FR3050233B1 - COOLING SYSTEM OF A THERMAL ENGINE - Google Patents

COOLING SYSTEM OF A THERMAL ENGINE Download PDF

Info

Publication number
FR3050233B1
FR3050233B1 FR1653441A FR1653441A FR3050233B1 FR 3050233 B1 FR3050233 B1 FR 3050233B1 FR 1653441 A FR1653441 A FR 1653441A FR 1653441 A FR1653441 A FR 1653441A FR 3050233 B1 FR3050233 B1 FR 3050233B1
Authority
FR
France
Prior art keywords
circuit
fluid
engine
circuits
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
FR1653441A
Other languages
French (fr)
Other versions
FR3050233A1 (en
Inventor
Stephane Ruby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR1653441A priority Critical patent/FR3050233B1/en
Priority to EP17167131.6A priority patent/EP3236041B1/en
Publication of FR3050233A1 publication Critical patent/FR3050233A1/en
Application granted granted Critical
Publication of FR3050233B1 publication Critical patent/FR3050233B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Abstract

L'invention concerne un système de refroidissement (2) notamment du type à double refroidissement, d'un moteur (1) thermique d'un véhicule automobile comprenant des premier et deuxième circuits (7a, 7b) de fluide caloporteur agencés respectivement dans un carter de cylindres (6) et un carter de culasse (5) dudit moteur (1), le premier circuit (7a) étant pourvu de premier et deuxième éléments de régulation (15a, 15b) du débit de fluide agencés respectivement au niveau d'une entrée (10a) et d'une sortie (10b) dudit premier circuit (7a).The invention relates to a cooling system (2) in particular of the double-cooling type, of a motor (1) of a motor vehicle comprising first and second heat transfer fluid circuits (7a, 7b) respectively arranged in a housing of cylinders (6) and a cylinder head housing (5) of said engine (1), the first circuit (7a) being provided with first and second fluid flow control elements (15a, 15b) respectively arranged at a input (10a) and an output (10b) of said first circuit (7a).

Description

SYSTEME DE REFROIDISSEMENT D’UN MOTEUR THERMIQUECOOLING SYSTEM OF A THERMAL ENGINE

La présente invention concerne un système de refroidissement d’un moteur thermique ainsi qu’un procédé de fonctionnement d’un tel système. L’invention concerne également un moteur thermique comprenant un tel système de refroidissement ainsi qu’un véhicule notamment un véhicule automobile comportant un tel moteur.The present invention relates to a cooling system of a heat engine and a method of operating such a system. The invention also relates to a heat engine comprising such a cooling system and a vehicle including a motor vehicle comprising such a motor.

Dans l’état de la technique, un moteur thermique comporte habituellement un carter de cylindres fermé par un carter de culasse. Pour le bon fonctionnement du moteur, ces carters doivent être refroidis. Pour ce faire, le moteur est muni d'un système de refroidissement dans lequel un fluide caloporteur est mis en circulation au moyen d'une pompe d’alimentation et qui, à son tour, est refroidi en traversant un radiateur.In the state of the art, a heat engine usually comprises a cylinder block closed by a cylinder head cover. For proper operation of the engine, these housings must be cooled. To do this, the engine is provided with a cooling system in which a coolant is circulated by means of a feed pump and which, in turn, is cooled through a radiator.

Pour autant, la température de fonctionnement d'un moteur est normalement bien supérieure à la température extérieure, en particulier par temps froid. Tout démarrage de ce dernier s'accompagne donc d'une phase de préchauffage pendant laquelle les performances ne sont pas optimales, en particulier pendant laquelle les émissions de polluants de monoxyde de carbone et hydrocarbures imbrûlés sont en quantité beaucoup plus importante qu'en régime nominal.However, the operating temperature of an engine is normally much higher than the outside temperature, especially in cold weather. Any startup of the latter is therefore accompanied by a preheating phase during which the performance is not optimal, especially during which the emissions of pollutants of carbon monoxide and unburnt hydrocarbons are much larger than nominal .

Pour réduire ce temps de préchauffage, en référence à la figure 1, on connaît dans l’état de la technique un moteur 100 pourvu d’un système de refroidissement 101 dit à double refroidissement autrement appelés sous le terme anglo-saxon de « split-cooling », dans lequel le fluide caloporteur circule de façon indépendante dans des premier et de deuxième circuits 104a, 104b de fluide respectivement du carter de cylindres 103a et du carter de culasse 103b, la circulation dans le premier circuit de fluide 104a étant établie qu'une fois la phase de préchauffage achevée à partir d’une activation d’une vanne 108 agencée en sortie de ce premier circuit 104a.To reduce this preheating time, with reference to FIG. 1, in the state of the art, a motor 100 is known which is provided with a so-called double cooling cooling system 101, otherwise known as "split-shear". cooling ", wherein the heat transfer fluid flows independently in first and second fluid circuits 104a, 104b respectively of the cylinder housing 103a and the cylinder head housing 103b, the circulation in the first fluid circuit 104a being established that once the preheating phase is completed from an activation of a valve 108 arranged at the output of this first circuit 104a.

Un tel système 101 permet de minimiser le temps de chauffe du moteur 100 ou d’une partie de celui-ci, en accélérant la montée en température du fluide caloporteur au démarrage du véhicule et ce, dans l’optique de réduire des frottements de pistons et de segments dans des fûts du moteur 100, la consommation de carburant et les émissions polluantes.Such a system 101 makes it possible to minimize the heating time of the engine 100 or of a part thereof, by accelerating the rise in temperature of the coolant at the start of the vehicle, in order to reduce piston friction. and segments in engine drums 100, fuel consumption and pollutant emissions.

Toutefois, un des inconvénients d’un tel système de refroidissement 101 est lié à un fonctionnement en double refroidissement qui n’est pas optimal. En effet, le moteur 100 comprend généralement un joint de culasse 105 pourvu d’orifices pour la circulation du fluide caloporteur entre les premier et deuxième circuits 104a, 104b et ce, afin de faciliter des mécanismes de dégazage dans ce système. La présence de tels orifices dans le joint de culasse 105 nuit alors au bon fonctionnement et à l'efficacité du double refroidissement, puisqu'un débit parasite résiduel 106a de fluide caloporteur est présent entre ces deux circuits 104a, 104b.However, one of the disadvantages of such a cooling system 101 is related to a double cooling operation which is not optimal. Indeed, the engine 100 generally comprises a cylinder head gasket 105 provided with orifices for the circulation of heat transfer fluid between the first and second circuits 104a, 104b and this, in order to facilitate degassing mechanisms in this system. The presence of such holes in the cylinder head gasket 105 then impedes the proper functioning and effectiveness of the double cooling, since a residual parasitic flow rate 106a of heat transfer fluid is present between these two circuits 104a, 104b.

