EP2876274B1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
EP2876274B1
EP2876274B1 EP14178808.3A EP14178808A EP2876274B1 EP 2876274 B1 EP2876274 B1 EP 2876274B1 EP 14178808 A EP14178808 A EP 14178808A EP 2876274 B1 EP2876274 B1 EP 2876274B1
Authority
EP
European Patent Office
Prior art keywords
cooling
coolant
cooling circuit
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14178808.3A
Other languages
German (de)
French (fr)
Other versions
EP2876274A1 (en
Inventor
Christoph KÄPPNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2876274A1 publication Critical patent/EP2876274A1/en
Application granted granted Critical
Publication of EP2876274B1 publication Critical patent/EP2876274B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Definitions

  • the invention relates to an internal combustion engine with a cooling system.
  • Internal combustion engines for motor vehicles have at least one cooling system in which a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler. This heat energy is then in an ambient heat exchanger, the so-called main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the vehicle ambient air specified.
  • a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler.
  • This heat energy is then in an ambient heat exchanger, the so-called main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the vehicle ambient air specified.
  • Cooling systems of modern motor vehicles generally have several cooling circuits.
  • a so-called large or main cooling circuit and a small cooling circuit which are partially formed integrally, and wherein the coolant is guided either via the large or the small cooling circuit by means of a thermostat-controlled valve.
  • This is done as a function of the temperature of the coolant, so that, for example, in a warm-up phase of the internal combustion engine, when the coolant has not yet reached its operating temperature range, this is conveyed in the small cooling circuit, whereby the main water cooler, i. the ambient heat exchanger, in which the coolant is mainly cooled by heat transfer to the ambient air, is bypassed.
  • the coolant in the large customer group is conveyed by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by a heat transfer from the coolant to the ambient air.
  • the heating heat exchanger as the second ambient heat exchanger is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.
  • the (main) pump of the cooling system is regularly mechanically driven by the internal combustion engine of the internal combustion engine. Your output is thus in principle proportional to the speed at which a crankshaft of the internal combustion engine rotates.
  • the cooling power demand tends to increase, the theoretically achievable by the operation of the pump cooling performance in many operating conditions does not correspond to the actual cooling power requirement.
  • mechanically driven pumps are often oversized.
  • the efforts to reduce the fuel consumption of motor vehicles, has therefore led to the development of mechanically driven Kuhlkarkarpumpen that are adjustable in terms of the volume flow rate.
  • Such a controllable, mechanically driven coolant pump is for example from the DE 10 2010 044 167 A1 known
  • the main control of the volumetric flow of the coolant thus takes place by means of controllable coolant pumps while the distribution of the volumetric flow is controlled to the individual, each having a different cooling demand component cooler by means of active and in particular controlled by thermostats valves.
  • the DE 103 42 935 A1 an internal combustion engine with a cooling circuit comprising a mechanically driven by an internal combustion engine pump. The delivery volume flow of the pump is thus dependent on the speed of the internal combustion engine.
  • a plurality of individually controllable control valves are provided in the Integrated cooling circuit.
  • the DE 103 42 935 A1 further discloses that the passages of the cylinder crankcase and the cylinder head are connected in parallel, thereby making it possible to individually control the cooling capacity for these components. That from the DE 103 42 935 A1 known cooling system is relatively expensive.
  • a cooling system for a motor vehicle which comprises two cooling circuits, namely a main cooling circuit comprising the main water cooler, a main coolant pump and cooling channels of an internal combustion engine and a secondary cooling circuit comprising a heating heat exchanger for an interior heating of the motor vehicle.
  • the further an auxiliary heater and a separate, electrically operated pump having secondary cooling circuit is designed as a short circuit, ie by means of an actively controllable valve, the auxiliary cooling circuit is operable independently of the main cooling circuit.
  • cooling circuit is designed for an operating temperature of the coolant, which is above the (pressure-dependent) boiling point of water. Water that has accumulated or settled in the cooling circuit, then evaporates and should be discharged accordingly.
  • a ventilation of a cooling circuit is carried out regularly via a surge tank of the cooling system. Such a reservoir also has the task of compensating for the different thermal expansion of the coolant and is partially filled with air. For venting can lead a vent line of usually the highest point of the cooling circuit to the even higher arranged surge tank.
  • the present invention seeks to provide a simple as possible adjustable cooling system for a motor vehicle.
  • This object is achieved by a cooling system according to independent claim 1.
  • Methods for operating such a cooling system are the subject of claims 8, 10 and 11.
  • Advantageous embodiments of the cooling system according to the invention and advantageous method for operating individual of these embodiments are objects of the further claims and will become apparent from the following description of the invention.
  • the invention is based on the idea to obtain as simple as possible all temperature-controlled valves as simple as possible cooling system.
  • an underlying recognition of the invention that can be done by a suitable integration of at least two controllable coolant pumps without such temperature-controlled valves individual control of the flowing through the individual component cooler volume flow of the coolant and thus the Kuhlicas pocket for these component. It is important that the at least two controllable pumps are integrated into different cooling circuits, which are partially formed integrally, so that by the mutual influence or superposition of the volume flow generated by the individual coolant pumps or pressure of the coolant an individual control of the individual Component cooler flowing volume flow can be done.
  • a cooling system for an internal combustion engine having a component heat exchanger, a primary water cooler formed as an ambient heat exchanger and a first pump comprising the first cooling circuit and a component and a second pump second cooling circuit, the cooling circuits are integrally formed in at least a portion and in the cooling circuits a coolant for promoting is provided or is promoted, characterized in that the pumps are designed controllable and can be done by the or the component and the ambient heat exchanger flowing volume flows of the coolant by means of (mutually) adapted operation of the at least two pumps or takes place ,
  • radiator heat exchangers are understood according to the invention, which allow heat transfer in both directions, ie from a component to the coolant and from the coolant to the component.
  • cooler is chosen, since during normal operation of the internal combustion engine, ie when this has reached its operating temperature range, a heat transfer from the component to the coolant is provided and the heat exchanger to effect cooling of the components.
  • a heat transfer from the coolant to the respective component can be provided in another operating phase of the internal combustion engine.
  • a rapid heating of the component can be achieved.
  • the cooling system of the internal combustion engine comprises a first component cooler, which is arranged in the integral portion of the two cooling circuits.
  • the first component cooler comprises a first Partkomponentenkühler and a second Partkomponentenkühler, wherein the Generalkomponentenkühler are connected in parallel.
  • the first Partkomponentenkühler is a cooler of a cylinder crankcase (in particular in the form of integrated into the cylinder crankcase cooling channels formed) and the second sectionkomponentenkühler to a radiator of a cylinder head (in particular in the form of integrated in the cylinder head cooling channels) of an internal combustion engine of the internal combustion engine ,
  • An advantageously usable for the formation of such a cooling system connection element which can be connected in particular to the outside of an internal combustion engine of the internal combustion engine, has at least one two separate flow spaces forming (one or more parts) housing, wherein a first of the flow spaces with at least two inlet ports, both (in particular alternatively) can be shut off by means of a device for preventing backflow, and is connected to an outlet port.
  • a second of the flow spaces is connected to at least two inlet connections, one of which can be shut off by means of a pressure-actuated shut-off element, and at least two outlet connections.
  • a temperature sensor can furthermore preferably be arranged in (or at least in the vicinity of) at least one of the two inlet connections connected to the second flow space.
  • This may in particular be that inlet connection which connects a cooling channel of the cylinder head of the internal combustion engine with the second flow chamber.
  • the at least two pumps are driven by an electric motor.
  • This allows a particularly simple and accurate control of the individual pumps and thus also the adapted operation of the at least two pumps. It is also possible, one, several or all of the pumps mechanically run by, for example, an internal combustion engine of the internal combustion engine, the controllability of the delivery rates of these pumps by other means (see, for example DE 10 2010 044 167 A1 ) can be achieved.
  • an internal combustion engine can vorteithaftnote be provided that in a warm-up phase of the internal combustion engine mainly or exclusively the pump of the second cooling circuit is operated while the pump of the first cooling circuit is not or only operated with low power.
  • a significant Dressel Sign having pump of the first cooling circuit largely prevents that a relevant volume flow of the coolant through the ambient heat exchanger, which is the so-called main water cooler, is performed.
  • main water cooler a significant Dressel Sign having pump of the first cooling circuit largely prevents that a relevant volume flow of the coolant through the ambient heat exchanger, which is the so-called main water cooler, is performed.
  • main water cooler which is the so-called main water cooler
  • the cooling system of the present invention means for preventing backflow of the coolant from the integral one Section be provided in one or both cooling circuits.
  • These means can be designed, for example, in the form of check valves integrated into the cooling circuit (s). If the means are integrated directly into a mouth portion of the integral portion, there is also the advantageous possibility to form them in the form of a flap valve that is pressure-dependent pivotable and thereby either the orifice of the first or the second cooling circuit (at least partially) closes.
  • a heating heat exchanger is integrated in the second cooling circuit of the cooling system.
  • the warm-up phase of the internal combustion engine may further preferably in a first phase in which the pump of the second cooling circuit with a relatively low flow rate and thus a correspondingly low flow rate of the coolant is operated, and a second phase in which the pump of the second cooling circuit with a relative high flow rate and thus a correspondingly high flow rate of the coolant is operated, be divided.
  • a first phase which is preferably prior to the second phase
  • a rapid heating of this component is achieved, which can have a positive effect on the fuel consumption and the exhaust emissions of the internal combustion engine.
  • the regulation of the delivery rate of the pump of the second cooling circuit can in particular also be effected as a function of an ambient temperature and a setpoint temperature for the interior of the motor vehicle. If a heating power for the interior is provided depending on the difference between the ambient temperature and the target temperature for the interior, the pump of the second cooling circuit can be operated at a higher power in said first phase of the warm-up phase, as is the case no heating power is necessary.
  • the second phase of the warm-up phase with a different, relatively higher flow rate of the pump of the second cooling circuit and thus a higher volume flow of the coolant through the second cooling circuit can be started in particular when (initially) sufficient heating of the internal combustion engine and in particular of the cylinder head has been achieved and / or no particularly high heating power for the interior of the motor vehicle is required more.
  • the heat energy absorbed by the coolant in the internal combustion engine may preferably be utilized for rapid heating of another component, such as the engine oil.
  • a corresponding further component cooler in particular an engine oil cooler, can be integrated into a connecting section connecting the two cooling circuits.
  • the integration of the connection section preferably takes place in such a way that the coolant flowing over the further component cooler can circulate, without being led over the ambient heat exchanger of the first cooling circuit.
  • the cooling system of the internal combustion engine according to the invention may preferably be provided that this is integrated into a section in which no relevant volume flow of the coolant is provided in the warm-up phase of the internal combustion engine.
  • the expansion tank can be integrated into the first cooling circuit parallel to the ambient heat exchanger. This can avoid that during the warm-up phase, the coolant to be heated as quickly as possible is promoted by the surge tank to a relevant extent, which can otherwise be associated with a not inconsiderable, in this phase of operation of the engine undesirable cooling of the coolant.
  • the inventive design of the cooling system of an internal combustion engine has in such a positioning of the surge tank still has the advantage of easy feasible ventilation of the cooling system in a new or refill.
  • the (not of the internal combustion engine and in particular electrically driven) pump of the first cooling circuit is operated without the internal combustion engine of the internal combustion engine is operated (non-operation of the internal combustion engine). This simplifies the filling process.
  • the internal combustion engine In internal combustion engines with conventional cooling systems, on the other hand, usually for venting after refilling or refilling the cooling system, the internal combustion engine must be operated to operate the (main) pump of the cooling system, through which then the coolant and by means of the coolant contained in the cooling system Air is conveyed in the direction of the expansion tank.
  • the volume flow of the coolant through the first Partkomponentenkühler by means of a pressure-controlled valve in dependence on the flow rate through the second Partkomponentenkühler is regulated, so that a relevant flow through the radiator of the cylinder crankcase with the coolant takes place only when the flow through the radiator of the cylinder head has exceeded a defined limit.
  • a preferred embodiment of the method according to the invention can be realized, in which the flow rate of the pump of the first cooling circuit is controlled by the temperature of the coolant at the output of the second Operakühlkomponente (for which the or the cooling circuits have at least one appropriately arranged temperature sensor) and a Volumetric flow is controlled by the first part of the component cooler by means of a matched operation of the pump of the second cooling circuit.
  • the temperature of the cylinder head which is reflected in the temperature of the coolant at the outlet of the radiator of the cylinder head, is used as one or the relevant controlled variable for the pump of the first cooling circuit, wherein a control of the cooling capacity of the radiator of the cylinder head and thus the temperature of the cylinder head can be advantageously controlled by the flow rate of this pump.
  • the pressure in the integral portion of the cooling circuits can be varied by means of the pump of the second cooling circuit, that the pressure-controlled valves in a defined scope opens or closes and thus regulates the flow through the radiator of the cylinder crankcase.
  • the Fig. 1 shows an internal combustion engine with a cooling system according to the invention, wherein in addition to the cooling system still an internal combustion engine 10 of the internal combustion engine is shown
  • the internal combustion engine 10 may be designed as a conventional reciprocating internal combustion engine and then comprises a cylinder crankcase 12 in which a plurality of cylinders (not shown) are formed In each of which a piston (not shown) is movably guided
  • a cylinder head 14 closes the cylinder crankcase 12 and thus the cylinder upwards and further comprises at least one inlet and at least one exhaust valve for each of the cylinders, in a known manner Gas change is controlled in trained by the cylinders and the piston combustion chambers.
  • Both the cylinder crankcase 12 and the cylinder head 14 are cooled by means of the cooling system, to which these cooling channels 58, 60 have, which are filled with the coolant of the cooling system and flows through this at least temporarily.
  • the (at least one) cooling passage 60 of the cylinder crankcase 12 and the (at least one) cooling passage 58 of the cylinder head 14 are formed to run parallel and thus are also parallel to the coolant flows through.
  • the cooling system forms a first cooling circuit and a second cooling circuit, which are formed integrally in a section, specifically in the section formed by the cooling channels 58, 60 of the internal combustion engine 10. Accordingly, during operation of the cooling system, the cooling channels 58, 60 of the internal combustion engine 10 at least partially flows through, regardless of whether only the first or the second or both cooling circuits are used.
  • the first cooling circuit further comprises an ambient heat exchanger, which is provided as a so-called main water cooler 16, and a first, electrically driven and in terms of their capacity adjustable pump 18, which is arranged downstream of the main water cooler 16. Furthermore, a surge tank 20 is provided, which is integrated in a parallel connection to the main water cooler 16 in the first cooling circuit.
  • the individual components of the first cooling circuit are fluid-conductively connected via corresponding connection lines.
  • the second cooling circuit also comprises a heating heat exchanger 22, which also constitutes an ambient heat exchanger, with which, if necessary, a heat transfer from the coolant to ambient air, which is provided for the air conditioning of an interior of a motor vehicle driven by the internal combustion engine, can take place. Furthermore, the second cooling circuit comprises a second, electrically driven and with regard to their delivery rate controllable pump 24, which is arranged downstream of the heating heat exchanger 22. The individual components of the second cooling circuit are fluid-conductively connected via corresponding connecting lines
  • the cooling system further comprises an intermediate cooling circuit formed by the integral portion of the first and second cooling circuits, another section of the first cooling circuit, another section of the second cooling circuit, and a connecting section (with corresponding connection lines) connecting the first cooling circuit and the second cooling circuit ,
  • the connecting portion downstream of the internal combustion engine 10 and upstream of the main water cooler 16 and the surge tank 20 from the first cooling circuit.
  • the mouth of the connecting portion is integrated downstream of the heat exchanger 22 and upstream of the pump 24 (and thus also upstream of the engine 10) in the second cooling circuit.
  • a further component cooler in the form of a motor oil cooler 26 is integrated.
  • the engine oil cooler 26 is used in the operation of the internal combustion engine after reaching the operating temperature range cooling the used for lubricating the engine 10 engine oil.
  • connection element 28 is provided, which in the Fig. 3 shown in isolation. From a housing 30 of the connecting element 28, which is provided for a lateral flanging to the internal combustion engine 10, a first flow space 32 and a second flow space 34, which are separated from each other, are formed.
  • the first flow space 32 with two inlet ports 36, 38 is connected, of which a first, the inlet port 36, serves as a supply of coolant from the first cooling circuit and the second, the inlet port 38, as a supply of coolant from the second cooling circuit.
  • An outlet port 40 connected to the first flow space 32 is closed to a cooling passage 62 of the engine 10.
  • This cooling channel 62 of the internal combustion engine 10 is provided upstream of a branch 64, which serves for a division of the coolant to the parallel cooling channels 58, 60 of the cylinder crankcase 12 and the cylinder head 14.
  • a valve flap 42 is furthermore provided, which is pivoted in the direction of one or the other inlet port 36, 38 as a function of the pressure difference of the coolant entering the first flow space 32 from the first cooling circuit and the second cooling circuit.
  • valve flap 42 instead of the valve flap 42, two check valves 44 can be used, of which one of the two inlet ports 36, 38 is assigned.
  • the second flow space 34 is also fluid-conductively connected to two inlet ports 46, 48, wherein a first, the inlet port 46, fluidly connected to the cooling channel 28 of the cylinder crankcase 12 and the second, the inlet port 48, fluidly connected to the cooling channel 58 of the cylinder head 14 is connected to the cooling passage 60 of the cylinder crankcase 12 inlet port 46 closed by means of a pressure-actuated valve 50.
  • the valve 50 comprises a valve body, which is acted upon by means of a prestressed spring element in the direction of an orifice opening of this inlet connection 46.
  • the second flow space 34 is fluidly connected to three outlet ports 52, 54, 56, of which a first, the outlet port 52, the discharge of coolant from the second flow space 34 in the first cooling circuit, a second, the outlet port 54, for discharging Coolant from the second flow space 34 in the second cooling circuit and the third, the outlet port 56, for discharging coolant in the engine oil cooler 26 comprehensive connecting portion of the intermediate cooling circuit is used.
  • the cooling system shown in the drawings works completely without temperature-controlled valves. A regulation of the volume flows of the coolant conducted via the individual component coolers and heat exchangers, and thus the corresponding cooling or heat exchange rates, is achieved exclusively via adapted power control of the two pumps 18, 24.
  • the 6 and 7 show ways to control the cooling capacity of the cylinder crankcase 12 and the cylinder head 14 by flowing through the flow rates of the coolant.
  • the pressure-actuated valve 50 in the second flow space 34 of the connection element 28 opens the inlet connection 46 connected to the cooling channel 60 of the cylinder crankcase 12, for example, only at a pressure difference of approximately 200 mbar.
  • Such an overpressure in the cooling passage 60 of the cylinder crankcase 12 can be achieved, for example, when the volume flow of the coolant through the cooling passage 58 of the cylinder head 14 is at least 15 l / min.
  • such a volume flow through the cooling channel 58 of the cylinder head 14 of up to 15 l / min can be achieved by a combined operation of both pumps 18, 24. It can be provided in particular that the greater proportion of the volume flow is achieved by the delivery rate of the pump 18 of the first cooling circuit. However, it may also be possible to achieve the entire volume flow of the coolant through the cooling channel 58 of the cylinder head 14 exclusively by the operation of one of the two pumps 18, 24. If, on the other hand, a volume flow through the cooling channel 58 of the cylinder head 14 of 15 l / min is exceeded, the pressure-actuated valve 50 opens and thus enables the coolant channel 60 of the cylinder coghouse 12 to be flowed through by the coolant.
  • This volume flow of the coolant through the cooling passage 60 of the cylinder crankcase 12 may in particular be smaller than the volume flow of the coolant through the cooling passage 58 of the cylinder head 14.
  • the entire volume flow is generated by the internal combustion engine 10 in about half of each of the two pumps. Any other division is possible by a corresponding control of the pumps 18, 24.
  • a temperature sensor (not shown) is integrated in the inlet connection 48 of the connection element 28 connected to the cooling channel 58 of the cylinder head 14. Its measuring signal can be transmitted to a control device (not shown), for example a central engine control of the internal combustion engine, which activates the pump 18 of the first cooling circuit as a function of this measuring signal.
  • the delivery rate of the pump 18 of the first cooling circuit can thus be continuously adjusted so that the emerging from the cooling channel 58 of the cylinder head 14 coolant and thus the cylinder head 14 itself is in a defined operating temperature range, Whether at the same time the Zylinderkurbeigephase 12 - and if so , with what volume flow - of the coolant is flowed through and thus a cooling of the cylinder crankcase 12 is to take place, then, for example, exclusively by means of a corresponding, the control of the pump 18 of the first cooling circuit superimposed control of the pump 24 of the second cooling circuit.
  • a temperature sensor (not shown) may be provided in the inlet port 46 of the connection element 28 connected to the cooling channel 60 of the cylinder crankcase 12, the measurement signal of which is transmitted to a control device (not shown), in particular the engine control of the internal combustion engine, which then activates a corresponding control the pump 24 of the second cooling circuit makes.
  • a regulation of the cooling capacity of the engine oil cooler 26 and thus the temperature of the engine oil during operation of the internal combustion engine in its operating temperature range can be achieved due to the selected configuration of the intermediate cooling circuit in particular by a corresponding control of the pump 24 of the second cooling circuit.
  • boundary volume flows for the flow through the engine oil cooler 26 of 1.5 l / min and 8 l / min can be provided.
  • An operation of the cooling system in which the first and the second cooling circuit and the intermediate cooling circuit are flowed through by the coolant, can also be used for ventilation after a new or refilling of the cooling system, which may be done for example in the context of the new production or maintenance of the internal combustion engine
  • By circulating the coolant air that is still within the cooling system is entrained and gradually supplied to the surge tank 20 where it is separated from the coolant. Since both pumps 18, 24 of the cooling system are electrically driven and regulated, the recirculation of the coolant in the cooling system can also take place without an operation of the internal combustion engine 10.
  • the Fig. 9 to 11 show an operation of the cooling system in a warm-up phase of the internal combustion engine, ie in one operation (especially after a cold start) with not yet reached operating temperature range. It is provided that then either no or only the pump 24 of the second cooling circuit is operated. This results in a cooling medium resting in the cooling system or a circulation of coolant in the second cooling circuit and in the intermediate cooling circuit, but not in the first cooling circuit.
  • the warm-up phase is divided into at least two, preferably three phases.
  • a first phase directly following the cold start (cf. Fig. 9 ) may be provided to operate none of the pumps 18, 24, whereby the coolant in the entire cooling system largely rests.
  • particularly rapid heating of the cylinder head 14 and also of the cylinder crankcase 12 can be achieved by the waste heat of the combustion processes taking place in the combustion chambers of the internal combustion engine 10.
  • a second phase (cf. Fig. 10 ) the pump 24 of the second cooling circuit with a relatively low flow rate are put into operation.
  • a small volume flow of the coolant is to be achieved by the cylinder head 14, whereby local overheating of the cylinder head 14 can be avoided.
  • a volume flow of the coolant through the cylinder crankcase 12 is not provided in this phase.
  • the third phase (cf. Fig. 11 ) of the warm-up phase are introduced, which differs from the second phase by a higher capacity of the pump 24 of the second cooling circuit.
  • this phase can be provided in particular, after reaching the minimum limit temperature for the cylinder head 14 to achieve a defined operating temperature range for the engine oil as quickly as possible.
  • larger volume flow of the coolant increasingly heat energy, which receives the coolant in the cylinder head 14, discharged in the engine oil cooler 26 to the engine oil.
  • no flow through the cylinder crankcase 12 takes place with the coolant.
  • An operation of the cooling system according to this third phase may also be provided after reaching the operating temperature range of the internal combustion engine, when the internal combustion engine 10 is operated over a longer period of very low power. As a result, an excessive drop in the temperature of the engine oil can be prevented.
  • heat energy stored in a heat accumulator is discharged to the coolant.
  • a discharge of the heat accumulator is combined with an operation of the pump 24 of the second cooling circuit with at least relatively low flow rate.
  • such a heat accumulator is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit, it may be provided, after the end of the operation of the internal combustion engine (especially if this had reached its operating temperature range during operation), the pumps 18, 24 and In particular, to let the pump 24 of the second cooling circuit to run after a defined period of time, This makes it possible to transfer the heat energy remaining in the coolant and in the operation of the engine cooled by the coolant components as much as possible to the heat storage to this recharge.
  • the cooling system may include other component coolers.
  • This may be, for example, a transmission oil cooler, a cooler for an exhaust gas turbocharger, a charge air cooler and / or a cooler for exhaust gas recirculation.

