EP2876274A1 - Cooling system - Google Patents
Cooling system Download PDFInfo
- Publication number
- EP2876274A1 EP2876274A1 EP14178808.3A EP14178808A EP2876274A1 EP 2876274 A1 EP2876274 A1 EP 2876274A1 EP 14178808 A EP14178808 A EP 14178808A EP 2876274 A1 EP2876274 A1 EP 2876274A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- internal combustion
- combustion engine
- cooling system
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 258
- 239000002826 coolant Substances 0.000 claims abstract description 92
- 238000002485 combustion reaction Methods 0.000 claims abstract description 90
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000010705 motor oil Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000012546 transfer Methods 0.000 description 7
- 239000003570 air Substances 0.000 description 6
- 239000012080 ambient air Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/164—Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/14—Indicating devices; Other safety devices
- F01P11/16—Indicating devices; Other safety devices concerning coolant temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/0204—Filling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
- F01P2003/027—Cooling cylinders and cylinder heads in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P2005/105—Using two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
- F01P2005/125—Driving auxiliary pumps electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/32—Engine outcoming fluid temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/33—Cylinder head temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2037/00—Controlling
- F01P2037/02—Controlling starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/16—Motor-cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/22—Motor-cars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/24—Hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/08—Cabin heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/162—Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
Definitions
- the invention relates to a cooling system for an internal combustion engine.
- Internal combustion engines for motor vehicles have at least one cooling system in which a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler. This thermal energy is then in an ambient heat exchanger, the so-called main water cooler, as well as temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the motor vehicle ambient air delivered.
- a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler.
- This thermal energy is then in an ambient heat exchanger, the so-called main water cooler, as well as temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the motor vehicle ambient air delivered.
- Cooling systems of modern motor vehicles generally have several cooling circuits.
- a so-called large or main cooling circuit and a small cooling circuit which are partially formed integrally, and wherein by means of a thermostatically controlled valve, the coolant is guided either over the large or the small cooling circuit.
- This takes place as a function of the temperature of the coolant, so that, for example, in a warm-up phase of the internal combustion engine, when the coolant has not yet reached its operating temperature range, this is conveyed in the small cooling circuit, whereby the main water cooler, ie that ambient heat exchanger in which the coolant through Heat transfer to the ambient air is mainly cooled, is bypassed.
- the coolant in the large customer group is conveyed by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by a heat transfer from the coolant to the ambient air.
- the heating heat exchanger as the second ambient heat exchanger is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.
- the (main) pump of the cooling system is regularly mechanically driven by the internal combustion engine of the internal combustion engine.
- Their delivery rate is thus basically proportional to the speed at which a crankshaft of the internal combustion engine rotates.
- the cooling power demand tends to increase, the theoretically achievable by the operation of the pump cooling performance in many operating conditions does not correspond to the actual cooling power requirement.
- mechanically driven pumps are often oversized. Attempts to reduce the fuel requirements of motor vehicles have therefore led to the development of mechanically driven coolant pumps which are adjustable in terms of the volume flow rate.
- Such a controllable, mechanically driven coolant pump is for example from the DE 10 2010 044 167 A1 known.
- the main control of the volumetric flow of the coolant thus takes place by means of controllable coolant pumps while the distribution of the volumetric flow is controlled to the individual, each having a different cooling demand component cooler by means of active and in particular controlled by thermostats valves.
- the DE 103 42 935 A1 an internal combustion engine with a cooling circuit comprising a mechanically driven by an internal combustion engine pump. The delivery volume flow of the pump is thus dependent on the speed of the internal combustion engine.
- a plurality of individually controllable control valves are provided in the Integrated cooling circuit.
- the DE 103 42 935 A1 further discloses that the passages of the cylinder crankcase and the cylinder head are connected in parallel, thereby making it possible to individually control the cooling capacity for these components. That from the DE 103 42 935 A1 known cooling system is relatively expensive.
- a cooling system for a motor vehicle which comprises two cooling circuits, namely a main cooling circuit comprising the main water cooler, a main coolant pump and cooling channels of an internal combustion engine and a secondary cooling circuit comprising a heating heat exchanger for an interior heating of the motor vehicle.
- the additional auxiliary heating device and a separate, electrically operated pump having secondary cooling circuit is designed as a short circuit, ie by means of an actively controllable valve, the auxiliary cooling circuit is operable independently of the main cooling circuit.
- cooling circuit For a good and especially efficient cooling performance of a cooling circuit, it is relevant that this is vented as completely as possible. Accordingly, during the filling process of the cooling circuit, in particular during initial filling or refilling as part of maintenance, the air contained in the cooling circuit, which is displaced by the inflowing coolant, must be removed as completely as possible. In addition, during operation of the motor vehicle and thus of the cooling circuit, gas can be produced by evaporation processes, which should be safely dissipated. This is especially true if the cooling circuit is designed for an operating temperature of the coolant, which is above the (pressure-dependent) boiling point of water. Water that has accumulated or settled in the cooling circuit, then evaporates and should be discharged accordingly.
- a ventilation of a cooling circuit is carried out regularly via a surge tank of the cooling system.
- a surge tank of the cooling system Such a reservoir also has the task of compensating for the different thermal expansion of the coolant and is partially filled with air.
- For venting can lead a vent line of usually the highest point of the cooling circuit to the even higher arranged surge tank.
- the present invention seeks to provide a simple as possible adjustable cooling system for a motor vehicle.
- a method for operating such a cooling system is the subject of claim 11.
- the subject of claim 15 is also a connection element that can be advantageously used to form the cooling system according to the invention.
- Advantageous embodiments and embodiments of the cooling system according to the invention and the method according to the invention are the subject of the further claims and will become apparent from the following description of the invention.
- the invention is based on the idea to obtain as simple as possible all temperature-controlled valves as simple as possible cooling system.
- an underlying realization of the invention is that by a suitable integration of at least two controllable coolant pumps without such temperature-controlled valves an individual control of the individual Component cooler flowing volume flow of the coolant and thus the cooling power requirement for these component cooler can be done. It is important that the at least two controllable pumps are integrated into different cooling circuits, which are partially formed integrally, so that by the mutual influence or superposition of the volume flow generated by the individual coolant pumps or pressure of the coolant an individual control of the individual Component cooler flowing volume flow can be done.
- a cooling system for an internal combustion engine having a first cooling circuit comprising a component cooler, an ambient heat exchanger and a pump and a second cooling circuit comprising a component cooler and a pump, wherein the cooling circuits are integrally formed in at least a portion and provided in the cooling circuits a coolant for delivery is or is promoted according to the invention, characterized in that the pumps are designed to be controllable and a control of the flowing through the component cooler volume flows of the coolant by means of (mutually) adapted operation of the at least two pumps can take place or takes place.
- cooler heat exchangers understood that a heat transfer in both directions, i. from a component to the coolant and from the coolant to the component.
- radiationator is chosen because during normal operation of the internal combustion engine, i. when this has reached its operating temperature range, a heat transfer from the component to the coolant is provided and the heat exchanger causes a cooling of the components.
- a heat transfer from the coolant to the respective component can be provided in another operating phase of the internal combustion engine, in particular in a warm-up phase or during operation with very low power. As a result, in particular a rapid heating of the component can be achieved.
- the at least two pumps are driven by an electric motor.
- This allows a particularly simple and accurate control of the individual pumps and thus also the adapted operation of the at least two pumps. It is also possible, one, several or all of the pumps mechanically run by, for example, an internal combustion engine of the internal combustion engine, the controllability of the flow rates these pumps by other measures (see, for example DE 10 2010 044 167 A1 ) can be achieved.
- a cooling system can advantageously be provided that in a warm-up phase of the internal combustion engine mainly or exclusively the pump of the second cooling circuit is operated, while the pump of the first cooling circuit is not operated or only with low power.
- the then a significant throttling effect having pump of the first cooling circuit largely prevents that a relevant volume flow of the coolant through the ambient heat exchanger, which may in particular be the so-called main water cooler, is performed.
- a relevant volume flow of the coolant through the ambient heat exchanger which may in particular be the so-called main water cooler
- means for preventing backflow of the coolant from the integral Section be provided in one or both cooling circuits.
- These means can be designed, for example, in the form of check valves integrated into the cooling circuit (s). If the means are integrated directly into a mouth portion of the integral portion, there is also the advantageous possibility to form them in the form of a flap valve that is pressure-dependent pivotable and thereby either the orifice of the first or the second cooling circuit (at least partially) closes.
- a heating heat exchanger is integrated in the second cooling circuit of the cooling system.
- the warm-up phase of the internal combustion engine may further preferably in a first phase in which the pump of the second cooling circuit with a relatively low flow rate and thus a correspondingly low flow rate of the coolant is operated, and a second phase in which the pump of the second cooling circuit with a relative high flow rate and thus a correspondingly high volume flow of the coolant is operated, be divided.
- a first phase which is preferably prior to the second phase
- rapid heating of this component is achieved by only a very small flow of, in particular, an internal combustion engine and particularly preferably a cylinder head of the internal combustion engine, which is positive can affect the fuel consumption and the exhaust emissions of the internal combustion engine.
- the regulation of the delivery rate of the pump of the second cooling circuit can in particular also be effected as a function of an ambient temperature and a setpoint temperature for the interior of the motor vehicle. If a heating power for the interior is provided depending on the difference between the ambient temperature and the target temperature for the interior, the pump of the second cooling circuit can be operated at a higher power in said first phase of the warm-up phase, as is the case no heating power is necessary.
- the second phase of the warm-up phase with a different, relatively higher flow rate of the pump of the second cooling circuit and thus a higher volume flow of the coolant through the second cooling circuit can be started in particular when (initially) sufficient heating of the internal combustion engine and in particular of the cylinder head has been achieved and / or no particularly high heating power for the interior of the motor vehicle is required more.
- the heat energy absorbed by the coolant in the internal combustion engine may preferably be utilized for rapid heating of another component, such as the engine oil.
- a corresponding further component cooler in particular an engine oil cooler, can be integrated into a connecting section connecting the two cooling circuits.
- the integration of the connection section preferably takes place in such a way that the coolant flowing over the further component cooler can circulate, without being led over the ambient heat exchanger of the first cooling circuit.
- the cooling system according to the invention has a surge tank, it can preferably be provided that this is integrated into a section in which no relevant volume flow of the coolant is provided in the warm-up phase of the internal combustion engine.
- the expansion tank can be integrated into the first cooling circuit parallel to the ambient heat exchanger. This can avoid that during the warm-up phase, the coolant to be heated as quickly as possible is conveyed through the surge tank to a relevant extent, which otherwise may be associated with a not inconsiderable, in this phase of the engine undesirable cooling of the coolant.
- the inventive design of the cooling system has in such a positioning of the surge tank still has the advantage of easy feasible ventilation of the cooling system in a new or refill.
- the pump (not of the internal combustion engine and in particular electrically driven) of the first cooling circuit is operated without the internal combustion engine of the internal combustion engine being operated (non-operation of the internal combustion engine). This simplifies the filling process.
- the internal combustion engine usually has to be operated for venting after refilling or refilling the cooling system in order to operate the (main) pump of the cooling system, through which then the coolant and coolant contained in the cooling system Air is conveyed in the direction of the expansion tank.
- a first of the component cooler is arranged in the integral portion of the two cooling circuits.
- the first component cooler particularly preferably comprises a first part-component cooler and a second part-component cooler, wherein the part-component coolers are connected in parallel.
