbunden. Dabei ist vorgesehen, dass die den Bypass 42 ausbildende Kühlmittelleitung als Kanal in das Gehäuse 48 der Regelvorrichtung 20 integriert ist. Der zweite Einlass 56 der Kühlmittelpumpe 40 ist über eine Kühlmittelleitung mit einem Auslass 60 des Heizungswärmetauschers 36 verbunden.To convey the coolant, coolant is fed to the
Durch die Rotation des Pumpenrads 50 wird das Kühlmittel durch einen innerhalb des Gehäuses 48 ausgebildeten Kühlmittelkanal 62 zu einem ersten Auslass 64 der Regelvorrichtung 20 geführt. Dieser erste Auslass 64 ist in einer Nullstellung 66 der Regelvorrichtung 20 mittels eines Verschlusselements 68 des in einer Verschlussstellung befindlichen zweiten Sperrschiebers 24 verschlossen. Dadurch ist eine Kühlmittelzirkulation durch das Kühlsystem insgesamt unterbunden. In der Nullstellung 66 der Regelvorrichtung 20 befindet sich der erste Sperrschieber 22 in einer Ausrichtung, bei der ein zweiter Auslass 70 der Regelvorrichtung 20, der über eine Kühlmittelleitung mit einem Einlass 72 des Heizungswärmetauschers 36 verbunden ist, mittels eines ersten Verschlusselements 74 des ersten Sperrschiebers 22 verschlossen ist. Die Nullstellung 66 der Regelvorrichtung 20 ist für einen kurzen Zeitraum nach einem Kaltstart der Brennkraftmaschine vorgesehen. Ein Kaltstart der Brennkraftmaschine ist dadurch gekennzeichnet, dass die Komponenten der Brennkraftmaschine und insbesondere auch das Kühlmittel des Hauptkühlsystems Temperaturen aufweisen, die im Wesentlichen der Umgebungstemperatur entsprechen, zumindest jedoch unterhalb einer definierten Grenztemperatur liegen.As a result of the rotation of the
Nach einem Kaltstart der Brennkraftmaschine und dem Erreichen eines definierten ersten Grenzwerts für eine lokale Kühlmitteltemperatur, die mittels eines ersten, in der Nähe eines Auslasses 76 des Zylinderkopfs 14 in den Kühlmittelkanal 30 integrierten ersten Kühlmitteltemperatursensors 78 gemessen wird, erfolgt ein Verstellen der Regelvorrichtung 20 von der Nullstellung 66 in eine erste Hauptstellung 80 mittels des Aktors 26. Der Aktor 26 wird dazu von einer Motorsteuerung 82 der Brennkraftmaschine, der das Messsignal des ersten Kühlmitteltemperatursensors 78 übermittelt wird, angesteuert. Dabei kann vorgesehen sein, dass das Verstellen der Regelvorrichtung 20 von der Nullstellung 66 in die erste Hauptstellung 80 in Abhängigkeit von der mittels des ersten Kühlmitteltemperatursensors 78 gemessenen lokalen Kühlmitteltemperatur abgestuft oder stufenlos durch ein an einen Temperaturanstieg gebundenes Verdrehen des ersten Sperrschieber 22 und des damit noch drehend gekoppelten zweiten Sperrschiebers 24 bewirkt wird (vgl.
In der ersten Hauptstellung 80 der Regelvorrichtung 20 befindet sich der zweite Sperrschieber 24 in einer Öffnungsstellung, bei der der erste Auslass 64 der Regelvorrichtung 20 nicht mehr von dem Verschlusselement 68 verschlossen, sondern im Wesentlichen vollständig freigegeben ist. Gleichzeitig befindet sich der erste Sperrschieber 22 in einer Ausrichtung, in der dessen erstes Verschlusselement 74 den zweiten Auslass 70 nicht mehr verschließt, sondern im Wesentlichen vollständig freigibt. Gleichzeitig verschließt ein zweites Verschlusselement 86 des ersten Sperrschiebers 22 einen mit einem Auslass 88 des Zylindergehäuses 12 in Verbindung stehenden zweiten Einlass 90 der Regelvorrichtung 20, einen mit einem Einlass 92 des Hauptkühlers 38 über eine Kühlmittelleitung in Verbindung stehenden dritten Auslass 94 der Regelvorrichtung 20 sowie den in die Regelvorrichtung 20 integrierten Bypass 42. In der ersten Hauptstellung 80 der Regelvorrichtung 20 wird somit eine durch die Kühlmittelpumpe 40 bewirkte Förderung des Kühlmittels lediglich in einem kleinen, die Kühlmittelpumpe 40, die Regelvorrichtung 20, den Zylinderkopf 14 und den Heizungswärmetauscher 36 umfassenden Kühlkreis bewirkt.In the first