Description

Die Erfindung betrifft eine Brennkraftmaschine mit einem Kühlsystem.The invention relates to an internal combustion engine with a cooling system.

Brennkraftmaschinen für Kraftfahrzeuge weisen mindestens ein Kühlsystem auf, in dem ein Kühlmittels mittels einer oder mehrerer Pumpen in mindestens einem Kühlkreis gepumpt wird und dabei Wärmeenergie von in den Kühlkreis integrierten Komponenten, insbesondere dem Verbrennungsmotor sowie einem Ölkühler und/oder einem Ladeluftkühler, aufnimmt. Diese Wärmeenergie wird anschließend in einem Umgebungswärmetauscher, dem sogenannten Hauptwasserkühler, sowie zeitweise in einem Heizungswärmetauscher an die Umgebungsluft, im Fall des Heizungswärmetauschers an die zur Klimatisierung des Innenraums des Kraftfahrzeugs vorgesehene Umgebungsluft, angegeben.Internal combustion engines for motor vehicles have at least one cooling system in which a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler. This heat energy is then in an ambient heat exchanger, the so-called main water cooler, and temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the vehicle ambient air specified.

Kühlsysteme moderner Kraftfahrzeuge weisen in der Regel mehrere Kühlkreise auf. Beispielsweise ist es bekannt, einen so genannten großen bzw. Hauptkühlkreis sowie einen kleinen Kühlkreis vorzusehen, die abschnittsweise integral ausgebildet sind, und wobei mittels eines thermostatgesteuerten Ventils das Kühlmittels entweder über den großen oder den kleinen Kühlkreis geführt wird. Dies erfolgt in Abhängigkeit von der Temperatur des Kühlmittels, so dass beispielsweise in einer Warmlaufphase der Brennkraftmaschine, wenn das Kühlmittel noch nicht seinen Betriebstemperaturbereich erreicht hat, dieses in dem kleinen Kühlkreis gefördert wird, wodurch der Hauptwasserkühler, d.h. derjenige Umgebungswärmetauscher, in dem das Kühlmittel durch Wärmeübergang auf die Umgebungsluft hauptsächlich gekühlt wird, umgangen wird. Hat das Kühlmittel dagegen seinen Betriebstemperaturbereich erreicht, wird mittels des thermostatgesteuerten Ventils das Kühlmittel in dem großen Kundenkreis gefördert, so dass durch einen Wärmeübergang von dem Kühlmittels auf die Umgebungsluft einen Überhitzten des Kühlsystems vermieden wird. Der Heizungswärmetauscher als zweiter Umgebungswärmetauscher ist dagegen regelmäßig in den kleinen Kühlkreis integriert, wodurch auch schon in der Warmlaufphase der Brennkraftmaschine eine Beheizung des Innenraums des Kraftfahrzeugs ermöglicht wird.Cooling systems of modern motor vehicles generally have several cooling circuits. For example, it is known to provide a so-called large or main cooling circuit and a small cooling circuit, which are partially formed integrally, and wherein the coolant is guided either via the large or the small cooling circuit by means of a thermostat-controlled valve. This is done as a function of the temperature of the coolant, so that, for example, in a warm-up phase of the internal combustion engine, when the coolant has not yet reached its operating temperature range, this is conveyed in the small cooling circuit, whereby the main water cooler, i. the ambient heat exchanger, in which the coolant is mainly cooled by heat transfer to the ambient air, is bypassed. On the other hand, if the coolant has reached its operating temperature range, the coolant in the large customer group is conveyed by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by a heat transfer from the coolant to the ambient air. By contrast, the heating heat exchanger as the second ambient heat exchanger is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.

