EP1923549B1 - Cooling system for a motor vehicle - Google Patents

Cooling system for a motor vehicle Download PDF

Info

Publication number
EP1923549B1
EP1923549B1 EP20070022194 EP07022194A EP1923549B1 EP 1923549 B1 EP1923549 B1 EP 1923549B1 EP 20070022194 EP20070022194 EP 20070022194 EP 07022194 A EP07022194 A EP 07022194A EP 1923549 B1 EP1923549 B1 EP 1923549B1
Authority
EP
European Patent Office
Prior art keywords
coolant
cooling system
heat exchanger
pump
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20070022194
Other languages
German (de)
French (fr)
Other versions
EP1923549A3 (en
EP1923549A2 (en
Inventor
Eberhard Pantow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1923549A2 publication Critical patent/EP1923549A2/en
Publication of EP1923549A3 publication Critical patent/EP1923549A3/en
Application granted granted Critical
Publication of EP1923549B1 publication Critical patent/EP1923549B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • the invention relates to a cooling system for a motor vehicle according to the preamble of claim 1 and to a method for cooling a component of a motor vehicle according to the preamble of claim 21.
  • DE 103 19 762 A1 describes a cooling circuit of an internal combustion engine of a motor vehicle, wherein a part of the cooling circuit is branched off for cooling charge air of the internal combustion engine.
  • the branched-off part of the cooling circuit is circulated by a coolant-flow-driven turbine pump, wherein in an embodiment according to FIG Fig. 6 is possible to bridge the turbine pump via an adjustable multi-way valve.
  • the US 3,134,371 discloses a cooling system for an internal combustion engine in which a radiator, intercooler and an oil cooler in the circuit of the internal combustion engine are connected.
  • a branch line is advantageously provided, wherein the branch line leads from the main branch to the low-temperature cooler.
  • a branch line allows in a simple manner that the low-temperature radiator is charged in a certain mode with only circulated by the main pump coolant.
  • Such an operating mode is particularly useful in a warm-up phase of the vehicle engine, in which there is no circulation of the coolant in the main branch.
  • the branch line branches in the flow direction towards the vehicle engine and before the main pump. As a result, the flow resistance of the main pump is avoided for the branched coolant flow, the branch after the vehicle engine structurally simple manner and in particular in existing systems can be integrated.
  • the pump unit comprises a coolant-driven turbine and a pump driven therefrom, wherein in particular turbine and pump are arranged on a common shaft.
  • a pump unit is convenient and inexpensive. Due to the arrangement on the common shaft construction costs and components are saved, in particular with an optional connection of the coolant circuits through the coolant radiator and the low-temperature radiator no costly sealing measures between the turbine and pump part of the pump unit are required.
  • the pump unit may preferably be formed of plastic and generally features according to the cited document DE 103 19 762 A1 exhibit.
  • the inner coolant circuit comprises a throttle member, wherein a coolant flow of the branch line is adjustable via the throttle member.
  • a coolant flow of the branch line is adjustable via the throttle member.
  • the throttle member is controlled in a simple manner, the pressure drop across the branch line and thus the coolant flow of the branch line.
  • a throttling of the coolant flow in the interior Cooling circuit of the vehicle engine harmless in a wide context and possibly leads advantageously to a faster heating of the vehicle engine during cold start.
  • the throttle member is arranged as a particular thermo-mechanical throttle valve in the inner coolant circuit.
  • a thermomechanical valve is to be understood as meaning any component which has an immediate conversion of heat into a mechanical force, such as expansion elements, bimetallic elements and the like. Under this term, such components are to be detected in which the control characteristic of the thermo-mechanical element z. B. additional electrical heating elements can be influenced; Such components are known in practice in the form of thermostats under the term "map thermostats". To save costs and space, it is preferably provided that the throttle member is designed as a structural unit with a branch of the branch line.
  • the throttle valve for adjustable limitation of the current through the heat exchanger is arranged in the coolant flow of the heat exchanger.
  • an immediate limit of the amount of coolant flowing through the heat exchanger can be set, which z. B. may be advantageous if the heat exchanger in certain operating conditions should have a reduced cooling capacity or when an increased coolant flow is requested by the vehicle engine during the warm-up phase.
  • the regulation of the throttle valve may depend, in particular, on parameters of the element to be cooled by the heat exchanger or generally on a control electronics of the vehicle.
  • the coolant flow through the vehicle engine and the coolant flow through the heat exchanger are substantially separated.
  • sufficient cooling of the coolant flow flowing through the heat exchanger can be achieved even when the vehicle engine is warm.
  • the coolant flow on the outlet side of the engine typically has temperatures of up to 120 ° C, so that the flow through the low-temperature radiator with such a hot coolant would not lead to sufficient cooling for the feed of the heat exchanger.
  • the coolant flow separated from the engine cooling circuit is then circulated through the low temperature cooler and heat exchanger by means of the pump unit, the drive energy for the pump part of the pump unit being taken from the flow of vehicle engine coolant in the main branch.
  • a check valve is arranged in the coolant flow of the heat exchanger. In this way it can be ensured even in case of malfunction and unfavorable pressure conditions that the coolant in the branch of the heat exchanger can flow only in a defined direction, whereby in particular a shortage of the vehicle engine is excluded with coolant.
  • the coolant circuit can be operated directly via the main pump through the heat exchanger (return via the first branch) and, when the engine is warm, by means of the return via the second branch via the pump unit.
  • the coolant radiator and the low-temperature radiator are designed as a structural unit.
  • the cooler can z. B. in the field of a vehicle front in the structural unit next to each other.
  • the coolers are arranged one behind the other, wherein the low-temperature cooler is arranged with respect to the cooling air flow in front of the coolant radiator.
  • the structural unit additionally comprises the pump unit, whereby the costs are also optimized and space is saved. In addition, there are fewer potential weak points due to connections of hoses and the like.
  • a branch line between the main branch and a coolant flow of the low-temperature radiator is likewise preferably integrated in the structural unit and, expediently, also a valve member for setting a coolant flow through the low-temperature radiator. It is particularly optimal in the course of structural integration of the addressed components, that ultimately a cooler component with branch line, valve means for controlling the flow through the branch line and pump unit is provided, wherein the structural unit only one inlet and one outlet for the low-temperature cooler and the Has coolant radiator. Such a unit is particularly easy to integrate into existing vehicle construction spaces and in particular modularly replaced by existing components such as conventional main radiator.
  • the pump unit is arranged downstream of the coolant cooler, so that this unit does not constitute a resistance to be flowed through in the first operating mode, in particular when the coolant flow branches off through the heat exchanger between coolant radiator and pump unit.
  • the heat exchanger is a charge air cooler for the vehicle engine. It may be the only or an additional intercooler. Alternatively or additionally, the heat exchanger may also be an exhaust gas cooler, in particular for an exhaust gas recirculation system of the vehicle engine. Likewise alternatively or additionally, the heat exchanger can dissipate heat from an electrical energy source to the coolant, wherein the vehicle has in particular a hybrid drive with an electric motor supplied by the energy source. In principle, it is possible that in the low-temperaturedekrels a plurality of heat exchangers are arranged with different cooling functions, wherein the arrangement can be serial and / or parallel.
  • the object of the invention is achieved by a method according to the preamble of claim 21 by the characterizing features of claim 21.
  • the thermostat is expedient at the same time the main thermostat of the cooling circuit of the vehicle engine.
  • the inventive method is carried out with a cooling system according to one of claims 1 to 20.
  • the cooling system according to Fig. 1 includes an internal cooling circuit with a main pump 1, a main pump subsequent vehicle engine 2, z. B. a gasoline or diesel engine of a passenger car, a vehicle engine 2 downstream thermostat 3 and a thermostat 3 downstream and the main pump 1 in the inner circuit upstream throttle valve. 4
  • a branch 5 a branch line 6 is provided, which opens on the input side of a low-temperature cooler 7 in a low-temperature cooling circuit, which includes the low-temperature cooler 7 and this below a heat exchanger 16.
  • a heat exchanger 16 is present charge air of a compressor 9, z. B. an exhaust gas turbocharger of the engine, cooled before it is supplied to the vehicle engine 2 as combustion air.
  • a main branch of the coolant flow of the vehicle engine 2 passes through a coolant radiator 8 with fan 8 a arranged thereon, which assumes the main cooling function for the engine 2 when the engine 2 is warm and the main thermostat 3 is open.
  • a pump unit 10 Downstream of the thermostat 3 and in front of the coolant cooler 8, a pump unit 10 is arranged in the main branch, wherein the coolant flow of the main branch, ie the flow through the coolant cooler 8, drives a drive turbine 10 a of the pump unit 10.
  • the mechanical drive energy of the pump unit 10 thus comes ultimately from the main pump 1, which may be integrated in a generally known construction, in particular in the vehicle engine 2 and z. B. may be driven by a timing belt or accessory drive belt of the engine.
  • a pump side 10 b of the pump unit 10 is arranged in front of the low-temperature cooler 7, so that the coolant by means of the pump unit 10th can be promoted by low-temperature cooler 7 and subsequent heat exchanger 16.
  • the heat exchanger 16 is followed by a throttle valve 11, via which the size of the coolant flow through the heat exchanger 16 is adjustable.
  • the cooling circuit to a branch 12 After the throttle valve 11, the cooling circuit to a branch 12, the first branch 12a on the output side of the coolant radiator 8 and before the main pump 1 opens into the main branch.
  • a check valve 13 is arranged, via which it is ensured that the exit-side coolant of the coolant cooler 8 can not enter the branch 12 a, but is reliably returned to the vehicle engine 2.
  • a second branch 12b of the branch 12 leads to the suction side of the pump 10b of the pump unit 10.
  • a warm-up phase of the internal combustion engine 2 the in Fig. 2 is shown, the thermostat 3 is closed, so that the main pump 1 circulates only the inner cooling circuit of the vehicle engine 2 in a known per se.
  • This branched-off part of the coolant flow conveyed by the main pump 1 enters the low-temperature cooler 7 and subsequently into the heat exchanger 16, wherein the coolant cooled by the low-temperature cooler 7 has considerably lower temperatures than the coolant leaving the engine 2.
  • the warm-up phase of internal combustion engines is typically up to internal circulation temperatures around 85 ° C (start of thermostat opening). It has been found that, at these temperature ranges, cooling by the low-temperature cooler 7 is regularly sufficient to allow indirect charge air cooling or also exhaust gas cooling.
  • the coolant lines shown in dotted lines in the respective operating state (In Fig. 2 : Warm-up phase of the engine) does not flow through.
  • the pump unit 10 In the warm-up phase, in particular the pump unit 10 is not flowed through, so that the entire flowing through the heat exchanger 16demitteistrom is funded by the main pump 1.
  • the operating state after opening of the thermostat 3 with operating warm combustion engine 2 is in Fig. 3 shown.
  • the branch line 6 is no longer flowed through by coolant, since the inner coolant circuit is shut off by the position of the thermostat 3.
  • two separate circuits exist, one of which is an engine coolant circuit with main pump, vehicle engine, thermostat, turbine side 10 a of the pump unit 10 and main cooler 8.
  • the seconddestoffkrels is a low-temperature coolant circuit with low-temperature cooler 7, heat exchanger 16, throttle valve 11 and pump part 10b of the pump unit 10. This separation allows a sufficiently low coolant temperature at the heat exchanger 16 even when the engine is warm.
  • FIG. 4 Another embodiment of the invention is in Fig. 4 shown.
  • the thermostat 3 is arranged on the output side of the coolant cooler 8 and in front of the main pump 1, which is also referred to as "entry control" with respect to the vehicle engine 2.
  • the branch 5 of the branch line 6 takes place in the inner circuit in front of the thermostat 3. Since thus when the engine is warm (see illustration to Fig. 6 ) would always exist a certain pressure drop across the branch line 6, the branch line 6 is designed shut off via a suitable means.
  • this barrier is designed as an acting on branch line 6 and cooling line of the inner circle throttle member 14, wherein the throttle member 14 may cause a complete shut-off of the line 6.
  • the throttle member 14 may also be integrated as a simple serial throttle valve in the branch line 6. This is a possible solution in particular if a sufficient pressure drop for the branch line 6 is available via the flow resistance of the main thermostat 3.
  • the throttle member 14 is formed in a preferred embodiment as a thermomechanical valve. This eliminates costly and trouble-prone control means, as would be required for electromechanical control valves.
  • the thermo-mechanical throttle member 14 is analogous to a map thermostat is formed, for example by combining a thermomechanical component such as a Dehnscherlement with a controllable electrical heating element for influencing the control characteristics of the thermo-mechanical element.
  • the third embodiment according to Fig. 7 it is a modification of the embodiment according to Fig. 4 to Fig. 6 ,
  • the branch 5 the branch line 6 is arranged in this case after a motor outlet-side branch 15 of the inner circle and immediately in front of the drive side 10a of the pump unit 10.
  • the throttle member 14 is serially integrated as an adjustable cross-sectional narrowing throttle valve in the branch line.
  • An embodiment according to Fig. 7 Depending on the given space is particularly simple and can be integrated with only a few changes in a motor vehicle.
  • Fig. 7 it is in an embodiment according to Fig. 7 possible, all of the components marked with A (see dashed enclosure A in Fig. 7 ) as a structural unit. These are the coolant cooler 8, the low-temperature cooler 7, the pump unit 10 and the throttle member 14 and the branch line 6.
  • This integrated structural unit is ideally a cooler module with only two input-side connection lines and two output-side connection lines.
  • Such an integration of the pump 10 and the throttle member 14 can be done for example in a water tank of the coolant radiator or the low-temperature radiator.
  • the water box could form part of the pump housing. It may be the water tank of a multi-circuit cooler, ie a combination of main cooler and low-temperature cooler. This may be either a single-row system, in which the low-temperature cooler 7 is arranged in the same cooler block next to the coolant cooler 8, wherein in particular the pump unit 10 may be integrated in the partition wall area.
  • low-temperature coolers 7 and coolant coolers 8 are formed one behind the other, but as an integrated component with a common, internally divided water box, wherein preferably the pump unit 10 is integrated in the common water box.
  • a fourth embodiment according to Fig. 8 In contrast to the aforementioned embodiments, the pump unit 10 is arranged downstream of the coolant cooler 8.
  • the branch line 6 branches off via its branch 5 on the outlet side of the coolant cooler 8, but even before the pump unit 10.
  • a throttle member 14 In the branch line 6 is a throttle member 14 for shutting off the branch line 6 in normal operation of the cooling system (see Fig. 10 ) arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