Dans cette configuration, le passage du fluide caloporteur du premier circuit 104a vers le deuxième circuit 104b aux travers de ces orifices, résulte d’une différence de pression du fluide dans les premier et deuxième circuits 104a, 104b, et à un effet de thermosiphon entre les circuits 104a et 104b, car les fluides dans ces deux circuits sont à des températures différentes. En effet, la pression du fluide dans le premier circuit 104a est plus importante que la pression de ce fluide dans le deuxième circuit 104b du fait de l’introduction de fluide par la pompe d’alimentation 107 à l’entrée de ce premier circuit 104a et de la présence de la vanne 108 qui est fermée au niveau de la sortie de ce premier circuit 104a. En référence à la figure 3, le débit parasite 106a a pour conséquence qu’une température T2 du fluide dans le premier circuit 104a évolue plus rapidement qu’une température T3 du fluide dans ce même circuit d’un système dans lequel il n’y a pas de double refroidissement et plus lentement qu’une température T1 du fluide dans un premier circuit d’un système à double refroidissement dans lequel un tel débit parasite 106a est inexistant. Dès lors, le premier circuit 104a défini dans le carter de cylindres 103a ne fonctionne donc plus totalement en « débit nul >>, ce qui réduit la température T2 du carter de cylindres au détriment de la consommation de carburant et des émissions polluantes.In this configuration, the passage of the heat transfer fluid from the first circuit 104a to the second circuit 104b through these orifices results from a pressure difference of the fluid in the first and second circuits 104a, 104b, and to a thermosiphon effect between the circuits 104a and 104b, because the fluids in these two circuits are at different temperatures. Indeed, the pressure of the fluid in the first circuit 104a is greater than the pressure of this fluid in the second circuit 104b due to the introduction of fluid by the feed pump 107 at the inlet of this first circuit 104a and the presence of the valve 108 which is closed at the output of this first circuit 104a. With reference to FIG. 3, the parasitic flow rate 106a has the consequence that a temperature T2 of the fluid in the first circuit 104a evolves more rapidly than a temperature T3 of the fluid in the same circuit of a system in which there is no There is no double cooling and more slowly than a temperature T1 of the fluid in a first circuit of a double cooling system in which such a parasitic flow rate 106a is non-existent. Therefore, the first circuit 104a defined in the cylinder housing 103a therefore no longer operates completely in "zero flow", which reduces the temperature T2 of the cylinder block at the expense of fuel consumption and pollutant emissions.

Pour pallier cet inconvénient, on connaît dans l’état de la technique un système de refroidissement 100 illustré sur la figure 2, dans lequel le premier circuit 104a défini dans le carter de cylindres 103a comprend une vanne 108 agencée au niveau de l’entrée de ce premier circuit 104a et ce, après la pompe d’alimentation 107 de ce système 101.To overcome this drawback, the prior art discloses a cooling system 100 illustrated in FIG. 2, in which the first circuit 104a defined in the cylinder casing 103a comprises a valve 108 arranged at the inlet of this first circuit 104a and this, after the feed pump 107 of this system 101.

Cependant, un tel agencement de cette vanne 108 à l’entrée du premier circuit 104a ne permet pas de supprimer complètement le débit parasite 106a. De plus, cet agencement génère de surcroît une circulation parasite 106b de fluide caloporteur en boucle entre ces deux circuits 104a, 104b selon un sens illustré par la flèche F présente sur la figure 2, ne permettant pas ainsi au système de refroidissement de réaliser un fonctionnement selon un double refroidissement qui est pleinement efficace.However, such an arrangement of this valve 108 at the entrance of the first circuit 104a does not completely eliminate the parasitic flow 106a. In addition, this arrangement also generates a parasitic circulation 106b of coolant fluid loop between these two circuits 104a, 104b in a direction illustrated by the arrow F shown in Figure 2, thus not allowing the cooling system to perform a functioning according to a double cooling that is fully effective.

La présente invention vise à pallier ces inconvénients liés à l’état de la technique.The present invention aims to overcome these disadvantages related to the state of the art.

Dans ce dessein, l’invention porte sur un système de refroidissement notamment du type à double refroidissement, d’un moteur thermique d’un véhicule automobile comprenant des premier et deuxième circuits de fluide caloporteur agencés respectivement dans un carter de cylindres et un carter de culasse dudit moteur, le premier circuit étant pourvu de premier et deuxième éléments de régulation du débit de fluide agencés respectivement au niveau d’une entrée et d’une sortie dudit premier circuit.With this aim, the invention relates to a cooling system, in particular of the double-cooling type, of a combustion engine of a motor vehicle comprising first and second heat transfer fluid circuits respectively arranged in a cylinder block and a crankcase. the cylinder head of said engine, the first circuit being provided with first and second fluid flow control elements respectively arranged at an input and an output of said first circuit.

Dans d’autres modes de réalisation : - le premier élément de régulation est défini pour autoriser/interdire une circulation du fluide caloporteur au niveau de l’entrée du premier circuit en fonction d’une température dudit fluide présent dans ledit premier circuit dudit carter de cylindres ; - le deuxième élément de régulation est défini pour autoriser une circulation du fluide caloporteur au niveau d’une sortie du premier circuit dans un sens unique de circulation dudit fluide allant d’une première zone de raccordement vers une deuxième zone de raccordement dudit système ; - le premier élément de régulation est un thermostat ou encore une vanne pilotée ; - le deuxième élément de régulation est un clapet anti-retour, une vanne pilotée ou encore un thermostat ; - la première zone de raccordement relie des entrées des premier et deuxième circuits entre elles, et - la deuxième zone de raccordement relie des sorties des premier et deuxième circuits entre elles. L’invention porte également sur un procédé de fonctionnement d’un système de refroidissement d’un moteur thermique d’un véhicule automobile comprenant des premier et deuxième circuits de fluide caloporteur agencés respectivement dans un carter de culasse et un carter de cylindres dudit moteur, le procédé comprenant une étape de contrôle du débit du fluide caloporteur dans le premier circuit à partir de premier et deuxième éléments de régulation du débit de fluide.In other embodiments: the first regulating element is defined to allow / prohibit a circulation of the coolant at the inlet of the first circuit as a function of a temperature of said fluid present in said first circuit of said housing; cylinders; - The second regulating element is defined to allow a circulation of the heat transfer fluid at an output of the first circuit in a single direction of circulation of said fluid from a first connection zone to a second connection zone of said system; the first regulating element is a thermostat or a pilot valve; the second regulating element is a non-return valve, a pilot valve or a thermostat; the first connection zone connects inputs of the first and second circuits together, and the second connection zone connects outputs of the first and second circuits to each other. The invention also relates to a method of operating a cooling system of a thermal engine of a motor vehicle comprising first and second heat transfer fluid circuits respectively arranged in a cylinder head housing and a crankcase of said engine, the method comprising a step of controlling the flow of the coolant in the first circuit from first and second fluid flow control elements.

