EP3523208A1 - Fond pétaloïde à vallée brisée - Google Patents

Fond pétaloïde à vallée brisée

Info

Publication number
EP3523208A1
EP3523208A1 EP17783929.7A EP17783929A EP3523208A1 EP 3523208 A1 EP3523208 A1 EP 3523208A1 EP 17783929 A EP17783929 A EP 17783929A EP 3523208 A1 EP3523208 A1 EP 3523208A1
Authority
EP
European Patent Office
Prior art keywords
container
plane
valley
valleys
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17783929.7A
Other languages
German (de)
English (en)
Other versions
EP3523208B1 (fr
Inventor
Ivan Pierre
Laurent NAVEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel Participations SAS
Original Assignee
Sidel Participations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations SAS filed Critical Sidel Participations SAS
Publication of EP3523208A1 publication Critical patent/EP3523208A1/fr
Application granted granted Critical
Publication of EP3523208B1 publication Critical patent/EP3523208B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet

Definitions

  • the invention relates to the field of containers, especially bottles or jars, manufactured by blow molding or stretch blow molding from preforms or intermediate containers of plastics material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a container generally comprises an open neck, through which the contents (usually a liquid), a body, which gives the container its volume, and a bottom, which closes the body opposite the neck and forms a base for maintain and hold the container when it is resting on a surface.
  • contents usually a liquid
  • body which gives the container its volume
  • bottom which closes the body opposite the neck and forms a base for maintain and hold the container when it is resting on a surface.
  • the containers for carbonated beverages in which the pressure of the gas dissolved in the liquid induces significant mechanical stresses, are mainly provided with high petaloid shaped bottoms, known under the name of "petaloid bottoms".
  • Such bottoms include projecting, petal-shaped feet separated by convex wall portions, called valleys or valleys, which extend radially from a central zone of the bottom.
  • the feet, high that is to say in a ratio of about 1/2 with the diameter of the container), are intended to ensure the maintenance of the container placed on a surface; the valleys are intended to absorb the efforts (thermal, mechanical) exerted by the contents.
  • An illustrative example of this type of background is found in International Application WO 2012/069759 (Sidel Participations).
  • the petaloid bottoms appear as a relatively successful solution allowing a good resistance to the strong internal pressures of the containers (in particular thanks to the hemispheric shape of the valleys) which are provided with it.
  • a petaloid bottom requires a large amount of material (a 0.5 liter container with a classic petaloid base, having a weight greater than or equal to about 18 g), as well as a relatively high blowing pressure (from order of 22 to 30 bars), to ensure a correct impression of the feet and valleys in the manufacturing mold.
  • a petaloid bottom of low height whose h / d ratio between the height (h) of the feet and the diameter (d) overall of the bottom is less than or equal to 1/5, this bottom being furthermore provided with a central dome and grooves straddling the valleys and the dome.
  • This bottom has interesting mechanical performance, which make it suitable for the addition of an inert gas under pressure, provided however that the amount of material used for the manufacture of the container is sufficient.
  • a plastic container comprising a body, which extends along a main axis, and a petaloid bottom, which extends the body, this bottom comprising:
  • a central dome formed recessed inwardly of the container and extending from a central vertex to a peripheral edge through which the dome connects to the bottom wall
  • each foot having two flanks, each bordering a valley, and a medial face which, in a radial plane, has a concavely curved profile facing outwardly of the container and is extended by an end face, the end faces jointly forming a laying ring, of flat section, interrupted to the right of each valley,
  • each valley has an internal portion that extends from the central dome and an outer portion that joins the periphery in the extension of the inner portion, the inner portion and the outer portion being in section in a radial plane median to the valley, straight and together forming an obtuse angle protruding outwardly of the container and meeting at a vertex located plumb or in the immediate vicinity of the plumb with the laying ring;
  • the bottom comprises two groups of valleys arranged alternately: o primary valleys whose inner portion connects to the dome at the peripheral edge thereof;
  • This architecture provides the bottom a good mechanical rigidity including when the container is pressurized, while having a good breathability.
  • the dome has a height, measured axially between its peripheral edge and its top and, in the secondary valleys, the inner portion is advantageously connected to the dome at a distance from the peripheral edge of between 20% and 70% of said height of the dome;
  • the inner portion is preferably inclined relative to any plane parallel to the plane of the laying ring, towards the inside of the container, at an angle advantageously between 5 ° and 30 °;
  • the inner portion is preferably inclined relative to any plane parallel to the plane of the laying ring, towards the outside of the container, at an angle advantageously between 2 ° and 10 °;
  • the inner portion is inclined, relative to any plane parallel to the plane of the laying ring, towards the interior of the container by an angle less than or equal to 4 °.
  • the valley top may be offset relative to the laying ring, for example between 1.5 mm and 3 mm.
  • the obtuse angle formed, in the radial plane median to a primary valley, between the inner portion and the outer portion, is, for its part, a value preferably between 130 ° and 175 °, and for example of a value of about 160 °.
  • the obtuse angle formed, in the median radial plane to a secondary valley, between the inner portion and the outer portion, is of a value between 130 ° and 165 °, and preferably from 140 ° to 145 °.
  • each valley is advantageously distant from the plane of the laying ring by a value of between 10% and 15% - and e.g. about 12% - the overall diameter of the bottom of the container.
  • FIG.1 is a perspective bottom view of a container with a low petaloid bottom
  • FIG. 2 is a perspective bottom view of the bottom of FIG. 1, on a larger scale
  • FIG. 3 is a plan view from below of the bottom of the container of FIG. 2;
  • FIG.4 is a bottom plan view of detail, on a larger scale, of the bottom of FIG.3 taken in the medallion IV;
  • FIG. 5 is a section of the bottom of FIG. 3 along the V-V section plane
  • FIG.6 is a section of the bottom of FIG.3, according to the section plane VI-VI;
  • FIG.7 is a partial section of the bottom of FIG.3, according to the section plane VII-VII;
  • FIG.8 is a partial section of the bottom of FIG.3, according to the VIN-VIN cutting plane;
  • FIG.9 is a partial section of the bottom of FIG.3, according to the section plane IX-IX;
  • FIG.10 is a partial section of the bottom of FIG.3, according to the section plane X-X.
  • FIG. 1 In FIG. 1 is shown, in perspective from below, a container 1 - in this case a bottle - obtained by blowing or stretching from a blank, such as a preform made of thermoplastic material, for example polyethylene terephthalate (PET), previously heated.
  • a blank such as a preform made of thermoplastic material, for example polyethylene terephthalate (PET), previously heated.
  • PET polyethylene terephthalate
  • the container 1 extends along a main axis X and comprises a side wall called body 2, and a bottom 3 which extends and closes the body 2 at a lower end thereof.
  • the bottom 3 is petaloid, and comprises a bottom wall 4 of generally convex shape towards the outside of the container 1 (that is to say down when the container 1 is laid flat).
  • Bottom 3 has a central dome 5 which extends recess inwardly of container 1 (i.e., dome 5 has a concavity facing outwardly of container 1).
  • the dome 5 has an apex 6.
  • the apex 6 carries, in axial projection, an injection pellet, the material of which remained substantially amorphous during the forming of the container 1.
  • the dome 5 has the particular function of stretching the material in the center of the bottom, so as to increase the crystallinity and therefore the mechanical strength.
  • the dome 5 extends to a peripheral edge 7 (here of substantially circular contour when viewed from below) by which it is connected to the bottom wall 4. More specifically, the peripheral edge 7 forms a fillet of connection of the dome 5 to the bottom wall 4.
  • the bottom 3 also comprises a series of feet 8 which form protrusions projecting axially from the bottom wall 4 towards the outside of the container 1.
  • the feet 8 extend radially from the central dome 5 (and more precisely from its peripheral edge 7) to a periphery 9 of the base 3 where the latter connects to the body 2.
  • the legs 8 are separated in pairs by portions of the bottom wall 4 forming valleys 10 which extend radially in a star shape from the dome 5 to the periphery 9.
  • the valleys 10 extend hollow between the feet 8 that separate two by two.
  • the valleys 10 are substantially straight when viewed in a plane perpendicular to the main X axis (i.e., in the plane of FIG. 3).
  • the valleys 10 are advantageously slightly curved and have a width (measured perpendicular to the radius) which, from the dome 5 to the periphery 9, first decreases and then increases.
  • the feet 8 are equal in number to the valleys 10.
  • the bottom 3 comprises six feet 8 and six valleys 10, regularly alternated and distributed in a star shape. .
  • This number is a good compromise; it could, however, be less (but greater than or equal to four), or greater (but preferably less than or equal to ten).
  • Each foot 8 has two substantially planar flanks 11 each bordering a valley 10. As can be seen in FIG. 7 to FIG. 10, the flanks 11 are not vertical (because the bottom 3 would then be difficult or impossible to blow), but inclined by opening from the valley 10 to the outside.
  • Each foot 8 further has a medial face 12 which joins the flanks 11. As illustrated in FIG. 3, seen in a plane perpendicular to the main axis X, the medial face 12 extends substantially radially.
  • each leg 8 extending the medial face 12 forms an end face 13 of the foot 8.
  • the end faces 13 of the legs 8 are coplanar and together form a ring 14 for laying, interrupted and flat section, through which the container
  • a flat surface for example a table
  • the fitting ring 14 is connected to the body 2 via a structure having a connection fillet comprising two parts 8A and 8B, connected at a junction 8C. Said structure will be described in more detail later.