Die Erfindung betrifft ein Kühlsystem für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Kühlung einer Komponente eines Kraftfahrzeugs nach dem Oberbegriff des Anspruchs 21.The invention relates to a cooling system for a motor vehicle according to the preamble of claim 1 and to a method for cooling a component of a motor vehicle according to the preamble of claim 21.

DE 103 19 762 A1 beschreibt einen Kühlkreislauf eines Verbrennungsmotors eines Kraftfahrzeugs, wobei ein Teil des Kühlkreislaufs zur Kühlung von Ladeluft des Verbrennungsmotors abgezweigt wird. Der abgezweigte Teil des Kühlkreislaufs wird durch eine kühlmittelstrombetriebene Turbinenpumpe umgewälzt, wobei es in einer Ausführung gemäß Fig. 6 ermöglicht ist, die Turbinenpumpe über ein stellbares Mehrwegventil zu überbrücken. DE 103 19 762 A1 describes a cooling circuit of an internal combustion engine of a motor vehicle, wherein a part of the cooling circuit is branched off for cooling charge air of the internal combustion engine. The branched-off part of the cooling circuit is circulated by a coolant-flow-driven turbine pump, wherein in an embodiment according to FIG Fig. 6 is possible to bridge the turbine pump via an adjustable multi-way valve.

Die US 3134371 offenbart ein Kühlsystem für einen Verbrennungsmotor, in welchem ein Kühler, Ladeluftkühler und ein Ölkühler im Kreislauf des Verbrennungsmotors verschaltet sind.The US 3,134,371 discloses a cooling system for an internal combustion engine in which a radiator, intercooler and an oil cooler in the circuit of the internal combustion engine are connected.

Es ist die Aufgabe der Erfindung, ein Kühlsystem für ein Kraftfahrzeug anzugeben, dass zum einen die Kühlung eines Fahrzeugmotors bereitstellt und zum anderen mit einfachen Mitteln eine Niedertemperaturkühlung eines weiteren Wärmetauschers bereitstellt.It is the object of the invention to provide a cooling system for a motor vehicle that, on the one hand, provides the cooling of a vehicle engine and, on the other hand, provides low-temperature cooling of a further heat exchanger with simple means.

Diese Aufgabe wird für eine eingangs genannte Vorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Durch die Anordnung der Pumpeneinheit in dem Hauptzweig wird eine einfache Bauweise ermöglicht, die insbesondere bei Fahrzeugmotoren mit einem bezüglich Bauraum oder Anschlüssen schwer zugänglichen inneren Kühlmittelkreis realisierbar ist.This object is achieved for an aforementioned device with the characterizing features of claim 1. The arrangement of the pump unit in the main branch a simple construction is possible, which is particularly feasible in vehicle engines with respect to space or connections difficult to access inner coolant circuit.

