EP3519645B1 - Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling - Google Patents

Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling Download PDF

Info

Publication number
EP3519645B1
EP3519645B1 EP17778250.5A EP17778250A EP3519645B1 EP 3519645 B1 EP3519645 B1 EP 3519645B1 EP 17778250 A EP17778250 A EP 17778250A EP 3519645 B1 EP3519645 B1 EP 3519645B1
Authority
EP
European Patent Office
Prior art keywords
displacement
displacement bodies
bodies
concrete ceiling
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17778250.5A
Other languages
German (de)
French (fr)
Other versions
EP3519645A1 (en
Inventor
Karsten Pfeffer
Volkmar Wanninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heinze Gruppe Verwaltungs GmbH
Original Assignee
Heinze Gruppe Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinze Gruppe Verwaltungs GmbH filed Critical Heinze Gruppe Verwaltungs GmbH
Priority to SI201730621T priority Critical patent/SI3519645T1/en
Priority to PL17778250T priority patent/PL3519645T3/en
Priority to RS20201560A priority patent/RS61260B1/en
Publication of EP3519645A1 publication Critical patent/EP3519645A1/en
Application granted granted Critical
Publication of EP3519645B1 publication Critical patent/EP3519645B1/en
Priority to HRP20210125TT priority patent/HRP20210125T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/326Floor structures wholly cast in situ with or without form units or reinforcements with hollow filling elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/06Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by constructional features of the supporting construction, e.g. cross section or material of framework members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the present invention relates to a concrete ceiling with a lower reinforcement grid and an upper reinforcement grid, between which a plurality of displacement bodies are arranged, wherein the lower and upper reinforcement grid and the displacement body are embedded in concrete, and each displacement body at least partially surrounds at least one channel, the one Establishes a connection between the concrete on the lower reinforcement grid and the concrete on the upper reinforcement grid, a kit for the production of a concrete ceiling and a method for the production of a concrete ceiling.
  • the DE 20 2006 002 540 U1 discloses a module for the production of concrete parts in which a large number of spherical displacement bodies are arranged in a captive manner in a latticework of bars. This allows the spherical displacement bodies to reduce the weight of the ceiling structure when the concrete is then poured.
  • the introduction of the displacement bodies into the lattice work and the production of such a lattice work are comparatively complex.
  • the distance between the displacement bodies can vary, which makes it difficult to calculate the load-bearing capacity.
  • the US 2013/0036693 discloses a donut-shaped displacement body which has a channel in the central region which is filled when concrete is poured. This creates a connection between the bottom and top of a concrete ceiling.
  • the displacement bodies are, however, arranged at a distance from one another, so that struts are also provided between the displacement bodies for connecting the lower side to the upper side.
  • reinforcement elements In order to provide a defined distance between the displacement bodies, reinforcement elements must be installed that are connected to the displacement bodies. The assembly of such reinforcement grids for spacing the displacement bodies is comparatively complex.
  • the WO 2015/182817 A1 shows a concrete ceiling according to the preamble of claim 1. It is therefore the object of the present invention to provide a concrete ceiling, a kit for producing a concrete ceiling and a method for producing a concrete ceiling, which allow simple production of the concrete ceiling and enable a comparatively precise calculation of the load-bearing capacity of the concrete ceiling.
  • a multiplicity of displacement bodies are arranged between an upper and a lower reinforcement grid, the displacement bodies in a central area of the concrete ceiling in at least three areas resting against one another.
  • the displacement bodies are positioned directly next to one another during assembly, and it is not necessary to provide additional positioning means between the displacement bodies.
  • the connection between the concrete in the area of the lower reinforcement grid to the concrete in the area of the upper reinforcement grid is established at least via the channel which is formed on or in each displacement body.
  • the channel can be completely surrounded by a single displacement body or by several displacement bodies, each displacement body then forming part of a channel wall.
  • the size of the channel in the displacement body or bodies is predetermined, it can be predetermined with comparative precision how many struts in the area of the displacement bodies run from bottom to top and what geometry they have. As a result, the load-bearing capacity of the concrete ceiling can be determined comparatively precisely in advance.
  • the displacement bodies can support each other in the middle area of the concrete ceiling on all their sides, at least in some areas, whereby three, four or more contact surfaces can be provided depending on the shape of the displacement bodies.
  • the ratio of the cross section of the Channel in the displacement body to the surface of the displacement body in plan view between 0.2 to 0.45, in particular between 0.3 to 0.4.