Nach dem Erreichen eines definierten zweiten Grenzwerts für die mittels des ersten Kühlmitteltemperatursensors 78 gemessene lokale Kühlmitteltemperatur in dem Zylinderkopf 14 wird die Regelvorrichtung 20 von der ersten Hauptstellung 80 in eine zweite Hauptstellung 96 verstellt. Dabei wird der erste Sperrschieber 22 in eine Ausrichtung verdreht, in der ein vierter Auslass 98 der Regelvorrichtung 20 von einem dritten Verschlusselement 100 des ersten Sperrschiebers 22 zunehmend freigegeben wird, wodurch eine erste Entlüftungsleitung 102 (mit integriertem Rückschlagventil 104), die den vierten Auslass 98 der Regelvorrichtung 20 mit einem Ausgleichsbehälter 106 (in einem oben liegenden Abschnitt des Ausgleichsbehälters 106) verbindet, entsprechend zunehmend freigegeben wird. Dadurch wird ab der zweiten Hauptstellung 96 der Regelvorrichtung 20 eine Entlüftung der Regelvorrichtung 20 über die erste Entlüftungsleitung 102, die auch mit einem zumindest geringfügigen Überströmen von Kühlmittel zwischen der Regelvorrichtung 20 und dem Ausgleichsbehälter 106 über eine aus einem unteren Abschnitt des Ausgleichsbehälters 106 abgehende erste Überströmleitung 108 verbunden sein kann, ermöglicht. Durch das relativ späte Zuschalten des Ausgleichsbehälters 106 (nach einem Kaltstart der Brennkraftmaschine) werden Wärmeverluste in dem Ausgleichsbehälter 106, die ein verzögertes Erreichen eines Betriebstemperaturbereichs für den Zylinderkopf 14 sowie eine Verzögerung der Heizwirkung des Heizungswärmetauschers 36 bewirken, gering gehalten.After a defined second limit value has been reached for the local coolant temperature measured by means of the first coolant temperature sensor 78 in the
Die
Nach dem Erreichen eines definierten dritten Grenzwerts für die mittels des ersten Kühlmitteltemperatursensors 78 gemessene lokale Kühlmitteltemperatur in dem Zylinderkopf 14 wird die Regelvorrichtung 20 von der zweiten Hauptstellung 96 in eine erste Zwischenstellung 110 verstellt. Dabei wird der erste Sperrschieber 22 in eine Ausrichtung verdreht, in der der Bypass 42 von dem zweiten Verschlusselement 86 zunehmend freigegeben wird, wodurch der Bypass 42 parallel zu dem Heizungswärmetauscher 36 in den kleinen Kühlkreis integriert wird. Der zweite Einlass 90 und der dritte Auslass 94 der Regelvorrichtung 20 sind dabei weiterhin von dem ersten Sperrschieber 22 verschlossen. Der zweite Sperrschieber 24 verbleibt während dieser Bewegung des ersten Sperrschiebers 22 in seiner Öffnungsstellung, da dieser nicht mehr drehend an den ersten Sperrschieber 22 gekoppelt ist. Durch die Integration des Bypasses 42 in den (kleinen) Kühlkreislauf in der ersten Zwischenstellung 110 der Regelvorrichtung 20 kann der insgesamt in dem Hauptkühlsystem geförderte Volumenstrom des Kühlmittels erhöht werden, um eine entsprechend hohe Kühlleistung für den Zylinderkopf 14 und den Motorölkühler 34 zu erreichen.After a defined third limit value has been reached for the local coolant temperature measured by means of the first coolant temperature sensor 78 in the
Die nur phasenweise Drehkopplung des ersten Sperrschiebers 22 an den zweiten Sperrschieber 24 wird durch Segmentverzahnungen 116 bewirkt, die nur dann miteinander in Eingriff sind, wenn der erste Sperrschieber 22 zwischen der Nullstellung 66 und der ersten Hauptstellung 80 (hin oder her) gedreht wird. Eine Lagesicherung des zweiten Sperrschiebers 24 in seiner Öffnungsstellung wird formschlüssig durch den ersten Sperrschieber 22 erreicht, indem ein sich an die Segmentverzahnung 116 des ersten Sperrschiebers 22 anschließender Ringabschnitt 118 in eine sich an die Segmentverzahnung 116 des zweiten Sperrschiebers 24 anschließende konkave Vertiefung 120 eingreift und in dieser bei der Rotation des ersten Sperrschiebers 22 gleitend relativbewegt und dadurch global drehfixiert gehalten wird.The only phased rotary coupling of the
Nach einem Erreichen eines definierten vierten Grenzwerts für die mittels des ersten Kühlmitteltemperatursensors 78 gemessene lokale Kühlmitteltemperatur in dem Zylinderkopf 14 und/oder nach einem Erreichen eines definierten ersten Grenzwerts für eine mittels eines zweiten, in der Nähe des Auslasses 88 des Zylindergehäuses 12 angeordneten Kühlmitteltemperatursensors 122 gemessene lokale Kühlmitteltemperatur in dem Zylindergehäuse 12 wird die Regelvorrichtung 20 von der ersten Zwischenstellung 110 in eine zweite Zwischenstellung 124 verstellt. Dabei wird der erste Sperrschieber 22 in eine Ausrichtung verdreht, in der das zweite Verschlusselement 86 zusätzlich auch den zweiten Einlass 90 der Regelvorrichtung 20 (zunehmend) freigibt (vgl.