Die (Haupt-)Pumpe des Kühlsystems wird regelmäßig mechanisch von dem Verbrennungsmotor der Brennkraftmaschine angetriebene. Ihre Förderleistung ist somit grundsätzlich proportional zu der Drehzahl, mit der eine Kurbelwelle des Verbrennungsmotors rotiert. Obwohl mit steigender Drehzahl des Verbrennungsmotors tendenziell auch der Kühlleistungsbedarf steigt, entspricht die durch den Betrieb der Pumpe theoretisch erzielbare Kühlleistung in vielen Betriebszuständen nicht dem tatsächlichen Kühlleistungsbedarf. Da in allen Betriebszuständen eine ausreichend hohe Kühlleistung zur Verfügung stehen soll, sind solche mechanisch angetriebenen Pumpen vielfach überdimensioniert. Die Bestrebungen, den Kraftstoffbedarf von Kraftfahrzeugen zu reduzieren, hat daher zu der Entwicklung von mechanisch angetriebenen Kuhlmittelpumpen geführt, die in Grenzen hinsichtlich des Volumenförderstroms regelbar sind. Eine solche regelbare, mechanisch angetriebene Kühlmittelpumpe ist beispielsweise aus der DE 10 2010 044 167 A1 bekanntThe (main) pump of the cooling system is regularly mechanically driven by the internal combustion engine of the internal combustion engine. Your output is thus in principle proportional to the speed at which a crankshaft of the internal combustion engine rotates. Although with increasing speed of the internal combustion engine also the cooling power demand tends to increase, the theoretically achievable by the operation of the pump cooling performance in many operating conditions does not correspond to the actual cooling power requirement. Since a sufficiently high cooling capacity should be available in all operating states, such mechanically driven pumps are often oversized. The efforts to reduce the fuel consumption of motor vehicles, has therefore led to the development of mechanically driven Kuhlmittelpumpen that are adjustable in terms of the volume flow rate. Such a controllable, mechanically driven coolant pump is for example from the DE 10 2010 044 167 A1 known

Bei den Kühlsystemen moderner Kraftfahrzeuge erfolgt die Hauptregelung des Volumenstroms des Kühlmittels somit mittels regelbarer Kühlmittelpumpen während die Verteilung des Volumenstroms auf die einzelnen, jeweils einen unterschiedlichen Kühlbedarf aufweisenden Komponentenkühler mittels aktiv und insbesondere über Thermostate angesteuerte Ventile gesteuert wird. Beispielsweise offenbart die DE 103 42 935 A1 eine Brennkraftmaschine mit einem Kühlkreis, der eine von einem Verbrennungsmotor mechanisch angetriebene Pumpe umfasst. Der Fördervolumenstrom der Pumpe ist somit von der Drehzahl des Verbrennungsmotors abhängig. Um für mehrere in den Kühlkreis integrierte Wärmetauscher, wie insbesondere Kühlkanäle eines Zylinderkurbelgehäuses und eines Zylinderkopfs des Verbrennungsmotors sowie einen Heizungswärmetauscher für eine Innenraumheizung eines von der Brennkraftmaschine angetriebenen Kraftfahrzeugs, individuell angepasste Volumenströme des Kühlmittel zu erreichen, sind eine Mehrzahl von jeweils individuell ansteuerbaren Regelventilen in den Kühlkreislauf integriert. Die DE 103 42 935 A1 offenbart weiterhin, dass die Kanäle des Zylinderkurbelgehäuses und des Zylinderkopfs parallel verschaltet sind, wodurch ermöglicht wird, die Kühlleistung für diese Komponenten individuell zu steuern. Das aus der DE 103 42 935 A1 bekannte Kühlsystem ist relativ aufwändig. Brennkraftmaschinen, die hinsichtlich der Ausgestaltung des jeweiligen Kühlsystems zu der Brennkraftmaschine gemäß der DE 103 42 935 A1 vergleichbar sind, sind auch in der DE 10332 947 A1 , der DE 10 20008 048 373 A1 und der DE 198 31 901 A1 offenbart.In the cooling systems of modern motor vehicles, the main control of the volumetric flow of the coolant thus takes place by means of controllable coolant pumps while the distribution of the volumetric flow is controlled to the individual, each having a different cooling demand component cooler by means of active and in particular controlled by thermostats valves. For example, the DE 103 42 935 A1 an internal combustion engine with a cooling circuit comprising a mechanically driven by an internal combustion engine pump. The delivery volume flow of the pump is thus dependent on the speed of the internal combustion engine. In order to achieve individually adapted volumetric flows of the coolant for a plurality of heat exchangers integrated in the cooling circuit, in particular cooling ducts of a cylinder crankcase and a cylinder head of the internal combustion engine and a heating heat exchanger for an interior heating of a motor vehicle driven by the internal combustion engine, a plurality of individually controllable control valves are provided in the Integrated cooling circuit. The DE 103 42 935 A1 further discloses that the passages of the cylinder crankcase and the cylinder head are connected in parallel, thereby making it possible to individually control the cooling capacity for these components. That from the DE 103 42 935 A1 known cooling system is relatively expensive. Internal combustion engines, with regard to the design of the respective cooling system to the internal combustion engine according to the DE 103 42 935 A1 are comparable, are also in the DE 10332 947 A1 , of the DE 10 20008 048 373 A1 and the DE 198 31 901 A1 disclosed.

Aus der DE 199 06 523 A1 ist zudem ein Kühlsystem für ein Kraftfahrzeug bekannt, das zwei Kühlkreise, nämlich einen den Hauptwasserkühler, eine Hauptkühlmittelpumpe und Kühlkanäle eines Verbrennungsmotors umfassenden Hauptkühlkreis sowie einen einen Heizungswärmetauscher für eine Innenraumheizung des Kraftfahrzeugs umfassenden Nebenkühlkreis aufweist. Der weiterhin eine Zusatzheizvorrichtung sowie eine separate, elektrisch betriebene Pumpe aufweisende Nebenkühlkreis ist als Kurzschlusskreis ausgeführt, d.h. mittels eines aktiv ansteuerbaren Ventils ist der Nebenkühlkreis unabhängig von dem Hauptkühlkreis betreibar.
Und schließlich ist in der US 2012/0103283 A1 ein Kühlsystems für eine Brennkraftmaschine offenbart, bei der ein Zylinderkopfs der Brennkraftmaschine, ein Gehäuse einer Abgasturbine, ein Heizungswärmetauscher und eine mechanisch angetriebene Hauptkühlmittelpumpe in einen ersten Kühlkreis integriert sind und ein Zylinderkurbelgehäuse sowie eine regelbare Zusatzkühlmittelpumpe in einen die Hauptkühlmittelpumpe umgehenden zweiten Kühlkreis integriert sind.
Für eine gute und insbesondere effizient Kühlleistung eines Kühlkreises ist es relevant, dass dieser möglichst vollständig entlüftet ist. Demnach muss zum einen während des Befüllvorgangs des Kühlkreises, insbesondere bei einer Erstbefüllung oder einer Neubefüllung im Rahmen einer Wartung, die im Kühlkreis enthaltene Luft, die von dem einströmenden Kühlmittel verdrängt wird, möglichst vollständig abgeführt werden. Zudem kann im Betrieb des Kraftfahrzeugs und damit des Kühlkreises Gas durch Verdampfungsprozesse entstehen, das sicher abgeführt werden sollte. Dies gilt insbesondere, wenn der Kühlkreis für eine Betriebstemperatur des Kühlmittels ausgelegt ist, die oberhalb der (druckabhängigen) Siedetemperatur von Wasser liegt. Wasser, das sich in dem Kühlkreislauf angesammelt oder abgesetzt hat, verdampft dann und sollte entsprechend abgeführt werden.
Eine Entlüftung eines Kühlkreises erfolgt regelmäßig über einen Ausgleichsbehälter des Kühlsystems. Ein solcher Ausgleichsbehälter hat zudem noch die Aufgabe, die unterschiedliche, thermische bedingte Ausdehnung des Kühlmittels zu kompensieren und ist dazu teilweise mit Luft gefüllt. Zur Entlüftung kann eine Entlüftungsleitung von in der Regel der höchsten Stelle des Kühlkreises zu dem noch höher angeordneten Ausgleichsbehälter führen.
Ausgehend von diesem Stand der Technik lag der Erfindung die Aufgabe zugrunde, ein möglichst einfach aufgebautes regelbares Kühlsystem für ein Kraftfahrzeug anzugeben.
Diese Aufgabe wird durch ein Kühlsystem gemäß dem unabhängigen Patentanspruch 1 gelöst. Verfahren zum Betrieb eines solchen Kühlsystem sind Gegenstand der Patentansprüche 8, 10 und 11. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Kühlsystems und vorteilhafte Verfahren zum Betrieb einzelner dieser Ausführungsformen sind Gegenstände der weiteren Patentansprüche und ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
From the DE 199 06 523 A1 In addition, a cooling system for a motor vehicle is known which comprises two cooling circuits, namely a main cooling circuit comprising the main water cooler, a main coolant pump and cooling channels of an internal combustion engine and a secondary cooling circuit comprising a heating heat exchanger for an interior heating of the motor vehicle. The further an auxiliary heater and a separate, electrically operated pump having secondary cooling circuit is designed as a short circuit, ie by means of an actively controllable valve, the auxiliary cooling circuit is operable independently of the main cooling circuit.
And finally, in the US 2012/0103283 A1 discloses a cooling system for an internal combustion engine in which a cylinder head of the internal combustion engine, a housing of an exhaust gas turbine, a heat exchanger and a mechanically driven main coolant pump are integrated into a first cooling circuit and a cylinder crankcase and a controllable auxiliary coolant pump are integrated into a second coolant circuit bypassing the main coolant pump.
For a good and in particular efficient cooling performance of a cooling circuit, it is relevant that this is vented as completely as possible. Accordingly, during the filling process of the cooling circuit, in particular during initial filling or refilling as part of maintenance, the air contained in the cooling circuit, which is displaced by the inflowing coolant, must be removed as completely as possible. In addition, during operation of the motor vehicle and thus of the cooling circuit, gas can be produced by evaporation processes, which should be safely dissipated. This is especially true if the cooling circuit is designed for an operating temperature of the coolant, which is above the (pressure-dependent) boiling point of water. Water that has accumulated or settled in the cooling circuit, then evaporates and should be discharged accordingly.
A ventilation of a cooling circuit is carried out regularly via a surge tank of the cooling system. Such a reservoir also has the task of compensating for the different thermal expansion of the coolant and is partially filled with air. For venting can lead a vent line of usually the highest point of the cooling circuit to the even higher arranged surge tank.
Based on this prior art, the present invention seeks to provide a simple as possible adjustable cooling system for a motor vehicle.
This object is achieved by a cooling system according to independent claim 1. Methods for operating such a cooling system are the subject of claims 8, 10 and 11. Advantageous embodiments of the cooling system according to the invention and advantageous method for operating individual of these embodiments are objects of the further claims and will become apparent from the following description of the invention.

Der Erfindung liegt der Gedanke zugrunde, durch den Verzicht auf möglichst alle temperaturgesteuerten Ventile ein möglichst einfach aufgebautes Kühlsystem zu erhalten. Dabei ist eine der Erfindung zugrunde liegende Erkenntnis, dass durch eine geeignete Integration von mindestens zwei regelbaren Kühlmittelpumpen auch ohne solche temperaturgesteuerten Ventilen eine individuelle Regelung des durch die einzelnen Komponentenkühler strömenden Volumenstroms des Kühlmittels und damit der Kuhlleistungsbedarf für diese Komponentenkühler erfolgen kann. Dabei ist von Bedeutung, dass die mindestens zwei regelbaren Pumpen in verschiedene Kühlkreise integriert sind, die jedoch abschnittsweise integral ausgebildet sind, so dass durch die gegenseitige Beeinflussung beziehungsweise Überlagerung des von den einzelnen Kühlmittelpumpen erzeugten Volumenstroms beziehungsweise Drucks des Kühlmittels eine individuelle Regelung des durch die einzelnen Komponentenkühler strömenden Volumenstroms erfolgen kann.The invention is based on the idea to obtain as simple as possible all temperature-controlled valves as simple as possible cooling system. Here is an underlying recognition of the invention that can be done by a suitable integration of at least two controllable coolant pumps without such temperature-controlled valves individual control of the flowing through the individual component cooler volume flow of the coolant and thus the Kuhlleistungsbedarf for these component. It is important that the at least two controllable pumps are integrated into different cooling circuits, which are partially formed integrally, so that by the mutual influence or superposition of the volume flow generated by the individual coolant pumps or pressure of the coolant an individual control of the individual Component cooler flowing volume flow can be done.

Demnach ist ein Kühlsystem für eine Brennkraftmaschine mit einem einen Komponentenkühler, einen als Hauptwasserkühler ausgebildeten Umgebungswärmetauscher und eine erste Pumpe umfassenden ersten Kühlkreis und einem einen Komponentenkühler und eine zweite Pumpe umfassenden zweiten Kühlkreis, wobei die Kühlkreise in zumindest einem Abschnitt integral ausgebildet sind und in den Kühlkreisen ein Kühlmittel zur Förderung vorgesehen ist beziehungsweise gefördert wird, dadurch gekennzeichnet, dass die Pumpen regelbar ausgebildet sind und eine Regelung der durch den oder die Komponentenkühler und den Umgebungswärmetauscher strömenden Volumenströme des Kühlmittels mittels eines (zueinander) angepassten Betriebs der mindestens zwei Pumpen erfolgen kann beziehungsweise erfolgt.Accordingly, a cooling system for an internal combustion engine having a component heat exchanger, a primary water cooler formed as an ambient heat exchanger and a first pump comprising the first cooling circuit and a component and a second pump second cooling circuit, the cooling circuits are integrally formed in at least a portion and in the cooling circuits a coolant for promoting is provided or is promoted, characterized in that the pumps are designed controllable and can be done by the or the component and the ambient heat exchanger flowing volume flows of the coolant by means of (mutually) adapted operation of the at least two pumps or takes place ,

Unter dem Begriff "Kuhler" werden erfindungsgemäß Wärmetauscher verstanden, die einen Wärmeübergang in beide Richtungen, d.h. von einer Komponente auf das Kühlmittel sowie von dem Kühlmittel auf die Komponente, ermöglichen. Der Begriff "Kühler" ist gewählt, da im Normalbetrieb der Brennkraftmaschine, d.h. wenn diese ihren Betriebstemperaturbereich erreicht hat, ein Wärmeübergang von der Komponente auf das Kühlmittel vorgesehen ist und der Wärmetauscher eine Kühlung der Komponenten gewirkt. In einer anderen Betriebsphase der Brennkraftmaschine, insbesondere in einer Warmlaufphase oder bei einem Betrieb mit sehr geringer Leistung, kann jedoch auch ein Wärmeübergang von dem Kühlmittel auf die jeweilige Komponente vorgesehen sein. Dadurch kann insbesondere ein schnelles Erwärmen der Komponente erzielt werden kann.The term "radiator" heat exchangers are understood according to the invention, which allow heat transfer in both directions, ie from a component to the coolant and from the coolant to the component. The term "cooler" is chosen, since during normal operation of the internal combustion engine, ie when this has reached its operating temperature range, a heat transfer from the component to the coolant is provided and the heat exchanger to effect cooling of the components. In another operating phase of the internal combustion engine, in particular in a warm-up phase or during operation with very low power, however, a heat transfer from the coolant to the respective component can be provided. As a result, in particular a rapid heating of the component can be achieved.