Avantageusement, l’étape de contrôle comprend les sous-étapes suivantes : - interdiction de circulation du fluide caloporteur dans le premier circuit par le premier et/ou le deuxième élément de régulation du débit de fluide lorsqu’une température mesurée du fluide présent dans le premier circuit du carter de cylindres est sensiblement inférieure à une température de référence, et - autorisation de circulation du fluide caloporteur dans le premier circuit par les premier et deuxième éléments de régulation du débit du fluide lorsqu’une température mesurée du fluide présent dans le premier circuit du carter de cylindres est sensiblement supérieure ou égale à la température de référence. L’invention porte aussi sur un moteur thermique comprenant un tel système de refroidissement. L’invention porte également sur un véhicule automobile comprenant ce moteur thermique. D’autres avantages et caractéristiques de l’invention apparaîtront mieux à la lecture de la description d’un mode de réalisation préféré qui va suivre, en référence aux figures, réalisé à titre d’exemple indicatif et non limitatif : - la figure 1 représente une vue d’un système de refroidissement selon l’état de la technique ; - la figure 2 représente une vue d’un autre système de refroidissement selon l’état de la technique ; - la figure 3 représente des courbes de température par rapport au temps relatives à un fluide présent dans un circuit défini dans un carter de cylindres pour plusieurs configurations du système de refroidissement de l’état de la technique ; - figure 4 représente une vue schématique d’un système de refroidissement selon le mode de réalisation de l’invention, et - la figure 5 est une vue d’un logigramme relatif à un procédé de fonctionnement du système selon le mode de réalisation de l’invention.Advantageously, the control step comprises the following substeps: - prohibition of circulation of the heat transfer fluid in the first circuit by the first and / or the second fluid flow control element when a measured temperature of the fluid present in the first circuit of the cylinder block is substantially lower than a reference temperature, and - authorization of circulation of the coolant in the first circuit by the first and second fluid flow control elements when a measured temperature of the fluid present in the first Cylinder housing circuit is substantially greater than or equal to the reference temperature. The invention also relates to a heat engine comprising such a cooling system. The invention also relates to a motor vehicle comprising this heat engine. Other advantages and features of the invention will appear better on reading the description of a preferred embodiment which will follow, with reference to the figures, made by way of indicative and nonlimiting example: FIG. a view of a cooling system according to the state of the art; - Figure 2 shows a view of another cooling system according to the state of the art; FIG. 3 shows temperature versus time curves relating to a fluid present in a circuit defined in a cylinder casing for several configurations of the cooling system of the state of the art; FIG. 4 represents a schematic view of a cooling system according to the embodiment of the invention, and FIG. 5 is a view of a logic diagram relating to a method of operating the system according to the embodiment of the invention. 'invention.

La figure 4 est une représentation schématique d’un système de refroidissement 2 d’un moteur thermique 1 d’un véhicule automobile. Ce moteur 1 peut être un moteur à essence ou un moteur diesel notamment suralimenté ou encore un moteur fonctionnant selon une technologie dite de « Flex fuel » et dont le système d'alimentation et carburation lui permet d'utiliser indifféremment des carburants aussi variés que l'essence, le bioéthanol ou un mélange des deux. Par exemple, dans le présent mode de réalisation, le système de refroidissement 2 est mis en œuvre dans un moteur 1 diesel en comprenant un circuit principal 3 pourvu de composantes du moteur 1 telles qu’un bocal de dégazage 18, un module de suralimentation du moteur 1 comprenant un turbocompresseur 20, un échangeur de chaleur 21 tel qu’un aérotherme ou encore à un échangeur d’huile 19 moteur plus connu sous l’acronyme « EMO » pour y évacuer de la chaleur produite au niveau du carter d'huile moteur.Figure 4 is a schematic representation of a cooling system 2 of a heat engine 1 of a motor vehicle. This engine 1 may be a gasoline engine or a diesel engine including supercharged or an engine operating according to a technology called "Flex Fuel" and whose fuel system and carburetion allows it to use indifferently fuels as varied as the gasoline, bioethanol or a mixture of both. For example, in the present embodiment, the cooling system 2 is implemented in a diesel engine 1 comprising a main circuit 3 provided with components of the engine 1 such as a degassing jar 18, a supercharging module engine 1 comprising a turbocharger 20, a heat exchanger 21 such as a heater or a motor oil exchanger 19 better known by the acronym "EMO" for evacuating heat generated at the oil sump engine.

Un tel moteur 1 comprend un carter de cylindres 6 pourvu d’une pluralité de cylindres pouvant être rangés en ligne. Au-dessus du carter de cylindres 6, suivant un axe sensiblement parallèle à l'axe vertical des cylindres, vient se fixer un second carter, dit carter de culasse 5. Ce carter de culasse 5 comprend une face inférieure qui est destinée à être fixée sur une face supérieure de ce carter de cylindres 6, lequel étant disposé en-dessous de ce carter de culasse 5. Ce carter de culasse 5 renferme notamment la distribution composée principalement des soupapes et des arbres à cames. Ce moteur 1 comprend également un joint de culasse 16 placé entre le carter de culasse 5 et le carter de cylindres 6 et en particulier entre les faces supérieure et inférieure précitées.Such a motor 1 comprises a cylinder casing 6 provided with a plurality of cylinders can be arranged in line. Above the cylinder block 6, along an axis substantially parallel to the vertical axis of the cylinders, is fixed a second housing, said cylinder head cover 5. This cylinder head cover 5 comprises a lower face which is intended to be fixed on an upper face of this cylinder casing 6, which being disposed below this cylinder head housing 5. This cylinder head housing 5 contains in particular the distribution composed mainly of valves and camshafts. This engine 1 also comprises a cylinder head gasket 16 placed between the cylinder head housing 5 and the cylinder casing 6 and in particular between the above-mentioned upper and lower faces.