Vorteilhaft ist zudem eine Zweigleitung vorgesehen, wobei die Zweigleitung von dem Hauptzweig zu dem Niedertemperaturkühler führt. Eine solche Zweigleitung ermöglicht auf einfache Weise, dass der Niedertemperaturkühler in einer bestimmten Betriebsart mit ausschließlich von der Hauptpumpe umgewälztem Kühlmittel beschickt wird. Eine solche Betriebsart ist insbesondere in einer Warmlaufphase des Fahrzeugmotors zweckmäßig, bei der keine Umwälzung des Kühlmittels in dem Hauptzweig erfolgt. In bevorzugter Weiterbildung zweigt dabei die Zweigleitung in Strömungsrichtung nach dem Fahrzeugmotor und vor der Hauptpumpe ab. Hierdurch wird der Strömungswiderstand der Hauptpumpe für den abgezweigten Kühlmittelstrom vermieden, wobei die Abzweigung nach dem Fahrzeugmotor baulich auf einfache Weise und insbesondere in bestehende Systeme integrierbar ist.In addition, a branch line is advantageously provided, wherein the branch line leads from the main branch to the low-temperature cooler. Such a branch line allows in a simple manner that the low-temperature radiator is charged in a certain mode with only circulated by the main pump coolant. Such an operating mode is particularly useful in a warm-up phase of the vehicle engine, in which there is no circulation of the coolant in the main branch. In a preferred embodiment, the branch line branches in the flow direction towards the vehicle engine and before the main pump. As a result, the flow resistance of the main pump is avoided for the branched coolant flow, the branch after the vehicle engine structurally simple manner and in particular in existing systems can be integrated.

Allgemein vorteilhaft umfasst die Pumpeneinheit eine kühlmittelbetriebene Turbine und eine hiervon angetriebene Pumpe, wobei insbesondere Turbine und Pumpe auf einer gemeinsamen Welle angeordnet sind. Eine solche Pumpeneinheit ist zweckmäßig und kostengünstig. Aufgrund der Anordnung auf der gemeinsamen Welle werden Baukosten und Bauteile gespart, wobei insbesondere bei einer optionalen Verbindung der Kühlmittelkreise durch den Kühlmittelkühler und durch den Niedertemperaturkühler keine aufwendigen Dichtungsmaßnahmen zwischen Turbinen- und Pumpenteil der Pumpeneinheit erforderlich sind. Die Pumpeneinheit kann bevorzugt aus Kunststoff ausgebildet sein und allgemein Merkmale gemäß der eingangs genannten Druckschrift DE 103 19 762 A1 aufweisen.Generally advantageously, the pump unit comprises a coolant-driven turbine and a pump driven therefrom, wherein in particular turbine and pump are arranged on a common shaft. Such a pump unit is convenient and inexpensive. Due to the arrangement on the common shaft construction costs and components are saved, in particular with an optional connection of the coolant circuits through the coolant radiator and the low-temperature radiator no costly sealing measures between the turbine and pump part of the pump unit are required. The pump unit may preferably be formed of plastic and generally features according to the cited document DE 103 19 762 A1 exhibit.

In bevorzugter Weiterbildung umfasst der innere Kühlmittelkreis ein Drosselglied, wobei ein Kühlmittelstrom der Zweigleitung über das Drosselglied einstellbar ist. Über das Drosselglied wird auf einfache Weise der Druckabfall über der Zweigleitung und somit der Kühlmittelstrom der Zweigleitung geregelt. Insbesondere in einer Warmlaufphase des Motors, bei der die Zweigleitung durchströmt wird, ist eine Drosselung des Kühlmittelstroms im inneren Kühlkreis des Fahrzeugmotors in weitem Rahmen unschädlich und führt ggf. vorteilhaft zu einer schnelleren Erwärmung des Fahrzeugmotors beim Kaltstart.In a preferred embodiment, the inner coolant circuit comprises a throttle member, wherein a coolant flow of the branch line is adjustable via the throttle member. About the throttle member is controlled in a simple manner, the pressure drop across the branch line and thus the coolant flow of the branch line. In particular, in a warm-up phase of the engine, in which the branch line is flowed through, is a throttling of the coolant flow in the interior Cooling circuit of the vehicle engine harmless in a wide context and possibly leads advantageously to a faster heating of the vehicle engine during cold start.

In vorteilhafter Ausbildung ist das Drosselglied als insbesondere thermomechanisches Drosselventil in dem inneren Kühlmittelkreis angeordnet. Unter einem thermomechanischen Ventil im Sinne der Erfindung ist jedes Bauelement zu verstehen, das eine unmittelbare Umwandlung von Wärme in eine mechanische Kraft aufweist wie etwa Dehnstoffelemente, Bimetall-Elemente und Ähnliches. Unter diesen Begriff sind auch solche Bauteile zu erfassen, bei denen die Regelcharakteristik des thermomechanischen Elements über z. B. zusätzliche elektrische Heizelemente beeinflussbar ist; derartige Bauteile sind in Form von Thermostaten unter dem Begriff "Kennfeld-Thermostate" aus der Praxis bekannt. Zur Ersparnis von Kosten und Bauraum ist es bevorzugt vorgesehen, dass das Drosselglied als bauliche Einheit mit einem Abzweig der Zweigleitung ausgebildet ist.In an advantageous embodiment, the throttle member is arranged as a particular thermo-mechanical throttle valve in the inner coolant circuit. For the purposes of the invention, a thermomechanical valve is to be understood as meaning any component which has an immediate conversion of heat into a mechanical force, such as expansion elements, bimetallic elements and the like. Under this term, such components are to be detected in which the control characteristic of the thermo-mechanical element z. B. additional electrical heating elements can be influenced; Such components are known in practice in the form of thermostats under the term "map thermostats". To save costs and space, it is preferably provided that the throttle member is designed as a structural unit with a branch of the branch line.

Dabei ist in dem Kühlmittelstrom des Wärmetauschers das Drosselventil zur einstellbaren Begrenzung des Stroms durch den Wärmetauscher angeordnet. Hierdurch kann eine unmittelbare Begrenzung der durch den Wärmetauscher fließenden Kühlmittelmenge eingestellt werden, was z. B. dann von Vorteil sein kann, wenn der Wärmetauscher in bestimmten Betriebszuständen eine verringerte Kühlleistung aufweisen soll oder wenn ein erhöhter Kühlmittelstrom durch den Fahrzeugmotor während der Warmlaufphase angefordert wird. In diesem Zusammenhang kann die Regelung des Drosselventils insbesondere von Parametern des durch den Wärmetauscher zu kühlenden Elements oder allgemein von einer Regelelektronik des Fahrzeugs abhängen.In this case, in the coolant flow of the heat exchanger, the throttle valve for adjustable limitation of the current through the heat exchanger is arranged. In this way, an immediate limit of the amount of coolant flowing through the heat exchanger can be set, which z. B. may be advantageous if the heat exchanger in certain operating conditions should have a reduced cooling capacity or when an increased coolant flow is requested by the vehicle engine during the warm-up phase. In this context, the regulation of the throttle valve may depend, in particular, on parameters of the element to be cooled by the heat exchanger or generally on a control electronics of the vehicle.

Allgemein vorteilhaft ist es vorgesehen, dass zumindest bei einer vollständigen Öffnung des Thermostaten der Kühlmittelstrom durch den Fahrzeugmotor und der Kühlmittelstrom durch den Wärmetauscher im wesentlichen getrennt sind. Hierdurch kann auch bei betriebswarmem Fahrzeugmotor eine ausreichende Kühlung des durch den Wärmetauscher fließenden Kühlmittelstroms erzielt werden. Bei betriebswarmen Fahrzeugmotoren hat der Kühlmittelstrom austrittseitig des Motors typisch Temperaturen von bis zu 120 °C, so dass die Durchströmung des Niedertemperaturkühlers mit so heißem Kühlmittel zu keiner ausreichenden Kühlung für die Beschickung des Wärmetauschers mehr führen würde. In dieser Betriebsart wird dann der von dem Motorkühlkreis getrennte Kühlmittelstrom durch Niedertemperaturkühler und Wärmetauscher mittels der Pumpeneinheit umgewälzt, wobei die Antriebsenergie für den Pumpenteil der Pumpeneinheit aus der Strömung des Fahrzeugmotor-Kühlmittels in dem Hauptzweig abgegriffen wird.Generally, it is provided that, at least for a complete opening of the thermostat, the coolant flow through the vehicle engine and the coolant flow through the heat exchanger are substantially separated. As a result, sufficient cooling of the coolant flow flowing through the heat exchanger can be achieved even when the vehicle engine is warm. In warm-running vehicle engines, the coolant flow on the outlet side of the engine typically has temperatures of up to 120 ° C, so that the flow through the low-temperature radiator with such a hot coolant would not lead to sufficient cooling for the feed of the heat exchanger. In this mode of operation, the coolant flow separated from the engine cooling circuit is then circulated through the low temperature cooler and heat exchanger by means of the pump unit, the drive energy for the pump part of the pump unit being taken from the flow of vehicle engine coolant in the main branch.