  • the area of the channel is thus comparatively large in relation to the total area of the displacement body in plan view, which ensures that the channels are also filled when concrete is poured.
  • the load-bearing capacity can be calculated based on the area of the channels.
  • the channels can be circular, square, diamond-shaped or some other geometry in plan view.
  • Each channel preferably has a narrowest point which is provided in a central region of the displacement body.
  • the diameter of a channel in a displacement body can for example be between 200 mm to 450 mm, in particular 250 mm to 400 mm. If the channel has a geometry that differs from the circular shape, this geometry can be converted to the above diameter range if the area of the channel corresponds to the area of a calculated diameter.
  • the displacement bodies are preferably placed loosely on the lower reinforcement grid. This simplifies assembly.
  • the displacement bodies are preferably square in plan view, so that the area of a ceiling in which the displacement bodies are to be arranged can easily be covered with the displacement bodies.
  • free spaces are provided between adjacent displacement bodies, the area of the free spaces being smaller than the area of the channels in plan view.
  • Such free spaces can exist, for example, in the corner area between adjacent displacement bodies if these have rounded or beveled corners, so that smaller free spaces or channels are also formed there, which enable the concrete to be connected in the vertical direction.
  • the free spaces can also be designed as channels that are formed between two or more displacement bodies.
  • a displacement body preferably comprises a plurality of hollow bodies which are connected to one another via spacers.
  • four hollow bodies can be provided, which are connected to one another via separable webs, so that if necessary the displacement body can be separated in the area of the webs and, depending on the construction space of the concrete ceiling, the displacement body can also be halved to fill a concrete ceiling.
  • the individual hollow bodies can be designed essentially closed, so that no concrete flows into the hollow body when the spacers or webs are cut.
  • the reinforcement grids are preferably essentially flat.
  • the reinforcement grids therefore preferably do not protrude into the plane of the displacement bodies and can be formed from struts extending at an angle, preferably at right angles to one another.
  • a lower reinforcement grid is first positioned on which a large number of displacement bodies are then placed, with the displacement bodies in a central area of the reinforcement grid resting against one another on at least three sides, at least in areas, in order to position one another.
  • an upper reinforcement grid is then placed on the large number of displacement bodies and a concrete ceiling is produced by pouring concrete one or more times.
  • the loose placement of the displacement bodies eliminates the need to provide a predetermined spacing of the displacement bodies, for example using reinforcement cages or special spacers. This simplifies assembly, since the displacement bodies can be positioned directly adjacent to one another. With the exception of the displacement bodies arranged at the edge, like displacement bodies in the central region, they are preferably supported or positioned on all sides by adjacent displacement bodies, in particular without additional spacers.
  • the displacement bodies can be square or rectangular in plan view and are in contact with one another on four sides in a central area.
  • the displacement bodies are thus structure generators for a ceiling, the channel within a displacement body preferably specifying the geometry of a strut between the bottom and the top of a displacement body, which enables a comparatively precise calculation of the load-bearing capacity of the concrete ceiling.
  • a concrete ceiling 1 comprises an upper reinforcement grid 2, which has a plurality of longitudinal struts 3 and transverse struts 4 which are connected to one another. Furthermore, a lower reinforcement grid 5 is provided, which is also a A plurality of longitudinal struts 6 and transverse struts 7 extending perpendicular thereto, as shown in FIG Figures 1 and 2 is shown.
  • a multiplicity of displacement bodies 10 are arranged, which are made, for example, of plastic and ensure that the upper reinforcement grid 2 is spaced apart from the lower reinforcement grid 5.
  • the displacement bodies 10 rest against one another in an edge region and are not kept at a distance from one another by additional positioning means.
  • a channel 11 is formed, which creates a connection between the concrete on the lower reinforcement grid 5 and the concrete on the upper reinforcement grid 2.
  • the channels 11 thus create a support structure in the concrete ceiling 1, which is predetermined by the displacement bodies 10.
  • each displacement body 10 has around the channel 11 an annular section 12 with projections and recesses 15 arranged between them.
  • Each channel 11 is diamond-shaped in plan view, but can also be circular or square.
  • the channel 11 has the narrowest cross section in a central area of the displacement body 10 and then widens outwards.
  • the depressions 15 ensure that the channels 11 can be safely filled when concrete is introduced, the concrete forming support webs within the depressions 15.
  • a laterally protruding edge 14 is formed at a central height, which edge 14 is used to position an adjacent displacement body 10.