- the first part-component radiator may be a cooler of a cylinder crankcase (in particular in the form of cooling channels integrated in the cylinder crankcase) and the second part-component radiator may be a cooler of a cylinder head (in particular in the form of cooling channels integrated in the cylinder head) of an internal combustion engine Internal combustion engine act.
- the volume flow of the coolant through the first sectionkomponentenkühler by means of a pressure-controlled valve in dependence on the volume flow through the second sectionkomponentenkühler is controllable.
- a relevant flow through the radiator of the cylinder crankcase with the coolant takes place only when the flow through the radiator of the cylinder head has exceeded a defined limit value.
- a preferred embodiment of the method according to the invention can be realized in which the delivery rate of the pump of first cooling circuit based on the temperature of the coolant at the outlet of the second Partkühlkomponente (for which the or the cooling circuits have at least one appropriately arranged temperature sensor) is controlled and a volume flow through the first Partkomponentenkühler is controlled by means of a matched operation of the pump of the second cooling circuit.
- the temperature of the cylinder head which is reflected in the temperature of the coolant at the outlet of the radiator of the cylinder head, is used as one or the relevant controlled variable for the pump of the first cooling circuit, wherein a control of the cooling performance of the radiator of the cylinder head and thus the temperature of the cylinder head can be advantageously controlled by the flow rate of this pump.
- the pressure in the integral portion of the cooling circuits can be varied by means of the pump of the second cooling circuit that the pressure-controlled valves opens or closes in a defined extent and thus the flow through the Radiator of the cylinder crankcase regulates.
- An advantageously usable for the formation of such a cooling circuit connection element which can be connected in particular to the outside of an internal combustion engine of the internal combustion engine, has at least one two separate flow chambers forming (one or more parts) housing, wherein a first of the flow spaces with at least two inlet ports, both (in particular alternatively) can be shut off by means of a device for preventing backflow, and is connected to an outlet port.
- a second of the flow spaces is connected to at least two inlet connections, one of which can be shut off by means of a pressure-actuated shut-off element, and at least two outlet connections.
- a temperature sensor can furthermore preferably be arranged in (or at least in the vicinity of) at least one of the two inlet connections connected to the second flow space.
- This may in particular be that inlet connection which connects a cooling channel of the cylinder head of the internal combustion engine with the second flow chamber.
- the Fig. 1 shows an internal combustion engine with a cooling system according to the invention, wherein in addition to the cooling system, an internal combustion engine 10 of the internal combustion engine is shown.
- the internal combustion engine 10 may be embodied as a conventional reciprocating internal combustion engine and then comprises a cylinder crankcase 12 in which a plurality of cylinders (not shown) are formed, in each of which a piston (not shown) is movably guided.
- a cylinder head 14 closes the cylinder crankcase 12 and thus the cylinders upwards and further comprises at least one inlet and at least one exhaust valve for each of the cylinders, by which a gas exchange in combustion chambers formed by the cylinders and the pistons is controlled in a known manner.
- Both the cylinder crankcase 12 and the cylinder head 14 are cooled by means of the cooling system, to which these cooling channels 58, 60 have, which are filled with the coolant of the cooling system and flows through this at least temporarily.
- the (at least one) cooling passage 60 of the cylinder crankcase 12 and the (at least one) cooling passage 58 of the cylinder head 14 are formed parallel and thus are also parallel to the coolant flows through.
- the cooling system forms a first cooling circuit and a second cooling circuit, which are formed integrally in a section, specifically in the section formed by the cooling channels 58, 60 of the internal combustion engine 10. Accordingly, during operation of the cooling system, the cooling channels 58, 60 of the internal combustion engine 10 at least partially flows through, regardless of whether only the first or the second or both cooling circuits are used.
- the first cooling circuit further comprises an ambient heat exchanger, which is provided as a so-called main water cooler 16, and a first, electrically driven and controllable in terms of their capacity pump 18, which is arranged downstream of the main water cooler 16. Furthermore, a surge tank 20 is provided, which is integrated in a parallel connection to the main water cooler 16 in the first cooling circuit.
- the individual components of the first cooling circuit are fluid-conductively connected via corresponding connection lines.
- the second cooling circuit also comprises a heating heat exchanger 22, which also represents an ambient heat exchanger, with this if necessary, a heat transfer from the coolant to ambient air, for the air conditioning of an interior of the one of the Internal combustion engine driven motor vehicle is provided, can take place. Furthermore, the second cooling circuit comprises a second, electrically driven and with regard to their delivery rate controllable pump 24, which is arranged downstream of the heating heat exchanger 22. The individual components of the second cooling circuit are fluid-conductively connected via corresponding connecting lines
- the cooling system further comprises an intermediate cooling circuit formed by the integral portion of the first and second cooling circuits, another section of the first cooling circuit, another section of the second cooling circuit, and a connecting section (with corresponding connection lines) connecting the first cooling circuit and the second cooling circuit ,
- the connecting portion downstream of the internal combustion engine 10 and upstream of the main water cooler 16 and the surge tank 20 from the first cooling circuit.
- the mouth of the connecting portion is integrated downstream of the heat exchanger 22 and upstream of the pump 24 (and thus also upstream of the engine 10) in the second cooling circuit.
- a further component cooler in the form of a motor oil cooler 26 is integrated.
- the engine oil cooler 26 is used in the operation of the internal combustion engine after reaching the operating temperature range cooling the used for lubricating the engine 10 engine oil.
- connection element 28 is provided, which in the Fig. 3 shown in isolation. From a housing 30 of the connecting element 28, which is provided for a lateral flanging to the internal combustion engine 10, a first flow space 32 and a second flow space 34, which are separated from each other, are formed.
- the first flow space 32 with two inlet ports 36, 38 is connected, of which a first, the inlet port 36, serves as a supply of coolant from the first cooling circuit and the second, the inlet port 38, as a supply of coolant from the second cooling circuit.
- An outlet port 40 connected to the first flow space 32 is connected to a cooling passage 62 of the engine 10.
- This cooling channel 62 of the internal combustion engine 10 is provided upstream of a branch 64, which serves for a division of the coolant to the parallel cooling channels 58, 60 of the cylinder crankcase 12 and the cylinder head 14.
- a valve flap 42 is further provided, which depends on the pressure difference of the first cooling circuit and the second Cooling circuit in the first flow chamber 32 entering coolant in the direction of one or the other inlet port 36, 38 is pivoted.
- valve flap 42 instead of the valve flap 42, two check valves 44 can be used, of which one of the two inlet ports 36, 38 is assigned.
- the second flow space 34 is also fluid-conductively connected to two inlet ports 46, 48, wherein a first, the inlet port 46, fluidly connected to the cooling channel 28 of the cylinder crankcase 12 and the second, the inlet port 48, fluidly connected to the cooling channel 58 of the cylinder head 14.
- the inlet connection 46 connected to the cooling passage 60 of the cylinder crankcase 12 can be closed by means of a pressure-actuated valve 50.
- the valve 50 comprises a valve body, which is acted upon by means of a prestressed spring element in the direction of an orifice opening of this inlet connection 46.
- the second flow space 34 is fluidly connected to three outlet ports 52, 54, 56, of which a first, the outlet port 52, the discharge of coolant from the second flow space 34 in the first cooling circuit, a second, the outlet port 54, for discharging Coolant from the second flow space 34 in the second cooling circuit and the third, the outlet port 56, for discharging coolant in the engine oil cooler 26 comprehensive connecting portion of the intermediate cooling circuit is used.
- the cooling system shown in the drawings works completely without temperature-controlled valves. A regulation of the volume flows of the coolant conducted via the individual component coolers and heat exchangers, and thus the corresponding cooling or heat exchange rates, is achieved exclusively via adapted power control of the two pumps 18, 24.
- the 6 and 7 show ways to control the cooling capacity of the cylinder crankcase 12 and the cylinder head 14 by flowing through the flow rates of the coolant.
- the pressure-actuated valve 50 in the second flow space 34 of the connection element 28 opens the inlet connection 46 connected to the cooling channel 60 of the cylinder crankcase 12, for example, only at a pressure difference of approximately 200 mbar.
- Such an overpressure in the cooling passage 60 of the cylinder crankcase 12 can be achieved, for example, when the volume flow of the coolant through the cooling passage 58 of the cylinder head 14 is at least 15 l / min.
- This volume flow of the coolant through the cooling passage 60 of the cylinder crankcase 12 can be smaller than the volume flow of the coolant through the cooling passage 58 of the cylinder head 14, in particular Fig. 7 is shown that the entire volume flow is generated by the internal combustion engine 10 in about half of each of the two pumps. Any other division is possible by a corresponding control of the pumps 18, 24.
- a temperature sensor (not shown) is integrated in the inlet connection 48 of the connection element 28 connected to the cooling channel 58 of the cylinder head 14. Its measuring signal can be transmitted to a control device (not shown), for example a central engine control of the internal combustion engine, which activates the pump 18 of the first cooling circuit as a function of this measuring signal.
- the delivery rate of the pump 18 of the first cooling circuit can thus be continuously adjusted such that the coolant leaving the cooling channel 58 of the cylinder head 14 and thus also the cylinder head 14 itself is within a defined operating temperature range.
- a temperature sensor may be provided in the inlet port 46 of the connecting element 28 connected to the cooling channel 60 of the cylinder crankcase 12, the measuring signal of which is transmitted to a control device (not shown), in particular the engine control of the internal combustion engine, which then activates a corresponding control the pump 24 of the second cooling circuit makes.
- a regulation of the cooling capacity of the engine oil cooler 26 and thus the temperature of the engine oil during operation of the internal combustion engine in its operating temperature range can be achieved due to the selected configuration of the intermediate cooling circuit in particular by a corresponding control of the pump 24 of the second cooling circuit.
- boundary volume flows for the flow through the engine oil cooler 26 of 1.5 l / min and 8 l / min can be provided.
- An operation of the cooling system in which the first and the second cooling circuit and the intermediate cooling circuit are flowed through by the coolant, can also be used for venting after a new or refilling of the cooling system, which may be done for example in the context of the new production or maintenance of the internal combustion engine , be used.
- a new or refilling of the cooling system which may be done for example in the context of the new production or maintenance of the internal combustion engine , be used.
- the circulation of the coolant air that is still within the cooling system, taken and gradually promoted to the surge tank 20 in which it is separated from the coolant. Since both pumps 18, 24 of the cooling system are electrically driven and regulated, the recirculation of the coolant in the cooling system can also take place without an operation of the internal combustion engine 10.
- the Fig. 9 to 11 show an operation of the cooling system in a warm-up phase of the internal combustion engine, ie in one operation (especially after a cold start) with not yet reached operating temperature range. It is provided that then either no or only the pump 24 of the second cooling circuit is operated. This results in a cooling medium resting in the cooling system or a circulation of coolant in the second cooling circuit and in the intermediate cooling circuit, but not in the first cooling circuit.
- the warm-up phase is divided into at least two, preferably three phases.
- a first phase directly following the cold start (cf. Fig. 9 ) may be provided to operate none of the pumps 18, 24, whereby the coolant in the entire cooling system largely rests.
- particularly rapid heating of the cylinder head 14 and also of the cylinder crankcase 12 can be achieved by the waste heat of the combustion processes taking place in the combustion chambers of the internal combustion engine 10.
- a second phase (cf. Fig. 10 ) the pump 24 of the second cooling circuit with a relatively low flow rate are put into operation.
- a small volume flow of the coolant is to be achieved by the cylinder head 14, whereby local overheating of the cylinder head 14 can be avoided.
- a volume flow of the coolant through the cylinder crankcase 12 is not provided in this phase.