Nach dem Erreichen eines definierten fünften Grenzwerts für die mittels des ersten Kühlmitteltemperatursensors 78 gemessene lokale Kühlmitteltemperatur in dem Zylinderkopf 14 und/oder nach dem Erreichen eines definierten zweiten Grenzwerts für die mittels des zweiten Kühlmitteltemperatursensors 122 gemessene lokale Kühlmitteltemperatur in dem Zylindergehäuse 12 und/oder in Abhängigkeit von einem in der Motorsteuerung 82 abgespeicherten Betriebskennfeld der Brennkraftmaschine wird die Regelvorrichtung 20 von der zweiten Zwischenstellung 124 in eine dritte Hauptstellung 126 verstellt. Dabei erfolgt ein (zunehmendes) Freigegeben des dritten Auslasses 94 der Regelvorrichtung 20 und folglich ein Einbinden des Hauptkühlers 38 in einen dann großen Kühlkreis, während gleichzeitig in zunehmendem Maße der in die Regelvorrichtung 20 integrierte Bypass 42 durch das zweite Verschlusselement 86 des ersten Sperrschiebers 22 wieder verschlossen wird (vgl.
In den oberen Abschnitt des Ausgleichsbehälters mündet weiterhin noch eine zweite Entlüftungsleitung 128, die aus dem Hauptkühler 38 abgeht und in die ebenfalls ein Rückschlagventil 130 integriert ist. Diese ermöglicht, insbesondere in der dritten Hauptstellung 126 der Regelvorrichtung 20, in vorteilhafter Weise eine Entlüftung des Hauptkühlers 38.A
Die dritte Hauptstellung 126 der Regelvorrichtung 20 ist weiterhin für einen Nichtbetrieb der Brennkraftmaschine vorgesehen. Dadurch soll zum einen eine "Failsafe"-Funktion realisiert werden, durch die bei einem Defekt des Kühlsystems, der beispielsweise durch Marderbiss im Nichtbetrieb eines von der Brennkraftmaschine antreibbaren Kraftfahrzeugs hervorgerufen worden sein kann, weiterhin eine Funktionsfähigkeit des Hauptkühlsystems gewährleistet werden kann, die zwar funktional eingeschränkt ist, aber stets eine ausreichende (weil maximal mögliche) Kühlleistung bereitstellt. Weiterhin erleichtert die dritte Hauptstellung 126 der Regelvorrichtung 20 im Nichtbetrieb der Brennkraftmaschine ein Befüllen und Entleeren des Hauptkühlsystems im Rahmen von Montage- oder Wartungsarbeiten, weil sich das über den Ausgleichsbehälter 106 eingefüllte und über die erste Überströmleitung 108 den Komponenten des Hauptkühlsystems zugeführte Kühlmittel im Wesentlichen ungehindert in dem Hauptkühlsystem verteilen kann und dabei in dem Hauptkühlsystem enthaltene Luft über die erste Entlüftungsleitung 102, die zweite Entlüftungsleitung 128 und anschließend den Ausgleichsbehälter 106 entweichen kann.The third
Das Nebenkühlsystem der Brennkraftmaschine gemäß der
Der Ausgleichsbehälter 106 der Brennkraftmaschine ist auch in das Nebenkühlsystem integriert, wozu eine dritte Entlüftungsleitung 136 vorgesehen ist, die in einem Abschnitt, der bezüglich der Strömungsrichtung des Kühlmittels hinter dem Abgasturbolader 16 sowie dem Ladeluftkühler 18 und vor dem (Niedertemperatur-)Kühler 134 angeordnet ist, aus dem Kühlkreis des Nebenkühlsystems abgeht und unter Einbindung eines Drosselelements 138 sowie eines Rückschlagventils 140 wiederum mit dem oberen Abschnitt des Ausgleichsbehälters 106 verbunden ist. Weiterhin ist eine zweite Überströmleitung 142 vorgesehen, die den unteren, Kühlmittel aufnehmenden Abschnitt des Ausgleichsbehälters 106 mit einem Abschnitt des Kühlkreises des Nebelkühlsystems, der zwischen dem (Niedertemperatur-)Kühler 134 und der Zusatzkühlmittelpumpe 132 angeordnet ist, verbindet.The
Im Folgenden werden die Funktionalitäten des Hauptkühlsystems, die durch die verschiedenen Stellungen der Regelvorrichtung 20 realisierbar sind, unter Bezugnahme auf die
Im Nichtbetrieb der Brennkraftmaschine (sowohl bei noch warmem als auch schon vollständig abgekühltem Kühlmittel) befindet sich die Regelvorrichtung 20 in der dritten Hauptstellung 126. Dadurch wird die beschriebene "Failsafe"-Funktion realisiert, sollte eine Verstellung der Regelvorrichtung 20 aufgrund eines Defekts nach einem Start der Brennkraftmaschine nicht möglich sein. Weiterhin wird dadurch im Rahmen von Montage- oder Wartungsarbeiten eine Befüllung und Entlüftung des Hauptkühlsystems ermöglicht, ohne dass ein Betrieb der Brennkraftmaschine notwendig wäre.When the internal combustion engine is not in operation (both when the coolant is still warm and has already cooled down completely), the