  • FIG 4 two displacement bodies 10 are shown in a side view.
  • webs 13 each protrude, which surround the depressions 15.
  • a height h of the displacement body is preferably in a range between 40 mm to 400 mm, in particular 80 mm to 300 mm.
  • the displacement bodies 10 are square in plan view, so that a width L is approximately the same at the two side edges, the width being in a range between 300 mm to 700 mm, in particular 400 mm to 600 mm.
  • the channel 11 has an area of at least 100 cm 2 , in particular more than 150 cm 2 , at its narrowest point. If the narrowest cross-sectional area is designed to be circular, the diameter is preferably in a range between 200 mm and 450 mm, in particular 250 mm to 400 mm.
  • the ratio of the area of the channel 11 in the area of the narrowest cross-section to the total area of the displacement body 10 in plan view is preferably at least 0.1, for example between 0.2 to 0.45, in particular 0.3 to 0.4.
  • a “concrete column” is formed within the displacement body 10 through the channel 11, the geometric dimensions of which are predetermined and which therefore enables a comparatively precise calculation of the load-bearing capacity.
  • a displacement body 10 is shown, which can be placed loosely on a lower reinforcement grid 5 for the production of a concrete ceiling 1.
  • Adjacent displacement bodies 10 are positioned adjacent to one another, with the exception of those displacement bodies 10 that are arranged in an edge region of the concrete ceiling 1, since these displacement bodies lack an adjacent displacement body 10 at least on the outside.
  • each displacement body 10 is formed from two half-shells 10A and 10 which can be plugged together and surround a cavity.
  • the cavity within the displacement body 10 can optionally contain air, but also a filling element, for example a foam body.
  • Such a reinforcement element 16 can be formed by a bent wire which, for example, comprises a loop 17 which is inserted into the channel 11.
  • the reinforcement element 16 is fixed to the edge 13 of the displacement body 10 with two struts.
  • a recess 18 can be provided on the web 13, into which a strut of a reinforcement element can be inserted.
  • the reinforcement element 19 can also be rod-shaped without a loop 17.
  • FIG 9 a modified embodiment of a unit of displacement bodies 20 is shown, which have a channel 21 in the central region, which is circular in cross section, each channel 21 having a narrowest cross section in a central region of the displacement bodies 20.
  • An annular section 22 of the displacement body 20 is formed around each channel 21.
  • a recess 23 is provided which enables concrete to flow into the channel 21.
  • the displacement bodies 20 have edges or rims 24 on outer side surfaces which serve to position the adjacent displacement bodies 20.
  • the displacement bodies 20 are formed from two half-shells 20A and 20B, which can be fixed to one another via locking or holding elements.
  • a latching receptacle 26 is formed on the lower half-shell 20B, into which a latching web 25 engages on the upper half-shell 20A, as shown in FIG Figure 11B is shown.
  • Several of these locking connections can be provided distributed over the circumference in order to fix the half-shells 20A and 20B to one another.
  • FIG. 12A and 12B shows a section through the displacement body 20 in the area of holding elements.
  • a retaining web 27 protrudes upwards, which engages in a receptacle 28 on the upper half-shell 20A, so that it takes place in the edge area between the two half-shells 20A and 20B.
  • the upper half-shell 20A is shown on the inside, wherein the lower half-shell 20B can be configured identically, wherein the half-shells 20A and 20B can be inserted into one another offset by 180 °.
  • the edge area there are locking webs 25, locking receptacles 26, holding webs 27 and receptacles 28 for reinforcing the edge area.
  • An edge 24 of the displacement body 20 is thus comparatively dimensionally stable and can be used for positioning adjacent displacement bodies 20.
  • displacement bodies 30 which are square in plan view and each have a central channel 31 which is circular in cross section. Each channel 31 is surrounded by an annular section 32 of the displacement body which has recesses 33 on four sides. However, the recesses 33 are not arranged in the corner area, but rather in the middle on a side surface of the displacement body 30.
  • the displacement bodies 30 have an outer edge 34 which is used to position adjacent displacement bodies 30, with locking webs 35, holding webs 36 or other means for positioning being provided on the edge 34.
  • a half-shell 30A of a displacement body 30 which has a circumferential edge on which a locking web 35, a locking receptacle 37 and a holding web 36 and a holding web 38 are formed.