- the third phase (cf. Fig. 11 ) of the warm-up phase are introduced, which differs from the second phase by a higher capacity of the pump 24 of the second cooling circuit.
- this phase can be provided in particular, after reaching the minimum limit temperature for the cylinder head 14 to achieve a defined operating temperature range for the engine oil as quickly as possible.
- larger volume flow of the coolant increasingly heat energy, which receives the coolant in the cylinder head 14, discharged in the engine oil cooler 26 to the engine oil.
- no flow through the cylinder crankcase 12 takes place with the coolant.
- An operation of the cooling system according to this third phase may also be provided after reaching the operating temperature range of the internal combustion engine, when the internal combustion engine 10 is operated over a longer period of very low power. As a result, an excessive drop in the temperature of the engine oil can be prevented.
- heat energy stored in a heat accumulator is discharged to the coolant.
- a discharge of the heat accumulator is combined with an operation of the pump 24 of the second cooling circuit with at least relatively low flow rate.
- such a heat accumulator is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit, it may be provided, after the end of the operation of the internal combustion engine (especially if this had reached its operating temperature range during operation), the pumps 18, 24 and in particular, to let the pump 24 of the second cooling circuit still run for a defined period of time. This makes it possible to transfer the heat energy remaining in the coolant and in the operation of the internal combustion engine cooled by the coolant components as much as possible to the heat storage in order to recharge it.
- the cooling system may include other component coolers.
- This may be, for example, a transmission oil cooler, a cooler for an exhaust gas turbocharger, a charge air cooler and / or a cooler for exhaust gas recirculation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
Ein Kühlsystem für eine Brennkraftmaschine mit einem einen Komponentenkühler, einen Umgebungswärmetauscher und eine Pumpe (18) umfassenden ersten Kühlkreis und einem einen Komponentenkühler und eine Pumpe (24) umfassenden zweiten Kühlkreis, wobei die Kühlkreise in zumindest einem Abschnitt integral ausgebildet sind und in den Kühlkreisen ein zur Förderung durch die Pumpen (18, 24) vorgesehenes Kühlmittel vorgesehen ist, ist dadurch gekennzeichnet, dass die Pumpen regelbar ausgebildet sind und eine Regelung der durch die Komponentenkühler strömenden Volumenströme des Kühlmittels mittels eines angepassten Betriebs der Pumpen (18, 24) erfolgt.A cooling system for an internal combustion engine comprising a first cooling circuit comprising a component cooler, an ambient heat exchanger, and a pump (18) and a second cooling circuit comprising a component cooler and a pump (24), the cooling circuits being integrally formed in at least one section and entering the cooling circuits is provided for conveying by the pump (18, 24) provided coolant, characterized in that the pumps are designed controllable and a control of the flowing through the component cooler volume flows of the coolant by means of an adapted operation of the pumps (18, 24).
Description
Die Erfindung betrifft ein Kühlsystem für eine Brennkraftmaschine.The invention relates to a cooling system for an internal combustion engine.
Brennkraftmaschinen für Kraftfahrzeuge weisen mindestens ein Kühlsystem auf, in dem ein Kühlmittel mittels einer oder mehrerer Pumpen in mindestens einem Kühlkreis gepumpt wird und dabei Wärmeenergie von in den Kühlkreis integrierten Komponenten, insbesondere dem Verbrennungsmotor sowie einem Ölkühler und/oder einem Ladeluftkühler, aufnimmt. Diese Wärmeenergie wird anschließend in einem Umgebungswärmetauscher, dem sogenannten Hauptwasserkühler, sowie zeitweise in einem Heizungswärmetauscher an die Umgebungsluft, im Fall des Heizungswärmetauschers an die zur Klimatisierung des Innenraums des Kraftfahrzeugs vorgesehene Umgebungsluft, abgegeben.Internal combustion engines for motor vehicles have at least one cooling system in which a coolant is pumped by means of one or more pumps in at least one cooling circuit and thereby absorbs heat energy from integrated into the cooling circuit components, in particular the internal combustion engine and an oil cooler and / or a charge air cooler. This thermal energy is then in an ambient heat exchanger, the so-called main water cooler, as well as temporarily in a heating heat exchanger to the ambient air, in the case of the heating heat exchanger to the provided for air conditioning of the interior of the motor vehicle ambient air delivered.
Kühlsysteme moderner Kraftfahrzeuge weisen in der Regel mehrere Kühlkreise auf. Beispielsweise ist es bekannt, einen so genannten großen bzw. Hauptkühlkreis sowie einen kleinen Kühlkreis vorzusehen, die abschnittsweise integral ausgebildet sind, und wobei mittels eines thermostatgesteuerten Ventils das Kühlmittel entweder über den großen oder den kleinen Kühlkreis geführt wird. Dies erfolgt in Abhängigkeit von der Temperatur des Kühlmittels, so dass beispielsweise in einer Warmlaufphase der Brennkraftmaschine, wenn das Kühlmittel noch nicht seinen Betriebstemperaturbereich erreicht hat, dieses in dem kleinen Kühlkreis gefördert wird, wodurch der Hauptwasserkühler, d.h. derjenige Umgebungswärmetauscher, in dem das Kühlmittel durch Wärmeübergang auf die Umgebungsluft hauptsächlich gekühlt wird, umgangen wird. Hat das Kühlmittel dagegen seinen Betriebstemperaturbereich erreicht, wird mittels des thermostatgesteuerten Ventils das Kühlmittel in dem großen Kundenkreis gefördert, so dass durch einen Wärmeübergang von dem Kühlmittel auf die Umgebungsluft einen Überhitzten des Kühlsystems vermieden wird. Der Heizungswärmetauscher als zweiter Umgebungswärmetauscher ist dagegen regelmäßig in den kleinen Kühlkreis integriert, wodurch auch schon in der Warmlaufphase der Brennkraftmaschine eine Beheizung des Innenraums des Kraftfahrzeugs ermöglicht wird.Cooling systems of modern motor vehicles generally have several cooling circuits. For example, it is known to provide a so-called large or main cooling circuit and a small cooling circuit, which are partially formed integrally, and wherein by means of a thermostatically controlled valve, the coolant is guided either over the large or the small cooling circuit. This takes place as a function of the temperature of the coolant, so that, for example, in a warm-up phase of the internal combustion engine, when the coolant has not yet reached its operating temperature range, this is conveyed in the small cooling circuit, whereby the main water cooler, ie that ambient heat exchanger in which the coolant through Heat transfer to the ambient air is mainly cooled, is bypassed. On the other hand, if the coolant has reached its operating temperature range, the coolant in the large customer group is conveyed by means of the thermostat-controlled valve, so that overheating of the cooling system is avoided by a heat transfer from the coolant to the ambient air. By contrast, the heating heat exchanger as the second ambient heat exchanger is regularly integrated into the small cooling circuit, which enables the interior of the motor vehicle to be heated even in the warm-up phase of the internal combustion engine.
Die (Haupt-)Pumpe des Kühlsystems wird regelmäßig mechanisch von dem Verbrennungsmotor der Brennkraftmaschine angetriebenen. Ihre Förderleistung ist somit grundsätzlich proportional zu der Drehzahl, mit der eine Kurbelwelle des Verbrennungsmotors rotiert. Obwohl mit steigender Drehzahl des Verbrennungsmotors tendenziell auch der Kühlleistungsbedarf steigt, entspricht die durch den Betrieb der Pumpe theoretisch erzielbare Kühlleistung in vielen Betriebszuständen nicht dem tatsächlichen Kühlleistungsbedarf. Da in allen Betriebszuständen eine ausreichend hohe Kühlleistung zur Verfügung stehen soll, sind solche mechanisch angetriebenen Pumpen vielfach überdimensioniert. Die Bestrebungen, den Kraftstoffbedarf von Kraftfahrzeugen zu reduzieren, hat daher zu der Entwicklung von mechanisch angetriebenen Kühlmittelpumpen geführt, die in Grenzen hinsichtlich des Volumenförderstroms regelbar sind. Eine solche regelbare, mechanisch angetriebene Kühlmittelpumpe ist beispielsweise aus der
Bei den Kühlsystemen moderner Kraftfahrzeuge erfolgt die Hauptregelung des Volumenstroms des Kühlmittels somit mittels regelbarer Kühlmittelpumpen während die Verteilung des Volumenstroms auf die einzelnen, jeweils einen unterschiedlichen Kühlbedarf aufweisenden Komponentenkühler mittels aktiv und insbesondere über Thermostate angesteuerte Ventile gesteuert wird. Beispielsweise offenbart die
Aus der
Für eine gute und insbesondere effiziente Kühlleistung eines Kühlkreises ist es relevant, dass dieser möglichst vollständig entlüftet ist. Demnach muss zum einen während des Befüllvorgangs des Kühlkreises, insbesondere bei einer Erstbefüllung oder einer Neubefüllung im Rahmen einer Wartung, die im Kühlkreis enthaltene Luft, die von dem einströmenden Kühlmittel verdrängt wird, möglichst vollständig abgeführt werden. Zudem kann im Betrieb des Kraftfahrzeugs und damit des Kühlkreises Gas durch Verdampfungsprozesse entstehen, das sicher abgeführt werden sollte. Dies gilt insbesondere, wenn der Kühlkreis für eine Betriebstemperatur des Kühlmittels ausgelegt ist, die oberhalb der (druckabhängigen) Siedetemperatur von Wasser liegt. Wasser, das sich in dem Kühlkreislauf angesammelt oder abgesetzt hat, verdampft dann und sollte entsprechend abgeführt werden.For a good and especially efficient cooling performance of a cooling circuit, it is relevant that this is vented as completely as possible. Accordingly, during the filling process of the cooling circuit, in particular during initial filling or refilling as part of maintenance, the air contained in the cooling circuit, which is displaced by the inflowing coolant, must be removed as completely as possible. In addition, during operation of the motor vehicle and thus of the cooling circuit, gas can be produced by evaporation processes, which should be safely dissipated. This is especially true if the cooling circuit is designed for an operating temperature of the coolant, which is above the (pressure-dependent) boiling point of water. Water that has accumulated or settled in the cooling circuit, then evaporates and should be discharged accordingly.
Eine Entlüftung eines Kühlkreises erfolgt regelmäßig über einen Ausgleichsbehälter des Kühlsystems. Ein solcher Ausgleichsbehälter hat zudem noch die Aufgabe, die unterschiedliche, thermische bedingte Ausdehnung des Kühlmittels zu kompensieren und ist dazu teilweise mit Luft gefüllt. Zur Entlüftung kann eine Entlüftungsleitung von in der Regel der höchsten Stelle des Kühlkreises zu dem noch höher angeordneten Ausgleichsbehälter führen.A ventilation of a cooling circuit is carried out regularly via a surge tank of the cooling system. Such a reservoir also has the task of compensating for the different thermal expansion of the coolant and is partially filled with air. For venting can lead a vent line of usually the highest point of the cooling circuit to the even higher arranged surge tank.
Ausgehend von diesem Stand der Technik lag der Erfindung die Aufgabe zugrunde, ein möglichst einfach aufgebautes regelbares Kühlsystem für ein Kraftfahrzeug anzugeben.Based on this prior art, the present invention seeks to provide a simple as possible adjustable cooling system for a motor vehicle.