Das Kühlsystem der erfindungsgemäßen Brennkraftmaschine umfasst einen ersten Komponentenkühler, der in dem integralen Abschnitt der zwei Kühlkreise angeordnet ist. Dabei umfasst der erste Komponentenkühler einen ersten Teilkomponentenkühler und einen zweiten Teilkomponentenkühler, wobei die Teilkomponentenkühler parallel geschaltet sind. Bei dem ersten Teilkomponentenkühler handelt es sich um einen Kühler eines Zylinderkurbelgehäuses (insbesondere in Form von in das Zylinderkurbelgehäuse integrierten Kühlkanälen ausgebildet) und bei dem zweiten Teilkomponentenkühler um einen Kühler eines Zylinderkopfs (insbesondere in Form von in den Zylinderkopf integrierten Kühlkanälen ausgebildet) eines Verbrennungsmotors der Brennkraftmaschine.The cooling system of the internal combustion engine according to the invention comprises a first component cooler, which is arranged in the integral portion of the two cooling circuits. In this case, the first component cooler comprises a first Teilkomponentenkühler and a second Teilkomponentenkühler, wherein the Teilkomponentenkühler are connected in parallel. The first Teilkomponentenkühler is a cooler of a cylinder crankcase (in particular in the form of integrated into the cylinder crankcase cooling channels formed) and the second Teilkomponentenkühler to a radiator of a cylinder head (in particular in the form of integrated in the cylinder head cooling channels) of an internal combustion engine of the internal combustion engine ,

Ein für die Ausbildung eines solchen Kühlsystems vorteilhaft einsetzbares Anschlusselement, das insbesondere außenseitig an einen Verbrennungsmotor der Brennkraftmaschine angeschlossen werden kann, weist mindestens ein zwei voneinander getrennte Strömungsräume ausbildendes (ein- oder mehrteiliges) Gehäuse auf, wobei ein erster der Strömungsräume mit mindestens zwei Einlassanschlüssen, die beide (insbesondere alternativ) mittels einer Vorrichtung zur Verhinderung eines Rückflusses absperrbar sind, und einem Auslassanschluss verbunden ist. Ein zweiter der Strömungsräume ist dagegen mit mindestens zwei Einlassanschlüssen, von denen einer mittels eines druckbetätigten Absperrelements absperrbar ist, und mindestens zwei Auslassanschlüssen verbunden.An advantageously usable for the formation of such a cooling system connection element which can be connected in particular to the outside of an internal combustion engine of the internal combustion engine, has at least one two separate flow spaces forming (one or more parts) housing, wherein a first of the flow spaces with at least two inlet ports, both (in particular alternatively) can be shut off by means of a device for preventing backflow, and is connected to an outlet port. On the other hand, a second of the flow spaces is connected to at least two inlet connections, one of which can be shut off by means of a pressure-actuated shut-off element, and at least two outlet connections.

Bei einem solchen Anschlusselement kann weiterhin bevorzugt in (oder zumindest in der Nähe von) zumindest einem der beiden mit dem zweiten Strömungsraum verbundenen Einlassanschlüsse ein Temperatursensor angeordnet sein. Hierbei kann es sich insbesondere um denjenigen Einlassanschluss handeln, der einen Kühlkanal des Zylinderkopfs des Verbrennungsmotors mit dem zweiten Strömungsraum verbindet.In such a connection element, a temperature sensor can furthermore preferably be arranged in (or at least in the vicinity of) at least one of the two inlet connections connected to the second flow space. This may in particular be that inlet connection which connects a cooling channel of the cylinder head of the internal combustion engine with the second flow chamber.

In einer bevorzugten Ausführungsform des Kühlsystems der erfindungsgemäßen Brennkraftmaschine kann vorgesehen sein, dass die mindestens zwei Pumpen elektromotorisch angetrieben sind. Dadurch kann eine besonders einfache und genaue Regelung der einzelnen Pumpen und somit auch des angepassten Betriebs der mindestens zwei Pumpen erfolgen. Möglich ist aber auch, eine, mehrere oder alle der Pumpen mechanisch durch beispielsweise einen Verbrennungsmotor der Brennkraftmaschine angetriebenen auszuführen, wobei die Regelbarkeit der Förderleistungen dieser Pumpen durch andere Maßnahmen (vgl. beispielsweise DE 10 2010 044 167 A1 ) erreicht werden kann.In a preferred embodiment of the cooling system of the internal combustion engine according to the invention can be provided that the at least two pumps are driven by an electric motor. This allows a particularly simple and accurate control of the individual pumps and thus also the adapted operation of the at least two pumps. It is also possible, one, several or all of the pumps mechanically run by, for example, an internal combustion engine of the internal combustion engine, the controllability of the delivery rates of these pumps by other means (see, for example DE 10 2010 044 167 A1 ) can be achieved.

Bei einer erfindungsgemäßen Brennkraftmaschine kann vorteithafterweise vorgesehen sein, dass in einer Warmlaufphase der Brennkraftmaschine hauptsächlich oder ausschließlich die Pumpe des zweiten Kühlkreises betrieben wird, während die Pumpe des ersten Kühlkreises nicht oder nur mit geringer Leistung betrieben wird. Die dann eine erhebliche Dresselwirkung aufweisende Pumpe des ersten Kühlkreises verhindert weitgehend, dass ein relevanter Volumenstrom des Kühlmittels über den Umgebungswärmetauscher, bei dem es sich um den sogenannten Hauptwasserkühler handelt, geführt wird. Im Ergebnis kann so eine ungewollte Kühlung des Kühlmittels in dem Umgebungswärmetauscher während der Warmlaufphase der Brennkraftmaschine verhindert und ein schnelles Aufheizen des Kühlmittels unterstützt werden.In an internal combustion engine according to the invention can vorteithafterweise be provided that in a warm-up phase of the internal combustion engine mainly or exclusively the pump of the second cooling circuit is operated while the pump of the first cooling circuit is not or only operated with low power. The then a significant Dresselwirkung having pump of the first cooling circuit largely prevents that a relevant volume flow of the coolant through the ambient heat exchanger, which is the so-called main water cooler, is performed. As a result, such an undesired cooling of the coolant in the ambient heat exchanger during the warm-up phase of the internal combustion engine can be prevented and a rapid heating of the coolant can be supported.

Insbesondere dann, wenn die Drossetwirkung von einer mit geringer Leistung oder überhaupt nicht betriebenen Pumpe nicht ausreichend ist, um ein Durchströmen des dazugehörigen Kühlkreises in ausreichendem Maße zu verhindern, können in einer bevorzugten Ausführungsform des erfindungsgemäßen Kühlsystems Mittel zur Vermeidung eines Rückflusses des Kühlmittels aus dem integralen Abschnitt in einen oder beide Kühlkreise vorgesehen sein. Diese Mittel können beispielsweise in Form von in den oder die Kühlkreise integrierten Rückschlagventilen ausgebildet sein. Sofern die Mittel direkt in einen Mündungsabschnitt des integralen Abschnitts integriert sind, besteht auch die vorteilhafte Möglichkeit, diese in Form eines Klappenventils auszubilden, dass druckabhängig verschwenkbar ist und dabei entweder die Mündungsöffnung des ersten oder des zweiten Kühlkreises (zumindest teilweise) verschließt.In particular, when the throttling action of a low power or not operated pump is sufficient to sufficiently prevent flow through the associated cooling circuit, in a preferred embodiment of the cooling system of the present invention means for preventing backflow of the coolant from the integral one Section be provided in one or both cooling circuits. These means can be designed, for example, in the form of check valves integrated into the cooling circuit (s). If the means are integrated directly into a mouth portion of the integral portion, there is also the advantageous possibility to form them in the form of a flap valve that is pressure-dependent pivotable and thereby either the orifice of the first or the second cooling circuit (at least partially) closes.

Vorzugsweise kann vorgesehen sein, dass in den zweiten Kühlkreis des Kühlsystems ein Heizungswärmetauscher integriert ist. Somit kann sichergestellt werden, dass bedarfsweise auch während der Warmlaufphase der Brennkraftmaschine Wärmeenergie aus dem Kühlkreis an zur Klimatisierung eines Innenraums des Kraftfahrzeugs vorgesehene Umgebungsluft übertragen werden kann.It can preferably be provided that a heating heat exchanger is integrated in the second cooling circuit of the cooling system. Thus, it can be ensured that, if necessary, during the warm-up phase of the internal combustion engine, heat energy can be transferred from the cooling circuit to ambient air provided for conditioning an interior of the motor vehicle.

Die Warmlaufphase der Brennkraftmaschine kann weiterhin bevorzugt in eine erste Phase, in der die Pumpe des zweiten Kühlkreises mit einer relativ niedrigen Förderleistung und somit einem entsprechend niedrigen Fördervolumenstrom des Kühlmittels betrieben wird, und eine zweite Phase, in der die Pumpe des zweiten Kühlkreises mit einer relativ hohen Förderleistung und somit einem entsprechend hohen Fördervolumenstrom des Kühlmittels betrieben wird, unterteilt sein. Dadurch kann beispielsweise erzielt werden, dass in der ersten Phase, die vorzugsweise zeitlich vor der zweiten Phase liegt, durch eine nur sehr geringe Durchströmung von insbesondere einem Verbrennungsmotor und besonders bevorzugt einem Zylinderkopf des Verbrennungsmotors, ein schnelles Erwärmen dieser Komponente erreicht wird, was sich positiv auf den Kraftstoffverbrauch und die Abgasemissionen der Brennkraftmaschine auswirken kann. Dabei kann die Regelung der Förderleistung der Pumpe des zweiten Kühlkreises insbesondere auch in Abhängigkeit von einer Umgebungstemperatur sowie einer Solltemperatur für den Innenraum des Kraftfahrzeugs erfolgen. Sofern in Abhängigkeit von der Differenz zwischen der Umgebungstemperatur und der Solltemperatur für den Innenraum eine Heizleistung für den Innenraum vorgesehen ist, kann die Pumpe des zweiten Kühlkreis in der genannten ersten Phase der Warmlaufphase mit einer höheren Leistung betrieben werden, als dies der Fall ist, wenn keine Heizleistung notwendig ist.The warm-up phase of the internal combustion engine may further preferably in a first phase in which the pump of the second cooling circuit with a relatively low flow rate and thus a correspondingly low flow rate of the coolant is operated, and a second phase in which the pump of the second cooling circuit with a relative high flow rate and thus a correspondingly high flow rate of the coolant is operated, be divided. As a result, it can be achieved, for example, that in the first phase, which is preferably prior to the second phase, by means of only a very small flow through, in particular, of an internal combustion engine and particularly preferably a cylinder head of the Internal combustion engine, a rapid heating of this component is achieved, which can have a positive effect on the fuel consumption and the exhaust emissions of the internal combustion engine. In this case, the regulation of the delivery rate of the pump of the second cooling circuit can in particular also be effected as a function of an ambient temperature and a setpoint temperature for the interior of the motor vehicle. If a heating power for the interior is provided depending on the difference between the ambient temperature and the target temperature for the interior, the pump of the second cooling circuit can be operated at a higher power in said first phase of the warm-up phase, as is the case no heating power is necessary.

Die zweite Phase der Warmlaufphase mit einer anderen, relativ höheren Förderleistung der Pumpe des zweiten Kühlkreises und somit einem höheren Volumenstrom des Kühlmittels durch den zweiten Kühlkreis kann insbesondere dann gestartet werden, wenn eine (zunächst) ausreichende Erwärmung des Verbrennungsmotors und insbesondere des Zylinderkopfs erreicht wurde und/oder keine besonders hohe Heizleistung für die Innenraum des Kraftfahrzeugs mehr erforderlich ist. Dann kann die von dem Kühlmittel in dem Verbrennungsmotor aufgenommene Wärmeenergie vorzugsweise für eine schnelle Erwärmung einer weiteren Komponente, wie beispielsweise des Motoröls, genutzt werden. Dazu kann ein entsprechender weiterer Komponentenkühler, insbesondere ein Motorölkühler, in einen die zwei Kühlkreise verbindenden Verbindungsabschnitt integriert sein. Dabei erfolgt die Integration des Verbindungsabschnitts vorzugsweise derart, dass das über den weiteren Komponentenkühler strömende Kühlmittel zirkulieren kann, ohne über den Umgebungswärmetauscher des ersten Kühlkreises geführt zu werden.The second phase of the warm-up phase with a different, relatively higher flow rate of the pump of the second cooling circuit and thus a higher volume flow of the coolant through the second cooling circuit can be started in particular when (initially) sufficient heating of the internal combustion engine and in particular of the cylinder head has been achieved and / or no particularly high heating power for the interior of the motor vehicle is required more. Then, the heat energy absorbed by the coolant in the internal combustion engine may preferably be utilized for rapid heating of another component, such as the engine oil. For this purpose, a corresponding further component cooler, in particular an engine oil cooler, can be integrated into a connecting section connecting the two cooling circuits. In this case, the integration of the connection section preferably takes place in such a way that the coolant flowing over the further component cooler can circulate, without being led over the ambient heat exchanger of the first cooling circuit.