Ce système de refroidissement 2 peut être du type à double refroidissement, souvent connu sous le terme anglo-saxon de « split-cooling » et dans lequel le fluide caloporteur circule de façon indépendante dans un premier circuit 7a défini dans le carter de cylindres 6 et un deuxième circuit 7b compris dans le carter de culasse 5, la circulation dans le premier circuit 7a n'étant établie qu'une fois une phase de préchauffage du carter de cylindres 6 est achevée.This cooling system 2 may be of the double cooling type, often known as the Anglo-Saxon "split-cooling" mode and in which the coolant circulates independently in a first circuit 7a defined in the cylinder casing 6 and a second circuit 7b included in the cylinder head housing 5, the circulation in the first circuit 7a being established only once a preheating phase of the cylinder block 6 is completed.

Le circuit principal 3 de ce système de refroidissement 2 comprend un circuit interne 4 de refroidissement à l’intérieur du moteur 1 qui est pourvu : d’une pompe d’alimentation 9, des premier et deuxième circuits 7a, 7b de fluide ainsi que de première et deuxième zones de raccordement 8a, 8b.The main circuit 3 of this cooling system 2 comprises an internal cooling circuit 4 inside the engine 1 which is provided with: a feed pump 9, first and second circuits 7a, 7b of fluid as well as first and second connection areas 8a, 8b.

La pompe d’alimentation 9 est destinée à mettre en circulation le fluide caloporteur encore appelé fluide de refroidissement dans ce circuit interne 4 de refroidissement du moteur 1. Ainsi que nous l’avons vu, les premier et deuxième circuits 7a, 7b sont respectivement compris dans le carter de cylindres 6 et le carter de culasse 5. Ces premier et deuxième circuits 7a, 7b autrement appelés noyau ou chambre de fluide comprennent chacun un volume creux ou un évidement constitué de canaux de circulation qui est défini dans le carter de cylindres 6 ou le carter de culasse 5 du moteur 1 et dans lequel est destiné à circuler ce fluide de refroidissement, ici de l'eau ou de l’éthylène de glycol avec ou sans adjuvants.The feed pump 9 is intended to circulate the heat transfer fluid still called cooling fluid in the internal cooling circuit 4 of the engine 1. As we have seen, the first and second circuits 7a, 7b are respectively included in the cylinder block 6 and the cylinder head housing 5. These first and second circuits 7a, 7b, otherwise called the core or fluid chamber, each comprise a hollow space or a recess consisting of circulation channels which is defined in the cylinder block 6 or the cylinder head 5 of the engine 1 and in which is intended to circulate the cooling fluid, here water or ethylene glycol with or without adjuvants.

Le premier circuit 7a est sensiblement isolé du deuxième circuit 7b de fluide, ainsi le carter de cylindres 6 et le carter de culasse 5 sont refroidis de manière séparée avec un fluide caloporteur qui circule de façon indépendante dans ces premier et de deuxième circuits 7a, 7b. Ainsi que nous l’avons évoqué précédemment, le moteur 1 comprend un joint de culasse 16 agencé entre le carter de cylindres 6 et le carter de culasse 5. Ce joint de culasse 16 peut comprendre des orifices pratiqués uniquement dans une partie 14 de ce joint 16, pour une circulation du fluide caloporteur entre les premier et deuxième circuits 7a, 7b. Un tel joint de culasse 16 pourvu de ces orifices contribue à réaliser un dégazage du premier circuit 7a défini dans le carter de cylindres 6. En effet, des bulles de gaz formées dans le premier circuit 7a doivent pouvoir passer de ce premier circuit 7a vers le deuxième circuit 7b pour être évacuées hors du circuit interne 4, vers le bocal de dégazage 18. Un tel dégazage peut intervenir juste après le remplissage du système de refroidissement 2 en fluide caloporteur, mais aussi lors du fonctionnement du moteur 1 par la création de bulles de gaz dans le fluide caloporteur sous l'effet de la thermique générée par la combustion dans le premier circuit 7a.The first circuit 7a is substantially isolated from the second fluid circuit 7b, so the cylinder block 6 and the cylinder head housing 5 are cooled separately with a heat transfer fluid which circulates independently in these first and second circuits 7a, 7b . As mentioned above, the engine 1 comprises a cylinder head gasket 16 arranged between the cylinder block 6 and the cylinder head housing 5. This cylinder head gasket 16 may comprise orifices made only in a part 14 of this gasket. 16, for circulation of the coolant between the first and second circuits 7a, 7b. Such a cylinder head gasket 16 provided with these orifices contributes to degassing the first circuit 7a defined in the cylinder casing 6. In effect, gas bubbles formed in the first circuit 7a must be able to pass from this first circuit 7a towards the second circuit 7b to be discharged out of the internal circuit 4, to the degassing jar 18. Such degassing can take place immediately after the filling of the cooling system 2 in heat transfer fluid, but also during operation of the engine 1 by the creation of bubbles of gas in the coolant under the effect of the thermal generated by the combustion in the first circuit 7a.

Ces premier et deuxième circuits 7a, 7b comprennent chacun une entrée 10a, 11a par laquelle le fluide caloporteur est introduit selon le sens de circulation F1 dans ledit circuit et une sortie 10b, 11b par laquelle ce fluide en est évacué selon le sens de circulation F3. Les entrées 10a, 11a de ces premier et deuxième circuits 7a, 7b sont reliées entre elles dans la première zone de raccordement 8a du circuit interne 4 de refroidissement. De même, les sorties 10b, 11 b de ces deux circuits 7a, 7b sont également reliées entre elles dans la deuxième zone de raccordement 8b de ce circuit interne 4 de refroidissement.These first and second circuits 7a, 7b each comprise an inlet 10a, 11a through which the coolant is introduced in the flow direction F1 in said circuit and an outlet 10b, 11b through which this fluid is discharged in the direction of circulation F3 . The inputs 10a, 11a of these first and second circuits 7a, 7b are interconnected in the first connection zone 8a of the internal cooling circuit 4. Similarly, the outputs 10b, 11b of these two circuits 7a, 7b are also interconnected in the second connection zone 8b of this internal cooling circuit 4.