  • the feet 8 are tapering from the inside to the outside of the container 1 (that is to say downwards), and in that widening from the central dome 5 to the periphery 9.
  • Each valley 10 has an inner portion extending from the central dome 5, and an outer portion 16 which joins the periphery 9.
  • the overall height of the bottom 3 is defined as the distance, measured axially, between the plane of the laying ring 14 (in other words the end face 13) and the junction plane between the outer portions 16 and the periphery 9. As will be indicated later, this height is referenced Q.
  • the inner portion and the outer portion 16 are, in section in a radial plane median to the valley 10, straight and together form an obtuse angle projecting outwardly of the container 1 .
  • the inner portion and the outer portion 16 meet at a vertex 17 located at right angles or in the immediate vicinity of the plumb with the setting ring 14, that is to say that the vertex can be offset from the Laying plane determined by the ring 14.
  • the top 17 is curved in any radial plane, and has a concavity turned towards the inside of the container 1.
  • the valleys 10 are subdivided into two groups of valleys 10 arranged alternately, namely:
  • the internal portion 15B of the secondary valleys 10B is deeper, when measured axially, than the internal portion 15A of the primary valleys 10A. This difference in depth appears clearly in FIG. 2 and on the left of FIG. 6, where the primary valleys 10A are plotted in mixed fine lines while the secondary valleys 10B are plotted in solid bold lines.
  • H the distance, measured axially, between, on the one hand, an outer limit of the peripheral edge 7 of the dome 5 and the plane of the ring
  • M is the distance, measured axially, between the top 17 of each valley 10 and the plane of the fitting ring 14
  • V the angular aperture between the flanks 11, measured in a transverse plane even further from the dome 5, coinciding with the IX-IX cutting plane, as illustrated in FIG.
  • W the radius of curvature, measured in a radial plane, of the face
  • the bottom 3 may be called "petaloid bottom” because of its structure made of alternating projecting feet 8 and valleys 10 recessed. However, its low Q / D diameter ratio disqualifies it for carbonated applications (typically for soft drinks). This ratio is indeed less than or equal to 1/4.
  • a classic petaloid background would have such a ratio of about 1/2.
  • the present bottom 3 which may be called "petaloid mini" because of its low Q / diameter D ratio, is intended rather for flat liquid type applications associated with the addition, immediately after filling and before capping. , a drop of liquid nitrogen whose vaporization puts the contents of the container 1 under pressure, this overpressure being less than or equal to 1.3 bar.
  • the ratio Q height / diameter D is preferably between 0.15 and 0.25, and preferably of the order of 0.2.
  • the internal portion 15A is inclined, with respect to any plane parallel to the plane of the fitting ring 14, toward the outside of the container 1. this sloping negative slope of the internal portion 15A, advantageously between 2 ° and 10 °.
  • the internal portion 15B in the secondary valleys 10B, is on the contrary inclined with respect to any plane parallel to the plane of the laying ring 14 towards the interior of the container 1 This positive inclination of the internal portion 15B is advantageously called “proclive”, advantageously between 5 ° and 30 °.
  • the internal portion 15A of the primary valleys 10A could, like the internal portion 15B of the secondary valleys 10B, be inclined, with respect to any plane parallel to the plane of the fitting ring 14, towards the interior of the container 1 that is to say in proclive, of an angle however less than or equal to 4 °.
  • the bottom 3 has, in the illustrated example, valleys 10A and 10B whose internal portions 15A, 15B are alternately sloping (FIG. 5) and in proclive (FIG.
  • the internal portions 15A of the primary valleys 10A debouch internally on the peripheral edge 7 of the central dome 5, while the internal portions 15B of the secondary valleys 10B open internally at a distance from the peripheral edge 7. This configuration increases the mechanical strength of the bottom 3 when under pressure.
  • the internal portions 15B of the secondary valleys 10B open on the dome 5 at a distance F 'from the peripheral edge 7 thereof, between this peripheral edge 7 and the vertex 6 of the dome.
  • this distance F ' is advantageously between 20% and 70% of the total height F of the dome 5:
  • the distance F ' is approximately 60% of the total height F of the dome 5:
  • the outer portion 16 is advantageously inclined, with respect to all plane parallel to the plane of the ring 14 for laying, towards the inside of the container 1, by an angle A.
  • the outer portion 16 is sloped.
  • the angle A of inclination of the outer portion 16 is preferably between 20 ° and 30 °.
  • angles P and P 'are obtuse are therefore strictly greater than 90 ° and strictly less than 180 °.
  • the angle P is advantageously between 130 ° and 175 °, and preferably about 160 °.
  • angle P ' illustrated in FIG. 6, it is advantageously between 130.degree. And 165.degree., And preferably from about 140.degree. To 145.degree.
  • the width B of the laying ring 14 is advantageously between 0.4 mm and 1 mm, and preferably of the order of 0.5 mm.
  • the radius C of curvature is advantageously equal to about half the radius E.
  • the radius E is advantageously between 5 mm and 11 mm. In this case, it follows that the radius C is between 2.5 mm and 5 mm.
  • the center of curvature of the radius E is located vertically to the ring 14 laying.
  • the fitting ring 14 is connected to the body 2 via a structure having a connection fillet comprising two parts 8A and 8B.
  • the radius E is that of the first portion 8A, which is between the fitting ring 14 and the junction 8C between the portions 8A and 8b of the fillet. This radius is constant or may vary in a small way.
  • the second portion 8B of the fillet is between the junction 8C and the periphery 9 of the bottom 3 where it connects to the body 2.
  • This second portion 8B has an evolutionary radius of curvature between the junction 8C and the peripheral edge 9 of the bottom 3.
  • the overall diameter D of the bottom 3 is a function of the capacity of the container 1.
  • the diameter D may be about 65 mm (in this case, the radius E is advantageously about 6 mm).
  • the diameter D may be about 90 mm (in this case, the radius E is preferably about 9 mm).
  • the radius E 'of the crown is advantageously between 5 mm and 11 mm. It may be equal to the radius E.
  • the radius E ' is a function of the capacity of the container 1. For a container 1 with a capacity of 0.5 I, the radius E' may be About 6 mm. For a container 1 with a capacity of 1, 5 I, the radius E 'can be about 9 mm.
  • the height F of the dome 5 is advantageously between 1 mm and 8 mm. In practice, this height F is a function of the capacity of the container 1. For a container 1 with a capacity of 0.5 I, the height F may be about 2 mm. For a container 1 with a capacity of 1.5 I, the height can be about 7.5 mm. In this case, the distance F 'is advantageously approximately 4.5 mm.
  • the angle G is advantageously between 20 ° and 40 °. It is recalled that this is the angle considered in a radial plane, between the axis X of the body 2 and the tangent to the first portion 8A of the fillet, at the junction 8C between the parts 8A and 8b of this connection holiday.
  • the angle G is a function of the capacity of the container 1 and, in particular, its diameter D.
  • the value of the angle G according to the diameter D of the container and the radius E of curvature of the first portion 8A of the leave, determines the position of the junction 8C between the two parts 8A and 8B of the fillet of connection of the ring 14 to the body 2.
  • the angle G may be 25 ° approx.
  • the angle G may be about 35 °.
  • the distance H is advantageously related to the overall diameter D of the bottom 3. More specifically, the distance H is preferably between 10% and 15% (and, for example, approximately 12%) of the diameter D.
  • the diameter J is advantageously between 65% and 75% (and for example about 70%) of the diameter D.
  • the distance L is advantageously between 50% and 85% (and eg about 70%) of the overall height Q of the bottom 3.
  • the distance M is advantageously a function of the overall diameter D of the bottom 3. More specifically, the distance M is advantageously between 10% and 15% (and for example about 12%) of the diameter D.
  • the offset O may be zero and, in this case, the top 17 is located vertically above the fitting ring 14; it can also be positive (ie that is to say that the top 17 is radially offset, with respect to the laying ring 14, towards the outside of the container 1), or on the contrary negative (that is to say that the top 17 is shifted radially, relative to the insertion ring 14, towards the inside of the container 1). In both cases, the value of the offset O is small compared to the diameter D.
  • the offset O can be indexed on the radius E, e.g. in a ratio of 1 to 3, that is to say that the ratio O / E is about 1/3.
  • the offset O is between 1.5 mm and 3 mm.
  • the overall radius T of the dome 5 is advantageously between 5 mm and 15 mm.
  • this radius T is a function of the capacity of the container 1.
  • the radius T is thus, for example, about 7 mm.
  • the radius T is e.g. about 13 mm.
  • the angular aperture of the flanks 11 is variable. More precisely, the angular aperture of the flanks 11 decreases from the inside to the outside of the bottom 3 (that is from the X axis to the periphery 9), the angular aperture S being greater than the angular aperture R, which in turn is greater than the angular aperture V, itself greater than the angular aperture U, which means that the flanks 11 are closing off from the dome 5 towards the periphery 9.
  • the angle P tends to deform by closing.
  • the flanks 11 which present at this point their greatest height (measured axially, coincides with the distance M), absorb this deformation without being too deformed in turn, so that the general deformation of the bottom 3 is of small magnitude, and therefore resists the pressure.
  • the concave shape of the medial face 12, as well as the alternation of relatively shallow primary valleys 10A and of deeper secondary valleys 10B seem to contribute to this rigidity.
  • Tests carried out on the container 1 show that the most important deformations are located on the dome 5, whose curved shape It is particularly resistant to pressure, while the peripheral areas of the dome 5 (valleys 10, 8) are only slightly deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Closures For Containers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