Für einen Kaltstart der Brennkraftmaschine wird die Regelvorrichtung 20 in die Nullstellung 66 verstellt. Die Nullstellung 66 wird dabei während einer ersten Warmlaufphase 144 beibehalten. Dadurch ist eine Zirkulation des Kühlmittels innerhalb des Hauptkühlsystems im Wesentlichen unterbunden, so dass ein relativ schnelles Aufwärmen des in dem Verbrennungsmotor 10 und insbesondere in dem Zylinderkopf 14 enthaltenen Kühlmittels erreicht werden kann.For a cold start of the internal combustion engine, the
Relativ kurz nach dem Kaltstart der Brennkraftmaschine wird damit begonnen, in einer zweiten Warmlaufphase 146 die Regelvorrichtung 20 von der Nullstellung 66 in die erste Hauptstellung 80 zu verstellen, wodurch in zunehmendem Maße der Zylinderkopf 14 und das Motoröl in dem Motorölkühler 34 gekühlt sowie eine Heizfunktionalität mittels des Heizungswärmetauschers 36 realisiert wird.Relatively shortly after the internal combustion engine has been cold-started, in a second warm-up
In einer dritten Warmlaufphase 148 wird die Regelvorrichtung zunehmend von der ersten Hauptstellung 80 in die zweite Hauptstellung 96 verstellt, wodurch eine Entlüftung der Regelvorrichtung 20 über die erste Entlüftungsleitung 102 und den Ausgleichsbehälter 106 realisiert werden kann. Die erst relativ spät einsetzende Entlüftung reduziert Wärmeverluste während der ersten beiden Warmlaufphasen 144, 146.In a third warm-up phase 148, the control device is increasingly displaced from the first
In einer vierten Warmlaufphase 150 wird die Regelvorrichtung 20 zunehmend von der zweiten Hauptstellung 96 in die erste Zwischenstellung 110 verstellt. Durch den dann zunehmend in den kleinen Kühlkreis integrierten Bypass 42 kann eine Erhöhung des Volumenstroms des Kühlmittels in dem kleinen Kühlkreis erreicht und dadurch die Ausbildung von sogenannten Hot-Spots, insbesondere in dem Zylinderkopf 14 des Verbrennungsmotors 10, vermieden werden.In a fourth warm-up phase 150, the
In einer fünften Warmlaufphase 152 wird die Regelvorrichtung 20 zunehmend von der ersten Zwischenstellung 110 in die zweite Zwischenstellung 124 verstellt, wodurch in zunehmendem Maße auch das Zylindergehäuse 12 gekühlt wird. Der Volumenstrom des Kühlmittels, der über den Bypass 42 geführt wird, kann dabei zumindest zu Beginn der fünften Warmlaufphase 152 weiter erhöht werden.In a fifth warm-up
Sobald das Kühlmittel des Hauptsystems einen Betriebstemperaturbereich (Normalbetriebsphase 154) erreicht hat, erfolgt eine Verstellung der Regelvorrichtung 20 zwischen der zweiten Zwischenstellung 124 und der dritten Hauptstellung 126 in Abhängigkeit von einem Betriebskennfeld des Verbrennungsmotors mittels der Motorsteuerung 82. Dabei kann, infolge einer in Richtung der dritten Hauptstellung 126 zunehmenden Verringerung des durch den Bypass 42 geführten Volumenstroms des Kühlmittels und einer gleichzeitig zunehmenden Vergrößerung des durch den Hauptkühler 38 geführten Volumenstroms des Kühlmittels, durch eine definierte Einstellung beliebiger Zwischenpositionen zwischen der zweiten Zwischenstellung 124 und der dritten Hauptstellung 126 eine bedarfsgerechte Kühlleistung für die Komponenten des Hauptkühlsystems realisiert werden.As soon as the coolant of the main system has reached an operating temperature range (normal operating phase 154), the
Beim Abstellen der Brennkraftmaschine, d.h. beim Überführen der Brennkraftmaschine von einem Betrieb in einen Nichtbetrieb, kann vorgesehen sein, dass die Regelvorrichtung 20 zunächst über die dritte Hauptstellung 126, die einen oberen, elektrisch realisierten Anschlag (OEA) im Betrieb der Regelvorrichtung 20 darstellt, hinaus kurzzeitig bis gegen einen oberen (mechanischen) Endanschlag (OMA), dann bis zu der Nullstellung 66, die einen unteren, elektrisch realisierten Anschlag (UEA) im Betrieb der Regelvorrichtung 20 darstellt, und darüber hinaus kurzzeitig bis gegen einen unteren (mechanischen) Endanschlag (UMA) und darauf folgend kurzzeitig wiederum bis gegen den oberen Endanschlag (OMA) verstellt wird, um eine Endanschlagdiagnose durchzuführen. Diese kann für eine möglichst exakte Verstellung der Regelvorrichtung 20 in die verschiedenen Stellungen und Zwischenpositionen während des Betriebs der Brennkraftmaschine relevant sein. Nach dieser Endanschlagdiagnose kann die Regelvorrichtung 20 dann in die für den Nichtbetrieb vorgesehene dritte Hauptstellung 126 (OEA) verstellt werden. Die in der dritten Hauptstellung 126 realisierte weitgehend ungehinderte Zirkulation des noch warmen Kühlmittels in dem Hauptkühlsystem ermöglicht dann noch eine Nutzung der in dem Kühlmittel gespeicherten Wärmeenergie, beispielsweise für eine Nachheizfunktion des Heizungswärmetauschers 36.When the internal combustion engine is switched off, ie when the internal combustion engine is switched from operation to non-operation, it can be provided that the