In weiterhin vorteilhafter Ausführung ist in dem Kühlmittelstrom des Wärmetauschers ein Rückschlagventil angeordnet. Hierdurch kann auch bei Betriebsstörungen und ungünstigen Druckverhältnissen sichergestellt werden, dass das Kühlmittel in dem Zweig des Wärmetauschers nur in definierter Richtung strömen kann, wodurch insbesondere eine Unterversorgung des Fahrzeugmotors mit Kühlmittel ausgeschlossen wird.In a further advantageous embodiment, a check valve is arranged in the coolant flow of the heat exchanger. In this way it can be ensured even in case of malfunction and unfavorable pressure conditions that the coolant in the branch of the heat exchanger can flow only in a defined direction, whereby in particular a shortage of the vehicle engine is excluded with coolant.

Über den Abzweig kann in der ersten Betriebsart, insbesondere im Zuge des Warmlaufens des Fahrzeugmotors, der Kühlmittelkreis durch den Wärmetauscher unmittelbar über die Hauptpumpe betrieben werden (Rückführung über den ersten Zweig) und bei betriebswarmem Motor mittels der Rückführung über den zweiten Zweig über die Pumpeneinheit.In the first operating mode, in particular in the course of warming up of the vehicle engine, the coolant circuit can be operated directly via the main pump through the heat exchanger (return via the first branch) and, when the engine is warm, by means of the return via the second branch via the pump unit.

In vorteilhafter, weil Bauraum sparender und kostengünstiger Ausführung sind der Kühlmittelkühler und der Niedertemperaturkühler als bauliche Einheit ausgebildet. Die Kühler können z. B. im Bereich einer Fahrzeugfront in der baulichen Einheit nebeneinander angeordnet sein. Besonders bevorzugt sind die Kühler hintereinander angeordnet, wobei der Niedertemperaturkühler zweckmäßig bezüglich der Kühlluftströmung vor dem Kühlmittelkühler angeordnet ist. In vorteilhafter Weiterbildung umfasst die bauliche Einheit zusätzlich die Pumpeneinheit, wodurch ebenfalls die Kosten optimiert werden und Bauraum eingespart wird. Zudem ergeben sich weniger potentielle Schwachstellen durch Verbindungen von Schläuchen und Ähnlichem. In diesem Sinne ist ebenfalls bevorzugt eine Zweigleitung zwischen dem Hauptzweig und einem Kühlmittelstrom des Niedertemperaturkühlers in der baulichen Einheit integriert sowie zweckmäßig auch ein Ventilglied zur Einstellung eines Kühlmittelstroms durch den Niedertemperaturkühler. Besonders optimal ist es im Zuge der baulichen Integration der angesprochenen Komponenten, dass letztlich eine Kühlerkomponente mit Zweigleitung, Ventilmittel für die Steuerung des Stroms durch die Zweigleitung und Pumpeneinheit bereitgestellt wird, wobei die bauliche Einheit lediglich jeweils einen Einlass und einen Auslass für den Niedertemperaturkühler und den Kühlmittelkühler aufweist. Eine solche Einheit ist besonders leicht in bestehende Fahrzeugbauräume integrierbar und insbesondere modular gegen bestehende Komponenten wie etwa konventionelle Hauptkühler ersetzbar.In an advantageous, because space-saving and cost-effective design of the coolant radiator and the low-temperature radiator are designed as a structural unit. The cooler can z. B. in the field of a vehicle front in the structural unit next to each other. Particularly preferably, the coolers are arranged one behind the other, wherein the low-temperature cooler is arranged with respect to the cooling air flow in front of the coolant radiator. In an advantageous embodiment, the structural unit additionally comprises the pump unit, whereby the costs are also optimized and space is saved. In addition, there are fewer potential weak points due to connections of hoses and the like. In this sense, a branch line between the main branch and a coolant flow of the low-temperature radiator is likewise preferably integrated in the structural unit and, expediently, also a valve member for setting a coolant flow through the low-temperature radiator. It is particularly optimal in the course of structural integration of the addressed components, that ultimately a cooler component with branch line, valve means for controlling the flow through the branch line and pump unit is provided, wherein the structural unit only one inlet and one outlet for the low-temperature cooler and the Has coolant radiator. Such a unit is particularly easy to integrate into existing vehicle construction spaces and in particular modularly replaced by existing components such as conventional main radiator.

Durch geeignete Anordnung von Zweigleitungen kann es vorteilhaft erreicht werden, dass in der ersten Betriebsart der Kühlmifteistrom des Wärmetauschers zuvor sowohl den Kühlmittelkühler als auch den Niedertemperaturkühler durchläuft. Hierdurch wird in dieser Betriebsart bzw. in der Warmlaufphase des Fahrzeugmotors eine besonders große Kühlleistung bereitgestellt, so dass es insbesondere erreicht wird, dass die in den Wärmetauscher eintretende Temperatur des Kühlmittels trotz des vorherigen Durchlaufens des Fahrzeugmotors eine annähernd oder gleich niedrige Temperatur aufweist wie im Normalbetrieb mit über die Pumpeneinheit getrennten Kreisläufen,By means of a suitable arrangement of branch lines, it can advantageously be achieved that in the first operating mode the cooling medium flow of the heat exchanger previously passes through both the coolant cooler and the low-temperature cooler. In this way, a particularly large cooling capacity is provided in this mode or in the warm-up phase of the vehicle engine, so that it is achieved in particular that the entering into the heat exchanger temperature of the coolant despite the previous passage of the vehicle engine has an approximately or the same low temperature as in normal operation with circuits separated by the pump unit,

In zweckmäßiger Ausführung ist dabei die Pumpeneinheit stromabwärts des Kühlmittelkühlers angeordnet, so dass diese Einheit keinen zu durchströmenden Widerstand in der ersten Betriebsart darstellt, insbesondere wenn der Kühlmittelstrom durch den Wärmetauscher zwischen Kühlmittelkühler und Pumpeneinheit abzweigt.In an expedient embodiment, the pump unit is arranged downstream of the coolant cooler, so that this unit does not constitute a resistance to be flowed through in the first operating mode, in particular when the coolant flow branches off through the heat exchanger between coolant radiator and pump unit.

In einer vorteilhaften Ausführungsform ist der Wärmetauscher ein Ladeluftkühler für den Fahrzeugmotor. Es kann sich dabei um den einzigen oder auch einen zusätzlichen Ladeluftkühler handeln. Alternativ oder ergänzend kann der Wärmetauscher auch ein Abgaskühler, insbesondere für ein Abgasrückführsystem des Fahrzeugmotors sein. Ebenso alternativ oder auch ergänzend kann der Wärmetauscher Wärme aus einer elektrischen Energiequelle an das Kühlmittel abführen, wobei das Fahrzeug insbesondere einen Hybridantrieb mit einem von der Energiequelle versorgten Elektromotor aufweist. Grundsätzlich ist es möglich, dass in dem Niedertemperatur-Kühlkrels mehrere Wärmetauscher mit unterschiedlichen Kühlfunktionen angeordnet sind, wobei die Anordnung seriell und/oder parallel sein kann.In an advantageous embodiment, the heat exchanger is a charge air cooler for the vehicle engine. It may be the only or an additional intercooler. Alternatively or additionally, the heat exchanger may also be an exhaust gas cooler, in particular for an exhaust gas recirculation system of the vehicle engine. Likewise alternatively or additionally, the heat exchanger can dissipate heat from an electrical energy source to the coolant, wherein the vehicle has in particular a hybrid drive with an electric motor supplied by the energy source. In principle, it is possible that in the low-temperature Kühlkrels a plurality of heat exchangers are arranged with different cooling functions, wherein the arrangement can be serial and / or parallel.

Die Aufgabe der Erfindung wird für ein Verfahren nach dem Oberbegriff des Anspruchs 21 durch die kennzeichnenden Merkmale des Anspruchs 21 gelöst. Dadurch, dass die Selektion der Umwälzung des Kühlmittels über einen Thermostaten erfolgt, können Herstellungskosten und Aufwand und Störanfälligkeit des Systems verringert werden. Der Thermostat ist dabei zweckmäßig zugleich der Hauptthermostat des Kühlkreises des Fahrzeugmotors. Das erfindungsgemäße Verfahren wird mit einem Kühlsystem nach einem der Ansprüche 1 bis 20 durchgeführt.The object of the invention is achieved by a method according to the preamble of claim 21 by the characterizing features of claim 21. The fact that the selection of the circulation of the coolant takes place via a thermostat, manufacturing costs and complexity and susceptibility of the system can be reduced. The thermostat is expedient at the same time the main thermostat of the cooling circuit of the vehicle engine. The inventive method is carried out with a cooling system according to one of claims 1 to 20.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den nachfolgend beschriebenen Ausführungsbeispielen sowie aus den abhängigen Ansprüchen.Further advantages and features of the invention will become apparent from the embodiments described below and from the dependent claims.