Diese Aufgabe wird durch ein Kühlsystem gemäß dem unabhängigen Patentanspruch 1 gelöst. Ein Verfahren zum Betrieb eines solchen Kühlsystems ist Gegenstand des Patentanspruchs 11. Gegenstand des Patentanspruchs 15 ist zudem ein Anschlusselement, das vorteilhafterweise zur Ausbildung des erfindungsgemäßen Kühlsystems genutzt werden kann. Vorteilhafte Ausgestaltungen und Ausführungsformen des erfindungsgemäßen Kühlsystems und des erfindungsgemäßen Verfahrens sind Gegenstand der weiteren Patentansprüche und ergeben sich aus der nachfolgenden Beschreibung der Erfindung.This object is achieved by a cooling system according to independent claim 1. A method for operating such a cooling system is the subject of claim 11. The subject of claim 15 is also a connection element that can be advantageously used to form the cooling system according to the invention. Advantageous embodiments and embodiments of the cooling system according to the invention and the method according to the invention are the subject of the further claims and will become apparent from the following description of the invention.
Der Erfindung liegt der Gedanke zugrunde, durch den Verzicht auf möglichst alle temperaturgesteuerten Ventile ein möglichst einfach aufgebautes Kühlsystem zu erhalten. Dabei ist eine der Erfindung zugrunde liegende Erkenntnis, dass durch eine geeignete Integration von mindestens zwei regelbaren Kühlmittelpumpen auch ohne solche temperaturgesteuerten Ventilen eine individuelle Regelung des durch die einzelnen Komponentenkühler strömenden Volumenstroms des Kühlmittels und damit der Kühlleistungsbedarf für diese Komponentenkühler erfolgen kann. Dabei ist von Bedeutung, dass die mindestens zwei regelbaren Pumpen in verschiedene Kühlkreise integriert sind, die jedoch abschnittsweise integral ausgebildet sind, so dass durch die gegenseitige Beeinflussung beziehungsweise Überlagerung des von den einzelnen Kühlmittelpumpen erzeugten Volumenstroms beziehungsweise Drucks des Kühlmittels eine individuelle Regelung des durch die einzelnen Komponentenkühler strömenden Volumenstroms erfolgen kann.The invention is based on the idea to obtain as simple as possible all temperature-controlled valves as simple as possible cooling system. In this case, an underlying realization of the invention is that by a suitable integration of at least two controllable coolant pumps without such temperature-controlled valves an individual control of the individual Component cooler flowing volume flow of the coolant and thus the cooling power requirement for these component cooler can be done. It is important that the at least two controllable pumps are integrated into different cooling circuits, which are partially formed integrally, so that by the mutual influence or superposition of the volume flow generated by the individual coolant pumps or pressure of the coolant an individual control of the individual Component cooler flowing volume flow can be done.
Demnach ist ein Kühlsystem für eine Brennkraftmaschine mit einem einen Komponentenkühler, einen Umgebungswärmetauscher und eine Pumpe umfassenden ersten Kühlkreis und einem einen Komponentenkühler und eine Pumpe umfassenden zweiten Kühlkreis, wobei die Kühlkreise in zumindest einem Abschnitt integral ausgebildet sind und in den Kühlkreisen ein Kühlmittel zur Förderung vorgesehen ist beziehungsweise gefördert wird, erfindungsgemäß dadurch gekennzeichnet, dass die Pumpen regelbar ausgebildet sind und eine Regelung der durch die Komponentenkühler strömenden Volumenströme des Kühlmittels mittels eines (zueinander) angepassten Betriebs der mindestens zwei Pumpen erfolgen kann beziehungsweise erfolgt.Accordingly, a cooling system for an internal combustion engine having a first cooling circuit comprising a component cooler, an ambient heat exchanger and a pump and a second cooling circuit comprising a component cooler and a pump, wherein the cooling circuits are integrally formed in at least a portion and provided in the cooling circuits a coolant for delivery is or is promoted according to the invention, characterized in that the pumps are designed to be controllable and a control of the flowing through the component cooler volume flows of the coolant by means of (mutually) adapted operation of the at least two pumps can take place or takes place.
Unter dem Begriff "Kühler" werden erfindungsgemäß Wärmetauscher verstanden, die einen Wärmeübergang in beide Richtungen, d.h. von einer Komponente auf das Kühlmittel sowie von dem Kühlmittel auf die Komponente, ermöglichen. Der Begriff "Kühler" ist gewählt, da im Normalbetrieb der Brennkraftmaschine, d.h. wenn diese ihren Betriebstemperaturbereich erreicht hat, ein Wärmeübergang von der Komponente auf das Kühlmittel vorgesehen ist und der Wärmetauscher eine Kühlung der Komponenten bewirkt. In einer anderen Betriebsphase der Brennkraftmaschine, insbesondere in einer Warmlaufphase oder bei einem Betrieb mit sehr geringer Leistung, kann jedoch auch ein Wärmeübergang von dem Kühlmittel auf die jeweilige Komponente vorgesehen sein. Dadurch kann insbesondere ein schnelles Erwärmen der Komponente erzielt werden kann.The term "cooler" according to the invention heat exchangers understood that a heat transfer in both directions, i. from a component to the coolant and from the coolant to the component. The term "radiator" is chosen because during normal operation of the internal combustion engine, i. when this has reached its operating temperature range, a heat transfer from the component to the coolant is provided and the heat exchanger causes a cooling of the components. In another operating phase of the internal combustion engine, in particular in a warm-up phase or during operation with very low power, however, a heat transfer from the coolant to the respective component can be provided. As a result, in particular a rapid heating of the component can be achieved.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Kühlsystems kann vorgesehen sein, dass die mindestens zwei Pumpen elektromotorisch angetrieben sind. Dadurch kann eine besonders einfache und genaue Regelung der einzelnen Pumpen und somit auch des angepassten Betriebs der mindestens zwei Pumpen erfolgen. Möglich ist aber auch, eine, mehrere oder alle der Pumpen mechanisch durch beispielsweise einen Verbrennungsmotor der Brennkraftmaschine angetriebenen auszuführen, wobei die Regelbarkeit der Förderleistungen dieser Pumpen durch andere Maßnahmen (vgl. beispielsweise
Bei einem erfindungsgemäßen Kühlsystem kann vorteilhafterweise vorgesehen sein, dass in einer Warmlaufphase der Brennkraftmaschine hauptsächlich oder ausschließlich die Pumpe des zweiten Kühlkreises betrieben wird, während die Pumpe des ersten Kühlkreis nicht oder nur mit geringer Leistung betrieben wird. Die dann eine erhebliche Drosselwirkung aufweisende Pumpe des ersten Kühlkreises verhindert weitgehend, dass ein relevanter Volumenstrom des Kühlmittels über den Umgebungswärmetauscher, bei dem es sich insbesondere um den sogenannten Hauptwasserkühler handeln kann, geführt wird. Im Ergebnis kann so eine ungewollte Kühlung des Kühlmittels in dem Umgebungswärmetauscher während der Warmlaufphase der Brennkraftmaschine verhindert und ein schnelles Aufheizen des Kühlmittels unterstützt werden.In a cooling system according to the invention can advantageously be provided that in a warm-up phase of the internal combustion engine mainly or exclusively the pump of the second cooling circuit is operated, while the pump of the first cooling circuit is not operated or only with low power. The then a significant throttling effect having pump of the first cooling circuit largely prevents that a relevant volume flow of the coolant through the ambient heat exchanger, which may in particular be the so-called main water cooler, is performed. As a result, such an undesired cooling of the coolant in the ambient heat exchanger during the warm-up phase of the internal combustion engine can be prevented and a rapid heating of the coolant can be supported.
Insbesondere dann, wenn die Drosselwirkung von einer mit geringer Leistung oder überhaupt nicht betriebenen Pumpe nicht ausreichend ist, um ein Durchströmen des dazugehörigen Kühlkreises in ausreichendem Maße zu verhindern, können in einer bevorzugten Ausführungsform des erfindungsgemäßen Kühlsystems Mittel zur Vermeidung eines Rückflusses des Kühlmittels aus dem integralen Abschnitt in einen oder beide Kühlkreise vorgesehen sein. Diese Mittel können beispielsweise in Form von in den oder die Kühlkreise integrierten Rückschlagventilen ausgebildet sein. Sofern die Mittel direkt in einen Mündungsabschnitt des integralen Abschnitts integriert sind, besteht auch die vorteilhafte Möglichkeit, diese in Form eines Klappenventils auszubilden, dass druckabhängig verschwenkbar ist und dabei entweder die Mündungsöffnung des ersten oder des zweiten Kühlkreises (zumindest teilweise) verschließt.In particular, when the throttling action of a low power or not operated pump is not sufficient to prevent flow through the associated cooling circuit sufficiently, in a preferred embodiment of the cooling system according to the invention means for preventing backflow of the coolant from the integral Section be provided in one or both cooling circuits. These means can be designed, for example, in the form of check valves integrated into the cooling circuit (s). If the means are integrated directly into a mouth portion of the integral portion, there is also the advantageous possibility to form them in the form of a flap valve that is pressure-dependent pivotable and thereby either the orifice of the first or the second cooling circuit (at least partially) closes.
Vorzugsweise kann vorgesehen sein, dass in den zweiten Kühlkreis des Kühlsystems ein Heizungswärmetauscher integriert ist. Somit kann sichergestellt werden, dass bedarfsweise auch während der Warmlaufphase der Brennkraftmaschine Wärmeenergie aus dem Kühlkreis an zur Klimatisierung eines Innenraums des Kraftfahrzeugs vorgesehene Umgebungsluft übertragen werden kann.It can preferably be provided that a heating heat exchanger is integrated in the second cooling circuit of the cooling system. Thus, it can be ensured that, if necessary, during the warm-up phase of the internal combustion engine, heat energy can be transferred from the cooling circuit to ambient air provided for conditioning an interior of the motor vehicle.
Die Warmlaufphase der Brennkraftmaschine kann weiterhin bevorzugt in eine erste Phase, in der die Pumpe des zweiten Kühlkreises mit einer relativ niedrigen Förderleistung und somit einem entsprechend niedrigen Fördervolumenstrom des Kühlmittels betrieben wird, und eine zweite Phase, in der die Pumpe des zweiten Kühlkreises mit einer relativ hohen Förderleistung und somit einem entsprechend hohen Fördervolumenstrom des Kühlmittels betrieben wird, unterteilt sein. Dadurch kann beispielsweise erzielt werden, dass in der ersten Phase, die vorzugsweise zeitlich vor der zweiten Phase liegt, durch eine nur sehr geringe Durchströmung von insbesondere einem Verbrennungsmotor und besonders bevorzugt einem Zylinderkopf des Verbrennungsmotors, ein schnelles Erwärmen dieser Komponente erreicht wird, was sich positiv auf den Kraftstoffverbrauch und die Abgasemissionen der Brennkraftmaschine auswirken kann. Dabei kann die Regelung der Förderleistung der Pumpe des zweiten Kühlkreises insbesondere auch in Abhängigkeit von einer Umgebungstemperatur sowie einer Solltemperatur für den Innenraum des Kraftfahrzeugs erfolgen. Sofern in Abhängigkeit von der Differenz zwischen der Umgebungstemperatur und der Solltemperatur für den Innenraum eine Heizleistung für den Innenraum vorgesehen ist, kann die Pumpe des zweiten Kühlkreis in der genannten ersten Phase der Warmlaufphase mit einer höheren Leistung betrieben werden, als dies der Fall ist, wenn keine Heizleistung notwendig ist.The warm-up phase of the internal combustion engine may further preferably in a first phase in which the pump of the second cooling circuit with a relatively low flow rate and thus a correspondingly low flow rate of the coolant is operated, and a second phase in which the pump of the second cooling circuit with a relative high flow rate and thus a correspondingly high volume flow of the coolant is operated, be divided. As a result, it can be achieved, for example, that in the first phase, which is preferably prior to the second phase, rapid heating of this component is achieved by only a very small flow of, in particular, an internal combustion engine and particularly preferably a cylinder head of the internal combustion engine, which is positive can affect the fuel consumption and the exhaust emissions of the internal combustion engine. In this case, the regulation of the delivery rate of the pump of the second cooling circuit can in particular also be effected as a function of an ambient temperature and a setpoint temperature for the interior of the motor vehicle. If a heating power for the interior is provided depending on the difference between the ambient temperature and the target temperature for the interior, the pump of the second cooling circuit can be operated at a higher power in said first phase of the warm-up phase, as is the case no heating power is necessary.