Sofern das Kühlsystem der erfindungsgemäßen Brennkraftmaschine, wie im Stand der Technik üblich, einen Ausgleichsbehälter aufweist, kann vorzugsweise vorgesehen sein, dass dieser in einen Abschnitt integriert ist, in dem in der Warmlaufphase der Brennkraftmaschine kein relevanter Volumenstrom des Kühlmittels vorgesehen ist. Insbesondere kann der Ausgleichsbehälter parallel zu dem Umgebungswärmetauscher in den ersten Kühlkreis integriert sein. Dadurch kann vermieden werden, dass während der Warmlaufphase das möglichst schnell zu erwärmende Kühlmittels in relevantem Ausmaß durch den Ausgleichsbehälter gefördert wird, was ansonsten mit einer nicht unerheblichen, in dieser Betriebsphase der Brennkraftmaschine unerwünschten Kühlung des Kühlmittels verbunden sein kann.If the cooling system of the internal combustion engine according to the invention, as usual in the prior art, has a surge tank, may preferably be provided that this is integrated into a section in which no relevant volume flow of the coolant is provided in the warm-up phase of the internal combustion engine. In particular, the expansion tank can be integrated into the first cooling circuit parallel to the ambient heat exchanger. This can avoid that during the warm-up phase, the coolant to be heated as quickly as possible is promoted by the surge tank to a relevant extent, which can otherwise be associated with a not inconsiderable, in this phase of operation of the engine undesirable cooling of the coolant.

Die erfindungsgemäße Ausgestaltung des Kühlsystems einer Brennkraftmaschine hat bei einer solchen Positionierung des Ausgleichsbehälters noch den Vorteil einer einfach durchführbaren Entlüftung des Kühlsystems bei einer Neu- oder Wiederbefüllung. Insbesondere kann dazu vorgesehen sein, dass während oder nach dem Befüllen des Kühlkreises mit dem Kühlmittel die (nicht von dem Verbrennungsmotor und insbesondere elektrisch angetriebene) Pumpe des ersten Kühlkreises betrieben wird, ohne dass dabei der Verbrennungsmotor der Brennkraftmaschine betrieben wird (Nichtbetrieb des Verbrennungsmotors). Dies vereinfacht den Befüllvorgang. Bei Brennkraftmaschinen mit konventionellen Kühtsystemen muss dagegen in der Regel zur Entlüftung nach dem Neu- oder Wiederbefüllen des Kühlsystems der Verbrennungsmotor betrieben werden, um die (Haupt-)Pumpe des Kühlsystems zu betreiben, durch die dann das Kühlmittel und mittels des Kühlmittels in dem Kühlsystem enthaltene Luft in Richtung des Ausgleichsbehälters gefördert wird.
Bei dem Kühlsystem der erfindungsgemäßen Brennkraftmaschine ist vorgesehen, dass der Volumenstrom des Kühlmittels durch den ersten Teilkomponentenkühler mittels eines druckgesteuerten Ventils in Abhängigkeit von dem Volumenstrom durch den zweiten Teilkomponentenkühler regelbar ist, so dass eine relevante Durchströmung des Kühlers des Zylinderkurbelgehäuses mit dem Kühlmittel erst erfolgt, wenn die Durchströmung des Kühlers des Zylinderkopfs einen definierten Grenzwert überschritten hat.
Mittels eines solchen Kühlsystems kann eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahren realisiert werden, bei dem die Förderleistung der Pumpe des ersten Kühlkreises anhand der Temperatur des Kühlmittels am Ausgang der zweiten Teilkühlkomponente (wozu der oder die Kühlkreise mindestens einen entsprechend angeordneten Temperatursensor aufweisen) geregelt wird und ein Volumenstrom durch den ersten Teilkomponentenkühler mittels eines angepassten Betriebs der Pumpe des zweiten Kühlkreises geregelt wird. Somit kann vorgesehen sein, dass die Temperatur des Zylinderkopf, die sich in der Temperatur des Kühlmittels am Ausgang des Kühlers des Zylinderkopf widerspiegelt, als eine oder die relevante Regelgröße für die Pumpe des ersten Kühlkreises genutzt wird, wobei eine Regelung der Kühlleistung des Kühlers des Zylinderkopf und damit der Temperatur des Zylinderkopfs vorteilhaft über die Förderleistung dieser Pumpe geregelt werden kann. Um diese Regelung von der Regelung der Kühlleistung des Kühlers des Zylinderkurbelgehäuses zu entkoppeln, kann dann der Druck im integralen Abschnitt der Kühlkreise so mittels der Pumpe des zweiten Kühlkreises variiert werden, dass das druckgesteuerte Ventile in einem definierten Umfang öffnet oder schließt und damit die Durchströmung des Kühlers des Zylinderkurbelgehäuses regelt.
The inventive design of the cooling system of an internal combustion engine has in such a positioning of the surge tank still has the advantage of easy feasible ventilation of the cooling system in a new or refill. In particular, it may be provided that during or after the filling of the cooling circuit with the coolant, the (not of the internal combustion engine and in particular electrically driven) pump of the first cooling circuit is operated without the internal combustion engine of the internal combustion engine is operated (non-operation of the internal combustion engine). This simplifies the filling process. In internal combustion engines with conventional cooling systems, on the other hand, usually for venting after refilling or refilling the cooling system, the internal combustion engine must be operated to operate the (main) pump of the cooling system, through which then the coolant and by means of the coolant contained in the cooling system Air is conveyed in the direction of the expansion tank.
In the cooling system of the internal combustion engine according to the invention it is provided that the volume flow of the coolant through the first Teilkomponentenkühler by means of a pressure-controlled valve in dependence on the flow rate through the second Teilkomponentenkühler is regulated, so that a relevant flow through the radiator of the cylinder crankcase with the coolant takes place only when the flow through the radiator of the cylinder head has exceeded a defined limit.
By means of such a cooling system, a preferred embodiment of the method according to the invention can be realized, in which the flow rate of the pump of the first cooling circuit is controlled by the temperature of the coolant at the output of the second Teilkühlkomponente (for which the or the cooling circuits have at least one appropriately arranged temperature sensor) and a Volumetric flow is controlled by the first part of the component cooler by means of a matched operation of the pump of the second cooling circuit. Thus, it can be provided that the temperature of the cylinder head, which is reflected in the temperature of the coolant at the outlet of the radiator of the cylinder head, is used as one or the relevant controlled variable for the pump of the first cooling circuit, wherein a control of the cooling capacity of the radiator of the cylinder head and thus the temperature of the cylinder head can be advantageously controlled by the flow rate of this pump. To decouple this regulation from the regulation of the cooling capacity of the radiator of the cylinder crankcase, then the pressure in the integral portion of the cooling circuits can be varied by means of the pump of the second cooling circuit, that the pressure-controlled valves in a defined scope opens or closes and thus regulates the flow through the radiator of the cylinder crankcase.

Die unbestimmten Artikel ("ein", "eine", "einer" und "eines"), insbesondere in den Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.The indefinite articles ("a", "an", "an" and "an"), in particular in the patent claims and in the description generally describing the claims, are to be understood as such and not as numerical words. Corresponding to this concretized components are thus to be understood that they are present at least once and may be present more than once.

Die vorliegende Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. In den Zeichnungen zeigt jeweils schematisch:

Fig. 1:
eine Brennkraftmaschine mit einem erfindungsgemäßen Kühlsystem in einer schematischen Darstellung;
Fig. 2:
eine bauliche Umsetzung eines Teils des Kühlsystems der Fig. 1 in einer perspektivischen Ansicht;
Fig. 3:
in isolierter Darstellung das Anschlusselement des Kühlsystems gemäß der Fig. 2;
Fig. 4:
eine Prinzipdarstellung eines ersten Strömungsraums des Anschlusselements gemäß der Fig. 3;
Fig. 5:
eine Prinzipdarstellung eines zweiten Strömungsraums des Anschlusselements gemäß der Fig. 3;
Fig. 6:
die Durchströmung eines Teils des Kühlsystems gemäß der Fig. 1 in einem ersten Betriebszustand der betriebswarmen Brennkraftmaschine;
Fig. 7:
die Durchströmung eines Teils des Kühlsystems gemäß der Fig. 1 in einem zweiten Betriebszustand der betriebswarmen Brennkraftmaschine;
Fig. 8:
die Durchströmung des Kühlsystems gemäß der Fig. 1 in dem ersten und zweiten Betriebszustand der betriebswarmen Brennkraftmaschine;
Fig. 9:
eine nicht erfolgende Durchströmung des Kühlsystems gemäß der Fig. 1 in einer ersten Phase einer Warmlaufphase der Brennkraftmaschine;
Fig. 10:
die Durchströmung des Kühlsystems gemäß der Fig. 1 in einer zweiten Phase der Warmlaufphase der Brennkraftmaschine; und
Fig. 11:
die Durchströmung des Kühlsystems gemäß der Fig. 1 in einer dritten Phase der Warmlaufphase der Brennkraftmaschine.
The present invention will be explained in more detail with reference to embodiments shown in the drawings. In the drawings, each schematically shows:
Fig. 1:
an internal combustion engine with a cooling system according to the invention in a schematic representation;
Fig. 2:
a structural implementation of a part of the cooling system of Fig. 1 in a perspective view;
3:
in isolation, the connection element of the cooling system according to the Fig. 2 ;
4:
a schematic representation of a first flow space of the connecting element according to the Fig. 3 ;
Fig. 5:
a schematic representation of a second flow space of the connecting element according to the Fig. 3 ;
Fig. 6:
the flow through a part of the cooling system according to the Fig. 1 in a first operating state of the warm-running internal combustion engine;
Fig. 7:
the flow through a part of the cooling system according to the Fig. 1 in a second operating state of the warm operating internal combustion engine;
Fig. 8:
the flow through the cooling system according to the Fig. 1 in the first and second operating states of the warm operating internal combustion engine;
Fig. 9:
a non-passing through the cooling system according to the Fig. 1 in a first phase of a warm-up phase of the internal combustion engine;
Fig. 10:
the flow through the cooling system according to the Fig. 1 in a second phase of the warm-up phase of the internal combustion engine; and
Fig. 11:
the flow through the cooling system according to the Fig. 1 in a third phase of the warm-up phase of the internal combustion engine.

Die Fig. 1 zeigt eine Brennkraftmaschine mit einem erfindungsgemäßen Kühlsystem, wobei neben dem Kühlsystem noch ein Verbrennungsmotor 10 der Brennkraftmaschine dargestellt ist Der Verbrennungsmotor 10 kann als herkömmlicher Hubkolben-Verbrennungsmotor ausgeführt sein und umfasst dann ein Zylinderkurbelgehäuses 12, in dem eine Mehrzahl von Zylindern (nicht dargestellt) ausgebildet sind, in denen jeweils ein Kolben (nicht dargestellt) beweglich geführt ist Ein Zylinderkopf 14 schließt das Zylinderkurbelgehäuses 12 und damit die Zylinder nach oben hin ab und umfasst weiterhin mindestens ein Einlass- sowie mindestens ein Auslassventil für jeden der Zylinder, durch die in bekannter Weise ein Gaswechsel in von den Zylindern und den Kolben ausgebildeten Brennräumen gesteuert wird.The Fig. 1 shows an internal combustion engine with a cooling system according to the invention, wherein in addition to the cooling system still an internal combustion engine 10 of the internal combustion engine is shown The internal combustion engine 10 may be designed as a conventional reciprocating internal combustion engine and then comprises a cylinder crankcase 12 in which a plurality of cylinders (not shown) are formed In each of which a piston (not shown) is movably guided A cylinder head 14 closes the cylinder crankcase 12 and thus the cylinder upwards and further comprises at least one inlet and at least one exhaust valve for each of the cylinders, in a known manner Gas change is controlled in trained by the cylinders and the piston combustion chambers.

Sowohl das Zylinderkurbelgehäuses 12 als auch der Zylinderkopf 14 werden mittels des Kühlsystems gekühlt, wozu diese Kühlkanäle 58, 60 aufweisen, die mit dem Kühlmittel des Kühlsystems gefüllt und von diesem zumindest temporär durchströmt werden. Die Kühlkanäle 58, 60 stellen demnach Kühler des Zylinderkurbelgehäuses 12 sowie des Zylinderkopfs 14 dar. Der (mindestens eine) Kühlkanal 60 des Zylinderkurbelgehauses 12 und der (mindestens eine) Kühlkanal 58 des Zylinderkopfs 14 sind parallel verlaufend ausgebildet und werden somit auch parallel von dem Kühlmittel durchströmt.Both the cylinder crankcase 12 and the cylinder head 14 are cooled by means of the cooling system, to which these cooling channels 58, 60 have, which are filled with the coolant of the cooling system and flows through this at least temporarily. The (at least one) cooling passage 60 of the cylinder crankcase 12 and the (at least one) cooling passage 58 of the cylinder head 14 are formed to run parallel and thus are also parallel to the coolant flows through.

Das Kühlsystem bildet einen ersten Kühlkreis und einen zweiten Kühlkreis aus, die in einem Abschnitt, nämlich insbesondere in dem von den Kühlkanälen 58, 60 des Verbrennungsmotors 10 ausgebildeten Abschnitt, integral ausgebildet sind. Demnach werden im Betrieb des Kühlsystems die Kühlkanäle 58, 60 des Verbrennungsmotors 10 zumindest teilweise durchströmt, unabhängig davon ob nur der erste oder der zweite oder beide Kühlkreise genutzt werden.The cooling system forms a first cooling circuit and a second cooling circuit, which are formed integrally in a section, specifically in the section formed by the cooling channels 58, 60 of the internal combustion engine 10. Accordingly, during operation of the cooling system, the cooling channels 58, 60 of the internal combustion engine 10 at least partially flows through, regardless of whether only the first or the second or both cooling circuits are used.

Der erste Kühlkreis umfasst weiterhin einen Umgebungswärmetauscher, der als sogenannter Hauptwasserkühler 16 vorgesehen ist, sowie eine erste, elektrisch angetriebene und hinsichtlich ihrer Förderleistung regelbare Pumpe 18, die stromab des Hauptwasserkühlers 16 angeordnet ist. Weiterhin ist ein Ausgleichsbehälter 20 vorgesehenen, der in einer Parallelschaltung zu dem Hauptwasserkühler 16 in den ersten Kühlkreis integriert ist. Die einzelnen Komponenten des ersten Kühlkreises sind über entsprechende Verbindungleitungen fluidleitend verbunden.The first cooling circuit further comprises an ambient heat exchanger, which is provided as a so-called main water cooler 16, and a first, electrically driven and in terms of their capacity adjustable pump 18, which is arranged downstream of the main water cooler 16. Furthermore, a surge tank 20 is provided, which is integrated in a parallel connection to the main water cooler 16 in the first cooling circuit. The individual components of the first cooling circuit are fluid-conductively connected via corresponding connection lines.