Nachfolgend werden mehrere bevorzugte Ausführungsbeispiele eines erfindungsgemäßen Kühlsystems beschrieben und anhand der anliegenden Zeichnungen näher erläutert.

Fig. 1
zeigt eine schematische Ansicht einer ersten Ausführungsform eines erfindungsgemäßen Kühlsystems.
Fig. 2
zeigt das Kühlsystem aus Fig. 1 in einer Warmlaufphase des Fahrzeugmotors.
Fig. 3
zeigt das Kühlsystem aus Fig. 1 in einem Betriebszustand mit betriebswarmem Fahrzeugmotor.
Fig. 4
zeigt eine zweite Ausführungsform eines erfindungsgemäßen Kühlsystems.
Fig. 5
zeigt das Kühlsystem aus Fig. 4 in einer Warmlaufphase des Fahrzeugmotors.
Fig. 6
zeigt das Kühlsystem aus Fig. 4 in einem normalen Betriebszustand mit betriebswarmem Fahrzeugmotor.
Fig. 7
zeigt eine dritte Ausführungsform eines erfindungsgemäßen Kühlsystems.
Fig. 8
zeigt eine vierte Ausführungsform eines erfindungsgemäßen Kühlsystems.
Fig. 9
zeigt das Kühlsystem aus Fig. 8 in einer Warmlaufphase des Fahrzeugmotors.
Fig. 10
zeigt das Kühlsystem aus Fig. 8 in einem normalen Betriebszustand bei betriebswarmen Fahrzeugmotor.
Hereinafter, several preferred embodiments of a cooling system according to the invention will be described and explained in more detail with reference to the accompanying drawings.
Fig. 1
shows a schematic view of a first embodiment of a cooling system according to the invention.
Fig. 2
shows the cooling system Fig. 1 in a warm-up phase of the vehicle engine.
Fig. 3
shows the cooling system Fig. 1 in an operating condition with warm engine vehicle engine.
Fig. 4
shows a second embodiment of a cooling system according to the invention.
Fig. 5
shows the cooling system Fig. 4 in a warm-up phase of the vehicle engine.
Fig. 6
shows the cooling system Fig. 4 in a normal operating condition with warm engine vehicle engine.
Fig. 7
shows a third embodiment of a cooling system according to the invention.
Fig. 8
shows a fourth embodiment of a cooling system according to the invention.
Fig. 9
shows the cooling system Fig. 8 in a warm-up phase of the vehicle engine.
Fig. 10
shows the cooling system Fig. 8 in a normal operating condition with warm vehicle engine.

Das Kühlsystem gemäß Fig. 1 umfasst einen inneren Kühlkreislauf mit einer Hauptpumpe 1, einem der Hauptpumpe nachfolgenden Fahrzeugmotor 2, z. B. ein Otto- oder Dieselmotor eines Personenkraftwagens, ein dem Fahrzeugmotor 2 nachgeordnetes Thermostat 3 und ein dem Thermostat 3 nachgeordnetes und der Hauptpumpe 1 im inneren Kreislauf vorgeordnetes Drosselventil 4.The cooling system according to Fig. 1 includes an internal cooling circuit with a main pump 1, a main pump subsequent vehicle engine 2, z. B. a gasoline or diesel engine of a passenger car, a vehicle engine 2 downstream thermostat 3 and a thermostat 3 downstream and the main pump 1 in the inner circuit upstream throttle valve. 4

Zwischen Thermostat 3 und Drosselventil 4 ist ein Abzweig 5 einer Zweigleitung 6 vorgesehen, die eingangsseitig eines Niedertemperaturkühlers 7 in einen Niedertemperatur-Kühlkreislauf mündet, der den Niedertemperaturkühler 7 und diesem nachfolgend einen Wärmetauscher 16 umfasst. Über den Wärmetauscher 16 wird vorliegend Ladeluft eines Verdichters 9, z. B. eines Abgasturboladers des Verbrennungsmotors, gekühlt, bevor diese dem Fahrzeugmotor 2 als Verbrennungsluft zugeführt wird.Between thermostat 3 and throttle valve 4, a branch 5 a branch line 6 is provided, which opens on the input side of a low-temperature cooler 7 in a low-temperature cooling circuit, which includes the low-temperature cooler 7 and this below a heat exchanger 16. About the heat exchanger 16 is present charge air of a compressor 9, z. B. an exhaust gas turbocharger of the engine, cooled before it is supplied to the vehicle engine 2 as combustion air.

Von dem Thermostat 3 führt ein Hauptzweig des Kühlmittelstroms des Fahrzeugmotors 2 durch einen Kühlmittelkühler 8 mit daran angeordnetem Lüfter 8a, der bei betriebswarmem Motor 2 und entsprechend geöffnetem Hauptthermostat 3 die Hauptkühlfunktion für den Motor 2 übernimmt. Stromabwärts des Thermostats 3 und vor dem Kühlmittelkühler 8 ist eine Pumpeneinheit 10 in dem Hauptzweig angeordnet, wobei der Kühlmittelstrom des Hauptzweigs, also der Strom durch den Kühlmittelkühler 8, eine Antriebsturbine 10a der Pumpeneinheit 10 antreibt. Die mechanische Antriebsenergie der Pumpeneinheit 10 stammt somit letztlich von der Hauptpumpe 1, die in allgemein bekannter Bauweise insbesondere in dem Fahrzeugmotor 2 integriert sein kann und z. B. von einem Steuerriemen oder Nebenaggregate-Antriebsriemen des Motors angetrieben sein kann.From the thermostat 3, a main branch of the coolant flow of the vehicle engine 2 passes through a coolant radiator 8 with fan 8 a arranged thereon, which assumes the main cooling function for the engine 2 when the engine 2 is warm and the main thermostat 3 is open. Downstream of the thermostat 3 and in front of the coolant cooler 8, a pump unit 10 is arranged in the main branch, wherein the coolant flow of the main branch, ie the flow through the coolant cooler 8, drives a drive turbine 10 a of the pump unit 10. The mechanical drive energy of the pump unit 10 thus comes ultimately from the main pump 1, which may be integrated in a generally known construction, in particular in the vehicle engine 2 and z. B. may be driven by a timing belt or accessory drive belt of the engine.

Eine Pumpenseite 10b der Pumpeneinheit 10 ist vor dem Niedertemperaturkühler 7 angeordnet, so dass das Kühlmittel mittels der Pumpeneinheit 10 durch Niedertemperaturkühler 7 und nachfolgenden Wärmetauscher 16 gefördert werden kann.A pump side 10 b of the pump unit 10 is arranged in front of the low-temperature cooler 7, so that the coolant by means of the pump unit 10th can be promoted by low-temperature cooler 7 and subsequent heat exchanger 16.

Dem Wärmetauscher 16 ist ein Drosselventil 11 nachgeordnet, über das die Größe des Kühlmittelstroms durch den Wärmetauscher 16 einstellbar ist.The heat exchanger 16 is followed by a throttle valve 11, via which the size of the coolant flow through the heat exchanger 16 is adjustable.

Nach dem Drosselventil 11 weist der Kühlkreislauf einen Abzweig 12 auf, dessen erster Teilzweig 12a ausgangsseitig des Kühlmittelkühlers 8 und vor der Hauptpumpe 1 in den Hauptzweig mündet. In dem Zweig 12a ist ein Rückschlagventil 13 angeordnet, über das sichergestellt ist, dass austrittsseitiges Kühlmittel des Kühlmittelkühlers 8 nicht in den Zweig 12a eintreten kann, sondern zuverlässig in den Fahrzeugmotor 2 rückgeführt wird.After the throttle valve 11, the cooling circuit to a branch 12, the first branch 12a on the output side of the coolant radiator 8 and before the main pump 1 opens into the main branch. In the branch 12 a, a check valve 13 is arranged, via which it is ensured that the exit-side coolant of the coolant cooler 8 can not enter the branch 12 a, but is reliably returned to the vehicle engine 2.

Ein zweiter Zweig 12b des Abzweigs 12 führt ansaugseitig zu der Pumpe 10b der Pumpeneinheit 10 zurück.A second branch 12b of the branch 12 leads to the suction side of the pump 10b of the pump unit 10.