- 1010
- VerbrennungsmotorInternal combustion engine
- 1212
- ZylindergehäuseCylinder housing
- 1414th
- ZylinderkopfCylinder head
- 1616
- AbgasturboladerExhaust gas turbocharger
- 1818th
- LadeluftkühlerIntercooler
- 2020th
- RegelvorrichtungControl device
- 2222nd
- erster Sperrschieberfirst gate valve
- 2424
- zweiter Sperrschiebersecond locking slide
- 2626th
- AktorActuator
- 2828
- Kühlmittelkanal des ZylindergehäusesCoolant channel of the cylinder housing
- 3030th
- Kühlmittelkanal des ZylinderkopfsCylinder head coolant duct
- 3232
- Kühlmittelkanal des AbgaskrümmersExhaust manifold coolant duct
- 3434
- MotorölkühlerEngine oil cooler
- 3636
- HeizungswärmetauscherHeating heat exchanger
- 3838
- HauptkühlerMain cooler
- 4040
- Kühlmittelpumpe des HauptkühlsystemsMain cooling system coolant pump
- 4242
- Bypassbypass
- 4444
- erster Einlass der Regelvorrichtungfirst inlet of the control device
- 4646
- erster Einlass der Kühlmittelpumpefirst inlet of the coolant pump
- 4848
- Gehäusecasing
- 5050
- PumpenradImpeller
- 5252
- Wellewave
- 5454
- RiemenradPulley
- 5656
- zweiter Einlass der Kühlmittelpumpesecond inlet of the coolant pump
- 5858
- Auslass des HauptkühlersMain cooler outlet
- 6060
- Auslass des HeizungswärmetauschersOutlet of the heating heat exchanger
- 6262
- KühlmittelkanalCoolant duct
- 6464
- erster Auslass der Regelvorrichtungfirst outlet of the control device
- 6666
- Nullstellung der RegelvorrichtungZero position of the control device
- 6868
- Verschlusselement des zweiten SperrschiebersClosing element of the second locking slide
- 7070
- zweiter Auslass der Regelvorrichtungsecond outlet of the control device
- 7272
- Einlass des HeizungswärmetauschersInlet of the heating system heat exchanger
- 7474
- erstes Verschlusselement des ersten Sperrschiebersfirst locking element of the first locking slide
- 7676
- Auslass des ZylinderkopfsExhaust of the cylinder head
- 7878
- erster Kühlmitteltemperatursensorfirst coolant temperature sensor
- 8080
- erste Hauptstellung der Regelvorrichtungfirst main position of the control device
- 8282
- MotorsteuerungEngine control
- 8484
- Wellewave
- 8686
- zweites Verschlusselement des ersten Sperrschieberssecond locking element of the first locking slide
- 8888
- Auslass des ZylindergehäusesOutlet of the cylinder housing
- 9090
- zweiter Einlass der Regelvorrichtungsecond inlet of the control device
- 9292
- Einlass des HauptkühlersMain cooler inlet
- 9494
- dritter Auslass der Regelvorrichtungthird outlet of the control device
- 9696
- zweite Hauptstellung der Regelvorrichtungsecond main position of the control device
- 9898
- vierter Auslass der Regelvorrichtungfourth outlet of the control device
- 100100
- drittes Verschlusselement des ersten Sperrschiebersthird locking element of the first locking slide
- 102102
- erste Entlüftungsleitungfirst vent line
- 104104
- Rückschlagventil der ersten EntlüftungsleitungCheck valve of the first vent line
- 106106
- Ausgleichsbehältersurge tank
- 108108
- erste Überströmleitungfirst overflow line
- 110110
- erste Zwischenstellung der Regelvorrichtungfirst intermediate position of the control device
- 112112
- AnschlussstückConnector
- 114114
- DichtelementSealing element
- 116116
- SegmentverzahnungSegment toothing
- 118118
- RingabschnittRing section
- 120120
- Vertiefungdeepening
- 122122
- zweiter Kühlmitteltemperatursensorsecond coolant temperature sensor
- 124124
- zweite Zwischenstellung der Regelvorrichtungsecond intermediate position of the control device
- 126126
- dritte Hauptstellung der Regelvorrichtungthird main position of the control device
- 128128
- zweite Entlüftungsleitungsecond vent line
- 130130
- Rückschlagventil der zweiten EntlüftungsleitungCheck valve of the second vent line
- 132132
- ZusatzkühlmittelpumpeAuxiliary coolant pump
- 134134
- (Niedertemperatur-)Kühler(Low temperature) cooler
- 136136
- dritte Entlüftungsleitungthird vent line