Récipient (1) pour vu d'un fond (3) pétaloïde ayant des pieds (8) qui forment des excroissances vers l'extérieur du récipient (1), séparés deux à deux par des vallées (10) en creux qui s'étendent radialement depuis un dôme (5) central du fond (3) jusqu'à une périphérie (9) de celui-ci, chaque pied (8) ayant une face (12) médiane à concavité tournée vers l'extérieur et se prolongeant par une face (13) d'extrémité formant un anneau (14) de pose interrompu, de section plane, chaque vallée (10) présentant une portion (15) interne s'étendant à partir du dôme (5) central et une portion (16) externe qui rejoint la périphérie (9), la portion (15) interne et la portion (16) externe étant, en section dans un plan radial médian à la vallée (10), droites et formant ensemble un angle (P) obtus saillant vers l'extérieur du récipient (1) et se rejoignant en un sommet (17) situé à l'aplomb ou à proximité immédiate de l'aplomb de l'anneau (14) de pose.

Description

Fond pétaloïde à vallée brisée
L'invention a trait au domaine des récipients, notamment bouteilles ou pots, fabriqués par soufflage ou étirage soufflage à partir d'ébauches (préformes ou récipients intermédiaires) en matière plastique telle que du polyéthylène téréphtalate (PET).
Un récipient comprend généralement un col ouvert, par lequel on introduit le contenu (ordinairement un liquide), un corps, qui confère au récipient son volume, et un fond, qui ferme le corps à l'opposé du col et forme un socle destiné à assurer la tenue et le maintien du récipient lorsqu'il repose sur une surface.
Les récipients destinés aux boissons carbonatées, dans lesquels la pression du gaz dissous dans le liquide induit des contraintes mécaniques importantes, sont majoritairement pourvus de fonds de forme pétaloïde de grande hauteur, connus sous l'appellation de "fonds pétaloïdes". De tels fonds comprennent des pieds en saillie, en forme de pétales, séparés par des portions de paroi convexe, appelées creux ou vallées, qui s'étendent radialement depuis une zone centrale du fond. Les pieds, de grande hauteur (c'est-à-dire dans un rapport d'environ 1/2 avec le diamètre du récipient), sont destinés à assurer le maintien du récipient posé sur une surface ; les vallées sont destinées à absorber les efforts (thermiques, mécaniques) exercés par le contenu. On trouvera un exemple illustratif de ce type de fond dans la demande internationale WO 2012/069759 (Sidel Participations).
Les fonds pétaloïdes apparaissent comme une solution relativement aboutie permettant une bonne résistance aux fortes pressions internes des récipients (notamment grâce à la forme hémisphérique des vallées) qui en sont pourvus.
Cependant, un fond pétaloïde requiert une quantité de matière importante (un récipient de 0,5 I à fond pétaloïde classique, ayant un poids supérieur ou égal à 18 g environ), de même qu'une pression de soufflage relativement élevée (de l'ordre de 22 à 30 bars), pour assurer une prise d'empreinte correcte des pieds et vallées dans le moule de fabrication.
Ces contraintes tendent à disqualifier les fonds pétaloïdes pour les applications de type "liquides plats" (typiquement de l'eau de table ou des boissons non gazeuses), pour lesquelles on minimise tant la pression de soufflage que la quantité de matière employée (aujourd'hui de l'ordre de 10 g tout au plus pour un récipient de 0,5 I).
Il devient courant, pour certaines applications de liquides plats sensibles à l'oxydation (notamment les jus de fruit(s)), mais également certaines eaux plates, de remplacer l'air surmontant de tels liquides plats par un gaz inerte (typiquement de l'azote). En pratique, cette opération est réalisée par versement d'une goutte de gaz inerte liquéfié sur la surface des liquides plats, précédant immédiatement le bouchage du récipient. Cette opération induit une surpression dans les récipients auxquels ce traitement est appliqué. Même légère en apparence (de l'ordre de 0,5 à 1,3 bar), cette surpression suffit à accroître de manière importante les contraintes qui s'exercent sur les fonds, sans que ces contraintes justifient toutefois le recours à des fonds pétaloïdes classiques (c'est-à-dire de grande hauteur).
Or un fond pourvu d'une simple voûte concave, s'il répond a priori aux exigences d'économie de matière et permet une fabrication aisée des récipients par soufflage (on parle de récipients présentant une "souff labil ité" aisée), n'est cependant pas en mesure de supporter sans déformation notable les contraintes dues à la pression hydrostatique doublée de la pression du gaz inerte ajouté.
Il existe donc un besoin pour un récipient dont le fond offre une résistance accrue aux contraintes internes par rapport aux fonds voûtés ordinaires, tout en ne nécessitant pas autant de matière, ni une pression de soufflage aussi élevée, qu'un fond pétaloïde ordinaire.
II a donc été proposé, cf. la demande internationale WO2014207331
(Sidel Participations), un fond pétaloïde de faible hauteur, dont le rapport h/d entre la hauteur (h) des pieds et le diamètre (d) hors tout du fond est inférieur ou égal à 1/5, ce fond étant en outre pourvu d'un dôme central et de rainures à cheval sur les vallées et sur le dôme.
Ce fond présente des performances mécaniques intéressantes, qui le rendent adapté à l'adjonction d'un gaz inerte sous pression, à condition toutefois que la quantité de matière employée pour la fabrication du récipient soit suffisante.
Or les exploitants sont toujours plus exigeants sur les économies de matière, et le besoin renaît de proposer un nouveau récipient dont le fond puisse, à quantité de matière encore réduite, offrir sous pression une résistance mécanique suffisante tout en présentant une souff labilité aisée.
A cet effet, il est proposé un récipient en matière plastique comprenant un corps, qui s'étend selon un axe principal, et un fond pétaloïde, qui prolonge le corps, ce fond comprenant :
une paroi de fond de forme générale convexe vers l'extérieur du récipient,
un dôme central formé en creux vers l'intérieur du récipient et qui s'étend depuis un sommet central jusqu'à un bord périphérique par lequel le dôme se raccorde à la paroi de fond, et
au moins quatre pieds qui forment des excroissances à partir de la paroi de fond vers l'extérieur du récipient, séparés deux à deux par des portions de la paroi de fond formant au moins quatre vallées en creux qui s'étendent radialement depuis un dôme central du fond jusqu'à une périphérie de celui-ci,
chaque pied ayant deux flancs, bordant chacun une vallée, et une face médiane qui, dans un plan radial, présente un profil courbe à concavité tournée vers l'extérieur du récipient et se prolonge par une face d'extrémité, les faces d'extrémités formant conjointement un anneau de pose, de section plane, interrompu au droit de chaque vallée,
récipient dans lequel :
- chaque vallée présente une portion interne qui s'étend à partir du dôme central et une portion externe qui rejoint la périphérie dans le prolongement de la portion interne, la portion interne et la portion externe étant, en section dans un plan radial médian à la vallée, droites et formant ensemble un angle obtus saillant vers l'extérieur du récipient et se rejoignant en un sommet situé à l'aplomb ou à proximité immédiate de l'aplomb de l'anneau de pose ;
le fond comprend deux groupes de vallées disposées en alternance : o des vallées primaires dont la portion interne se raccorde au dôme à hauteur du bord périphérique de celui-ci ;
o des vallées secondaires dont la portion interne se raccorde au dôme entre le bord périphérique et le sommet central du dôme, à distance du bord périphérique. Cette architecture procure au fond une bonne rigidité mécanique y compris lorsque le récipient est mis sous pression, tout en présentant une bonne souff labilité.
Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison.