Die Erfindung funktioniert nun wie folgt:The invention now works as follows:

In einer Warmlaufphase des Verbrennungsmotors 2, die in Fig. 2 dargestellt ist, ist der Thermostat 3 geschlossen, so dass die Hauptpumpe 1 lediglich den inneren Kühlkreislauf des Fahrzeugmotors 2 auf an sich bekannte Weise umwälzt. Allerdings erfolgt nach dem Hauptthermostat 3 oder auch baulich integriert mit dem Hauptthermostat 3 ein Abzweig 5 in eine Zweigleitung 6, der in seinem Anteil über das dem Abzweig 5 nachfolgende Drosselventil 4 einstellbar ist. Dieser abgezweigte Teil des von der Hauptpumpe 1 geförderten Kühlmittelstroms tritt in den Niedertemperaturkühler 7 und nachfolgend in den Wärmetauscher 16 ein, wobei das durch den Niedertemperaturkühler 7 gekühlte Kühlmittel erheblich geringere Temperaturen aufweist als das aus dem Motor 2 austretende Kühlmittel. Die Warmlaufphase von Verbrennungsmotoren erfolgt typisch bis zu inneren Kreislauftemperaturen von rund 85 °C (Beginn der Thermostatöffnung). Es hat sich gezeigt, dass bei diesen Temperaturbereichen eine Kühlung durch den Niedertemperaturkühler 7 regelmäßig ausreichend ist, um eine indirekte Ladeluftkühlung oder auch eine Abgaskühlung zu ermöglichen.In a warm-up phase of the internal combustion engine 2, the in Fig. 2 is shown, the thermostat 3 is closed, so that the main pump 1 circulates only the inner cooling circuit of the vehicle engine 2 in a known per se. However, after the main thermostat 3 or structurally integrated with the main thermostat 3 a branch 5 in a branch line 6, which is adjustable in its share via the branch 5 subsequent throttle valve 4. This branched-off part of the coolant flow conveyed by the main pump 1 enters the low-temperature cooler 7 and subsequently into the heat exchanger 16, wherein the coolant cooled by the low-temperature cooler 7 has considerably lower temperatures than the coolant leaving the engine 2. The warm-up phase of internal combustion engines is typically up to internal circulation temperatures around 85 ° C (start of thermostat opening). It has been found that, at these temperature ranges, cooling by the low-temperature cooler 7 is regularly sufficient to allow indirect charge air cooling or also exhaust gas cooling.

Die in den Figuren punktiert dargestellten Kühlmittelleitungen werden in dem jeweils gezeigten Betriebszustand (In Fig. 2: Warmlaufphase des Motors) nicht durchströmt. In der Warmlaufphase wird insbesondere die Pumpeneinheit 10 nicht durchströmt, so dass der gesamte durch den Wärmetauscher 16 fließende Kühlmitteistrom durch die Hauptpumpe 1 gefördert wird.The coolant lines shown in dotted lines in the respective operating state (In Fig. 2 : Warm-up phase of the engine) does not flow through. In the warm-up phase, in particular the pump unit 10 is not flowed through, so that the entire flowing through the heat exchanger 16 Kühlmitteistrom is funded by the main pump 1.

Der Betriebszustand nach Öffnen des Thermostats 3 bei betriebswarmem Verbrennungsmotor 2 ist in Fig. 3 dargestellt. Hierbei wird die Zweigleitung 6 nicht mehr von Kühlmittel durchströmt, da der innere Kühlmittelkreis durch die Stellung des Thermostats 3 abgesperrt ist. Entsprechend liegt keine Verbindung mehr zwischen dem Kühlmittelkreis des Fahrzeugmotors 2 und dem Kühlmittelkreis des Wärmetauschers 16 mit Niedertemperaturkühler 7 vor. Vielmehr existieren in diesem Zustand zwei getrennte Kreise, wobei der eine ein Motor-Kühlmittelkreis mit Hauptpumpe, Fahrzeugmotor, Thermostat, Turbinenseite 10a der Pumpeneinheit 10 und Hauptkühler 8 ist. Der zweite Kühlmittelkrels ist ein Niedertemperatur-Kühlmittelkreis mit Niedertemperaturkühler 7, Wärmetauscher 16, Drosselventil 11 und Pumpenteil 10b der Pumpeneinheit 10. Durch diese Trennung ist auch bei betriebswarmem Motor eine ausreichend niedrige Kühlmitteltemperatur am Wärmetauscher 16 ermöglicht.The operating state after opening of the thermostat 3 with operating warm combustion engine 2 is in Fig. 3 shown. In this case, the branch line 6 is no longer flowed through by coolant, since the inner coolant circuit is shut off by the position of the thermostat 3. Accordingly, there is no longer any connection between the coolant circuit of the vehicle engine 2 and the coolant circuit of the heat exchanger 16 with low-temperature cooler 7. Rather, in this state, two separate circuits exist, one of which is an engine coolant circuit with main pump, vehicle engine, thermostat, turbine side 10 a of the pump unit 10 and main cooler 8. The second Kühlmittelkrels is a low-temperature coolant circuit with low-temperature cooler 7, heat exchanger 16, throttle valve 11 and pump part 10b of the pump unit 10. This separation allows a sufficiently low coolant temperature at the heat exchanger 16 even when the engine is warm.

Eine andere Ausführungsform der Erfindung ist in Fig. 4 dargestellt. Hinsichtlich der Konzeption des Motorkühlkreislaufs ergibt sich hier der Unterschied zum ersten Ausführungsbeispiel, dass das Thermostat 3 ausgangsseitig des Kühlmittelkühlers 8 und vor der Hauptpumpe 1 angeordnet ist, was auch als "Eintrittsregelung" bezüglich des Fahrzeugmotors 2 bezeichnet wird. Der Abzweig 5 der Zweigleitung 6 erfolgt im inneren Kreislauf vor dem Thermostat 3. Da somit bei betriebswarmem Motor (siehe Darstellung nach Fig. 6) immer ein gewisser Druckabfall über der Zweigleitung 6 existieren würde, ist die Zweigleitung 6 über ein geeignetes Mittel absperrbar ausgestaltet. Vorliegend ist diese Absperrung als ein auf Zweigleitung 6 und Kühlleitung des inneren Kreises wirkendes Drosselglied 14 ausgebildet, wobei das Drosselglied 14 auch eine vollständige Absperrung der Leitung 6 bewirken kann. Je nach Strömungswiderstand des Hauptthermostaten 3 kann es sein, dass der Druckabfall über der Zweigleitung 6 in der Warmlaufphase (siehe Fig. 5) nicht ausreichend groß ist, so dass das Drosselglied 14 eine Drosselung des inneren Kreises zur Erhöhung des Druckabfalls über der Zweigleitung 6 bewirken kann. Anstelle dieser doppelten Funktion einer wahlweisen Absperrung der Zweigleitung 6 in normalem Betriebszustand (siehe Fig. 6) und einer Drosselung der Leitung des inneren Kreises bei geöffneter Zweigleitung (siehe Fig. 5) kann das Drosselglied 14 auch als einfaches serielles Drosselventil in die Zweigleitung 6 integriert sein. Dies ist insbesondere dann eine mögliche Lösung, wenn über den Strömungswiderstand des Hauptthermostats 3 ein ausreichender Druckabfall für die Zweigleitung 6 zur Verfügung steht.Another embodiment of the invention is in Fig. 4 shown. With regard to the conception of the engine cooling circuit, the difference with the first exemplary embodiment results here that the thermostat 3 is arranged on the output side of the coolant cooler 8 and in front of the main pump 1, which is also referred to as "entry control" with respect to the vehicle engine 2. The branch 5 of the branch line 6 takes place in the inner circuit in front of the thermostat 3. Since thus when the engine is warm (see illustration to Fig. 6 ) would always exist a certain pressure drop across the branch line 6, the branch line 6 is designed shut off via a suitable means. In the present case, this barrier is designed as an acting on branch line 6 and cooling line of the inner circle throttle member 14, wherein the throttle member 14 may cause a complete shut-off of the line 6. Depending on the flow resistance of the main thermostat 3, it may be that the pressure drop across the branch line 6 in the warm-up phase (see Fig. 5 ) is not sufficiently large, so that the throttle member 14 can cause throttling of the inner circle to increase the pressure drop across the branch line 6. Instead of this dual function of selectively shutting off the branch line 6 in normal operating condition (see Fig. 6 ) and a throttling of the line of the inner circle with open branch line (see Fig. 5 ), the throttle member 14 may also be integrated as a simple serial throttle valve in the branch line 6. This is a possible solution in particular if a sufficient pressure drop for the branch line 6 is available via the flow resistance of the main thermostat 3.

Das Drosselglied 14 ist in bevorzugter Ausführung als thermomechanisches Ventil ausgebildet. Hierdurch entfallen kostenintensive und störanfällige Steuerungsmittel, wie es etwa bei elektromechanischen Stellventilen erforderlich wäre. Bevorzugt ist das thermomechanische Drosselglied 14 analog zu einem Kennfeld-Thermostaten ausgebildet ist, zum Beispiel durch Kombination eines thermomechanischen Bauteil wie etwa ein Dehnstoffelement mit einem ansteuerbaren elektrischen Heizelement zur Beeinflussung der Regelcharakteristik des thermomechanischen Elements.The throttle member 14 is formed in a preferred embodiment as a thermomechanical valve. This eliminates costly and trouble-prone control means, as would be required for electromechanical control valves. Preferably, the thermo-mechanical throttle member 14 is analogous to a map thermostat is formed, for example by combining a thermomechanical component such as a Dehnstoffelement with a controllable electrical heating element for influencing the control characteristics of the thermo-mechanical element.