Der zweite Kühlkreis umfasst noch einen Heizungswärmetauscher 22, der ebenfalls einen Umgebungswärmetauscher darstellt, wobei mit diesem bedarfsweise ein Wärmeübergang von dem Kühlmittel auf Umgebungsluft, die für die Klimatisierung eines Innenraums eines von der Brennkraftmaschine angetriebenen Kraftfahrzeugs vorgesehen ist, erfolgen kann. Weiterhin umfasst der zweite Kühlkreis eine zweite, elektrisch angetriebene und hinsichtlich ihrer Förderleistung regelbare Pumpe 24, die stromab des Heizungswärmetauschers 22 angeordnet ist. Auch die einzelnen Komponenten des zweiten Kühlkreises sind über entsprechende Verbindungsleitungen fluidleitend verbundenThe second cooling circuit also comprises a heating heat exchanger 22, which also constitutes an ambient heat exchanger, with which, if necessary, a heat transfer from the coolant to ambient air, which is provided for the air conditioning of an interior of a motor vehicle driven by the internal combustion engine, can take place. Furthermore, the second cooling circuit comprises a second, electrically driven and with regard to their delivery rate controllable pump 24, which is arranged downstream of the heating heat exchanger 22. The individual components of the second cooling circuit are fluid-conductively connected via corresponding connecting lines

Das Kühlsystem umfasst weiterhin noch einen Zwischenkühlkreis, der von dem integralen Abschnitt des ersten und zweiten Kühlkreis, einem weiteren Abschnitt des ersten Kühlkreises, einem weiteren Abschnitt des zweiten Kühlkreises sowie einem den ersten Kühlkreis und den zweiten Kühlkreis verbindenden Verbindungsabschnitt (mit entsprechenden Verbindungsleitungen) gebildet wird. Dabei geht, bezogen auf die Strömungsrichtung des Kühlmittels, der Verbindungsabschnitt stromab des Verbrennungsmotors 10 und stromauf des Hauptwasserkühlers 16 sowie des Ausgleichsbehälters 20 aus dem ersten Kühlkreis ab. Die Mündung des Verbindungsabschnitts ist stromab des Heizungswärmetauschers 22 und stromauf der Pumpe 24 (und damit auch stromauf des Verbrennungsmotors 10) in den zweiten Kühlkreis integriert. In den Verbindungsabschnitt des Zwischenkühlkreises ist ein weiterer Komponentenkühler in Form eines Motorölkühlers 26 integriert. Der Motorölkühler 26 dient im Betrieb der Brennkraftmaschine nach dem Erreichen des Betriebstemperaturbereichs einer Kühlung des zur Schmierung des Verbrennungsmotors 10 genutzten Motoröls.The cooling system further comprises an intermediate cooling circuit formed by the integral portion of the first and second cooling circuits, another section of the first cooling circuit, another section of the second cooling circuit, and a connecting section (with corresponding connection lines) connecting the first cooling circuit and the second cooling circuit , In this case, based on the flow direction of the coolant, the connecting portion downstream of the internal combustion engine 10 and upstream of the main water cooler 16 and the surge tank 20 from the first cooling circuit. The mouth of the connecting portion is integrated downstream of the heat exchanger 22 and upstream of the pump 24 (and thus also upstream of the engine 10) in the second cooling circuit. In the connecting portion of the intermediate cooling circuit, a further component cooler in the form of a motor oil cooler 26 is integrated. The engine oil cooler 26 is used in the operation of the internal combustion engine after reaching the operating temperature range cooling the used for lubricating the engine 10 engine oil.

Zur Ausbildung des integralen Abschnitts des ersten und zweiten Kühlkreises ist ein Anschlusselement 28 vorgesehen, das in der Fig. 3 in isolierter Darstellung gezeigt ist. Von einem Gehäuse 30 des Anschlusselements 28, das für ein seitliches Anflanschen an den Verbrennungsmotor 10 vorgesehen ist, werden ein erster Strömungsraum 32 sowie ein zweiter Strömungsraum 34, die voneinander getrennt sind, ausgebildet.To form the integral portion of the first and second cooling circuits, a connection element 28 is provided, which in the Fig. 3 shown in isolation. From a housing 30 of the connecting element 28, which is provided for a lateral flanging to the internal combustion engine 10, a first flow space 32 and a second flow space 34, which are separated from each other, are formed.

Wie sich auch aus den Fig. 4 und 5 ergibt, ist der erste Strömungsraum 32 mit zwei Einlassanschlüssen 36, 38 verbunden, von denen ein erster, der Einlassanschluss 36, als Zuleitung von Kühlmittel aus dem ersten Kühlkreis und der zweite, der Einlassanschluss 38, als Zuleitung von Kühlmittel aus dem zweiten Kühlkreis dient. Ein mit dem ersten Strömungsraum 32 verbundener Auslassanschluss 40 ist an einen Kühlkanal 62 des Verbrennungsmotors 10 abgeschlossen. Dieser Kühlkanal 62 des Verbrennungsmotors 10 ist stromauf einer Verzweigung 64 vorgesehen, die einer Aufteilung des Kühlmittels auf die parallel verlaufenden Kühlkanäle 58, 60 des Zylinderkurbelgehäuses 12 sowie des Zylinderkopfs 14 dient. Innerhalb des ersten Strömungsraums 32 ist weiterhin eine Ventilklappe 42 vorgesehen, die in Abhängigkeit von der Druckdifferenz des aus dem ersten Kühlkreis sowie dem zweiten Kühlkreis in den ersten Strömungsraum 32 eintretenden Kühlmittels in Richtung des einen oder anderen Einlassanschlusses 36, 38 verschwenkt wird.As is clear from the 4 and 5 results, the first flow space 32 with two inlet ports 36, 38 is connected, of which a first, the inlet port 36, serves as a supply of coolant from the first cooling circuit and the second, the inlet port 38, as a supply of coolant from the second cooling circuit. An outlet port 40 connected to the first flow space 32 is closed to a cooling passage 62 of the engine 10. This cooling channel 62 of the internal combustion engine 10 is provided upstream of a branch 64, which serves for a division of the coolant to the parallel cooling channels 58, 60 of the cylinder crankcase 12 and the cylinder head 14. Within the first flow space 32, a valve flap 42 is furthermore provided, which is pivoted in the direction of one or the other inlet port 36, 38 as a function of the pressure difference of the coolant entering the first flow space 32 from the first cooling circuit and the second cooling circuit.

In den Fig. 1 und 6 bis 11 ist dargestellt, dass anstelle der Ventilklappe 42 auch zwei Rückschlagventile 44 eingesetzt werden können, von denen jeweils eines einem der zwei Einlassanschlüssen 36, 38 zugeordnet ist.In the Fig. 1 and 6 to 11 is shown that instead of the valve flap 42, two check valves 44 can be used, of which one of the two inlet ports 36, 38 is assigned.

Der zweite Strömungsraum 34 ist ebenfalls mit zwei Einlassanschlüssen 46, 48 fluidleitend verbunden, wobei ein erster, der Einlassanschluss 46, fluidleitend mit dem Kühlkanal 28 des Zylinderkurbelgehäuses 12 und der zweite, der Einlassanschluss 48, fluidleitend mit dem Kühlkanal 58 des Zylinderkopfs 14 verbunden ist Dabei ist der mit dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 verbundene Einlassanschluss 46 mittels eines druckbetätigten Ventils 50 verschließbar. Das Ventil 50 umfasst einen Ventilkörper, der mittels eines vorgespannten Federelements in Richtung einer Mündungsöffnung dieses Einlassanschlusses 46 beaufschlagt ist. Weiterhin ist der zweite Strömungsraum 34 mit drei Auslassanschlüssen 52, 54, 56 fluidleitend verbunden, von denen ein erster, der Auslassanschluss 52, der Ableitung von Kühlmittel aus dem zweiten Strömungsraum 34 in den ersten Kühlkreis, ein zweiter, der Auslassanschluss 54, zur Ableitung von Kühlmittel aus dem zweiten Strömungsraum 34 in den zweiten Kühlkreis und der dritte, der Auslassanschluss 56, zur Ableitung von Kühlmittel in den den Motorölkühler 26 umfassenden Verbindungsabschnitt des Zwischenkühlkreises dient.The second flow space 34 is also fluid-conductively connected to two inlet ports 46, 48, wherein a first, the inlet port 46, fluidly connected to the cooling channel 28 of the cylinder crankcase 12 and the second, the inlet port 48, fluidly connected to the cooling channel 58 of the cylinder head 14 is connected to the cooling passage 60 of the cylinder crankcase 12 inlet port 46 closed by means of a pressure-actuated valve 50. The valve 50 comprises a valve body, which is acted upon by means of a prestressed spring element in the direction of an orifice opening of this inlet connection 46. Furthermore, the second flow space 34 is fluidly connected to three outlet ports 52, 54, 56, of which a first, the outlet port 52, the discharge of coolant from the second flow space 34 in the first cooling circuit, a second, the outlet port 54, for discharging Coolant from the second flow space 34 in the second cooling circuit and the third, the outlet port 56, for discharging coolant in the engine oil cooler 26 comprehensive connecting portion of the intermediate cooling circuit is used.

Das in den Zeichnungen dargestellten Kühlsystem kommt vollständig ohne temperaturgesteuerte Ventile aus. Eine Regelung der über die einzelnen Komponentenkühler und Wärmetauscher geführten Volumenströme des Kühlmittels und damit die entsprechenden Kühl- bzw. Wärmetauschleistungen wird ausschließlich über eine angepasste Leistungsregelung der beiden Pumpen 18, 24 erreicht.The cooling system shown in the drawings works completely without temperature-controlled valves. A regulation of the volume flows of the coolant conducted via the individual component coolers and heat exchangers, and thus the corresponding cooling or heat exchange rates, is achieved exclusively via adapted power control of the two pumps 18, 24.

Die Fig. 6 und 7 zeigen Möglichkeiten zur Regelung der die Kühlleistung des Zylinderkurbelgehäuses 12 und des Zylinderkopfs 14 durchströmenden Volumenströme des Kühlmittels. Das druckbetätigte Ventil 50 in dem zweiten Strömungsraum 34 des Anschlusselements 28 öffnet den mit dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 verbundenen Einlassanschluss 46 beispielsweise erst bei einer Druckdifferenz von ca. 200 mbar. Ein solcher Überdruck in dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 kann beispielsweise dann erreicht werden, wenn der Volumenstrom des Kühlmittels durch den Kühlkanal 58 des Zylinderkopfs 14 mindestens 15 l/min beträgt. In der Fig. 6 ist beispielsweise dargestellt, dass ein solcher Volumenstrom durch den Kühlkanal 58 des Zylinderkopfs 14 von bis zu 15 l/min durch einen kombinierten Betrieb beider Pumpen 18, 24 erreicht werden kann. Dabei kann insbesondere vorgesehen sein, dass der größere Anteil des Volumenstroms durch die Förderleistung der Pumpe 18 des ersten Kühlkreises erreicht wird. Möglich kann aber auch sein, den gesamten Volumenstrom des Kühlmittels durch den Kühlkanal 58 des Zylinderkopfs 14 ausschließlich durch den Betrieb einer der beiden Pumpen 18, 24 zu erreichen. Wird dagegen ein Volumenstrom durch den Kühlkanal 58 des Zylinderkopfs 14 von 15 l/min überschritten, öffnet das druckbetätigte Ventil 50 und ermöglicht somit, dass auch der Kühlkanal 60 des Zylinderkurbeigehäuses 12 von dem Kühlmittel durchströmt wird. Dieser Volumenstrom des Kühlmittels durch den Kühlkanal 60 des Zylinderkurbelgehäuses 12 kann insbesondere kleiner sein als der Volumenstrom des Kühlmittels durch den Kühlkanat 58 des Zylinderkopfs 14. In der Fig. 7 ist dargestellt, dass der gesamte Volumenstrom durch den Verbrennungsmotor 10 in etwa zur Hälfte jeweils von den beiden Pumpen erzeugt wird. Eine beliebige andere Aufteilung ist durch eine entsprechende Ansteuerung der Pumpen 18, 24 möglich.The 6 and 7 show ways to control the cooling capacity of the cylinder crankcase 12 and the cylinder head 14 by flowing through the flow rates of the coolant. The pressure-actuated valve 50 in the second flow space 34 of the connection element 28 opens the inlet connection 46 connected to the cooling channel 60 of the cylinder crankcase 12, for example, only at a pressure difference of approximately 200 mbar. Such an overpressure in the cooling passage 60 of the cylinder crankcase 12 can be achieved, for example, when the volume flow of the coolant through the cooling passage 58 of the cylinder head 14 is at least 15 l / min. In the Fig. 6 For example, it is shown that such a volume flow through the cooling channel 58 of the cylinder head 14 of up to 15 l / min can be achieved by a combined operation of both pumps 18, 24. It can be provided in particular that the greater proportion of the volume flow is achieved by the delivery rate of the pump 18 of the first cooling circuit. However, it may also be possible to achieve the entire volume flow of the coolant through the cooling channel 58 of the cylinder head 14 exclusively by the operation of one of the two pumps 18, 24. If, on the other hand, a volume flow through the cooling channel 58 of the cylinder head 14 of 15 l / min is exceeded, the pressure-actuated valve 50 opens and thus enables the coolant channel 60 of the cylinder coghouse 12 to be flowed through by the coolant. This volume flow of the coolant through the cooling passage 60 of the cylinder crankcase 12 may in particular be smaller than the volume flow of the coolant through the cooling passage 58 of the cylinder head 14. In the Fig. 7 is shown that the entire volume flow is generated by the internal combustion engine 10 in about half of each of the two pumps. Any other division is possible by a corresponding control of the pumps 18, 24.