La première zone de raccordement 8a est également reliée à un conduit d’entrée 12a de fluide du circuit interne 4 connecté notamment à une sortie d’un radiateur 17 mais également à des sorties de composantes du moteur 1 évoquées précédemment. Ce conduit d’entrée 12a comprend la pompe d’alimentation 9 pourvue d’une sortie reliée directement à la première zone de raccordement 8a. Ainsi la pompe d’alimentation 9 contribue à mettre en circulation le fluide caloporteur qu’elle reçoit notamment de ce radiateur 17 et/ou des composantes du moteur 1, dans les premier et deuxième circuits 7a, 7b par l’intermédiaire de cette première zone de raccordement 8a. La deuxième zone de raccordement 8b est quant à elle reliée à un conduit d’évacuation 12b de fluide du circuit interne 4. Ce conduit d’évacuation 12b est alors notamment connecté aux entrées du radiateur 17 et des autres composantes du moteur 1 afin que le fluide caloporteur leurs soit transmis selon l’activation/désactivation de vannes 19 et/ou de thermostats 19 agencés dans le circuit principal 3 de refroidissement.The first connection zone 8a is also connected to a fluid inlet duct 12a of the internal circuit 4 connected in particular to an output of a radiator 17 but also to component outputs of the motor 1 mentioned above. This inlet duct 12a comprises the supply pump 9 provided with an outlet connected directly to the first connection zone 8a. Thus, the feed pump 9 contributes to circulating the heat transfer fluid that it receives in particular from this radiator 17 and / or the components of the engine 1, in the first and second circuits 7a, 7b via this first zone. connection 8a. The second connection zone 8b is connected to a fluid discharge conduit 12b of the internal circuit 4. This exhaust duct 12b is in particular connected to the inputs of the radiator 17 and the other components of the engine 1 so that the Heat transfer fluid is transmitted to them according to the activation / deactivation of valves 19 and / or thermostats 19 arranged in the main cooling circuit 3.

Ce radiateur 17 compris dans le circuit principal 3, constitue un échangeur thermique pour refroidir le fluide caloporteur en sortie du circuit interne 4 au niveau du conduit d’évacuation 12b. Le radiateur 17 est apte à renvoyer ensuite le fluide caloporteur refroidi vers le circuit interne 4 par l’intermédiaire du conduit d’entrée 12a pourvu de la pompe d’alimentation 9.This radiator 17 included in the main circuit 3 constitutes a heat exchanger for cooling the coolant at the outlet of the internal circuit 4 at the exhaust duct 12b. The radiator 17 is then able to return the cooled heat transfer fluid to the internal circuit 4 via the inlet conduit 12a provided with the feed pump 9.

Le premier circuit 7a du circuit interne 4 comprend des premier et deuxième éléments de régulation 15a, 15b du débit du fluide. Ces premier et deuxième éléments de régulation 15a, 15b sont respectivement agencés au niveau de l’entrée 10a et de la sortie 10b dudit premier circuit 7a.En outre, ces éléments de régulation 15a, 15b sont situés entre les première et deuxième zones de raccordement 8a, 8b. Plus précisément, ces premier et deuxième éléments de régulation 15a, 15b sont localisés à proximité immédiate respectivement de ces première et deuxième zones de raccordement 8a, 8b.The first circuit 7a of the internal circuit 4 comprises first and second regulating elements 15a, 15b of the flow of the fluid. These first and second regulating elements 15a, 15b are respectively arranged at the input 10a and the output 10b of said first circuit 7a. Moreover, these regulation elements 15a, 15b are located between the first and second connection zones. 8a, 8b. More precisely, these first and second regulating elements 15a, 15b are located in close proximity to these first and second connection zones 8a, 8b, respectively.

Dans cette configuration, le premier élément de régulation 15a est défini pour autoriser/interdire une circulation du fluide caloporteur au niveau de l’entrée 10a du premier circuit 7a en fonction d’une température Tm dudit fluide présent dans le premier circuit 7a dudit carter de cylindres 6. Ce premier élément de régulation 15a peut être un thermostat pourvu d’un capteur de température plongé dans le fluide caloporteur présent dans ce premier circuit 7a ou arrosé par ce fluide. Il peut s’agir d’un capteur de température compris dans le corps du thermostat ou encore un capteur déporté agencé dans ce premier circuit 7a. Ce thermostat peut être par exemple un thermostat à cire comprenant deux clapets disposés aux deux extrémités d'un bulbe à cire et dont le fonctionnement est bien connu de l’état de la technique. Dans une variante, ce premier élément de régulation 15a peut être une vanne pilotée par exemple par une unité de traitement du système de refroidissement 2 qui est relié à un capteur de température situé dans le premier circuit 7a.In this configuration, the first regulation element 15a is defined to allow / prohibit a circulation of the coolant at the inlet 10a of the first circuit 7a as a function of a temperature Tm of said fluid present in the first circuit 7a of said housing. cylinders 6. This first regulating element 15a may be a thermostat provided with a temperature sensor immersed in the heat transfer fluid present in this first circuit 7a or watered by this fluid. It may be a temperature sensor included in the body of the thermostat or a remote sensor arranged in this first circuit 7a. This thermostat may for example be a wax thermostat comprising two flaps arranged at both ends of a wax bulb and whose operation is well known in the state of the art. In a variant, this first regulation element 15a may be a valve controlled for example by a cooling system processing unit 2 which is connected to a temperature sensor located in the first circuit 7a.

Le deuxième élément de régulation 15b est défini pour autoriser une circulation du fluide caloporteur au niveau de la sortie 10b du premier circuit 7a dans un unique sens de circulation F2 dudit fluide allant de la première zone de raccordement 8a vers la deuxième zone de raccordement 8b dudit système 2 ou encore de l’entrée 10a vers la sortie 10b de ce premier circuit 7a. Ce deuxième élément de régulation 15b peut être un clapet anti-retour. Plusieurs types de clapet anti-retour connu de l’état de la technique peuvent être mis en oeuvre dans ce premier circuit 7a. A titre d’exemple, un tel clapet anti-retour peut comprendre un corps cylindrique creux renfermant un organe mobile qui revêt ici la forme d'une bille, et un ressort qui sollicite en permanence la bille contre un siège. Le ressort est apte à se comprimer sous l’action d’une force de compression exercée par le flux de fluide caloporteur sur la bille afin que cette dernière passe d’une position initiale dite de repos où la sortie 10b du premier circuit 7a est fermée à une position où cette sortie 10b est ouverte et le fluide peut alors être évacué du premier circuit 7a. Dès lors que le fluide n’exerce plus une telle force, la bille retrouve sa position de repos sous l’action d’une force de rappel du ressort.The second regulating element 15b is defined to allow a circulation of the coolant at the outlet 10b of the first circuit 7a in a single flow direction F2 of said fluid from the first connection zone 8a to the second connection zone 8b of said system 2 or from the input 10a to the output 10b of this first circuit 7a. This second regulating element 15b may be a non-return valve. Several types of check valve known from the state of the art can be implemented in this first circuit 7a. For example, such a non-return valve may comprise a hollow cylindrical body enclosing a movable member which here takes the form of a ball, and a spring which constantly urges the ball against a seat. The spring is able to compress under the action of a compressive force exerted by the heat transfer fluid flow on the ball so that the latter moves from an initial rest position where the output 10b of the first circuit 7a is closed. at a position where this output 10b is open and the fluid can then be removed from the first circuit 7a. As soon as the fluid no longer exerts such a force, the ball returns to its rest position under the action of a restoring force of the spring.