Bei dem dritten Ausführungsbeispiel gemäß Fig. 7 handelt es sich um eine Abwandlung des Ausführungsbeispiels nach Fig. 4 bis Fig. 6. Der Abzweig 5 der Zweigleitung 6 ist in diesem Fall nach einem motoraustrittsseitigem Abzweig 15 des inneren Kreises und unmittelbar vor der Antriebsseite 10a der Pumpeneinheit 10 angeordnet. Das Drosselglied 14 ist als einstellbares, querschnittsverengendes Drosselventil seriell in die Zweigleitung integriert. Eine Ausführung gemäß Fig. 7 ist je nach gegebenem Bauraum besonders einfach und unter nur wenigen Änderungen in ein Kraftfahrzeug integrierbar.In the third embodiment according to Fig. 7 it is a modification of the embodiment according to Fig. 4 to Fig. 6 , The branch 5 the branch line 6 is arranged in this case after a motor outlet-side branch 15 of the inner circle and immediately in front of the drive side 10a of the pump unit 10. The throttle member 14 is serially integrated as an adjustable cross-sectional narrowing throttle valve in the branch line. An embodiment according to Fig. 7 Depending on the given space is particularly simple and can be integrated with only a few changes in a motor vehicle.

Insbesondere ist es bei einer Ausführung gemäß Fig. 7 möglich, sämtliche der mit A gekennzeichneten Komponenten (siehe gestrichelte Einfassung A in Fig. 7) als bauliche Einheit zu integrieren. Dies sind der Kühlmittelkühler 8, der Niedertemperaturkühler 7, die Pumpeneinheit 10 und das Drosselglied 14 sowie die Zweigleitung 6. Diese so integrierte bauliche Einheit ist im Idealfall ein Kühlermodul mit lediglich zwei eingangsseitigen Anschlussleitungen und zwei ausgangsseitigen Anschlussleitungen.In particular, it is in an embodiment according to Fig. 7 possible, all of the components marked with A (see dashed enclosure A in Fig. 7 ) as a structural unit. These are the coolant cooler 8, the low-temperature cooler 7, the pump unit 10 and the throttle member 14 and the branch line 6. This integrated structural unit is ideally a cooler module with only two input-side connection lines and two output-side connection lines.

Eine solche Integration der Pumpe 10 und des Drosselglieds 14 kann beispielsweise in einem Wasserkasten des Kühlmittelkühlers oder des Niedertemperaturkühlers erfolgen. Der Wasserkasten könnte dabei einen Teil des Pumpengehäuses bilden. Es kann sich um den Wasserkasten eines Mehrkreiskühlers handeln, also eines Verbundes von Hauptkühler und Niedertemperaturkühler. Hierbei kann es sich entweder um ein einreihiges System handeln, bei dem der Niedertemperaturkühler 7 im gleichen Kühlerblock neben dem Kühlmittelkühler 8 angeordnet ist, wobei insbesondere die Pumpeneinheit 10 im Trennwandbereich integriert sein kann. Besonders bevorzugt kann es sich aber auch um ein zweireihiges System handeln, bei dem Niedertemperaturkühler 7 und Kühlmittelkühler 8 hintereinander, aber als integrierte Komponente mit gemeinsamem, intern geteiltem Wasserkasten ausgebildet sind, wobei bevorzugt die Pumpeneinheit 10 in dem gemeinsamen Wasserkasten integriert ist.Such an integration of the pump 10 and the throttle member 14 can be done for example in a water tank of the coolant radiator or the low-temperature radiator. The water box could form part of the pump housing. It may be the water tank of a multi-circuit cooler, ie a combination of main cooler and low-temperature cooler. This may be either a single-row system, in which the low-temperature cooler 7 is arranged in the same cooler block next to the coolant cooler 8, wherein in particular the pump unit 10 may be integrated in the partition wall area. However, it can also be a double-row system, in which low-temperature coolers 7 and coolant coolers 8 are formed one behind the other, but as an integrated component with a common, internally divided water box, wherein preferably the pump unit 10 is integrated in the common water box.

Bei einer vierten Ausführungsform gemäß Fig. 8 ist im Unterschied zu den zuvor genannten Ausführungsformen die Pumpeneinheit 10 nach dem Kühlmittelkühler 8 angeordnet. Die Zweigleitung 6 zweigt über ihren Abzweig 5 austrittsseitig des Kühlmittelkühlers 8, aber noch vor der Pumpeneinheit 10 ab. In der Zweigleitung 6 ist ein Drosselglied 14 zur Absperrung der Zweigleitung 6 im Normalbetrieb des Kühlsystems (siehe Fig. 10) angeordnet.In a fourth embodiment according to Fig. 8 In contrast to the aforementioned embodiments, the pump unit 10 is arranged downstream of the coolant cooler 8. The branch line 6 branches off via its branch 5 on the outlet side of the coolant cooler 8, but even before the pump unit 10. In the branch line 6 is a throttle member 14 for shutting off the branch line 6 in normal operation of the cooling system (see Fig. 10 ) arranged.

Bei dem Kühlsystem gemäß Fig. 8 besteht der Vorteil, dass in der Warmlaufphase des Motors (siehe Fig. 9) das abgezweigte und den Wärmetauscher 16 durchfließende Kühlmittel erst durch den Kühlmittelkühler 8 und nachfolgend durch den Niedertemperaturkühler 7 strömt. Dies hat günstig zur Folge, dass im Fall der Warmlaufphase, bei der Wärmeenergie des Fahrzeugmotors 2 in das später den Wärmetauscher 16 durchströmende Kühlmittel eingetragen wird, eine besonders große Kühlkapazität durch Kombination der beiden Kühler 7, 8 bereitgestellt wird.In the cooling system according to Fig. 8 there is the advantage that in the warm-up phase of the engine (see Fig. 9 ) the branched and the heat exchanger 16 flowing through the coolant flows through the coolant cooler 8 and subsequently through the low-temperature cooler 7. This has the favorable consequence that in the case of the warm-up phase, is entered in the heat energy of the vehicle engine 2 in the later the heat exchanger 16 by flowing coolant, a particularly large cooling capacity by combining the two coolers 7, 8 is provided.

Analog zu der baulichen Integration A im dritten Ausführungsbeispiel liegen die Bauteile gemäß der Kennzeichnung B (siehe Fig. 8) im vierten Ausführungsbeispiel baulich integriert vor, nämlich Kühlmittelkühler 8, Niedertemperaturkühler 7, Zweigleitung 6, Drosselglied 14 und Pumpeneinheit 10.Analogous to the structural integration A in the third embodiment, the components according to the label B (see Fig. 8 ) in the fourth embodiment structurally integrated before, namely coolant radiator 8, low-temperature cooler 7, branch line 6, throttle member 14 and pump unit 10th

Claims (21)