Die zweite Phase der Warmlaufphase mit einer anderen, relativ höheren Förderleistung der Pumpe des zweiten Kühlkreises und somit einem höheren Volumenstrom des Kühlmittels durch den zweiten Kühlkreis kann insbesondere dann gestartet werden, wenn eine (zunächst) ausreichende Erwärmung des Verbrennungsmotors und insbesondere des Zylinderkopfs erreicht wurde und/oder keine besonders hohe Heizleistung für die Innenraum des Kraftfahrzeugs mehr erforderlich ist. Dann kann die von dem Kühlmittel in dem Verbrennungsmotor aufgenommene Wärmeenergie vorzugsweise für eine schnelle Erwärmung einer weiteren Komponente, wie beispielsweise des Motoröls, genutzt werden. Dazu kann ein entsprechender weiterer Komponentenkühler, insbesondere ein Motorölkühler, in einen die zwei Kühlkreise verbindenden Verbindungsabschnitt integriert sein. Dabei erfolgt die Integration des Verbindungsabschnitts vorzugsweise derart, dass das über den weiteren Komponentenkühler strömende Kühlmittel zirkulieren kann, ohne über den Umgebungswärmetauscher des ersten Kühlkreises geführt zu werden.The second phase of the warm-up phase with a different, relatively higher flow rate of the pump of the second cooling circuit and thus a higher volume flow of the coolant through the second cooling circuit can be started in particular when (initially) sufficient heating of the internal combustion engine and in particular of the cylinder head has been achieved and / or no particularly high heating power for the interior of the motor vehicle is required more. Then, the heat energy absorbed by the coolant in the internal combustion engine may preferably be utilized for rapid heating of another component, such as the engine oil. For this purpose, a corresponding further component cooler, in particular an engine oil cooler, can be integrated into a connecting section connecting the two cooling circuits. In this case, the integration of the connection section preferably takes place in such a way that the coolant flowing over the further component cooler can circulate, without being led over the ambient heat exchanger of the first cooling circuit.
Sofern das erfindungsgemäße Kühlsystem, wie im Stand der Technik üblich, einen Ausgleichsbehälter aufweist, kann vorzugsweise vorgesehen sein, dass dieser in einen Abschnitt integriert ist, in dem in der Warmlaufphase der Brennkraftmaschine kein relevanter Volumenstrom des Kühlmittels vorgesehen ist. Insbesondere kann der Ausgleichsbehälter parallel zu dem Umgebungswärmetauscher in den ersten Kühlkreis integriert sein. Dadurch kann vermieden werden, dass während der Warmlaufphase das möglichst schnell zu erwärmende Kühlmittel in relevantem Ausmaß durch den Ausgleichsbehälter gefördert wird, was ansonsten mit einer nicht unerheblichen, in dieser Betriebsphase der Brennkraftmaschine unerwünschten Kühlung des Kühlmittels verbunden sein kann.If the cooling system according to the invention, as usual in the prior art, has a surge tank, it can preferably be provided that this is integrated into a section in which no relevant volume flow of the coolant is provided in the warm-up phase of the internal combustion engine. In particular, the expansion tank can be integrated into the first cooling circuit parallel to the ambient heat exchanger. This can avoid that during the warm-up phase, the coolant to be heated as quickly as possible is conveyed through the surge tank to a relevant extent, which otherwise may be associated with a not inconsiderable, in this phase of the engine undesirable cooling of the coolant.
Die erfindungsgemäße Ausgestaltung des Kühlsystems hat bei einer solchen Positionierung des Ausgleichsbehälters noch den Vorteil einer einfach durchführbaren Entlüftung des Kühlsystems bei einer Neu- oder Wiederbefüllung. Insbesondere kann dazu vorgesehen sein, dass während oder nach dem Befüllen des Kühlkreises mit dem Kühlmittel die (nicht von dem Verbrennungsmotor und insbesondere elektrisch angetriebene) Pumpe des ersten Kühlkreises betrieben wird, ohne dass dabei der Verbrennungsmotor der Brennkraftmaschine betrieben wird (Nichtbetrieb des Verbrennungsmotors). Dies Vereinfacht den Befüllvorgang. Bei Brennkraftmaschinen mit konventionellen Kühlsystemen muss dagegen in der Regel zur Entlüftung nach dem Neu- oder Wiederbefüllen des Kühlsystems der Verbrennungsmotor betrieben werden, um die (Haupt-)Pumpe des Kühlsystems zu betreiben, durch die dann das Kühlmittel und mittels des Kühlmittels in dem Kühlsystem enthaltene Luft in Richtung des Ausgleichsbehälters gefördert wird.The inventive design of the cooling system has in such a positioning of the surge tank still has the advantage of easy feasible ventilation of the cooling system in a new or refill. In particular, it may be provided that during or after the filling of the cooling circuit with the coolant, the pump (not of the internal combustion engine and in particular electrically driven) of the first cooling circuit is operated without the internal combustion engine of the internal combustion engine being operated (non-operation of the internal combustion engine). This simplifies the filling process. On the other hand, in internal combustion engines with conventional cooling systems, the internal combustion engine usually has to be operated for venting after refilling or refilling the cooling system in order to operate the (main) pump of the cooling system, through which then the coolant and coolant contained in the cooling system Air is conveyed in the direction of the expansion tank.
In einer weiterhin bevorzugten Ausgestaltung des erfindungsgemäßen Kühlsystems kann vorgesehen sein, dass ein erster der Komponentenkühler in dem integralen Abschnitt der zwei Kühlkreise angeordnet ist. Dabei umfasst der erste Komponentenkühler besonders bevorzugt einen ersten Teilkomponentenkühler und einen zweiten Teilkomponentenkühler, wobei die Teilkomponentenkühler parallel geschaltet sind. Insbesondere kann es sich bei dem ersten Teilkomponentenkühler um einen Kühler eines Zylinderkurbelgehäuses (insbesondere in Form von in das Zylinderkurbelgehäuse integrierten Kühlkanälen ausgebildet) und bei dem zweiten Teilkomponentenkühler um einen Kühler eines Zylinderkopfs (insbesondere in Form von in den Zylinderkopf integrierten Kühlkanälen ausgebildet) eines Verbrennungsmotors der Brennkraftmaschine handeln.In a further preferred embodiment of the cooling system according to the invention can be provided that a first of the component cooler is arranged in the integral portion of the two cooling circuits. In this case, the first component cooler particularly preferably comprises a first part-component cooler and a second part-component cooler, wherein the part-component coolers are connected in parallel. In particular, the first part-component radiator may be a cooler of a cylinder crankcase (in particular in the form of cooling channels integrated in the cylinder crankcase) and the second part-component radiator may be a cooler of a cylinder head (in particular in the form of cooling channels integrated in the cylinder head) of an internal combustion engine Internal combustion engine act.
Dabei kann besonders bevorzugt vorgesehen sein, dass der Volumenstrom des Kühlmittels durch den ersten Teilkomponentenkühler mittels eines druckgesteuerten Ventils in Abhängigkeit von dem Volumenstrom durch den zweiten Teilkomponentenkühler regelbar ist. Somit kann insbesondere vorgesehen sein, dass eine relevante Durchströmung des Kühlers des Zylinderkurbelgehäuses mit dem Kühlmittel erst erfolgt, wenn die Durchströmung des Kühlers des Zylinderkopfs einen definierten Grenzwert überschritten hat.It can be particularly preferably provided that the volume flow of the coolant through the first Teilkomponentenkühler by means of a pressure-controlled valve in dependence on the volume flow through the second Teilkomponentenkühler is controllable. Thus, it can be provided, in particular, that a relevant flow through the radiator of the cylinder crankcase with the coolant takes place only when the flow through the radiator of the cylinder head has exceeded a defined limit value.
Mittels eines solchen Kühlsystems kann eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens realisiert werden, bei dem die Förderleistung der Pumpe des ersten Kühlkreises anhand der Temperatur des Kühlmittels am Ausgang der zweiten Teilkühlkomponente (wozu der oder die Kühlkreise mindestens einen entsprechend angeordneten Temperatursensor aufweisen) geregelt wird und ein Volumenstrom durch den ersten Teilkomponentenkühler mittels eines angepassten Betriebs der Pumpe des zweiten Kühlkreises geregelt wird. Somit kann vorgesehen sein, dass die Temperatur des Zylinderkopfs, die sich in der Temperatur des Kühlmittels am Ausgang des Kühlers des Zylinderkopf widerspiegelt, als eine oder die relevante Regelgröße für die Pumpe des ersten Kühlkreises genutzt wird, wobei eine Regelung der Kühlleistung des Kühlers des Zylinderkopf und damit der Temperatur des Zylinderkopfs vorteilhaft über die Förderleistung dieser Pumpe geregelt werden kann. Um diese Regelung von der Regelung der Kühlleistung des Kühlers des Zylinderkurbelgehäuses zu entkoppeln, kann dann der Druck im integralen Abschnitt der Kühlkreise so mittels der Pumpe des zweiten Kühlkreises variiert werden, dass das druckgesteuerte Ventile in einem definierten Umfang öffnet oder schließt und damit die Durchströmung des Kühlers des Zylinderkurbelgehäuses regelt.By means of such a cooling system, a preferred embodiment of the method according to the invention can be realized in which the delivery rate of the pump of first cooling circuit based on the temperature of the coolant at the outlet of the second Teilkühlkomponente (for which the or the cooling circuits have at least one appropriately arranged temperature sensor) is controlled and a volume flow through the first Teilkomponentenkühler is controlled by means of a matched operation of the pump of the second cooling circuit. Thus, it may be provided that the temperature of the cylinder head, which is reflected in the temperature of the coolant at the outlet of the radiator of the cylinder head, is used as one or the relevant controlled variable for the pump of the first cooling circuit, wherein a control of the cooling performance of the radiator of the cylinder head and thus the temperature of the cylinder head can be advantageously controlled by the flow rate of this pump. To decouple this regulation of the control of the cooling capacity of the radiator of the cylinder crankcase, then the pressure in the integral portion of the cooling circuits can be varied by means of the pump of the second cooling circuit that the pressure-controlled valves opens or closes in a defined extent and thus the flow through the Radiator of the cylinder crankcase regulates.
Ein für die Ausbildung eines solchen Kühlkreises vorteilhaft einsetzbares Anschlusselement, das insbesondere außenseitig an einen Verbrennungsmotor der Brennkraftmaschine angeschlossen werden kann, weist mindestens ein zwei voneinander getrennte Strömungsräume ausbildendes (ein- oder mehrteiliges) Gehäuse auf, wobei ein erster der Strömungsräume mit mindestens zwei Einlassanschlüssen, die beide (insbesondere alternativ) mittels einer Vorrichtung zur Verhinderung eines Rückflusses absperrbar sind, und einem Auslassanschluss verbunden ist. Ein zweiter der Strömungsräume ist dagegen mit mindestens zwei Einlassanschlüssen, von denen einer mittels eines druckbetätigten Absperrelements absperrbar ist, und mindestens zwei Auslassanschlüssen verbunden.An advantageously usable for the formation of such a cooling circuit connection element which can be connected in particular to the outside of an internal combustion engine of the internal combustion engine, has at least one two separate flow chambers forming (one or more parts) housing, wherein a first of the flow spaces with at least two inlet ports, both (in particular alternatively) can be shut off by means of a device for preventing backflow, and is connected to an outlet port. On the other hand, a second of the flow spaces is connected to at least two inlet connections, one of which can be shut off by means of a pressure-actuated shut-off element, and at least two outlet connections.