Dans une variante, le deuxième élément de régulation 15b peut être un thermostat pouvant présenter les mêmes caractéristiques que le thermostat décrit pour le premier élément de régulation 15b. Dans une autre variante, ce deuxième élément 15b peut être une vanne pilotée par exemple par l’unité de traitement du système de refroidissement 2 qui est relié à un capteur de température situé dans le premier circuit 7a et/ou au premier élément de régulation 15a. Ainsi, le deuxième élément de régulation 15b peut alors être relié de manière synchrone avec le premier élément de régulation 15a de manière à autoriser/interdire la circulation du fluide caloporteur en sortie 10b du premier circuit 7a de façon sensiblement simultanée avec ledit premier élément de régulation 15a.In a variant, the second regulating element 15b may be a thermostat that may have the same characteristics as the thermostat described for the first regulation element 15b. In another variant, this second element 15b may be a valve controlled for example by the cooling system processing unit 2 which is connected to a temperature sensor located in the first circuit 7a and / or the first regulation element 15a . Thus, the second regulating element 15b can then be connected synchronously with the first regulating element 15a so as to allow / prohibit the circulation of the heat transfer fluid at the outlet 10b of the first circuit 7a substantially simultaneously with said first regulating element 15a.

En référence à la figure 5, l’invention concerne également un procédé de fonction du système de refroidissement 2. Ce procédé comprend une étape de démarrage 21 du moteur 1.With reference to FIG. 5, the invention also relates to a method of operating the cooling system 2. This method comprises a step of starting the engine 1.

Par la suite, ce procédé prévoit une étape de mise en circulation 22 du fluide caloporteur dans le circuit interne 4. Lors de cette étape 22, la pompe d’alimentation 9 dont la sortie est reliée à la première zone de raccordement 8a est alors susceptible d’assurer l’alimentation en fluide des premier et deuxième circuits 7a, 7b.Subsequently, this method provides a step 22 for circulating the heat transfer fluid in the internal circuit 4. During this step 22, the supply pump 9 whose output is connected to the first connection zone 8a is then capable of to supply the fluid supply of the first and second circuits 7a, 7b.

Le procédé comprend ensuite une étape de contrôle 23 du débit du fluide caloporteur dans le premier circuit 7a à partir des premier et deuxième éléments de régulation 15a, 15b du débit du fluide. Une telle étape 23 permet de mettre en œuvre un processus de préchauffage du moteur 1 afin d’améliorer les performances de ce dernier et de réduire ainsi les émissions de polluants et la consommation de carburant. Pour ce faire, cette étape 23 comprend une sous-étape d’interdiction 24 de circulation du fluide caloporteur dans le premier circuit 7a par le premier et/ou le deuxième élément de régulation 15a, 15b du débit du fluide lorsqu’une température mesurée Tm du fluide présent dans le premier circuit 7a du carter de cylindres 6 est sensiblement inférieure à une température de référence Tf. Cette température de référence Tf est définie en fonction des caractéristiques du moteur 1 et correspond de préférence à une température de fin de préchauffage du carter de cylindres 6.The method then comprises a step 23 for controlling the flow rate of the coolant in the first circuit 7a from the first and second fluid flow regulating elements 15a, 15b. Such a step 23 allows to implement a preheating process of the engine 1 to improve the performance of the latter and thus reduce pollutant emissions and fuel consumption. To do this, this step 23 comprises a sub-step of prohibiting the circulation of the coolant in the first circuit 7a by the first and / or the second fluid flow regulating element 15a, 15b when a measured temperature Tm fluid present in the first circuit 7a of the cylinder housing 6 is substantially lower than a reference temperature Tf. This reference temperature Tf is defined according to the characteristics of the engine 1 and preferably corresponds to a preheating end temperature of the cylinder casing 6.

Lors de cette sous-étape 24, le mouvement naturel du fluide caloporteur visant à réaliser une circulation parasite résiduelle en boucle est alors supprimé du fait de l’agencement des premier et deuxième éléments de régulation 15a, 15b respectivement à l’entrée et à la sortie de ce premier circuit 7a. Plus précisément, cet agencement de ces éléments de régulation 15a, 15b limite voire supprime les effets pouvant résulter de la différence de pression du fluide dans les premier et deuxième circuits 7a, 7b et/ou de la différence de température du fluide dans ces derniers qui est susceptible d’être à l’origine d’un phénomène dit de « thermosiphon >>. Dans ces conditions, le débit de fluide caloporteur dans le premier circuit 7a est alors nul. De plus, la pompe d’alimentation 9 alimente dès lors uniquement le deuxième circuit 7b qui est défini dans le carter de culasse 5.During this substep 24, the natural movement of the heat transfer fluid to make a residual parasitic circulation loop is then eliminated due to the arrangement of the first and second regulating elements 15a, 15b respectively at the entrance and the output of this first circuit 7a. More specifically, this arrangement of these regulating elements 15a, 15b limits or eliminates the effects that may result from the fluid pressure difference in the first and second circuits 7a, 7b and / or the difference in fluid temperature in the latter. is likely to be at the origin of a phenomenon called "thermosiphon". Under these conditions, the heat transfer fluid flow rate in the first circuit 7a is then zero. In addition, the feed pump 9 supplies only the second circuit 7b which is defined in the breech housing 5.

Cette étape 23 comprend également une sous-étape d’autorisation 25 de circulation du fluide caloporteur dans le premier circuit 7a par les premier et deuxième éléments de régulation 15a, 15b du débit du fluide lorsqu’une température mesurée Tm du fluide présent dans le premier circuit 7a du carter de cylindres 6 est sensiblement supérieure ou égale à la température de référence Tf. Dans ces conditions, le fluide caloporteur mis en circulation par la pompe d’alimentation 9 circule à la fois dans les premier et deuxième circuits 7a, 7b. Ce fluide caloporteur parcourt en particulier le premier circuit 7a en traversant les premier et deuxième éléments de régulation 15a, 15b jusqu’à être évacué du circuit interne 4 après avoir traversé la deuxième zone de raccordement 8b.This step 23 also comprises a sub-step 25 of authorization of circulation of the coolant in the first circuit 7a by the first and second fluid flow control elements 15a, 15b when a measured temperature Tm of the fluid present in the first circuit 7a of the cylinder casing 6 is substantially greater than or equal to the reference temperature Tf. Under these conditions, the heat transfer fluid circulated by the feed pump 9 flows in both the first and second circuits 7a, 7b. This heat transfer fluid travels in particular the first circuit 7a through the first and second regulating elements 15a, 15b until being discharged from the internal circuit 4 after passing through the second connection zone 8b.