Insbesondere kann vorgesehen sein, eine Regelung der Pumpe 18 des ersten Kühlkreises in Abhängigkeit von der Temperatur des aus dem Kühlkanal 58 des Zylinderkopfs 14 austretenden Kühlmittels vorzunehmen. Dazu ist in dem mit dem Kühlkanal 58 des Zylinderkopfs 14 verbundenen Einlassanschluss 48 des Anschlusselements 28 ein Temperatursensor (nicht dargestellt) integriert. Dessen Messsignal kann an eine Steuereinrichtung (nicht dargestellt), beispielsweise eine zentrale Motorsteuerung der Brennkraftmaschine, übertragen werden, die in Abhängigkeit von diesem Messsignal die Pumpe 18 des ersten Kühlkreises ansteuert. Die Förderleistung der Pumpe 18 des ersten Kühlkreises kann somit kontinuierlich derart angepasst werden, dass sich das aus dem Kühlkanal 58 des Zylinderkopfs 14 austretende Kühlmittel und damit auch der Zylinderkopf 14 selbst in einem definierten Betriebstemperaturbereich befindet, Ob gleichzeitig auch das Zylinderkurbeigehäuse 12 - und wenn ja, mit welchem Volumenstrom - von dem Kühlmittel durchströmt wird und somit eine Kühlung des Zylinderkurbelgehäuses 12 erfolgen soll, kann dann beispielsweise ausschließlich mittels einer entsprechenden, die Regelung der Pumpe 18 des ersten Kühlkreises überlagernden Regelung der Pumpe 24 des zweiten Kühlkreises erfolgen. Dazu kann ein Temperatursensor (nicht dargestellt) in dem mit dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 verbundenen Einlassanschluss 46 des Anschlusselements 28 vorgesehen sein, dessen Messsignal an eine Steuereinrichtung (nicht dargestellt), insbesondere die Motorsteuerung der Brennkraftmaschine, übertragen wird, die daraufhin eine entsprechende Ansteuerung der Pumpe 24 des zweiten Kühlkreises vornimmt.In particular, it may be provided to effect a control of the pump 18 of the first cooling circuit as a function of the temperature of the coolant emerging from the cooling passage 58 of the cylinder head 14. For this purpose, a temperature sensor (not shown) is integrated in the inlet connection 48 of the connection element 28 connected to the cooling channel 58 of the cylinder head 14. Its measuring signal can be transmitted to a control device (not shown), for example a central engine control of the internal combustion engine, which activates the pump 18 of the first cooling circuit as a function of this measuring signal. The delivery rate of the pump 18 of the first cooling circuit can thus be continuously adjusted so that the emerging from the cooling channel 58 of the cylinder head 14 coolant and thus the cylinder head 14 itself is in a defined operating temperature range, Whether at the same time the Zylinderkurbeigehäuse 12 - and if so , with what volume flow - of the coolant is flowed through and thus a cooling of the cylinder crankcase 12 is to take place, then, for example, exclusively by means of a corresponding, the control of the pump 18 of the first cooling circuit superimposed control of the pump 24 of the second cooling circuit. For this purpose, a temperature sensor (not shown) may be provided in the inlet port 46 of the connection element 28 connected to the cooling channel 60 of the cylinder crankcase 12, the measurement signal of which is transmitted to a control device (not shown), in particular the engine control of the internal combustion engine, which then activates a corresponding control the pump 24 of the second cooling circuit makes.

Eine solcher Betrieb des Kühlsystems ist insbesondere nach dem Erreichen eines definierten, für den Dauerbetrieb vorgesehenen Betriebstemperaturbereichs der Brennkraftmaschine sinnvoll. Die Fig. 8 verdeutlicht noch einmal die dann erfolgende Durchströmung des ersten und des zweiten Kühlkreises sowie des Zwischenkühlkreises,Such an operation of the cooling system makes sense in particular after reaching a defined, intended for continuous operation operating temperature range of the internal combustion engine. The Fig. 8 clarifies again the then taking place flow through the first and the second cooling circuit and the intermediate cooling circuit,

Eine Regelung der Kühlleistung des Motorölkühlers 26 und damit der Temperatur des Motoröls bei einem Betrieb der Brennkraftmaschine in ihrem Betriebstemperaturbereich kann infolge der gewählten Ausgestaltung des Zwischenkühlkreises insbesondere durch eine entsprechende Regelung der Pumpe 24 des zweiten Kühlkreises erreicht werden. Beispielsweise können für den Betrieb der Brennkraftmaschine in ihrem Betriebstemperaturbereich Grenzvolumenströme für die Durchströmung des Motorölkühlers 26 von 1,5 l/min und 8 l/min vorgesehen sein.A regulation of the cooling capacity of the engine oil cooler 26 and thus the temperature of the engine oil during operation of the internal combustion engine in its operating temperature range can be achieved due to the selected configuration of the intermediate cooling circuit in particular by a corresponding control of the pump 24 of the second cooling circuit. For example, for the operation of the internal combustion engine in its operating temperature range, boundary volume flows for the flow through the engine oil cooler 26 of 1.5 l / min and 8 l / min can be provided.

Ein Betrieb des Kühlsystem, bei dem der erste und der zweite Kühlkreis sowie der Zwischenkühlkreis von dem Kühlmittel durchströmt werden, kann weiterhin auch zur Entlüftung nach einer Neu- oder Wiederbefüllung des Kühlsystems, die beispielsweise im Rahmen der Neuherstellung oder einer Wartung der Brennkraftmaschine erfolgt sein kann, genutzt werden, Durch das Umwälzen des Kühlmittels wird Luft, die sich noch innerhalb des Kühlsystems befindet, mitgenommen und nach und nach zu dem Ausgleichsbehälter 20 gefördert, in dem diese aus dem Kühlmittel abgeschieden wird. Da beide Pumpen 18, 24 des Kühlsystems elektrisch angetrieben und geregelt sind, kann das Umwälzen des Kühlmittels in dem Kühlsystem auch ohne einen Betrieb des Verbrennungsmotors 10 erfolgen.An operation of the cooling system, in which the first and the second cooling circuit and the intermediate cooling circuit are flowed through by the coolant, can also be used for ventilation after a new or refilling of the cooling system, which may be done for example in the context of the new production or maintenance of the internal combustion engine By circulating the coolant, air that is still within the cooling system is entrained and gradually supplied to the surge tank 20 where it is separated from the coolant. Since both pumps 18, 24 of the cooling system are electrically driven and regulated, the recirculation of the coolant in the cooling system can also take place without an operation of the internal combustion engine 10.

Die Fig. 9 bis 11 zeigen dagegen einen Betrieb des Kühlsystems in einer Warmlaufphase der Brennkraftmaschine, d.h. in einem Betrieb (insbesondere nach einem Kaltstart) mit noch nicht erreichtem Betriebstemperaturbereich. Vorgesehen ist, dass dann entweder keine oder lediglich die Pumpe 24 des zweiten Kühlkreises betrieben wird. Dadurch ergibt sich ein im Kühlsystem ruhendes Kühlmittel beziehungsweise eine Zirkulation von Kühlmittel in dem zweiten Kühlkreis sowie in dem Zwischenkühlkreis, nicht jedoch in dem ersten Kühlkreis. Der Nichtbetrieb der Pumpe 18 des ersten Kohlkreises in Verbindung mit dem daraus resultierenden Verschließen des den ersten Kühlkreis mit dem ersten Strömungsraum 32 des Anschlusselements 28 verbindenden Einlassanschluss 36 durch die Ventilklappe 42 (bzw. das entsprechende Rückschlagventil 44) verhindert bei einem Betrieb der Pumpe 24 des zweiten Kühlkreises wirkungsvoll eine Durchströmung des Hauptwasserkühler 16 sowie des Ausgleichsbehälters 20 und damit eine innerhalb der Warmlaufphase unerwünschte Kühlung des Kühlmittels durch diese Komponenten.The Fig. 9 to 11 In contrast, show an operation of the cooling system in a warm-up phase of the internal combustion engine, ie in one operation (especially after a cold start) with not yet reached operating temperature range. It is provided that then either no or only the pump 24 of the second cooling circuit is operated. This results in a cooling medium resting in the cooling system or a circulation of coolant in the second cooling circuit and in the intermediate cooling circuit, but not in the first cooling circuit. The non-operation of the pump 18 of the first Kohlkreises in connection with the resulting closure of the first cooling circuit with the first flow chamber 32 of the connecting element 28 connecting inlet port 36 through the valve flap 42 (or the corresponding check valve 44) prevents in an operation of the pump 24 of the second cooling circuit effectively a flow through the main water cooler 16 and the surge tank 20 and thus an undesirable during the warm-up phase cooling of the coolant through these components.

Dabei ist die Warmlaufphase in mindestens zwei, vorzugsweise drei Phasen unterteilt. In einer ersten, sich direkt an den Kaltstart anschließenden Phase (vgl. Fig. 9) kann vorgesehen sein, keine der Pumpen 18, 24 zu betreiben, wodurch das Kühlmittel im gesamten Kühlsystem weitgehend ruht. Dadurch kann eine besonders schnelle Erwärmung des Zylinderkopfs 14 und auch des Zylinderkurbelgehäuses 12 durch die Abwärme der in den Brennräumen des Verbrennungsmotors 10 ablaufenden Verbrennungsprozesse erreicht werden.The warm-up phase is divided into at least two, preferably three phases. In a first phase directly following the cold start (cf. Fig. 9 ) may be provided to operate none of the pumps 18, 24, whereby the coolant in the entire cooling system largely rests. As a result, particularly rapid heating of the cylinder head 14 and also of the cylinder crankcase 12 can be achieved by the waste heat of the combustion processes taking place in the combustion chambers of the internal combustion engine 10.

Kurz darauf kann in einer zweiten Phase (vgl. Fig. 10) die Pumpe 24 des zweiten Kühlkreises mit einer relativ geringen Förderleistung in Betrieb genommen werden. Dadurch soll ein geringer Volumenstrom des Kühlmittels durch den Zylinderkopf 14 erreicht werden, wodurch lokale Überhitzungen des Zylinderkopfs 14 vermieden werden. Ein Volumenstrom des Kühlmittels durch das Zylinderkurbelgehäuse 12 ist in dieser Phase nicht vorgesehen.Shortly afterwards, in a second phase (cf. Fig. 10 ), the pump 24 of the second cooling circuit with a relatively low flow rate are put into operation. As a result, a small volume flow of the coolant is to be achieved by the cylinder head 14, whereby local overheating of the cylinder head 14 can be avoided. A volume flow of the coolant through the cylinder crankcase 12 is not provided in this phase.

Sobald für den Zylinderkopf 14 eine definierte minimale Grenztemperatur erreicht wurde, was durch die Messung der Temperatur des aus den Kühlkanälen des Zylinderkopfs 14 austretenden Kühlmittels bestimmt werden kann, kann die dritte Phase (vgl. Fig. 11) der Warmlaufphase eingeleitet werden, die sich von der zweiten Phase durch eine höhere Förderleistung der Pumpe 24 des zweiten Kühlkreises unterscheidet. In dieser Phase kann insbesondere vorgesehen sein, nach dem Erreichen der minimalen Grenztemperatur für den Zylinderkopf 14 einen definierten Betriebstemperaturbereich für das Motoröl möglichst schnell zu erreichen. Dazu wird mit dem im Vergleich zur zweiten Phase dann größeren Volumenstrom des Kühlmittels zunehmend Wärmeenergie, die das Kühlmittel in dem Zylinderkopf 14 aufnimmt, in dem Motorölkühler 26 an das Motoröl abgegeben. Auch in dieser Phase kann vorgesehen sein, dass keine Durchströmung des Zylinderkurbelgehäuses 12 mit dem Kühlmittel erfolgt.As soon as a defined minimum limit temperature has been reached for the cylinder head 14, which can be determined by measuring the temperature of the coolant emerging from the cooling passages of the cylinder head 14, the third phase (cf. Fig. 11 ) of the warm-up phase are introduced, which differs from the second phase by a higher capacity of the pump 24 of the second cooling circuit. In this phase can be provided in particular, after reaching the minimum limit temperature for the cylinder head 14 to achieve a defined operating temperature range for the engine oil as quickly as possible. For this purpose, with the then in comparison to the second phase then larger volume flow of the coolant increasingly heat energy, which receives the coolant in the cylinder head 14, discharged in the engine oil cooler 26 to the engine oil. Also in this phase can be provided that no flow through the cylinder crankcase 12 takes place with the coolant.

Ein Betrieb des Kühlsystems gemäß dieser dritten Phase kann auch nach dem Erreichen des Betriebstemperaturbereichs der Brennkraftmaschine vorgesehen sein, wenn der Verbrennungsmotor 10 über einen längeren Zeitraum mit sehr niedriger Leistung betrieben wird. Dadurch kann ein zu starkes Absinken der Temperatur des Motoröls verhindert werden.An operation of the cooling system according to this third phase may also be provided after reaching the operating temperature range of the internal combustion engine, when the internal combustion engine 10 is operated over a longer period of very low power. As a result, an excessive drop in the temperature of the engine oil can be prevented.

Weiterhin kann auch vorgesehen sein, dass Wärmeenergie, die in einem in den Zeichnungen nicht dargestellten, in das Kühlsystem und insbesondere in den zweiten Kühlkreis und/oder den Zwischenkühlkreis integrierten Wärmespeicher gespeichert ist (und die beispielsweise in oder kurz nach einem vorherigen Betrieb der Brennkraftmaschine in dem Wärmespeicher gespeichert wurde), an das Kühlmittel abgegeben wird. Um eine Verteilung dieser zuvor gespeicherten Wärmeenergie in dem zweiten Kühlkreis und dem Zwischenkühlkreises zu erreichen, kann vorzugsweise vorgesehen sein, dass ein solches Entladen des Wärmespeichers mit einem Betrieb der Pumpe 24 des zweiten Kühlkreises mit zumindest relativ niedriger Förderleistung kombiniert wird. Somit kann insbesondere vorgesehen sein, ein Entladen eines Wärmespeichers in die zuvor beschriebene, zweite Phase der Warmlaufphase zu integrieren. Gegebenenfalls kann dann auf die zuvor beschriebene erste Phase verzichtet werden, wodurch die zweite Phase mit dem Entladen des Wärmespeichers zur ersten Phase der Warmlaufphase würde.Furthermore, it can also be provided that heat energy stored in a heat accumulator, not shown in the drawings, which is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit (and which, for example, in or shortly after a previous operation of the internal combustion engine) the heat storage was stored), is discharged to the coolant. In order to achieve a distribution of these previously stored heat energy in the second cooling circuit and the intermediate cooling circuit, it can preferably be provided that such a discharge of the heat accumulator is combined with an operation of the pump 24 of the second cooling circuit with at least relatively low flow rate. Thus, it can be provided in particular to integrate a discharge of a heat accumulator in the previously described, second phase of the warm-up phase. If appropriate, the first phase described above can then be dispensed with, whereby the second phase with the discharge of the heat accumulator would become the first phase of the warm-up phase.