Le dôme présente une hauteur, mesurée axialement entre son bord périphérique et son sommet et, dans les vallées secondaires, la portion interne se raccorde avantageusement au dôme à une distance du bord périphérique comprise entre 20% et 70% de ladite hauteur du dôme ;
Dans les vallées secondaires, la portion interne est de préférence inclinée, par rapport à tout plan parallèle au plan de l'anneau de pose, vers l'intérieur du récipient, d'un angle avantageusement compris entre 5° et 30° ;
Dans les vallées primaires, la portion interne est de préférence inclinée, par rapport à tout plan parallèle au plan de l'anneau de pose, vers l'extérieur du récipient, d'un angle avantageusement compris entre 2° et 10° ;
En variante, dans les vallées primaires, la portion interne est inclinée, par rapport à tout plan parallèle au plan de l'anneau de pose, vers l'intérieur du récipient d'un angle inférieur ou égal à 4°.
Dans le plan radial médian à chaque vallée, le sommet de la vallée peut être décalé par rapport à l'anneau de pose, par exemple d'une valeur comprise entre 1,5 mm et 3 mm.
L'angle obtus formé, dans le plan radial médian à une vallée primaire, entre la portion interne et la portion externe, est, quant à lui, d'une valeur de préférence comprise entre 130° et 175°, et par exemple d'une valeur de 160° environ.
L'angle obtus formé, dans le plan radial médian à une vallée secondaire, entre la portion interne et la portion externe, est d'une valeur comprise entre 130° et 165°, et avantageusement de140° à 145° environ.
Le sommet de chaque vallée est avantageusement distant du plan de l'anneau de pose d'une valeur comprise entre 10% et 15% - et par ex. de 12% environ - du diamètre hors tout du fond du récipient.
Le présente un diamètre hors tout, toutes les portions externes rejoignent la périphérie sur un même plan de jonction, et les pieds présentent une hauteur, mesurée axialement entre le plan de l'anneau de pose et ledit plan de jonction, dont la valeur est comprise entre 15% et 25%, et de préférence d'environ 20%, du diamètre hors tout du fond.
D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels :
la FIG.1 est une vue de dessous en perspective d'un récipient muni d'un fond pétaloïde de faible hauteur ;
la FIG.2 est une vue de dessous en perspective du fond de la FIG.1, à plus grande échelle ;
- la FIG.3 est une vue en plan de dessous du fond du récipient de la FIG.2 ;
la FIG.4 est une vue en plan de dessous de détail, à plus grande échelle, du fond de la FIG.3 prise dans le médaillon IV ;
la FIG.5 est une section du fond de la FIG.3, selon le plan de coupe V-V ;
la FIG.6 est une section du fond de la FIG.3, selon le plan de coupe VI-VI ;
la FIG.7 est une section partielle du fond de la FIG.3, selon le plan de coupe VII-VII ;
- la FIG.8 est une section partielle du fond de la FIG.3, selon le plan de coupe VIN-VIN ;
la FIG.9 est une section partielle du fond de la FIG.3, selon le plan de coupe IX- IX ;
la FIG.10 est une section partielle du fond de la FIG.3, selon le plan de coupe X-X.
Sur la FIG.1 est représenté, en perspective de dessous, un récipient 1 - en l'occurrence une bouteille - obtenu par soufflage ou étirage soufflage à partir d'une ébauche, telle qu'une préforme en matière thermoplastique, par exemple en polyéthylène téréphtalate (PET), préalablement chauffée.
Le récipient 1 s'étend selon un axe X principal et comprend une paroi latérale appelée corps 2, et un fond 3 qui prolonge et ferme le corps 2 à une extrémité inférieure de celui-ci.
Le fond 3 est pétaloïde, et comprend une paroi 4 de fond de forme générale convexe vers l'extérieur du récipient 1 (c'est-à-dire vers le bas lorsque le récipient 1 est posé à plat). Le fond 3 présente un dôme 5 central qui s'étend en creux vers l'intérieur du récipient 1 (c'est-à-dire que le dôme 5 présente une concavité tournée vers l'extérieur du récipient 1). En son centre, le dôme 5 présente un sommet 6. Dans l'exemple illustré, le sommet 6 porte, en saillie axiale, une pastille venue d'injection, dont la matière est demeurée sensiblement amorphe au cours du formage du récipient 1. Le dôme 5 a notamment pour fonction d'étirer la matière au centre du fond, de façon à en accroître la cristallinité et donc la résistance mécanique.
Le dôme 5 s'étend jusqu'à un bord 7 périphérique (ici de contour sensiblement circulaire lorsque vu par-dessous) par lequel il se raccorde à la paroi 4 de fond. Plus précisément, le bord 7 périphérique forme un congé de raccordement du dôme 5 à la paroi 4 de fond.
Le fond 3 comprend par ailleurs une série de pieds 8 qui forment des excroissances en saillie axiale à partir de la paroi 4 de fond vers l'extérieur du récipient 1.
Les pieds 8 s'étendent radialement à partir du dôme 5 central (et plus précisément à partir de son bord 7 périphérique), jusqu'à une périphérie 9 du fond 3 où celui-ci se raccorde au corps 2.
Comme cela est bien visible sur les FIG.2 et FIG.3, les pieds 8 sont séparés deux à deux par des portions de la paroi 4 de fond formant des vallées 10 qui s'étendent radialement en étoile depuis le dôme 5 jusqu'à la périphérie 9.
Les vallées 10 s'étendent en creux entre les pieds 8 qu'elles séparent deux à deux. Les vallées 10 sont sensiblement droites lorsque vues dans un plan perpendiculaire à l'axe X principal (c'est-à-dire dans le plan de la FIG.3).
Par ailleurs, comme cela est également visible la FIG.3, les vallées 10 sont avantageusement légèrement cintrées et présentent une largeur (mesurée perpendiculairement au rayon) qui, depuis le dôme 5 à la périphérie 9, va d'abord diminuant puis augmentant.
Comme on le voit bien sur les FIG.2 et FIG.3, les pieds 8 sont en nombre égal aux vallées 10. Dans l'exemple illustré, le fond 3 comprend six pieds 8 et six vallées 10, régulièrement alternés et répartis en étoile. Ce nombre constitue un bon compromis ; il pourrait toutefois être inférieur (mais supérieur ou égal à quatre), ou supérieur (mais de préférence inférieur ou égal à dix). Chaque pied 8 présente deux flancs 11 sensiblement plans qui bordent chacun latéralement une vallée 10. Comme cela est visible sur les FIG.7 à FIG.10, les flancs 11 ne sont pas verticaux (car le fond 3 serait alors difficile, voire impossible à souffler), mais inclinés en s'ouvrant depuis la vallée 10 vers l'extérieur.
Chaque pied 8 présente en outre une face 12 médiane qui fait la jonction entre les flancs 11. Comme illustré sur la FIG.3, vue dans un plan perpendiculaire à l'axe X principal, la face 12 médiane s'étend sensiblement radialement.
Par ailleurs, comme illustré sur la FIG.5, dans un plan radial, la face
12 médiane présente un profil courbe à concavité tournée vers l'extérieur du récipient 1.
La partie la plus saillante de chaque pied 8, prolongeant la face 12 médiane, forme une face 13 d'extrémité du pied 8. Les faces 13 d'extrémité des pieds 8 sont coplanaires et forment conjointement un anneau 14 de pose, interrompu et de section plane, par lequel le récipient
1 peut reposer sur une surface plane (par exemple une table).
L'anneau 14 de pose est relié au corps 2 par l'intermédiaire d'une structure présentant un congé de raccordement comportant deux parties 8A et 8B, reliées au niveau d'une jonction 8C. Ladite structure sera décrite plus en détail ultérieurement.
Comme cela est visible sur la FIG.3, l'anneau 14 de pose
(matérialisé sur cette figure par un cercle en trait mixte), est situé radialement en retrait par rapport à la périphérie 9.
Comme cela est bien visible sur les FIG.2 et FIG.3, les pieds 8 vont s'amincissant de l'intérieur vers l'extérieur du récipient 1 (c'est-à-dire vers le bas), et en s'élargissant depuis le dôme 5 central vers la périphérie 9.
Chaque vallée 10 présente une portion 15 interne qui s'étend à partir du dôme 5 central, et une portion 16 externe qui rejoint la périphérie 9.