Bei einem solchen Anschlusselement kann weiterhin bevorzugt in (oder zumindest in der Nähe von) zumindest einem der beiden mit dem zweiten Strömungsraum verbundenen Einlassanschlüsse ein Temperatursensor angeordnet sein. Hierbei kann es sich insbesondere um denjenigen Einlassanschluss handeln, der einen Kühlkanal des Zylinderkopfs des Verbrennungsmotors mit dem zweiten Strömungsraum verbindet.In such a connection element, a temperature sensor can furthermore preferably be arranged in (or at least in the vicinity of) at least one of the two inlet connections connected to the second flow space. This may in particular be that inlet connection which connects a cooling channel of the cylinder head of the internal combustion engine with the second flow chamber.
Die unbestimmten Artikel ("ein", "eine", "einer und "eines"), insbesondere in den Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.The indefinite articles ("an", "an", "an" and "an"), in particular in the patent claims and in the specification generally explaining the claims, are to be understood as such and not as numerical words to understand that these are present at least once and may be present more than once.
Die vorliegende Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. In den Zeichnungen zeigt jeweils schematisch:
- Fig. 1:
- eine Brennkraftmaschine mit einem erfindungsgemäßen Kühlsystem in einer schematischen Darstellung ;
- Fig. 2:
- eine bauliche Umsetzung eines Teils des Kühlsystems der
Fig. 1 in einer perspektivischen Ansicht; - Fig. 3:
- in isolierter Darstellung das Anschlusselement des Kühlsystems gemäß der
Fig. 2 ; - Fig. 4:
- eine Prinzipdarstellung eines ersten Strömungsraums des Anschlusselements gemäß der
Fig. 3 ; - Fig. 5:
- eine Prinzipdarstellung eines zweiten Strömungsraums des Anschlusselements gemäß der
Fig. 3 ; - Fig. 6:
- die Durchströmung eines Teils des Kühlsystems gemäß der
Fig. 1 in einem ersten Betriebszustand der betriebswarmen Brennkraftmaschine; - Fig. 7:
- die Durchströmung eines Teils des Kühlsystems gemäß der
Fig. 1 in einem zweiten Betriebszustand der betriebswarmen Brennkraftmaschine; - Fig. 8:
- die Durchströmung des Kühlsystems gemäß der
Fig. 1 in dem ersten und zweiten Betriebszustand der betriebswarmen Brennkraftmaschine; - Fig. 9:
- eine nicht erfolgende Durchströmung des Kühlsystems gemäß der
Fig. 1 in einer ersten Phase einer Warmlaufphase der Brennkraftmaschine; - Fig. 10:
- die Durchströmung des Kühlsystems gemäß der
Fig. 1 in einer zweiten Phase der Warmlaufphase der Brennkraftmaschine; und - Fig. 11:
- die Durchströmung des Kühlsystems gemäß der
Fig. 1 in einer dritten Phase der Warmlaufphase der Brennkraftmaschine.
- Fig. 1:
- an internal combustion engine with a cooling system according to the invention in a schematic representation;
- Fig. 2:
- a structural implementation of a part of the cooling system of
Fig. 1 in a perspective view; - 3:
- in isolation, the connection element of the cooling system according to the
Fig. 2 ; - 4:
- a schematic representation of a first flow space of the connecting element according to the
Fig. 3 ; - Fig. 5:
- a schematic representation of a second flow space of the connecting element according to the
Fig. 3 ; - Fig. 6:
- the flow through a part of the cooling system according to the
Fig. 1 in a first operating state of the warm-running internal combustion engine; - Fig. 7:
- the flow through a part of the cooling system according to the
Fig. 1 in a second operating state of the warm operating internal combustion engine; - Fig. 8:
- the flow through the cooling system according to the
Fig. 1 in the first and second operating states of the warm operating internal combustion engine; - Fig. 9:
- a non-passing through the cooling system according to the
Fig. 1 in a first phase of a warm-up phase of the internal combustion engine; - Fig. 10:
- the flow through the cooling system according to the
Fig. 1 in a second phase of the warm-up phase of the internal combustion engine; and - Fig. 11:
- the flow through the cooling system according to the
Fig. 1 in a third phase of the warm-up phase of the internal combustion engine.
Die
Sowohl das Zylinderkurbelgehäuses 12 als auch der Zylinderkopf 14 werden mittels des Kühlsystems gekühlt, wozu diese Kühlkanäle 58, 60 aufweisen, die mit dem Kühlmittels des Kühlsystems gefüllt und von diesem zumindest temporär durchströmt werden. Die Kühlkanäle 58, 60 stellen demnach Kühler des Zylinderkurbelgehäuses 12 sowie des Zylinderkopfs 14 dar. Der (mindestens eine) Kühlkanal 60 des Zylinderkurbelgehäuses 12 und der (mindestens eine) Kühlkanal 58 des Zylinderkopfs 14 sind parallel verlaufend ausgebildet und werden somit auch parallel von dem Kühlmittel durchströmt.Both the
Das Kühlsystem bildet einen ersten Kühlkreis und einen zweiten Kühlkreis aus, die in einem Abschnitt, nämlich insbesondere in dem von den Kühlkanälen 58, 60 des Verbrennungsmotors 10 ausgebildeten Abschnitt, integral ausgebildet sind. Demnach werden im Betrieb des Kühlsystems die Kühlkanäle 58, 60 des Verbrennungsmotors 10 zumindest teilweise durchströmt, unabhängig davon ob nur der erste oder der zweite oder beide Kühlkreise genutzt werden.The cooling system forms a first cooling circuit and a second cooling circuit, which are formed integrally in a section, specifically in the section formed by the cooling
Der erste Kühlkreis umfasst weiterhin einen Umgebungswärmetauscher, der als sogenannter Hauptwasserkühler 16 vorgesehen ist, sowie eine erste, elektrisch angetriebene und hinsichtlich ihrer Förderleistung regelbare Pumpe 18, die stromab des Hauptwasserkühlers 16 angeordnet ist. Weiterhin ist ein Ausgleichsbehälter 20 vorgesehenen, der in einer Parallelschaltung zu dem Hauptwasserkühler 16 in den ersten Kühlkreis integriert ist. Die einzelnen Komponenten des ersten Kühlkreises sind über entsprechende Verbindungleitungen fluidleitend verbunden.The first cooling circuit further comprises an ambient heat exchanger, which is provided as a so-called
Der zweite Kühlkreis umfasst noch einen Heizungswärmetauscher 22, der ebenfalls einen Umgebungswärmetauscher darstellt, wobei mit diesem bedarfsweise ein Wärmeübergang von dem Kühlmittel auf Umgebungsluft, die für die Klimatisierung eines Innenraums eines von der Brennkraftmaschine angetriebenen Kraftfahrzeugs vorgesehen ist, erfolgen kann. Weiterhin umfasst der zweite Kühlkreis eine zweite, elektrisch angetriebene und hinsichtlich ihrer Förderleistung regelbare Pumpe 24, die stromab des Heizungswärmetauschers 22 angeordnet ist. Auch die einzelnen Komponenten des zweiten Kühlkreises sind über entsprechende Verbindungsleitungen fluidleitend verbundenThe second cooling circuit also comprises a
Das Kühlsystem umfasst weiterhin noch einen Zwischenkühlkreis, der von dem integralen Abschnitt des ersten und zweiten Kühlkreis, einem weiteren Abschnitt des ersten Kühlkreises, einem weiteren Abschnitt des zweiten Kühlkreises sowie einem den ersten Kühlkreis und den zweiten Kühlkreis verbindenden Verbindungsabschnitt (mit entsprechenden Verbindungsleitungen) gebildet wird. Dabei geht, bezogen auf die Strömungsrichtung des Kühlmittels, der Verbindungsabschnitt stromab des Verbrennungsmotors 10 und stromauf des Hauptwasserkühlers 16 sowie des Ausgleichsbehälters 20 aus dem ersten Kühlkreis ab. Die Mündung des Verbindungsabschnitts ist stromab des Heizungswärmetauschers 22 und stromauf der Pumpe 24 (und damit auch stromauf des Verbrennungsmotors 10) in den zweiten Kühlkreis integriert. In den Verbindungsabschnitt des Zwischenkühlkreises ist ein weiterer Komponentenkühler in Form eines Motorölkühlers 26 integriert. Der Motorölkühler 26 dient im Betrieb der Brennkraftmaschine nach dem Erreichen des Betriebstemperaturbereichs einer Kühlung des zur Schmierung des Verbrennungsmotors 10 genutzten Motoröls.The cooling system further comprises an intermediate cooling circuit formed by the integral portion of the first and second cooling circuits, another section of the first cooling circuit, another section of the second cooling circuit, and a connecting section (with corresponding connection lines) connecting the first cooling circuit and the second cooling circuit , In this case, based on the flow direction of the coolant, the connecting portion downstream of the
Zur Ausbildung des integralen Abschnitts des ersten und zweiten Kühlkreises ist ein Anschlusselement 28 vorgesehen, das in der
Wie sich auch aus den
In den
Der zweite Strömungsraum 34 ist ebenfalls mit zwei Einlassanschlüssen 46, 48 fluidleitend verbunden, wobei ein erster, der Einlassanschluss 46, fluidleitend mit dem Kühlkanal 28 des Zylinderkurbelgehäuses 12 und der zweite, der Einlassanschluss 48, fluidleitend mit dem Kühlkanal 58 des Zylinderkopfs 14 verbunden ist. Dabei ist der mit dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 verbundene Einlassanschluss 46 mittels eines druckbetätigten Ventils 50 verschließbar. Das Ventil 50 umfasst einen Ventilkörper, der mittels eines vorgespannten Federelements in Richtung einer Mündungsöffnung dieses Einlassanschlusses 46 beaufschlagt ist. Weiterhin ist der zweite Strömungsraum 34 mit drei Auslassanschlüssen 52, 54, 56 fluidleitend verbunden, von denen ein erster, der Auslassanschluss 52, der Ableitung von Kühlmittel aus dem zweiten Strömungsraum 34 in den ersten Kühlkreis, ein zweiter, der Auslassanschluss 54, zur Ableitung von Kühlmittel aus dem zweiten Strömungsraum 34 in den zweiten Kühlkreis und der dritte, der Auslassanschluss 56, zur Ableitung von Kühlmittel in den den Motorölkühler 26 umfassenden Verbindungsabschnitt des Zwischenkühlkreises dient.The