Sofern ein solcher Wärmespeicher in das Kühlsystem und insbesondere in den zweiten Kühlkreis und/oder den Zwischenkühlkreis integriert ist, kann vorgesehen sein, nach dem Beenden des Betriebs der Brennkraftmaschine (insbesondere wenn diese während des Betriebs ihren Betriebstemperaturbereich erreicht hatte) die Pumpen 18, 24 und insbesondere die Pumpe 24 des zweiten Kühlkreises noch einen definierten Zeitraum nachlaufen zu lassen, Dadurch wird ermöglicht, die in dem Kühlmittel und in den im Betrieb der Brennkraftmaschine von dem Kühlmittel gekühlten Komponenten noch vorhandene Wärmeenergie so weit wie möglich auf den Wärmespeicher zu übertragen, um diesen wieder aufzuladen.If such a heat accumulator is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit, it may be provided, after the end of the operation of the internal combustion engine (especially if this had reached its operating temperature range during operation), the pumps 18, 24 and In particular, to let the pump 24 of the second cooling circuit to run after a defined period of time, This makes it possible to transfer the heat energy remaining in the coolant and in the operation of the engine cooled by the coolant components as much as possible to the heat storage to this recharge.

Neben den gezeigten und beschriebenen Komponentenkühlem kann das Kühlsystem noch weitere Komponentenkühler umfassen. Hierbei kann es sich beispielsweise um einen Getriebeölkühler, einen Kühler für einen Abgasturbolader, einen Ladeluftkühler und/oder einen Kühler für eine Abgasrückführung handeln.In addition to the component coolers shown and described, the cooling system may include other component coolers. This may be, for example, a transmission oil cooler, a cooler for an exhaust gas turbocharger, a charge air cooler and / or a cooler for exhaust gas recirculation.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Verbrennungsmotorinternal combustion engine
1212
Zylinderkurbelgehäusecylinder crankcase
1414
Zylinderkopfcylinder head
1616
HauptwasserkühlerMain water cooler
1818
Pumpe des ersten KühlkreisesPump of the first cooling circuit
2020
Ausgleichsbehältersurge tank
2222
HeizungswärmetauscherHeater core
2424
Pumpe des zweiten KühlkreisesPump of the second cooling circuit
2626
MotorölkühlerEngine oil cooler
2828
Anschlusselementconnecting element
3030
Gehäusecasing
3232
erster Strömungsraum des Anschlusselementsfirst flow space of the connection element
3434
zweiter Strömungsraum des Anschlusselementssecond flow space of the connection element
3636
erster Auslassanschluss des ersten Strömungsraumsfirst outlet port of the first flow space
3838
zweiter Auslassanschluss des ersten Strömungsraumssecond outlet port of the first flow space
4040
Einlassanschluss des ersten StrömungsraumsInlet port of the first flow space
4242
Ventilklappevalve flap
4444
Rückschlagventilecheck valves
4646
erster Einlassanschluss des zweiten Strömungsraumsfirst inlet port of the second flow space
4848
zweiter Einlassanschluss des zweiten Strömungsraumssecond inlet port of the second flow space
5050
VentilValve
5252
erster Auslassanschluss des zweiten Strömungsraumsfirst outlet port of the second flow space
5454
zweiter Auslassanschlussdes zweiten Strömungsraumssecond outlet port of the second flow space
5656
dritter Auslassanschluss des zweiten Strömungsraumsthird outlet port of the second flow space
5858
Kühlkanal des ZylinderkopfsCooling channel of the cylinder head
6060
Kühlkanal des ZylinderkurbelgehäusesCooling channel of the cylinder crankcase
6262
Kühlkanal des VerbrennungsmotorsCooling channel of the internal combustion engine
6464
Verzweigungbranch

Claims (11)

  1. Combustion machine having a cooling system which has
    - a first cooling circuit, which comprises a surroundings heat exchanger in the form of a main water cooler and a first pump (18), and
    - a second cooling circuit, which comprises a second pump (24),
    wherein the cooling circuits are of integral form in at least one section, wherein a component cooler with
    - a first component cooler part, which comprises a cooler of a cylinder crankcase (12) of an internal combustion engine (10) of the combustion machine, and
    - a second component cooler part, which comprises a cooler of a cylinder head (14) of the internal combustion engine (10) and which is connected in parallel with respect to the first component cooler part,
    is arranged in the integral section of the cooling circuits, and
    wherein, in the cooling circuits, there is provided a coolant which is provided for being delivered by the pumps (18, 24), characterized in that the pumps that are integrated into different cooling circuits are designed to be regulable, and regulation of the volume flows of the coolant flowing through the component cooler and the surroundings heat exchanger is realized by way of adapted operation of the pumps (18, 24), wherein the volume flow through the first component cooler part is regulable by way of a pressure-controlled valve (50) in a manner dependent on the volume flow through the second component cooler part, such that a relevant flow of the coolant through the cooler of the cylinder crankcase occurs only when the flow through the cooler of the cylinder head has exceeded a defined threshold value.
  2. Combustion machine according to Claim 1, characterized in that the pumps (18, 24) are driveable by electric motor.
  3. Combustion machine according to one of the preceding claims, characterized by means for preventing a backflow of the coolant from the integral section into the cooling circuits.
  4. Combustion machine according to one of the preceding claims, characterized by a heating heat exchanger (22) which is integrated into the second cooling circuit.
  5. Combustion machine according to one of the preceding claims, characterized by a connecting section which connects the cooling circuits and which has a component cooler.
  6. Combustion machine according to one of the preceding claims, characterized by an expansion tank (20) which is integrated into the first cooling circuit in parallel with respect to the surroundings heat exchanger.
  7. Combustion machine according to one of the preceding claims, characterized by a connector element (28) with a housing (30) which forms at least two mutually separate flow chambers (32, 34), wherein
    - a first flow chamber (32) is connected to at least two inlet connectors (36, 38), which can be shut off by way of a device for preventing a backflow, and to an outlet connector (40), and
    - a second flow chamber (34) is connected to at least two inlet connectors (46, 48), of which at least one can be shut off by way of a pressure-actuated valve (50), and to at least two outlet connectors (52, 54).
  8. Method for operating a combustion machine according to one of the preceding claims, characterized in that, in a warm-up phase of the combustion machine, only the second pump (24) of the second cooling circuit is operated.
  9. Method according to Claim 8, characterized in that the second pump (24) of the second cooling circuit is operated with relatively low power in a first phase of the warm-up phase and is operated with relatively high power in a second phase of the warm-up phase.
  10. Method for operating a combustion machine according to one of Claims 1 to 7, characterized in that the delivery power of the first pump (18) of the first cooling circuit is regulated on the basis of the temperature of the coolant at the outlet of the second component cooler part, and a volume flow through the first component cooler part is regulated by way of adapted operation of the second pump (24) of the second cooling circuit.
  11. Method for operating a combustion machine according to Claim 6 or according to a claim dependent on Claim 6, characterized in that, during or after the filling of the cooling system with the coolant, the first pump (18) of the first cooling circuit part is operated, with an internal combustion engine (10) of the combustion machine not being operated.
EP14178808.3A 2013-11-25 2014-07-28 Internal combustion engine Active EP2876274B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013224005.8A DE102013224005A1 (en) 2013-11-25 2013-11-25 cooling system

Publications (2)

Publication Number Publication Date
EP2876274A1 EP2876274A1 (en) 2015-05-27
EP2876274B1 true EP2876274B1 (en) 2017-04-05

Family

ID=51257334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14178808.3A Active EP2876274B1 (en) 2013-11-25 2014-07-28 Internal combustion engine

Country Status (3)

Country Link
EP (1) EP2876274B1 (en)
CN (1) CN104653272B (en)
DE (1) DE102013224005A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015105921A1 (en) * 2015-04-17 2016-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle
DE102015213879A1 (en) * 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine with split cooling system
DE102015222735A1 (en) * 2015-11-18 2017-05-18 Volkswagen Aktiengesellschaft Charge gas cooling circuit and method for tempering charge gas
JP6477536B2 (en) * 2016-02-23 2019-03-06 株式会社デンソー Vehicle thermal management device
FR3050233B1 (en) * 2016-04-19 2019-10-11 Renault S.A.S COOLING SYSTEM OF A THERMAL ENGINE
CN106168156B (en) * 2016-08-09 2018-08-31 河南柴油机重工有限责任公司 A kind of engine coolant feeds recovery system automatically
DE102017200878A1 (en) 2016-11-14 2018-05-17 Mahle International Gmbh motor vehicle
DE102017213036A1 (en) * 2017-07-28 2019-01-31 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine with a coolant circuit
FR3070432B1 (en) * 2017-08-30 2019-08-16 Psa Automobiles Sa COOLING SYSTEM ASSEMBLY FOR A THERMAL MOTOR AND A GEARBOX
DE102017219988A1 (en) * 2017-11-09 2019-01-03 Audi Ag Drive device with a coolant circuit for a motor vehicle
CN109058985B (en) * 2018-06-25 2020-06-16 西北工业大学 Bypass-based heat accumulator heating method
JP7028753B2 (en) * 2018-11-19 2022-03-02 トヨタ自動車株式会社 Internal combustion engine cooling device
JP7136667B2 (en) 2018-11-19 2022-09-13 トヨタ自動車株式会社 internal combustion engine cooling system
GB2587384B (en) * 2019-09-26 2021-09-22 Ford Global Tech Llc Flow control devices for engine cooling systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736133A1 (en) * 1997-08-20 1998-11-26 Daimler Benz Ag Coolant circuit for IC engine in motor vehicles
ITTO980371A1 (en) * 1998-04-30 1999-10-30 Gate Spa PUMP FOR LIQUIDS, PARTICULARLY FOR A COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE.
DE19831901A1 (en) * 1998-07-16 2000-01-20 Bosch Gmbh Robert Vehicle engine cooling system with second pump forming active element
DE19906523A1 (en) 1999-02-17 2000-08-31 Volkswagen Ag Heating circuit for motor vehicles
DE10047081B4 (en) * 2000-09-22 2013-06-06 Volkswagen Ag Method and device for cooling an internal combustion engine
DE10143110A1 (en) * 2001-09-03 2003-03-20 Att Automotivethermotech Gmbh Operating heating and cooling circuits of vehicle, employs additional pump in deaeration circuit to define coolant flow and supply compartment heating
CN2556369Y (en) * 2002-04-27 2003-06-18 肖志友 High-efficiency water-cooled engine
DE10332947A1 (en) * 2003-07-19 2005-02-03 Daimlerchrysler Ag Internal combustion engine for a motor vehicle
DE10342935B4 (en) 2003-09-17 2015-04-30 Robert Bosch Gmbh Internal combustion engine with a cooling circuit
CN2737959Y (en) * 2004-11-09 2005-11-02 长安汽车(集团)有限责任公司 Engine cylinder body and cooling pass structure of cylinder head
CN2858987Y (en) * 2005-11-14 2007-01-17 昆明云内动力股份有限公司 Cooling system for engine
DE102008048373B4 (en) * 2008-09-22 2020-06-25 Att Automotivethermotech Gmbh Engine cooling system with coolant shut-off device
US8869756B2 (en) * 2008-12-10 2014-10-28 Ford Global Technologies, Llc Cooling system and method for a vehicle engine
DE102010060319B4 (en) * 2010-11-03 2012-05-31 Ford Global Technologies, Llc. cooling system
DE102010044167A1 (en) 2010-11-19 2012-05-24 Mahle International Gmbh Coolant pump mounted in motor vehicle, has valve device that is provided to disconnect suction side and pressure side of displacement pump which is connected to slider, for adjusting fluid pressure

Also Published As

Publication number Publication date
CN104653272B (en) 2017-06-27
EP2876274A1 (en) 2015-05-27
CN104653272A (en) 2015-05-27
DE102013224005A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
EP2876274B1 (en) Internal combustion engine
DE112007001140B4 (en) Vehicle cooling system with directed flows
EP3198124B1 (en) Internal combustion engine
DE102008033012B4 (en) Integrated vehicle cooling system
EP3523524B1 (en) Internal combustion engine
DE102014201717A1 (en) Internal combustion engine with liquid-cooled cylinder head and cylinder block and method for controlling the cooling of such an internal combustion engine
DE102012210320B3 (en) Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position
DE102018212639A1 (en) FLOW CONTROL VALVE
DE102014200054A1 (en) Liquid-cooled internal combustion engine with liquid-cooled cylinder head and liquid-cooled cylinder block
EP2562379B1 (en) Coolant circuit
DE102012200003A1 (en) Liquid-cooled internal combustion engine and method for operating such an internal combustion engine
DE102008007766A1 (en) Cooling device for cooling internal combustion engine, has coolant circuit comprising coolant pitch circles that are separated from each other by electromechanical assembly by self-switching, where circle has different cooling agents
DE10254016A1 (en) Device for cooling charging air for turbocharger with first cooling stage has second cooling stage(s), cooling device with coolant circuit with evaporator and/or refrigerant circuit
DE102014215074A1 (en) Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle
EP1923549B1 (en) Cooling system for a motor vehicle
DE102018118804A1 (en) Cooling device for a motor
DE102007027719B4 (en) Internal combustion engine with a heating circuit and a cooling circuit
DE102018113687A1 (en) Apparatus and method for cooling battery cell modules
EP2562378B1 (en) Strategy to operate a split coolant circuit
DE102014018729A1 (en) Cooling device for cooling an internal combustion engine
DE102012019091A1 (en) Crankcase for combustion engine of motor vehicle, has coolant chambers, which are separated in fluidic manner from each other by partition wall that is designed one piece with crankcase
WO2020191424A1 (en) Internal combustion engine
EP3530899A1 (en) Cooling system and combustion engine
DE102013203476A1 (en) Liquid-cooled internal combustion engine e.g. diesel engine, for motor vehicle, has common pump provided upstream to supply openings for conveying coolant to supply openings, and closing element present between pump and one supply opening
EP3412883B1 (en) Combustion engine and motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160324

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 882070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003280

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170405

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 882070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230731

Year of fee payment: 10