Toutes les portions 16 externes rejoignent la périphérie 9 au même niveau, donc sur une même section ou un même plan dit plan de jonction. La hauteur hors tout du fond 3 est définie comme étant la distance, mesurée axialement, entre le plan de l'anneau 14 de pose (autrement dit la face 13 d'extrémité) et le plan de jonction entre les portions 16 externes et la périphérie 9. Comme il sera indiqué ultérieurement, cette hauteur est référencée Q. Comme illustré sur les FIG.5 et FIG.6, la portion 15 interne et la portion 16 externe sont, en section dans un plan radial médian à la vallée 10, droites et forment ensemble un angle obtus saillant vers l'extérieur du récipient 1.
La portion 15 interne et la portion 16 externe se rejoignent en un sommet 17 situé à l'aplomb ou à proximité immédiate de l'aplomb de l'anneau 14 de pose, c'est-à-dire que le sommet peut être décalé du plan de pose déterminé par l'anneau 14. Selon un mode préféré de réalisation, le sommet 17 est courbe dans tout plan radial, et présente une concavité tournée vers l'intérieur du récipient 1.
Il a été constaté que cette forme accroît la résistance mécanique du fond 3, en particulier lorsque le récipient 1 est mis sous pression.
Par ailleurs, comme illustré sur les dessins (et plus particulièrement sur la FIG.5 et sur la FIG.6), les vallées 10 sont subdivisées en deux groupes de vallées 10 disposées en alternance, à savoir :
o des vallées 10A primaires dont la portion interne, notée 15A, se raccorde au dôme 5 à hauteur du bord 7 périphérique de celui-ci ; o des vallées 10B secondaires dont la portion interne, notée 15B, se raccorde au dôme 5 à distance de son bord 7 périphérique.
En d'autres termes, la portion 15B interne des vallées 10B secondaires est plus profonde, lorsque mesurée axialement, que la portion 15A interne des vallées 10A primaires. Cette différence de profondeur apparaît clairement sur la FIG.2 et à gauche de la FIG.6, où les vallées 10A primaires sont tracées en traits fins mixtes tandis que les vallées 10B secondaires sont tracées en traits gras pleins.
On apporte à présent des précisions complémentaires sur le dimensionnement du fond 3. A cet effet, on note :
A l'angle, mesuré dans un plan radial médian à la vallée 10, entre la portion 16 externe de la vallée et tout plan perpendiculaire à l'axe X principal
B la largeur, mesurée radialement, de l'anneau 14 de pose
C le rayon de courbure, mesuré dans un plan radial, d'un congé de raccordement entre la face 12 médiane du pied 8 et l'anneau
14 de pose
D le diamètre hors tout du fond 3, mesuré à la périphérie 9 E le rayon de courbure, mesuré dans un plan radial, d'une première partie 8A du congé de raccordement entre l'anneau 14 de pose et le corps 2, ladite première partie 8A étant comprise entre l'anneau 14 de pose et la jonction 8C entre les parties 8A et 8b du congé de raccordement
E' le rayon de courbure du sommet 17
F la hauteur du dôme 5, mesurée axialement entre le bord 7 périphérique et le sommet 6
F' la distance, mesurée axialement, entre le bord 7 périphérique du dôme 5 et le bord intérieur de la portion 15B interne de chaque vallée 10B secondaire, à sa jonction avec le dôme 5 G l'angle, considéré dans un plan radial, entre l'axe X du corps 2 et la tangente à la première partie 8A du congé de raccordement, au niveau de la jonction 8C entre les parties 8A et 8b de ce congé de raccordement
H la distance, mesurée axialement, entre, d'une part, une limite externe du bord 7 périphérique du dôme 5 et le plan de l'anneau
14 de pose
J le diamètre de l'anneau 14 de pose, mesuré sur un bord interne de celui-ci
L la distance, mesurée axialement, entre une limite interne du bord 7 périphérique du dôme 5 et le plan de l'anneau 14 de pose
M la distance, mesurée axialement, entre le sommet 17 de chaque vallée 10 et le plan de l'anneau 14 de pose
O le décalage, mesuré radialement, entre le sommet 17 de chaque vallée 10 et l'anneau 14 de pose
P l'angle obtus formé, dans le plan radial médian à chaque vallée
10A primaire, entre la portion 15A interne et la portion 16 externe
P' l'angle obtus formé, dans le plan radial médian à chaque vallée
10B secondaire, entre la portion 15B interne et la portion 16 externe
Q la hauteur hors tout du fond 3, c'est-à-dire la distance, mesurée axialement, entre le plan de l'anneau 14 de pose et la jonction entre une portion 16 externe et la périphérie 9 R l'ouverture angulaire entre les flancs 11, mesurée dans un plan transversal relativement plus éloigné du dôme 5, confondu avec le plan de coupe VIII-VIII, tel qu'illustré sur la FIG.8
S l'ouverture angulaire entre les flancs 11, mesurée dans un plan transversal (c'est-à-dire perpendiculaire au rayon médian du pied 8) voisin du dôme 5, confondu avec le plan de coupe VII- VII, tel qu'illustré sur la FIG.7
T le rayon hors tout, mesuré radialement, du dôme 5
U l'ouverture angulaire entre les flancs 11, mesurée dans un plan transversal voisin de la périphérie, confondu avec le plan de coupe X-X, tel qu'illustré sur la FIG.10
V l'ouverture angulaire entre les flancs 11, mesurée dans un plan transversal encore plus éloigné du dôme 5, confondu avec le plan de coupe IX- IX, tel qu'illustré sur la FIG.9
W le rayon de courbure, mesuré dans un plan radial, de la face
12 médiane du pied 8
Le fond 3 peut être dénommé « fond pétaloïde » en raison de sa structure faite d'une alternance de pieds 8 en saillie et de vallées 10 en creux. Toutefois, son faible rapport hauteur Q / diamètre D le disqualifie pour les applications carbonatées (typiquement pour les boissons gazeuses). Ce rapport est en effet inférieur ou égal à 1/4.
Un fond pétaloïde classique aurait un tel rapport d'environ 1/2. Le présent fond 3, que l'on peut dénommer « mini pétaloïde » en raison de son faible rapport hauteur Q / diamètre D, se destine plutôt aux applications de type liquides plats associées à l'adjonction, immédiatement après le remplissage et avant le bouchage, d'une goutte d'azote liquide dont la vaporisation met le contenu du récipient 1 en surpression, cette surpression étant inférieure ou égale à 1,3 bar.
En l'espèce, le rapport hauteur Q / diamètre D est avantageusement compris entre 0,15 et 0,25, et de préférence de l'ordre de 0,2.
Selon un mode de réalisation illustré sur la FIG.5, dans les vallées 10A primaires, la portion 15A interne est inclinée, par rapport à tout plan parallèle au plan de l'anneau 14 de pose, vers l'extérieur du récipient 1. On nomme « déclive » cette inclinaison négative de la portion 15A interne, avantageusement comprise entre 2° et 10°. Selon un mode de réalisation illustré sur la FIG.6, dans les vallées 10B secondaires, la portion 15B interne est au contraire inclinée, par rapport à tout plan parallèle au plan de l'anneau 14 de pose, vers l'intérieur du récipient 1. On nomme « proclive » cette inclinaison positive de la portion 15B interne, avantageusement comprise entre 5° et 30°.
En variante cependant, la portion 15A interne des vallées 10A primaires pourrait, comme la portion 15B interne des vallées 10B secondaires, être inclinée, par rapport à tout plan parallèle au plan de l'anneau 14 de pose, vers l'intérieur du récipient 1, c'est-à-dire en proclive, d'un angle cependant inférieur ou égal à 4°.
Ainsi, et comme il ressort de la lecture conjointe des FIG.3, FIG.5 et FIG.6, le fond 3 présente, dans l'exemple illustré, des vallées 10A et 10B dont les portions 15A, 15B internes sont alternativement en déclive (FIG.5) et en proclive (FIG.6). Comme nous l'avons déjà évoqué, les portions 15A internes des vallées 10A primaires débouchent intérieurement sur le bord 7 périphérique du dôme 5 central, tandis que les portions 15B internes des vallées 10B secondaires débouchent intérieurement à distance du bord 7 périphérique. Cette configuration accroît la résistance mécanique du fond 3 lorsqu'il est sous pression.
Plus précisément, et comme évoqué dans le tableau ci-dessus, les portions 15B internes des vallées 10B secondaires débouchent sur le dôme 5 à une distance F' du bord 7 périphérique de celui-ci, entre ce bord 7 périphérique et le sommet 6 du dôme. Selon la profondeur (c'est- à-dire l'inclinaison) des portions 15B internes des vallées 10B secondaires, cette distance F' est avantageusement comprise entre 20% et 70% de la hauteur F totale du dôme 5 :