Ainsi, l’invention permet d’accélérer la montée en température du carter de cylindres 6 et participe à réduire la consommation du véhicule et les émissions polluantes.Thus, the invention accelerates the rise in temperature of the cylinder block 6 and helps reduce vehicle consumption and pollutant emissions.

Claims (5)

REVENDICATIONS 1. Système de refroidissement (2) notamment du type à double refroidissement, d’un moteur (1) thermique d’un véhicule automobile comprenant des premier et deuxième circuits (7a, 7b) de fluide caloporteur agencés respectivement dans un carter de cylindres (6) et un carter de culasse (5) dudit moteur (1), le premier circuit (7a) étant pourvu de premier et deuxième éléments de régulation (15a, 15b) du débit de fluide agencés respectivement au niveau d’une entrée (10a) et d’une sortie (10b) dudit premier circuit (7a), le premier élément de régulation (15a) étant défini pour autoriser/interdire une circulation du fluide caloporteur au niveau de l’entrée (10a) du premier circuit (7a) en fonction d’une température (Tm) dudit fluide présent dans ledit premier circuit (7a) dudit carter de cylindres (6), et/ou le deuxième élément de régulation (15b) étant défini pour autoriser une circulation du fluide caloporteur au niveau de la sortie (10b) du premier circuit (7a) dans un sens (F2) unique de circulation dudit fluide allant d’une première zone de raccordement (8a) vers une deuxième zone de raccordement (8b) dudit système (2).Cooling system (2) in particular of the double cooling type, of a motor (1) of a motor vehicle comprising first and second heat transfer fluid circuits (7a, 7b) respectively arranged in a cylinder block ( 6) and a cylinder head housing (5) of said engine (1), the first circuit (7a) being provided with first and second fluid flow control elements (15a, 15b) respectively arranged at an inlet (10a). ) and an output (10b) of said first circuit (7a), the first regulating element (15a) being defined to allow / prohibit circulation of the coolant at the inlet (10a) of the first circuit (7a) as a function of a temperature (Tm) of said fluid present in said first circuit (7a) of said cylinder casing (6), and / or the second regulating element (15b) being defined to allow circulation of the coolant at the level of the exit (10b) of the first cir fired (7a) in a single direction (F2) for circulating said fluid from a first connection zone (8a) to a second connection zone (8b) of said system (2). 2. Système (2) selon la revendication précédente, caractérisé en ce que le premier élément de régulation (15a) est un thermostat ou encore une vanne pilotée. 3. Système (2) selon l’une quelconque des revendications précédentes, caractérisé en ce que le deuxième élément de régulation (15b) est un clapet anti-retour, une vanne pilotée ou encore un thermostat. 4. Système (2) selon l’une quelconque des revendications précédentes, caractérisé en ce que : - une première zone de raccordement (8a) relie des entrées (10a, lla) des premier et deuxième circuits (7a, 7b) entre elles, et/ou - une deuxième zone de raccordement (8b) relie des sorties (10b, llb) des premier et deuxième circuits (7a, 7b) entre elles.2. System (2) according to the preceding claim, characterized in that the first control element (15a) is a thermostat or a pilot valve. 3. System (2) according to any one of the preceding claims, characterized in that the second control element (15b) is a non-return valve, a controlled valve or a thermostat. 4. System (2) according to any one of the preceding claims, characterized in that: - a first connection zone (8a) connects inputs (10a, 11a) of the first and second circuits (7a, 7b) between them, and / or - a second connection zone (8b) connects outputs (10b, 11b) of the first and second circuits (7a, 7b) to each other. 5. Procédé de fonctionnement d’un système de refroidissement (2) d’un moteur thermique (1) d’un véhicule automobile selon l’une quelconque des revendications précédentes, comprenant des premier et deuxième circuits (7a, 7b) de fluide caloporteur agencés respectivement dans un carter de culasse (5) et un carter de cylindres (6) dudit moteur (1 ), le procédé comprenant une étape de contrôle (23) du débit du fluide caloporteur dans le premier circuit (7a) à partir de premier et deuxième éléments de régulation (15a, 15b) du débit de fluide. 6. Procédé selon la revendication précédente, caractérisé en ce que l’étape de contrôle (23) comprend les sous-étapes suivantes : - interdiction (24) de circulation du fluide caloporteur dans le premier circuit (7a) par le premier et/ou le deuxième élément de régulation (15a, 15b) du débit de fluide lorsqu’une température mesurée (Tm) du fluide présent dans le premier circuit (7a) du carter de cylindres (6) est sensiblement inférieure à une température de référence (Tf), et - autorisation (25) de circulation du fluide caloporteur dans le premier circuit (7a) par les premier et deuxième éléments de régulation (15a, 15b) du débit du fluide lorsqu’une température mesurée (Tm) du fluide présent dans le premier circuit (7a) du carter de cylindres (6) est sensiblement supérieure ou égale à la température de référence (Tf).5. A method of operating a cooling system (2) of a thermal engine (1) of a motor vehicle according to any one of the preceding claims, comprising first and second circuits (7a, 7b) of heat transfer fluid respectively arranged in a cylinder head housing (5) and a cylinder block (6) of said engine (1), the method comprising a step (23) of controlling the flow of the coolant in the first circuit (7a) from the first and second regulating elements (15a, 15b) of the fluid flow. 6. Method according to the preceding claim, characterized in that the control step (23) comprises the following substeps: - prohibition (24) circulation of the heat transfer fluid in the first circuit (7a) by the first and / or the second fluid flow regulating element (15a, 15b) when a measured temperature (Tm) of the fluid present in the first circuit (7a) of the cylinder housing (6) is substantially lower than a reference temperature (Tf) and - authorization (25) for circulation of the coolant in the first circuit (7a) by the first and second fluid flow control elements (15a, 15b) when a measured temperature (Tm) of the fluid present in the first fluid circuit (7a) of the cylinder block (6) is substantially greater than or equal to the reference temperature (Tf). 7. Moteur thermique (1) comprenant un système de refroidissement (2) selon l’une quelconque des revendications 1 à 4.7. Heat engine (1) comprising a cooling system (2) according to any one of claims 1 to 4. 8. Véhicule automobile comprenant un moteur thermique (1) selon la revendication précédente.8. Motor vehicle comprising a heat engine (1) according to the preceding claim.
FR1653441A 2016-04-19 2016-04-19 COOLING SYSTEM OF A THERMAL ENGINE Expired - Fee Related FR3050233B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1653441A FR3050233B1 (en) 2016-04-19 2016-04-19 COOLING SYSTEM OF A THERMAL ENGINE
EP17167131.6A EP3236041B1 (en) 2016-04-19 2017-04-19 Cooling system of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653441 2016-04-19
FR1653441A FR3050233B1 (en) 2016-04-19 2016-04-19 COOLING SYSTEM OF A THERMAL ENGINE