- 138138
- DrosselelementThrottle element
- 140140
- Rückschlagventil der dritten EntlüftungsleitungCheck valve of the third vent line
- 142142
- zweite Überströmleitungsecond overflow line
- 144144
- erste Warmlaufphasefirst warm-up phase
- 146146
- zweite Warmlaufphasesecond warm-up phase
- 148148
- dritte Warmlaufphasethird warm-up phase
- 150150
- vierte Warmlaufphasefourth warm-up phase
- 152152
- fünfte Warmlaufphasefifth warm-up phase
- 154154
- NormalbetriebsphaseNormal operating phase
Claims (10)
- Combustion machine with an internal combustion engine (10) and with a cooling system which comprises a coolant pump (40), a main radiator (38), a heating heat exchanger (36), coolant channels (28, 30) in the internal combustion engine (10), and a regulating device (20) with an actuator (26) for the regulated distribution of a coolant in a manner dependent on at least one local coolant temperature, characterized in that the regulating device (20) is connectable via a connecting line to a coolant expansion tank (106), and the regulating device (20), in the event of an actuation of the actuator (26) in one direction,- in a first main position (80), prevents a coolant flow through the coolant channels (28, 30) of the internal combustion engine (10) and through the heating heat exchanger (36) and through the main radiator (38) and furthermore closes the connecting line,- in a second main position (96), opens up the connecting line, and,- in a third main position (126), additionally permits a coolant flow through the main radiator (38).
- Combustion machine according to Claim 1, characterized in that the connecting line is a ventilation line (102) which connects the regulating device (20) to a portion of the expansion tank (106) which is provided for accommodating air during the operation of the internal combustion engine.
- Combustion machine according to Claim 1 or 2, characterized in that, additionally, a bypass (42) is provided which circumvents the heating heat exchanger (36), and in that the regulating device (20), in the event of the actuation of the actuator (26),- in the first main position (80) and in the second main position (96), prevents a coolant flow through the bypass (42), and,- in a first intermediate position (110) adjoining the second main position (96), additionally permits a coolant flow through the bypass (42).
- Combustion machine according to Claim 3, characterized in that the regulating device (20), in the third main position (126), prevents a coolant flow through the bypass (42) again.
- Combustion machine according to any of the preceding claims, characterized in that the internal combustion engine (10) comprises a cylinder housing (12) and a cylinder head (14), wherein the regulating device (20), in the first main position (80), permits a coolant flow through a coolant channel (30) of the cylinder head (14) and prevents a coolant flow through a coolant channel (28) of the cylinder housing (12).
- Combustion machine according to Claim 5, characterized in that the regulating device (20), in a (second) intermediate position (124) situated between the second main position (96) and the third main position (126), additionally permits a coolant flow through the coolant channel (28) of the cylinder housing (12).
- Combustion machine according to any of the preceding claims, characterized in that the regulating device (20) comprises a shut-off slide (22) which is moved by the actuator (26), wherein the shut-off slide (22) has a portion within which the shut-off slide (22), in a range of motion that can be effected by means of the actuator (26), overlaps an outlet of the connecting line, wherein a sub-portion of said portion is formed by a passage opening which is connected in fluid-conducting fashion to a volume, provided for conducting coolant, of the regulating device (22).
- Combustion machine according to Claim 7, characterized in that the outlet is formed by a tubular attachment piece (112), one end of which is slidingly guided directly, and/or with the interposition of a sealing element (114), on the shut-off slide (22) when the shut-off slide (22) is moved by the actuator ("6).
- Combustion machine according to Claim 8, characterized in that the sealing element (114) is formed as a plug which is fitted into the end of the attachment piece (112).