0,2 F≤ F'≤ 0,7 F
Dans l'exemple illustré, la distance F' est d'environ 60% de la hauteur F totale du dôme 5 :
F' = 0,6 F
Cette configuration permet d'obtenir un compromis entre la rigidité structurelle du fond 3 en raison notamment de la profondeur des portions 15B internes des vallées 10B secondaires, notamment au voisinage du centre du fond 3, et la bonne souff labilité de celui-ci (c'est-à-dire sa capacité à être correctement formé lors du soufflage du récipient 1), en raison notamment de la relativement faible profondeur des portions 15A internes au voisinage du centre du fond 3. En outre, comme on le voit également sur les FIG.5 et FIG.6, dans l'une au moins des vallées 10 (et de préférence dans toutes les vallées 10), la portion 16 externe est avantageusement inclinée, par rapport à tout plan parallèle au plan de l'anneau 14 de pose, vers l'intérieur du récipient 1, d'un angle A. En d'autres termes, la portion 16 externe est en déclive. L'angle A d'inclinaison de la portion 16 externe est de préférence compris entre 20° et 30°.
Les angles P et P' sont obtus ; ils sont par conséquent strictement supérieurs à 90° et strictement inférieurs à 180°.
Plus précisément, comme illustré sur la FIG.5, l'angle P est avantageusement compris entre 130° et 175°, et de préférence d'environ 160°.
Quant à l'angle P', illustré sur la FIG.6, il est avantageusement compris entre130° et 165°, et de préférence d'enviDn 140° à 145°.
La largeur B de l'anneau 14 de pose est avantageusement comprise entre 0,4 mm et 1 mm, et de préférence de l'ordre de 0,5 mm.
Le rayon C de courbure est avantageusement égal environ à la moitié du rayon E.
Le rayon E est avantageusement compris entre 5 mm et 11 mm. Dans ce cas, il en résulte que le rayon C est compris entre 2,5 mm et 5 mm. Le centre de courbure du rayon E est situé à la verticale de l'anneau 14 de pose.
Comme indiqué antérieurement, l'anneau 14 de pose est relié au corps 2 par l'intermédiaire d'une structure présentant un congé de raccordement comportant deux parties 8A et 8B. Le rayon E est celui de la première partie 8A, qui est comprise entre l'anneau 14 de pose et la jonction 8C entre les parties 8A et 8b du congé de raccordement. Ce rayon est constant ou peut varier de façon infime.
La seconde partie 8B du congé est comprise entre la jonction 8C et la périphérie 9 du fond 3 où celui-ci se raccorde au corps 2. Cette seconde partie 8B présente un rayon de courbure évolutif entre la jonction 8C et le bord 9 périphérique du fond 3.
Le diamètre D hors tout du fond 3 est fonction de la capacité du récipient 1. Pour un récipient 1 d'une capacité de 0,5 I, le diamètre D peut être de 65 mm environ (dans ce cas, le rayon E est avantageusement de 6 mm environ). Pour un récipient 1 d'une capacité de 1,5 I, le diamètre D peut être de 90 mm environ (dans ce cas, le rayon E est avantageusement de 9 mm environ).
Le rayon E' du sommet est avantageusement compris entre 5 mm et 11 mm. Il peut être égal au rayon E. En pratique, comme le rayon E, le rayon E' est fonction de la capacité du récipient 1. Pour un récipient 1 d'une capacité de 0,5 I, le rayon E' peut être de 6 mm environ. Pour un récipient 1 d'une capacité de 1 ,5 I, le rayon E' peut être de 9 mm environ.
La hauteur F du dôme 5 est avantageusement comprise entre 1 mm et 8 mm. En pratique, cette hauteur F est fonction de la capacité du récipient 1. Pour un récipient 1 d'une capacité de 0,5 I, la hauteur F peut être de 2 mm environ. Pour un récipient 1 d'une capacité de 1.5 I, la hauteur peut être de 7,5 mm environ. Dans ce cas, la distance F' est avantageusement de 4,5 mm environ.
L'angle G est avantageusement compris entre 20° et 40°. On rappelle qu'il s'agit de l'angle considéré dans un plan radial, entre l'axe X du corps 2 et la tangente à la première partie 8A du congé de raccordement, au niveau de la jonction 8C entre les parties 8A et 8b de ce congé de raccordement. En pratique, l'angle G est fonction de la capacité du récipient 1 et, notamment, de son diamètre D. La valeur de l'angle G, selon le diamètre D du récipient et le rayon E de courbure de la première partie 8A du congé, détermine la position de la jonction 8C entre les deux parties 8A et 8B du congé de raccordement de l'anneau 14 au corps 2. Pour un récipient 1 d'une capacité de 0,5 I, l'angle G peut être de 25° environ. Pour un récipient 1 d'une capacité de 1.5 I, l'angle G peut être de 35° environ.
La distance H est avantageusement liée au diamètre D hors tout du fond 3. Plus précisément, la distance H est de préférence comprise entre 10% et 15% (et par ex. de 12% environ) du diamètre D.
Le diamètre J est avantageusement compris entre 65% et 75% (et par ex. de 70% environ) du diamètre D.
La distance L est avantageusement comprise entre 50% et 85% (et par ex. de 70% environ) de la hauteur Q hors tout du fond 3.
La distance M est avantageusement fonction du diamètre D hors tout du fond 3. Plus précisément, la distance M est avantageusement comprise entre 10% et 15% (et par ex. d'environ 12%) du diamètre D.
Le décalage O peut être nul et, dans ce cas, le sommet 17 est situé à l'aplomb de l'anneau 14 de pose ; il peut également être positif (c'est- à-dire que le sommet 17 est décalé radialement, par rapport à l'anneau 14 de pose, vers l'extérieur du récipient 1), ou au contraire négatif (c'est- à-dire que le sommet 17 est décalé radialement, par rapport à l'anneau 14 de pose, vers l'intérieur du récipient 1). Dans les deux cas, la valeur du décalage O est faible par comparaison au diamètre D.
Le décalage O peut être indexé sur le rayon E, par ex. dans un rapport de 1 à 3, c'est-à-dire que le rapport O/E est de 1/3 environ.
Compte tenu des valeurs déjà fournies pour E, on comprend que le décalage O est compris entre 1,5 mm et 3 mm.
En outre, le rayon T hors tout du dôme 5 est avantageusement compris entre 5 mm et 15 mm. En pratique, ce rayon T est fonction de la capacité du récipient 1. Pour un récipient 1 d'une capacité de 0,5 I, le rayon T est ainsi, par ex., de 7 mm environ. Pour un récipient 1 d'une capacité de 1.5 I, le rayon T est par ex. de 13 mm environ.
Enfin, comme on peut le constater sur les FIG.7 à FIG.10, l'ouverture angulaire des flancs 11 est variable. Plus précisément, l'ouverture angulaire des flancs 11 va décroissant de l'intérieur vers l'extérieur du fond 3 (c'est-à-dire de l'axe X vers la périphérie 9), l'ouverture angulaire S étant supérieure à l'ouverture angulaire R, laquelle est à son tour supérieure à l'ouverture angulaire V, elle-même supérieure à l'ouverture angulaire U, ce qui signifie que les flancs 11 vont en se refermant depuis le dôme 5 vers la périphérie 9.
Cette variation d'ouverture angulaire permet d'élargir les pieds 8 vers la périphérie 9, au bénéfice de la stabilité du récipient 1, et de la résistance des pieds 8, notamment lors de la palettisation du récipient 1.
Sous l'effet d'une pression dans le récipient 1, l'angle P a tendance à se déformer en se refermant. Comme le sommet 17 est à l'aplomb ou à proximité immédiate de l'aplomb de l'anneau 14 de pose, les flancs 11, qui présentent à cet endroit leur plus grande hauteur (mesurée axialement, confondue avec la distance M), absorbent cette déformation sans trop se déformer à leur tour, de sorte que la déformation générale du fond 3 est de faible ampleur, et qu'il résiste donc bien à la pression. La forme concave de la face 12 médiane, ainsi que l'alternance de vallées 10A primaires, relativement peu profondes, et de vallées 10B secondaires, plus profondes, semblent contribuer à cette rigidité.
Des essais conduits sur le récipient 1 montrent que les déformations les plus importantes sont localisées sur le dôme 5, dont la forme bombée résiste particulièrement bien à la pression, tandis que les zones périphériques au dôme 5 (vallées 10, pieds 8) ne subissent que de faibles déformations.