Das in den Zeichnungen dargestellten Kühlsystem kommt vollständig ohne temperaturgesteuerte Ventile aus. Eine Regelung der über die einzelnen Komponentenkühler und Wärmetauscher geführten Volumenströme des Kühlmittels und damit die entsprechenden Kühl- bzw. Wärmetauschleistungen wird ausschließlich über eine angepasste Leistungsregelung der beiden Pumpen 18, 24 erreicht.The cooling system shown in the drawings works completely without temperature-controlled valves. A regulation of the volume flows of the coolant conducted via the individual component coolers and heat exchangers, and thus the corresponding cooling or heat exchange rates, is achieved exclusively via adapted power control of the two
Die
Insbesondere kann vorgesehen sein, eine Regelung der Pumpe 18 des ersten Kühlkreises in Abhängigkeit von der Temperatur des aus dem Kühlkanal 58 des Zylinderkopfs 14 austretenden Kühlmittels vorzunehmen. Dazu ist in dem mit dem Kühlkanal 58 des Zylinderkopfs 14 verbundenen Einlassanschluss 48 des Anschlusselements 28 ein Temperatursensor (nicht dargestellt) integriert. Dessen Messsignal kann an eine Steuereinrichtung (nicht dargestellt), beispielsweise eine zentrale Motorsteuerung der Brennkraftmaschine, übertragen werden, die in Abhängigkeit von diesem Messsignal die Pumpe 18 des ersten Kühlkreises ansteuert. Die Förderleistung der Pumpe 18 des ersten Kühlkreises kann somit kontinuierlich derart angepasst werden, dass sich das aus dem Kühlkanal 58 des Zylinderkopfs 14 austretende Kühlmittel und damit auch der Zylinderkopf 14 selbst in einem definierten Betriebstemperaturbereich befindet. Ob gleichzeitig auch das Zylinderkurbelgehäuse 12 - und wenn ja, mit welchem Volumenstrom - von dem Kühlmittel durchströmt wird und somit eine Kühlung des Zylinderkurbelgehäuses 12 erfolgen soll, kann dann beispielsweise ausschließlich mittels einer entsprechenden, die Regelung der Pumpe 18 des ersten Kühlkreises überlagernden Regelung der Pumpe 24 des zweiten Kühlkreises erfolgen. Dazu kann ein Temperatursensor (nicht dargestellt) in dem mit dem Kühlkanal 60 des Zylinderkurbelgehäuses 12 verbundenen Einlassanschluss 46 des Anschlusselements 28 vorgesehen sein, dessen Messsignal an eine Steuereinrichtung (nicht dargestellt), insbesondere die Motorsteuerung der Brennkraftmaschine, übertragen wird, die daraufhin eine entsprechende Ansteuerung der Pumpe 24 des zweiten Kühlkreises vornimmt.In particular, it may be provided to effect a control of the
Eine solcher Betrieb des Kühlsystems ist insbesondere nach dem Erreichen eines definierten, für den Dauerbetrieb vorgesehenen Betriebstemperaturbereichs der Brennkraftmaschine sinnvoll. Die
Eine Regelung der Kühlleistung des Motorölkühlers 26 und damit der Temperatur des Motoröls bei einem Betrieb der Brennkraftmaschine in ihrem Betriebstemperaturbereich kann infolge der gewählten Ausgestaltung des Zwischenkühlkreises insbesondere durch eine entsprechende Regelung der Pumpe 24 des zweiten Kühlkreises erreicht werden. Beispielsweise können für den Betrieb der Brennkraftmaschine in ihrem Betriebstemperaturbereich Grenzvolumenströme für die Durchströmung des Motorölkühlers 26 von 1,5 l/min und 8 l/min vorgesehen sein.A regulation of the cooling capacity of the
Ein Betrieb des Kühlsystems, bei dem der erste und der zweite Kühlkreis sowie der Zwischenkühlkreis von dem Kühlmittel durchströmt werden, kann weiterhin auch zur Entlüftung nach einer Neu- oder Wiederbefüllung des Kühlsystems, die beispielsweise im Rahmen der Neuherstellung oder einer Wartung der Brennkraftmaschine erfolgt sein kann, genutzt werden. Durch das Umwälzen des Kühlmittels wird Luft, die sich noch innerhalb des Kühlsystems befindet, mitgenommen und nach und nach zu dem Ausgleichsbehälter 20 gefördert, in dem diese aus dem Kühlmittel abgeschieden wird. Da beide Pumpen 18, 24 des Kühlsystems elektrisch angetrieben und geregelt sind, kann das Umwälzen des Kühlmittels in dem Kühlsystem auch ohne einen Betrieb des Verbrennungsmotors 10 erfolgen.An operation of the cooling system, in which the first and the second cooling circuit and the intermediate cooling circuit are flowed through by the coolant, can also be used for venting after a new or refilling of the cooling system, which may be done for example in the context of the new production or maintenance of the internal combustion engine , be used. By the circulation of the coolant, air that is still within the cooling system, taken and gradually promoted to the
Die
Dabei ist die Warmlaufphase in mindestens zwei, vorzugsweise drei Phasen unterteilt. In einer ersten, sich direkt an den Kaltstart anschließenden Phase (vgl.
Kurz darauf kann in einer zweiten Phase (vgl.
Sobald für den Zylinderkopf 14 eine definierte minimale Grenztemperatur erreicht wurde, was durch die Messung der Temperatur des aus den Kühlkanälen des Zylinderkopfs 14 austretenden Kühlmittels bestimmt werden kann, kann die dritte Phase (vgl.
Ein Betrieb des Kühlsystems gemäß dieser dritten Phase kann auch nach dem Erreichen des Betriebstemperaturbereichs der Brennkraftmaschine vorgesehen sein, wenn der Verbrennungsmotor 10 über einen längeren Zeitraum mit sehr niedriger Leistung betrieben wird. Dadurch kann ein zu starkes Absinken der Temperatur des Motoröls verhindert werden.An operation of the cooling system according to this third phase may also be provided after reaching the operating temperature range of the internal combustion engine, when the
Weiterhin kann auch vorgesehen sein, dass Wärmeenergie, die in einem in den Zeichnungen nicht dargestellten, in das Kühlsystem und insbesondere in den zweiten Kühlkreis und/oder den Zwischenkühlkreis integrierten Wärmespeicher gespeichert ist (und die beispielsweise in oder kurz nach einem vorherigen Betrieb der Brennkraftmaschine in dem Wärmespeicher gespeichert wurde), an das Kühlmittel abgegeben wird. Um eine Verteilung dieser zuvor gespeicherten Wärmeenergie in dem zweiten Kühlkreis und dem Zwischenkühlkreises zu erreichen, kann vorzugsweise vorgesehen sein, dass ein solches Entladen des Wärmespeichers mit einem Betrieb der Pumpe 24 des zweiten Kühlkreises mit zumindest relativ niedriger Förderleistung kombiniert wird. Somit kann insbesondere vorgesehen sein, ein Entladen eines Wärmespeichers in die zuvor beschriebene zweite Phase der Warmlaufphase zu integrieren. Gegebenenfalls kann dann auf die zuvor beschriebene erste Phase verzichtet werden, wodurch die zweite Phase mit dem Entladen des Wärmespeichers zur ersten Phase der Warmlaufphase würde.Furthermore, it can also be provided that heat energy stored in a heat accumulator, not shown in the drawings, which is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit (and which, for example, in or shortly after a previous operation of the internal combustion engine) the heat storage was stored), is discharged to the coolant. To get a distribution of this before stored thermal energy in the second cooling circuit and the intermediate cooling circuit to achieve, it may preferably be provided that such a discharge of the heat accumulator is combined with an operation of the
Sofern ein solcher Wärmespeicher in das Kühlsystem und insbesondere in den zweiten Kühlkreis und/oder den Zwischenkühlkreis integriert ist, kann vorgesehen sein, nach dem Beenden des Betriebs der Brennkraftmaschine (insbesondere wenn diese während des Betriebs ihren Betriebstemperaturbereich erreicht hatte) die Pumpen 18, 24 und insbesondere die Pumpe 24 des zweiten Kühlkreises noch einen definierten Zeitraum nachlaufen zu lassen. Dadurch wird ermöglicht, die in dem Kühlmittel und in den im Betrieb der Brennkraftmaschine von dem Kühlmittel gekühlten Komponenten noch vorhandene Wärmeenergie so weit wie möglich auf den Wärmespeicher zu übertragen, um diesen wieder aufzuladen.If such a heat accumulator is integrated in the cooling system and in particular in the second cooling circuit and / or the intermediate cooling circuit, it may be provided, after the end of the operation of the internal combustion engine (especially if this had reached its operating temperature range during operation), the
Neben den gezeigten und beschriebenen Komponentenkühlern kann das Kühlsystem noch weitere Komponentenkühler umfassen. Hierbei kann es sich beispielsweise um einen Getriebeölkühler, einen Kühler für einen Abgasturbolader, einen Ladeluftkühler und/oder einen Kühler für eine Abgasrückführung sein.In addition to the component coolers shown and described, the cooling system may include other component coolers. This may be, for example, a transmission oil cooler, a cooler for an exhaust gas turbocharger, a charge air cooler and / or a cooler for exhaust gas recirculation.