- Method for filling a cooling system of an internal combustion engine according to any of the preceding claims with coolant, characterized in that the regulating device (20) is adjusted into the third main position (126) for the purposes of filling the cooling system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016119181.7A DE102016119181A1 (en) | 2016-10-10 | 2016-10-10 | Internal combustion engine |
PCT/EP2017/074626 WO2018069053A1 (en) | 2016-10-10 | 2017-09-28 | Internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3523524A1 EP3523524A1 (en) | 2019-08-14 |
EP3523524B1 true EP3523524B1 (en) | 2020-09-09 |
Family
ID=59982378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17777250.6A Active EP3523524B1 (en) | 2016-10-10 | 2017-09-28 | Internal combustion engine |
Country Status (7)
Country | Link |
---|---|
US (1) | US11248517B2 (en) |
EP (1) | EP3523524B1 (en) |
KR (1) | KR102330699B1 (en) |
CN (1) | CN109844279B (en) |
DE (1) | DE102016119181A1 (en) |
RU (1) | RU2741952C2 (en) |
WO (1) | WO2018069053A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014201170A1 (en) * | 2014-01-23 | 2015-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for venting a thermal management system of an internal combustion engine |
DE102017123469A1 (en) * | 2017-10-10 | 2019-04-11 | Volkswagen Aktiengesellschaft | Method for operating an internal combustion engine, internal combustion engine and motor vehicle |
JP2019089524A (en) * | 2017-11-17 | 2019-06-13 | アイシン精機株式会社 | Vehicular heat exchange device |
DE102018100927A1 (en) * | 2018-01-17 | 2019-07-18 | Volkswagen Aktiengesellschaft | Charged internal combustion engine with a cooling system and method for operating such an internal combustion engine |
DE102018201992B4 (en) * | 2018-02-08 | 2022-06-15 | Audi Ag | Method for operating an internal combustion engine with two coolant paths and corresponding internal combustion engine with two coolant paths |
US11199125B2 (en) | 2018-04-17 | 2021-12-14 | Scania Cv Ab | Cooling system comprising at least two cooling circuits connected to a common expansion tank |
KR102673161B1 (en) * | 2019-02-25 | 2024-06-10 | 현대자동차주식회사 | Cooling system for temperature regulation and Method thereof |
US20210197642A1 (en) * | 2019-12-30 | 2021-07-01 | Lyft, Inc. | Systems and methods for enhanced de-gas system in a vehicle |
DE102020127980B3 (en) | 2020-10-23 | 2021-12-30 | Audi Aktiengesellschaft | Method for controlling a flow through an expansion tank and a corresponding device |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1456621A1 (en) * | 1987-02-09 | 1989-02-07 | Николаевский Кораблестроительный Институт Им.Адм.С.О.Макарова | Cooling system of i.c. piston engine |
SU1571282A1 (en) * | 1987-12-04 | 1990-06-15 | Производственное Объединение "Камский Тракторный Завод" | Cooling system of power unit with internal combustion engine |
DE19607638C1 (en) * | 1996-02-29 | 1997-06-19 | Porsche Ag | Internal combustion engine coolant circuit |
FR2800125B1 (en) * | 1999-10-20 | 2002-05-03 | Coutier Moulage Gen Ind | DEVICE FOR DISPENSING AND CONTROLLING A COOLING LIQUID IN A COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE AND METHOD THEREOF |
FR2827359B1 (en) * | 2001-07-11 | 2004-11-05 | Valeo Thermique Moteur Sa | CONTROL VALVE FOR A COOLING CIRCUIT OF A MOTOR VEHICLE HEAT ENGINE |
US6681805B2 (en) * | 2001-11-28 | 2004-01-27 | Ranco Incorporated Of Delaware | Automotive coolant control valve |
US6668764B1 (en) * | 2002-07-29 | 2003-12-30 | Visteon Global Techologies, Inc. | Cooling system for a diesel engine |
DE10342935B4 (en) | 2003-09-17 | 2015-04-30 | Robert Bosch Gmbh | Internal combustion engine with a cooling circuit |
FR2908155B1 (en) * | 2006-11-02 | 2008-12-12 | Coutier Moulage Gen Ind | MULTIVOYOUS THERMOSTATIC VALVE FOR SELECTIVE DISTRIBUTION AND FLOW CONTROL OF A COOLANT IN A COOLING SYSTEM OF A MOTOR VEHICLE ENGINE |
CN201614962U (en) * | 2009-12-18 | 2010-10-27 | 奇瑞汽车股份有限公司 | Cooling system of automobile engine |
DE102010017766B4 (en) * | 2010-07-06 | 2013-11-14 | Ford Global Technologies, Llc. | Cooling arrangement for internal combustion engines |
DE102010044167A1 (en) | 2010-11-19 | 2012-05-24 | Mahle International Gmbh | Coolant pump mounted in motor vehicle, has valve device that is provided to disconnect suction side and pressure side of displacement pump which is connected to slider, for adjusting fluid pressure |
JP5582133B2 (en) * | 2011-12-22 | 2014-09-03 | 株式会社デンソー | Engine coolant circulation system |
RU127823U1 (en) * | 2012-10-03 | 2013-05-10 | Общество с ограниченной ответственностью "ЦЕНТР АВТОМОБИЛЬНЫХ ТЕХНОЛОГИЙ "КАРТЕХ" | LIQUID COOLING SYSTEM OF THE INTERNAL COMBUSTION ENGINE AND HEATING OF THE VEHICLE |