Claims

REVENDICATIONS
1. Récipient (1) en matière plastique comprenant un corps (2) qui s'étend selon un axe (X) principal et un fond (3) pétaloïde qui prolonge le corps (2), ce fond (3) comprenant :
une paroi (4) de fond de forme générale convexe vers l'extérieur du récipient (1),
un dôme (5) central formé en creux vers l'intérieur du récipient (1) et qui s'étend depuis un sommet (6) central jusqu'à un bord (7) périphérique par lequel le dôme (5) se raccorde à la paroi (4) de fond, et
au moins quatre pieds (8) qui forment des excroissances à partir de la paroi (4) de fond vers l'extérieur du récipient (1), séparés deux à deux par des portions de la paroi (4) de fond formant au moins quatre vallées (10) en creux qui s'étendent radialement depuis un dôme (5) central du fond (3) jusqu'à une périphérie (9) de celui-ci,
chaque pied (8) ayant deux flancs (11) bordant chacun une vallée (10) et une face (12) médiane qui, dans un plan radial, présente un profil courbe à concavité tournée vers l'extérieur du récipient (1) et se prolonge par une face (13) d'extrémité, les faces d'extrémités formant conjointement un anneau (14) de pose, de section plane, interrompu au droit de chaque vallée (10),
ce récipient étant caractérisé en ce que :
- chaque vallée (10) présente une portion (15, 15A, 15B) interne qui s'étend à partir du dôme (5) centrale et une portion (16) externe qui rejoint la périphérie (9) dans le prolongement de la portion (15, 15A, 15B) interne, la portion (15, 15A, 15B) interne et la portion (16) externe étant, en section dans un plan radial médian à la vallée (10), droites et formant ensemble un angle (P) obtus saillant vers l'extérieur du récipient (1) et se rejoignant en un sommet (17) situé à l'aplomb ou à proximité immédiate de l'aplomb de l'anneau (14) de pose ;
le fond (3) comprend deux groupes de vallées (10) disposées en alternance : o des vallées (10A) primaires dont la portion (15A) interne se raccorde au dôme (5) à hauteur du bord (7) périphérique de celui- ci ;
o des vallées (10B) secondaires dont la portion (15B) interne se raccorde au dôme (5) entre le bord (7) périphérique et le sommet
(6) central du dôme à une distance (F') du bord (7) périphérique.
2. Récipient (1) selon la revendication 1, caractérisé en ce que le dôme présente une hauteur (F), mesurée axialement entre son bord (7) périphérique et son sommet (6) et, dans les vallées (10B) secondaires, la portion (15B) interne se raccorde au dôme (5) à une distance (F') du bord (7) périphérique comprise entre 20% et 70% de ladite hauteur (F) du dôme.
3. Récipient (1) selon la revendication 1 ou la revendication 2, caractérisé en ce que, dans les vallées (10B) secondaires, la portion (15B) interne est inclinée, par rapport à tout plan parallèle au plan de l'anneau (14) de pose, vers l'intérieur du récipient (1).
4. Récipient (1) selon la revendication 3, caractérisé en ce que l'angle d'inclinaison de la portion (15B) interne des vallées (10B) secondaires est compris entre 5° et 30°.
5. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que, dans les vallées (10A) primaires, la portion (15A) interne est inclinée, par rapport à tout plan parallèle au plan de l'anneau (14) de pose, vers l'extérieur du récipient (1).
6. Récipient (1) selon la revendication 5, caractérisé en ce que l'angle d'inclinaison de la portion (15A) interne des vallées (10A) primaires est compris entre 2° et 10°.
7. Récipient (1) selon l'une des revendications 1 à 4, caractérisé en ce que, dans les vallées (10A) primaires, la portion (15A) interne est inclinée, par rapport à tout plan parallèle au plan de l'anneau (14) de pose, vers l'intérieur du récipient (1) d'un angle inférieur ou égal à 4°.
8. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que, dans le plan radial médian à chaque vallée (10), le sommet (17) de la vallée (10) est décalé par rapport à l'anneau (14) de pose.
9. Récipient (1) selon la revendication 8, caractérisé en ce que le sommet (17) est décalé par rapport à l'anneau (14) de pose d'une valeur (O) comprise entre 1,5 mm et 3 mm.
10. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que l'angle (P) obtus formé, dans le plan radial médian à une vallée (10A) primaire, entre sa portion (15A) interne et sa portion (16) externe, est d'une valeur comprise entre 130° et175°.
11. Récipient (1) selon la revendication 10, caractérisé en ce que l'angle (P) obtus formé, dans le plan radial médian à chaque vallée (10A), primaire entre la portion (15) interne et la portion (16) externe, est d'une valeur (P) de 160° environ.
12. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que l'angle (Ρ') obtus formé, dans le plan radial médian à une vallée (10B) secondaire, entre sa portion (15B) interne et sa portion (16) externe, est d'une valeur comprise entre 130° et165°.
13. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que l'angle (Ρ') obtus formé, dans le plan radial médian à une vallée (10B) secondaire, entre sa portion (15B) interne et sa portion (16) externe, est d'une valeur de 140° à 145° environ
14. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que, le fond (3) du récipient présentant un diamètre (D) hors tout, le sommet (17) de la vallée (10) est distant du plan de l'anneau (14) de pose d'une valeur (M) comprise entre 10% et 15% dudit diamètre.
15. Récipient (1) selon la revendication 14, caractérisé en ce que la distance (M) du sommet (17) de la vallée (10) au plan de l'anneau (14) de pose est de 12% environ du diamètre (D) hors tout du fond (3).
16. Récipient (1) selon l'une des revendications précédentes, caractérisé en ce que le fond (3) présente un diamètre (D) hors tout, toutes les portions (16) externes rejoignent la périphérie (9) sur un même plan de jonction, et les pieds présentent une hauteur (Q), mesurée axialement entre le plan de l'anneau (14) de pose et ledit plan de jonction, dont la valeur est comprise entre 15% et 25% dudit diamètre (D).
17. Récipient (1) selon la revendication 16, caractérisé en ce que la hauteur (Q) des pieds (8) est d'une valeur d'environ 20% du diamètre (D) hors tout du fond (3).
EP17783929.7A 2016-10-06 2017-09-21 Fond pétaloïde à vallée brisée Active EP3523208B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659634A FR3057246B1 (fr) 2016-10-06 2016-10-06 Fond petaloide a vallee brisee
PCT/FR2017/052530 WO2018065691A1 (fr) 2016-10-06 2017-09-21 Fond pétaloïde à vallée brisée