- 1010
- Verbrennungsmotorinternal combustion engine
- 1212
- Zylinderkurbelgehäusecylinder crankcase
- 1414
- Zylinderkopfcylinder head
- 1616
- HauptwasserkühlerMain water cooler
- 1818
- Pumpe des ersten KühlkreisesPump of the first cooling circuit
- 2020
- Ausgleichsbehältersurge tank
- 2222
- HeizungswärmetauscherHeater core
- 2424
- Pumpe des zweiten KühlkreisesPump of the second cooling circuit
- 2626
- MotorölkühlerEngine oil cooler
- 2828
- Anschlusselementconnecting element
- 3030
- Gehäusecasing
- 3232
- erster Strömungsraum des Anschlusselementsfirst flow space of the connection element
- 3434
- zweiter Strömungsraum des Anschlusselementssecond flow space of the connection element
- 3636
- erster Auslassanschluss des ersten Strömungsraumsfirst outlet port of the first flow space
- 3838
- zweiter Auslassanschluss des ersten Strömungsraumssecond outlet port of the first flow space
- 4040
- Einlassanschluss des ersten StrömungsraumsInlet port of the first flow space
- 4242
- Ventilklappevalve flap
- 4444
- Rückschlagventilecheck valves
- 4646
- erster Einlassanschluss des zweiten Strömungsraumsfirst inlet port of the second flow space
- 4848
- zweiter Einlassanschluss des zweiten Strömungsraumssecond inlet port of the second flow space
- 5050
- VentilValve
- 5252
- erster Auslassanschluss des zweiten Strömungsraumsfirst outlet port of the second flow space
- 5454
- zweiter Auslassanschluss des zweiten Strömungsraumssecond outlet port of the second flow space
- 5656
- dritter Auslassanschluss des zweiten Strömungsraumsthird outlet port of the second flow space
- 5858
- Kühlkanal des ZylinderkopfsCooling channel of the cylinder head
- 6060
- Kühlkanal des ZylinderkurbelgehäusesCooling channel of the cylinder crankcase
- 6262
- Kühlkanal des VerbrennungsmotorsCooling channel of the internal combustion engine
- 6464
- Verzweigungbranch
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013224005.8A DE102013224005A1 (en) | 2013-11-25 | 2013-11-25 | cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2876274A1 true EP2876274A1 (en) | 2015-05-27 |
EP2876274B1 EP2876274B1 (en) | 2017-04-05 |
Family
ID=51257334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14178808.3A Active EP2876274B1 (en) | 2013-11-25 | 2014-07-28 | Internal combustion engine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2876274B1 (en) |
CN (1) | CN104653272B (en) |
DE (1) | DE102013224005A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106168156A (en) * | 2016-08-09 | 2016-11-30 | 河南柴油机重工有限责任公司 | A kind of engine coolant feeds recovery system automatically |
JP2017150352A (en) * | 2016-02-23 | 2017-08-31 | 株式会社デンソー | Vehicle heat control device |
FR3050233A1 (en) * | 2016-04-19 | 2017-10-20 | Renault Sas | COOLING SYSTEM OF A THERMAL ENGINE |
WO2018086851A1 (en) * | 2016-11-14 | 2018-05-17 | Mahle International Gmbh | Motor vehicle |
EP3653855A1 (en) * | 2018-11-19 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
EP3653856A1 (en) * | 2018-11-19 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
GB2587384A (en) * | 2019-09-26 | 2021-03-31 | Ford Global Tech Llc | Flow control devices for engine cooling systems |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015105921B4 (en) | 2015-04-17 | 2024-05-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cooling system for a vehicle and method for operating the same |
DE102015213879A1 (en) * | 2015-07-23 | 2017-01-26 | Bayerische Motoren Werke Aktiengesellschaft | Internal combustion engine with split cooling system |
DE102015222735A1 (en) * | 2015-11-18 | 2017-05-18 | Volkswagen Aktiengesellschaft | Charge gas cooling circuit and method for tempering charge gas |
DE102017213036A1 (en) * | 2017-07-28 | 2019-01-31 | Bayerische Motoren Werke Aktiengesellschaft | Internal combustion engine with a coolant circuit |
FR3070432B1 (en) * | 2017-08-30 | 2019-08-16 | Psa Automobiles Sa | COOLING SYSTEM ASSEMBLY FOR A THERMAL MOTOR AND A GEARBOX |
DE102017219988A1 (en) * | 2017-11-09 | 2019-01-03 | Audi Ag | Drive device with a coolant circuit for a motor vehicle |
CN109058985B (en) * | 2018-06-25 | 2020-06-16 | 西北工业大学 | Bypass-based heat accumulator heating method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831901A1 (en) * | 1998-07-16 | 2000-01-20 | Bosch Gmbh Robert | Vehicle engine cooling system with second pump forming active element |
DE19906523A1 (en) | 1999-02-17 | 2000-08-31 | Volkswagen Ag | Heating circuit for motor vehicles |
DE10332947A1 (en) * | 2003-07-19 | 2005-02-03 | Daimlerchrysler Ag | Internal combustion engine for a motor vehicle |
DE10342935A1 (en) | 2003-09-17 | 2005-04-28 | Bosch Gmbh Robert | Internal combustion engine with a cooling circuit |
DE102008048373A1 (en) * | 2008-09-22 | 2010-03-25 | Att Automotivethermotech Gmbh | Method for operating cooling and heating circuit for motor vehicle with internal combustion engine, involves arranging shutoff device between main engine coolant pump and water jacket of engine cylinder block or engine cylinder head |
US20120103283A1 (en) * | 2010-11-03 | 2012-05-03 | Ford Global Technologies, Llc | Cooling system |
DE102010044167A1 (en) | 2010-11-19 | 2012-05-24 | Mahle International Gmbh | Coolant pump mounted in motor vehicle, has valve device that is provided to disconnect suction side and pressure side of displacement pump which is connected to slider, for adjusting fluid pressure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19736133A1 (en) * | 1997-08-20 | 1998-11-26 | Daimler Benz Ag | Coolant circuit for IC engine in motor vehicles |
ITTO980371A1 (en) * | 1998-04-30 | 1999-10-30 | Gate Spa | PUMP FOR LIQUIDS, PARTICULARLY FOR A COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE. |
DE10047081B4 (en) * | 2000-09-22 | 2013-06-06 | Volkswagen Ag | Method and device for cooling an internal combustion engine |
DE10143110A1 (en) * | 2001-09-03 | 2003-03-20 | Att Automotivethermotech Gmbh | Operating heating and cooling circuits of vehicle, employs additional pump in deaeration circuit to define coolant flow and supply compartment heating |
CN2556369Y (en) * | 2002-04-27 | 2003-06-18 | 肖志友 | High-efficiency water-cooled engine |
CN2737959Y (en) * | 2004-11-09 | 2005-11-02 | 长安汽车(集团)有限责任公司 | Engine cylinder body and cooling pass structure of cylinder head |
CN2858987Y (en) * | 2005-11-14 | 2007-01-17 | 昆明云内动力股份有限公司 | Cooling system for engine |
US8869756B2 (en) * | 2008-12-10 | 2014-10-28 | Ford Global Technologies, Llc | Cooling system and method for a vehicle engine |
-
2013
- 2013-11-25 DE DE102013224005.8A patent/DE102013224005A1/en not_active Withdrawn
-
2014
- 2014-07-28 EP EP14178808.3A patent/EP2876274B1/en active Active
- 2014-11-25 CN CN201410684525.1A patent/CN104653272B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831901A1 (en) * | 1998-07-16 | 2000-01-20 | Bosch Gmbh Robert | Vehicle engine cooling system with second pump forming active element |
DE19906523A1 (en) | 1999-02-17 | 2000-08-31 | Volkswagen Ag | Heating circuit for motor vehicles |
DE10332947A1 (en) * | 2003-07-19 | 2005-02-03 | Daimlerchrysler Ag | Internal combustion engine for a motor vehicle |
DE10342935A1 (en) | 2003-09-17 | 2005-04-28 | Bosch Gmbh Robert | Internal combustion engine with a cooling circuit |
DE102008048373A1 (en) * | 2008-09-22 | 2010-03-25 | Att Automotivethermotech Gmbh | Method for operating cooling and heating circuit for motor vehicle with internal combustion engine, involves arranging shutoff device between main engine coolant pump and water jacket of engine cylinder block or engine cylinder head |
US20120103283A1 (en) * | 2010-11-03 | 2012-05-03 | Ford Global Technologies, Llc | Cooling system |
DE102010044167A1 (en) | 2010-11-19 | 2012-05-24 | Mahle International Gmbh | Coolant pump mounted in motor vehicle, has valve device that is provided to disconnect suction side and pressure side of displacement pump which is connected to slider, for adjusting fluid pressure |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112017000940T5 (en) | 2016-02-23 | 2018-11-29 | Denso Corporation | Thermal management device for a vehicle |
JP2017150352A (en) * | 2016-02-23 | 2017-08-31 | 株式会社デンソー | Vehicle heat control device |
WO2017145638A1 (en) * | 2016-02-23 | 2017-08-31 | 株式会社デンソー | Vehicle-use heat control device |
US10837348B2 (en) | 2016-02-23 | 2020-11-17 | Denso Corporation | Thermal management device for vehicle |
DE112017000940B4 (en) | 2016-02-23 | 2022-07-14 | Denso Corporation | Thermal management device for a vehicle |
FR3050233A1 (en) * | 2016-04-19 | 2017-10-20 | Renault Sas | COOLING SYSTEM OF A THERMAL ENGINE |
EP3236041A1 (en) * | 2016-04-19 | 2017-10-25 | Renault s.a.s | Cooling system of a heat engine |
CN106168156A (en) * | 2016-08-09 | 2016-11-30 | 河南柴油机重工有限责任公司 | A kind of engine coolant feeds recovery system automatically |
WO2018086886A1 (en) * | 2016-11-14 | 2018-05-17 | Mahle International Gmbh | Electric coolant pump |
WO2018086878A1 (en) * | 2016-11-14 | 2018-05-17 | Mahle International Gmbh | Electric coolant pump |
WO2018086851A1 (en) * | 2016-11-14 | 2018-05-17 | Mahle International Gmbh | Motor vehicle |
US11156146B2 (en) | 2016-11-14 | 2021-10-26 | Mahle International Gmbh | Electric coolant pump |
US10865695B2 (en) | 2016-11-14 | 2020-12-15 | Mahle International Gmbh | Motor vehicle |
EP3653856A1 (en) * | 2018-11-19 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
CN111197524B (en) * | 2018-11-19 | 2021-07-30 | 丰田自动车株式会社 | Cooling device for internal combustion engine |
US11143327B2 (en) * | 2018-11-19 | 2021-10-12 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
CN111197524A (en) * | 2018-11-19 | 2020-05-26 | 丰田自动车株式会社 | Cooling device for internal combustion engine |
US11199124B2 (en) | 2018-11-19 | 2021-12-14 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
EP3653855A1 (en) * | 2018-11-19 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | Cooling apparatus for internal combustion engine |
GB2587384A (en) * | 2019-09-26 | 2021-03-31 | Ford Global Tech Llc | Flow control devices for engine cooling systems |
GB2587384B (en) * | 2019-09-26 | 2021-09-22 | Ford Global Tech Llc | Flow control devices for engine cooling systems |
US11473490B2 (en) | 2019-09-26 | 2022-10-18 | Ford Global Technologies, Llc | Flow control device for a cooling system |
Also Published As
Publication number | Publication date |
---|---|
EP2876274B1 (en) | 2017-04-05 |
DE102013224005A1 (en) | 2015-05-28 |
CN104653272B (en) | 2017-06-27 |
CN104653272A (en) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2876274B1 (en) | Internal combustion engine | |
DE112007001140B4 (en) | Vehicle cooling system with directed flows | |
EP3198124B1 (en) | Internal combustion engine | |
EP3523524B1 (en) | Internal combustion engine | |
DE102012210320B3 (en) | Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position | |
EP2562379B1 (en) | Coolant circuit | |
DE102014201717A1 (en) | Internal combustion engine with liquid-cooled cylinder head and cylinder block and method for controlling the cooling of such an internal combustion engine | |
DE102018212639A1 (en) | FLOW CONTROL VALVE | |
DE102014200054A1 (en) | Liquid-cooled internal combustion engine with liquid-cooled cylinder head and liquid-cooled cylinder block | |
DE102010002082A1 (en) | Separately cooled exhaust manifold to maintain a no-flow strategy of the cylinder block coolant jacket | |
DE102012200003A1 (en) | Liquid-cooled internal combustion engine and method for operating such an internal combustion engine | |
EP1923549B1 (en) | Cooling system for a motor vehicle | |
DE102018118804A1 (en) | Cooling device for a motor | |
EP3530899A1 (en) | Cooling system and combustion engine | |
EP3530901A1 (en) | Combustion engine and motor vehicle | |
DE102007027719B4 (en) | Internal combustion engine with a heating circuit and a cooling circuit | |
EP2562378B1 (en) | Strategy to operate a split coolant circuit | |
DE102014018729A1 (en) | Cooling device for cooling an internal combustion engine | |
DE102012019091A1 (en) | Crankcase for combustion engine of motor vehicle, has coolant chambers, which are separated in fluidic manner from each other by partition wall that is designed one piece with crankcase | |
WO2020191424A1 (en) | Internal combustion engine | |
DE102013203476A1 (en) | Liquid-cooled internal combustion engine e.g. diesel engine, for motor vehicle, has common pump provided upstream to supply openings for conveying coolant to supply openings, and closing element present between pump and one supply opening | |
EP3412883B1 (en) | Combustion engine and motor vehicle | |
DE102004030153A1 (en) | Cooling cycle for internal combustion engine has coolant circulating pump and valve, arranged in coolant bypass-line for its opening and closing whereby coolant bypass-line transmits part of coolant from cooling circuit to coolant radiator | |
DE102014004009A1 (en) | Coolant circuit for cooling an internal combustion engine, in particular for a motor vehicle, and method for operating such a coolant circuit | |
DE102012019046A1 (en) | Internal combustion engine e.g. diesel engine, for motor vehicle i.e. passenger car, has valve device enabling major part of mass flow of coolant to flow through two coolant chambers of crank case in switching position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140728 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20151127 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160324 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 882070 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014003280 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170805 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014003280 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20180108 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170728 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170728 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170405 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 882070 Country of ref document: AT Kind code of ref document: T Effective date: 20190728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190728 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240731 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 11 |