Publications (2)

Publication Number Publication Date
FR3050233A1 FR3050233A1 (en) 2017-10-20
FR3050233B1 true FR3050233B1 (en) 2019-10-11

Family

ID=56263924

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1653441A Expired - Fee Related FR3050233B1 (en) 2016-04-19 2016-04-19 COOLING SYSTEM OF A THERMAL ENGINE

Country Status (2)

Country Link
EP (1) EP3236041B1 (en)
FR (1) FR3050233B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032184A1 (en) * 2000-07-01 2002-01-10 Bosch Gmbh Robert Device for cooling an internal combustion engine
FR2848248B1 (en) * 2002-12-06 2006-08-04 Renault Sa INTERNAL COMBUSTION ENGINE COOLING CIRCUIT
FR2860833B1 (en) * 2003-10-08 2007-06-01 Peugeot Citroen Automobiles Sa COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE CONSISTING OF AT LEAST THREE COOLING PASSAGES
FR2856426B1 (en) * 2004-08-19 2006-06-09 Mark Iv Systemes Moteurs Sa COOLING CIRCUIT COMPRISING A FLOW CONTROL MEMBER
DE102010018624B4 (en) * 2010-04-28 2015-12-17 Audi Ag Coolant circuit for an internal combustion engine
JP5257713B2 (en) * 2011-02-10 2013-08-07 アイシン精機株式会社 Vehicle cooling system
JP5699906B2 (en) * 2011-10-31 2015-04-15 トヨタ自動車株式会社 Engine cooling control device
DE102013224005A1 (en) * 2013-11-25 2015-05-28 Volkswagen Aktiengesellschaft cooling system

Also Published As

Publication number Publication date
EP3236041A1 (en) 2017-10-25
EP3236041B1 (en) 2019-09-11
FR3050233A1 (en) 2017-10-20

Similar Documents

Publication Publication Date Title
EP1615791B1 (en) Method and device for heating a motor vehicle cabin
EP2935853B1 (en) Engine intake air thermal management device and associated thermal management method
FR2486152A1 (en) INTERNAL COMBUSTION ENGINE HAVING OIL COOLING
FR2915771A1 (en) Internal combustion engine i.e. spark ignition engine, cooling assembly for vehicle, has cooling circuit transporting heat transfer fluid between combustion gas exchanger and main and additional radiators
FR2890697A1 (en) Vehicle engine has Exhaust Gas Recirculation (EGR) circuit equipped with supplementary cooler
FR3050233B1 (en) COOLING SYSTEM OF A THERMAL ENGINE
FR3060666B1 (en) COOLANT FLOW PIPE FOR INTERNAL COMBUSTION ENGINE OF MOTOR VEHICLE
EP1977096B1 (en) Device for accelerating the increase in the lubricating oil temperature of an internal combustion engine comprising an exhaust-gas turbocharger
FR2932223A1 (en) Exhaust gas recirculation circuit for e.g. petrol engine, of vehicle, has actuator with thermostatic element adjusting permeability of bypass valve based on temperature dependent of fluid temperature of cooling circuit of engine
FR2948421A1 (en) Coolant circulation managing method for adjusting temperature of thermal engine of motor vehicle, involves interrupting flow of coolant towards thermal engine in rising phase of temperature of engine corresponding to predetermined time
FR2908457A3 (en) Recycled exhaust gas cooling system for e.g. oil engine of motor vehicle, has main circuit, and secondary circuit with secondary valve for limiting or preventing circulation of liquid in secondary circuit when cooling is not required
EP3258078B1 (en) Cooling system of a heat engine
FR2904857A1 (en) Heat engine cooling circuit control device for vehicle i.e. motocar vehicle, has valves to occupy position to circulate oil in line at temperature value, and another position to circulate oil in exchanger at another temperature value
EP1375894A1 (en) Module for the fuel temperature control in an internal combustion engine and fuel feeding system equipped with said module
FR3088382A1 (en) PROCEDURE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE FOR FUEL HEATING
FR2855562A1 (en) Heat transfer device for use in motor vehicles power unit, has set of primary units and set of secondary units, where secondary units are integrated or replaced by one of existing components of power unit of vehicle
EP3864269B1 (en) Cooling system for a combustion engine and method of controlling the same
WO2017006025A1 (en) Exhaust gas recirculation circuit for a spark-ignition heat engine
FR2905146A1 (en) Fuel supply device for internal combustion engine, has regulating unit authorizing fuel passage of one chamber towards another chamber when fuel pressure in latter chamber is lower than minimum fuel pressure threshold in latter chamber
EP1892398A1 (en) Device making it possible to control a circuit for circulation of a coolant liquid and a circuit for circulation of lubrication oil of a heat engine of a vehicle
FR2891014A1 (en) Internal combustion engine mixed fuel injector has channels for liquid and gas fuels entering combustion chamber through separate outlet orifices
EP3080410B1 (en) Method for controlling an oil pump in order to improve thermal comfort in the passenger compartment of a motor vehicle, and corresponding engine management system
FR2709516A1 (en) Fuel supply circuit for an internal combustion engine and device forming a fuel flow regulator which can be used in such a supply circuit
FR2933906A1 (en) Passenger compartment's temperature rise improving method for small-size motor vehicle, involves closing exhaust line to degrade efficiency of engine for rapidly increasing heat transfer fluid temperature to increase compartment temperature
FR2865004A1 (en) Intake air temperature control device for motor vehicle`s internal combustion engine, has secondary circuit connected to main circuit such that liquid flow in secondary circuit is independent of liquid flow in main circuit

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20171020

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20211205