Publications (2)

Publication Number Publication Date
EP3523208A1 true EP3523208A1 (fr) 2019-08-14
EP3523208B1 EP3523208B1 (fr) 2022-08-10

Family

ID=57485748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17783929.7A Active EP3523208B1 (fr) 2016-10-06 2017-09-21 Fond pétaloïde à vallée brisée

Country Status (6)

Country Link
US (1) US11008129B2 (fr)
EP (1) EP3523208B1 (fr)
CN (2) CN109789944A (fr)
FR (1) FR3057246B1 (fr)
MX (1) MX2019003138A (fr)
WO (1) WO2018065691A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756736C2 (ru) * 2017-06-12 2021-10-04 Сосьете Де Продюи Нестле С.А. Нижнее основание контейнера, снабженное двояковогнутым сводом
MX2020011255A (es) * 2018-04-26 2020-11-12 Graham Packaging Co Recipiente de relleno presurizado resistente al agrietamiento del anillo de pie.
US10926911B2 (en) * 2018-10-15 2021-02-23 Pepsico. Inc. Plastic bottle with base
DE102021127061A1 (de) * 2021-10-19 2023-04-20 Krones Aktiengesellschaft Kunststoffbehältnis zur Aufnahme von Getränken mit verbesserter Stabilität
US20230166882A1 (en) * 2021-11-30 2023-06-01 Pepsico, Inc. Flexible base for aseptic-fill bottles

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484072A (en) 1994-03-10 1996-01-16 Hoover Universal, Inc. Self-standing polyester containers for carbonated beverages
US5529196A (en) * 1994-09-09 1996-06-25 Hoover Universal, Inc. Carbonated beverage container with footed base structure
FR2822804B1 (fr) 2001-04-03 2004-06-04 Sidel Sa Recipient, notamment bouteille, en matiere thermoplastique dont le fond comporte une empreinte en croix
FR2904809B1 (fr) * 2006-08-08 2008-10-24 Sidel Participations Fond de corps creux obtenu par soufflage ou etirage soufflage d'une preforme en materiau thermoplastique, corps creux comprenant un tel fond
JP5024168B2 (ja) * 2008-03-25 2012-09-12 東洋製罐株式会社 合成樹脂製容器
FR2932458B1 (fr) * 2008-06-13 2010-08-20 Sidel Participations Recipient, notamment bouteille, en matiere thermoplastique equipe d'un fond renforce
FR2967975B1 (fr) 2010-11-25 2012-12-28 Sidel Participations Fond de recipient petaloide combine
DE102012111493A1 (de) * 2012-11-27 2014-05-28 Krones Ag Kunststoffbehältnis mit verstärktem Boden
WO2015099813A1 (fr) * 2012-12-27 2015-07-02 Niagara Bottling, Llc Récipient en plastique présentant une base renforcée
FR3007392B1 (fr) 2013-06-25 2016-02-05 Sidel Participations Recipient mini petaloide rainure
FR3013335B1 (fr) * 2013-11-15 2016-01-15 Sidel Participations Recipient en matiere thermoplastique a fond de type petaloide a soufflabilite augmentee
FR3022223B1 (fr) * 2014-06-13 2016-06-24 Sidel Participations Recipient muni d'un fond a poutres bourrelees
EP2957522B1 (fr) * 2014-06-17 2017-05-03 Sidel Participations Récipient muni d'un diaphragme réversible incurvé

Also Published As

Publication number Publication date
WO2018065691A1 (fr) 2018-04-12
FR3057246B1 (fr) 2022-12-16
CN114313530A (zh) 2022-04-12
EP3523208B1 (fr) 2022-08-10
US11008129B2 (en) 2021-05-18
FR3057246A1 (fr) 2018-04-13
US20190308764A1 (en) 2019-10-10
CN109789944A (zh) 2019-05-21
MX2019003138A (es) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018065691A1 (fr) Fond pétaloïde à vallée brisée
EP3013703B1 (fr) Recipient à fond petaloïde et rainuré
EP2125533B1 (fr) Bouteille en plastique a fond champagne et son procede de fabrication
EP3059175B1 (fr) Recipient muni d'un fond mini petaloide a cannelures transversales
EP2643225B1 (fr) Fond de récipient pétaloïde combiné
EP3390237B1 (fr) Récipient a fond pétaloïde a pieds nervures
EP2049405A1 (fr) Fond de corps creux obtenu par soufflage ou etirage soufflage d'une preforme en materiau thermoplastique corps creux comprenant un tel fond
FR2932458A1 (fr) Recipient, notamment bouteille, en matiere thermoplastique equipe d'un fond renforce
EP3514076B1 (fr) Recipient comprenant un fond voute presentant des bossages de rigidification repartis en bandes annulaires imbriquees
WO2014162088A1 (fr) Recipient ayant un fond muni d'une voute a decrochement
EP2229271B1 (fr) Fond de moule pour la fabrication de recipients thermoplastiques et recipient obtenu
WO2011154670A1 (fr) Récipient comprenant un fond voûté nervuré
EP2697125A1 (fr) Fond de récipient pétaloïde à double vallée
EP2084070B1 (fr) Fond de corps creux obtenu par soufflage ou etirage-soufflage d' une preforme
EP1996473A2 (fr) Fond de moule pour moule de fabrication de recipients thermoplastiques, et dispositif de moulage equipe d'au moins un moule pourvu d'un tel fond
EP3720778B1 (fr) Recipient a fond petaloïde

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017060524

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1510396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017060524

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220921

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

26N No opposition filed

Effective date: 20230511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220921

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 7

Ref country code: DE

Payment date: 20230822

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810