  1. A cooling system for a motor vehicle comprising a vehicle engine, a main pump (1) for circulating a coolant of a vehicle engine (2) at least in one internal coolant circuit,
    a thermostat (3) for the temperature-dependent conveyance of the coolant through a main branch, wherein a coolant radiator (8) is disposed in the main branch, a pump unit (10) that is drivable by the flowing coolant, a low-temperature radiator (7) through which the coolant can flow, and a heat exchanger (16) disposed downstream of the low-temperature radiator (7), wherein the coolant flow of the heat exchanger (16), at least in a first operating mode, is connected to the coolant flow of the vehicle engine (2), wherein the pump unit (10) is disposed in the main branch,
    characterized in that, in the direction of flow, a throttle salve (11) is disposed downstream of the heat exchanger (16) and a branching (12) is disposed downstream of the throttle value (11), wherein a first branch (12a) of the branching is designed as a return line to a coolant circuit of the vehicle engine (2), and wherein a second branch (12b) is designed as a return line to a pump (10b) of the pump unit (10), which is disposed downstream of which the low-temperature radiator (7).
  2. The cooling system according to claim 1, characterized in that a branch line (6) is provided, wherein the branch line (6) leads from the main branch to the low-temperature radiator (7).
  3. The cooling system according to claim 2, characterized in that, in the direction of flow, the branch line (6) branches off downstream of the vehicle engine (2) and upstream of the main pump (1).
  4. The cooling system according to one of the preceding claims, characterized in that the pump unit (10) comprises a coolant-operated turbine (10a) and a pump (10b) driven whereby, wherein the turbine (10a) and the pump (10b), in particular, are disposed on a common shaft.
  5. The cooling system according to one of the claims 2 to 4, characterized in that the internal coolant circuit comprises a throttle element (4, 14), wherein a coolant flow of the branch line (6) can be adjusted by way of the throttle element (4, 14).
  6. The cooling system according to claim 5, characterized in that the throttle element (4, 14), as a thermomechanical throttle element in particular, is disposed in the internal coolant circuit.
  7. The cooling system according to one of the claims 5 or 6, characterized in that the throttle element (14) is designed as a structural unit with one branching (5) of the branch line (6).
  8. The cooling system according to one of the preceding claims, characterized in that the throttle element (11) for adjustable limiting the coolant flow through the heat exchanger (16) is disposed in the coolant flow of the heat exchanger (16).
  9. The cooling system according to one of the preceding claims, characterized in that, at least when the thermostat (3) is fully open, the coolant flow through the vehicle engine (2) and the coolant flow through the heat exchanger (16) are substantially separated.
  10. The cooling system according to one of the preceding claims, characterized in that, at least in an open position of the thermostat, the coolant flow through the heat exchanger (16) is circulated at least partially by way of the pump unit (10).
  11. The cooling system according to one of the preceding claims, characterized in that a non-return value (13) is disposed in the coolant circuit of the heat exchanger (16).
  12. The cooling system according to one of the preceding claims, characterized in that the coolant radiator (8) and the low-temperature radiator (7) are in the form of a structural unit.
  13. The cooling system according to claim 12, characterized in that the structural unit also comprises the pump unit (10).
  14. The cooling system according to claim 12 or 13, characterized in that the structural unit comprises a branch line (6) between the main branch and a coolant flow of the low-temperature radiator (7).
  15. The cooling system according to one of the claim 12 to 14, characterized in that the structural unit comprises a valve element (14) for adjusting a coolant flow through the low-temperature radiator (7).
  16. The cooling system according two one of the preceding claims, characterized in that, in the first operating mode, the coolant flow of the heat exchanger (16) first passes through the coolant radiator (8) and the low-temperature radiator (7).
  17. The cooling system according la to claim 16, characterized in that the pump unit (10) is disposed downstream of the coolant radiator (8).
  18. The cooling system according to one of the preceding claims, characterized in that the heat exchanger (16) is a charge air cooler for the vehicle engine.
  19. The cooling system according to one of the preceding claims, characterized in that the heat exchanger is an exhaust-gas cooler, more particularly for an exhaust-gas recirculation system of the vehicle engine.
  20. The cooling system according to one of the claims 1 to 17, characterized in that the heat exchanger transfers heat from an electrical energy source to the coolant, wherein, more particularly, the vehicle comprises a hybrid derive halving an electric motor that is supplied by the energy source.
  21. A method for cooling charge air or exhaust gas of a motor vehicle, comprising the steps:
    a. circulate a coolant of a vehicle engine (2) using a main pump (1),
    b. circulate at least a portion of the coolant through a low-temperature radiator (7) and a heat exchanger (16) using a pump unit (10), wherein a pump (10b) of the pump unit (10) is driven a coolant-operated turbine (10a) that is driven by the coolant flow that is circulated by the main pump (1), and
    c. depending on an operating state, circulate at least a portion of the coolant through the low-temperature radiator (7) and the heat exchanger (16) using the main pump (1),
    characterized in that
    a selection of the circulation of the coolant according two step b. or step c. takes place by way of a thermostat (3),
    wherein the method is carried out using a device according to one of the claims 1 to 20.
EP20070022194 2006-11-15 2007-11-15 Cooling system for a motor vehicle Expired - Fee Related EP1923549B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610054223 DE102006054223A1 (en) 2006-11-15 2006-11-15 Cooling system for a motor vehicle

Publications (3)

Publication Number Publication Date
EP1923549A2 EP1923549A2 (en) 2008-05-21
EP1923549A3 EP1923549A3 (en) 2009-12-09
EP1923549B1 true EP1923549B1 (en) 2012-11-14

Family

ID=39186176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070022194 Expired - Fee Related EP1923549B1 (en) 2006-11-15 2007-11-15 Cooling system for a motor vehicle

Country Status (2)

Country Link
EP (1) EP1923549B1 (en)
DE (1) DE102006054223A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044672A1 (en) * 2008-08-28 2010-03-04 Behr Gmbh & Co. Kg Gas cooler for an internal combustion engine
DE102011085961A1 (en) 2011-11-08 2013-05-08 Behr Gmbh & Co. Kg Cooling circuit
SE536283C2 (en) * 2011-12-23 2013-07-30 Scania Cv Ab Arrangement and method for cooling coolant in a cooling system of a vehicle
DE102012001675A1 (en) 2012-01-28 2013-08-01 Daimler Ag Circuit arrangement for cooling combustion air of internal combustion engine of motor car, has charge-air heat exchangers that are thermally coupled with high-temperature circuit and low-temperature circuit respectively
DE102013021090B4 (en) * 2013-12-18 2021-02-04 Deutz Aktiengesellschaft Cooling water control
DE102015015488B4 (en) * 2015-11-30 2020-12-24 Audi Ag Circuit arrangement for cooling combustion air of an internal combustion engine of a vehicle
SE541556C2 (en) 2016-01-15 2019-10-29 Scania Cv Ab A cooling system for a combustion engine and a WHR system
GB2570656B (en) * 2018-01-31 2022-02-16 Safran Electrical & Power Coolant system
CN113199936B (en) * 2021-06-18 2023-03-17 一汽解放汽车有限公司 Pipeline distribution design method for vehicle cooling system and vehicle cooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134371A (en) * 1962-10-29 1964-05-26 Cooper Bessemer Corp Cooling system for internal combustion engines
FR1597204A (en) * 1968-12-27 1970-06-22
DE19637817A1 (en) * 1996-09-17 1998-03-19 Laengerer & Reich Gmbh & Co Device and method for cooling and preheating
DE19834135A1 (en) * 1998-07-29 2000-02-03 Daimler Chrysler Ag Charger turbine drive in an internal combustion motor also drives the coolant pump for a simplified coolant drive system at a lower cost
DE10317003A1 (en) * 2003-04-11 2004-12-09 Behr Gmbh & Co. Kg Circuit arrangement for cooling charge air and method for operating such a circuit arrangement
DE10319762A1 (en) * 2003-04-30 2004-12-02 Behr Gmbh & Co. Kg Charge air cooling circuit and method of operating such a circuit
DE10332949A1 (en) * 2003-07-19 2005-02-10 Daimlerchrysler Ag Device for cooling and preheating

Also Published As

Publication number Publication date
EP1923549A3 (en) 2009-12-09
EP1923549A2 (en) 2008-05-21
DE102006054223A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
EP1923549B1 (en) Cooling system for a motor vehicle
DE102010025733B4 (en) Heat exchange systems for motor vehicles
EP3198124B1 (en) Internal combustion engine
EP0499071B1 (en) Cooling system for an intenal combustion engine of a motor vehicle
EP1948917B1 (en) Circulation system, mixing element
DE102005048286B4 (en) Method for operating a cooling system for an internal combustion engine
EP2072296B1 (en) Device for cooling a heat source of a motor vehicle
EP3097284B1 (en) Heat management system for an internal combustion engine
EP1714014B1 (en) Circuit arrangement for the cooling of charge air and method for operation of such a circuit arrangement
EP1623101B1 (en) Circuit for cooling charge air, and method for operating such a circuit
DE112011105052T5 (en) Engine cooling system
DE102014215074A1 (en) Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle
WO2014177513A1 (en) Cooling circuit
DE102019215797B4 (en) Control valve for controlling a coolant circuit for an intercooler
EP3530899A1 (en) Cooling system and combustion engine
EP3097285B1 (en) Method and device for ventilating a heat management system of an internal combustion engine
DE112018004425T5 (en) Active heating system and heating process
DE10155337B4 (en) Cooling circuit
WO2009012897A1 (en) Apparatus for cooling recirculated exhaust gas of an internal combustion engine
DE102018002584A1 (en) Internal combustion engine for a motor vehicle, comprising a coolant circuit and an associated valve device
DE102007022859B4 (en) Arrangement of heating heat exchangers connected in series in a motor vehicle
EP2360041B1 (en) Circuit assembly
EP3412883B1 (en) Combustion engine and motor vehicle
DE102016008834A1 (en) Motor vehicle cooling and method for cooling an exhaust gas turbocharger when the motor vehicle is at a standstill
DE102010053056A1 (en) Heating device for heating e.g. engine oil of transmission containing combustion engine of motor vehicle, has actuating element designed as fan, where operation of element is controlled based on state variable detected by sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20100609

17Q First examination report despatched

Effective date: 20100712

AKX Designation fees paid

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007010852

Country of ref document: DE

Effective date: 20130103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121227

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007010852

Country of ref document: DE

Effective date: 20130815

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007010852

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202