DE102014201167A1 (en) * | 2014-01-23 | 2015-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Thermal management system for an internal combustion engine |
DE102014201170A1 (en) * | 2014-01-23 | 2015-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for venting a thermal management system of an internal combustion engine |
DE102014219252A1 (en) * | 2014-09-24 | 2016-04-07 | Volkswagen Aktiengesellschaft | Internal combustion engine |
DE102015107926A1 (en) * | 2015-05-20 | 2016-11-24 | Volkswagen Aktiengesellschaft | Internal combustion engine and motor vehicle |
DE102015111407B4 (en) * | 2015-07-14 | 2024-08-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cooling system for a vehicle |
-
2016
- 2016-10-10 DE DE102016119181.7A patent/DE102016119181A1/en not_active Withdrawn
-
2017
- 2017-09-28 WO PCT/EP2017/074626 patent/WO2018069053A1/en active Application Filing
- 2017-09-28 KR KR1020197013045A patent/KR102330699B1/en active IP Right Grant
- 2017-09-28 US US16/340,343 patent/US11248517B2/en active Active
- 2017-09-28 RU RU2019110425A patent/RU2741952C2/en active
- 2017-09-28 EP EP17777250.6A patent/EP3523524B1/en active Active
- 2017-09-28 CN CN201780062712.8A patent/CN109844279B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20190234290A1 (en) | 2019-08-01 |
WO2018069053A1 (en) | 2018-04-19 |
KR20190057389A (en) | 2019-05-28 |
CN109844279B (en) | 2021-03-12 |
RU2019110425A (en) | 2020-11-17 |
DE102016119181A1 (en) | 2018-04-12 |
RU2019110425A3 (en) | 2020-11-25 |
CN109844279A (en) | 2019-06-04 |
RU2741952C2 (en) | 2021-02-01 |
EP3523524A1 (en) | 2019-08-14 |
US11248517B2 (en) | 2022-02-15 |
KR102330699B1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3523524B1 (en) | Internal combustion engine | |
EP3198124B1 (en) | Internal combustion engine | |
EP2876274B1 (en) | Internal combustion engine | |
DE102012210320B3 (en) | Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position | |
EP2562379B1 (en) | Coolant circuit | |
EP3298255B1 (en) | Internal combustion engine and motor vehicle | |
EP3530901A1 (en) | Combustion engine and motor vehicle | |
DE102014218587A1 (en) | A supercharged internal combustion engine with liquid cooled turbine and method of controlling the cooling of said turbine | |
DE102017221915A1 (en) | Separate cooling device and a separate cooling system for a vehicle | |
DE102014018729A1 (en) | Cooling device for cooling an internal combustion engine | |
EP2562378B1 (en) | Strategy to operate a split coolant circuit | |
EP3412883B1 (en) | Combustion engine and motor vehicle | |
DE202014104426U1 (en) | Internal combustion engine with liquid-cooled turbine | |
EP3530900B1 (en) | Combustion engine and motor vehicle | |
DE3200688A1 (en) | Device for controlling the charge air temperature of a supercharged internal combustion engine | |
DE102014004009A1 (en) | Coolant circuit for cooling an internal combustion engine, in particular for a motor vehicle, and method for operating such a coolant circuit | |
DE102019108222A1 (en) | Internal combustion engine for a motor vehicle and motor vehicle | |
DE102017217542A1 (en) | Liquid-cooled internal combustion engine with integrated exhaust manifold and method for controlling the cooling of such an internal combustion engine | |
DE102014218589B4 (en) | Internal combustion engine with liquid cooling and method for controlling liquid cooling | |
DE102018201992B4 (en) | Method for operating an internal combustion engine with two coolant paths and corresponding internal combustion engine with two coolant paths | |
DE102016212006B4 (en) | Spark ignition internal combustion engine with after-cooling | |
DE102016113812A1 (en) | Lubricant circuit for an internal combustion engine | |
DE112022000548T5 (en) | Cooling mechanism | |
DE10362350B3 (en) | Method and device for needs-based cooling of internal combustion engines during warm-up | |
DE202013102569U1 (en) | Liquid-cooled internal combustion engine with secondary circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190510 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200401 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1311851 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017007212 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017007212 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200928 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200928 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1311851 Country of ref document: AT Kind code of ref document: T Effective date: 20220928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240930 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240924 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 8 |