  • displacement bodies 40 are shown, which are square in plan view and include a channel 41 with a circular cross-section in the central region. Each channel 41 is surrounded by an annular section 42 on the displacement body 40, the annular section 42 being designed without recesses. Each displacement body 40 comprises an edge section 43 which can be used for positioning an adjacent displacement body 40, as shown in FIG Figure 21 is shown.
  • displacement bodies 50 which are not square, but triangular in plan view.
  • each displacement body 50 there is a channel 51 which has a circular cross section.
  • the displacement body 50 has flattened areas 53 at the three tips of the triangle which, in an assembled position of the displacement bodies 50, form free spaces 52 so that a connection of the concrete in the area of the lower reinforcement grid 5 to the concrete in the area of the upper reinforcement grid 2 is not only possible through the Channels 51 takes place, but also through the free spaces 52.
  • the area of the free spaces 52 is designed to be smaller than the area of the channels 51 seen in plan view.
  • displacement bodies 60 each having a central channel 61 which is enclosed by an annular section of the displacement body 60.
  • the displacement body has a semicircular free surface 62 on each side surface, and a quarter-circular free surface 63 in the corner area.
  • the displacement bodies 60 can be placed against one another in such a way that the webs 64 between the free surface 62 and the free surface 63 rest against one another, as shown in FIG Figure 25A is shown.
  • Figure 26 shows an embodiment with four displacement bodies 70 which surround a channel 71.
  • the channel 71 is surrounded by the four displacement bodies 70.
  • Each displacement body 70 has four outwardly protruding webs 72, two end faces of the adjacent webs 72 resting against one another.
  • the size of the channel 71 is predetermined by the geometry of the webs 72 and the displacement body 70, which in the exemplary embodiment shown is circular in plan view. Other cross-sectional shapes for the channel 71 are also possible.
  • the height of the displacement body 70 can be selected according to the strength requirements.
  • the channels are circular or diamond-shaped in cross section. Other geometries for the channels can also be used.
  • the displacement bodies 10, 20, 30, 40, 50, 60 can rest loosely against one another at their contact surface. However, it is also possible to provide connecting elements, such as hooks or other components, which enable the displacement bodies 10, 20, 30, 40, 50, 60 to be fixed to one another.
  • FIG 27 Another embodiment of a displacement body 80 is shown, which is composed of two half-shells 80A and 80B.
  • the two half-shells 80A and 80B are connected to one another at a circumferential edge 86, which has a step 87 in the middle area of a side edge.
  • the half-shells 80A and 80B are constructed identically, with Figures 28A and 28B the upper half-shell is shown in detail in two views.
  • the displacement body 80 comprises four hollow bodies 83 which, in plan view, have the shape of a quarter-circle segment.
  • Each hollow body 83 has two adjacent hollow bodies 83 are connected via spacers in the form of webs 84.
  • a marking 85 is provided on each web 84, which serves as an aid when the displacement body 80 is to be divided into two parts, for example because an edge of a concrete ceiling no longer offers space for a whole displacement body 80, but still includes half a displacement body 80 two hollow bodies 83 can be filled.
  • wall sections 88 are located in the webs 84, so that when the webs 84 are severed, little or no concrete can flow into the hollow bodies 83.
  • Reinforcing ribs 92 are provided on the inside of each hollow body 83, which give the displacement body 80 greater dimensional stability.
  • the two half-shells 80A and 80B can according to Figure 29 first positioned on top of each other and then placed on top of each other. In this position, fastening pins 82 can optionally be inserted into an opening 91 on an edge section in order to fix the two half-shells 80A and 80B to one another. The fastening pins 82 penetrate the two edges of the half-shells 80A and 80B, so that they can no longer slip relative to one another.
  • the displacement bodies 80 produced in this way can according to FIG Figure 31 be placed next to each other, it is not necessary to provide further fastening means.
  • Each displacement body 80 in a central area rests against four further displacement bodies 80.
  • a channel 81 is formed which gives the concrete ceiling a defined structure when concrete is poured in.
  • the displacement bodies 80 are arranged between a lower reinforcement grid 5 and an upper reinforcement grid 2, each of which has longitudinal struts 3 and 6 and transverse struts 4 and 7, as is also shown in FIG Figure 33 you can see.
  • concrete can now be poured, so that a lower concrete layer 9 is provided under the lower reinforcement grid 5 and an upper concrete layer 8 is provided above the upper reinforcement grid 2.
  • the concrete flows through the channels 81 within the displacement bodies 80.
  • Figure 34 It is optional according to Figure 34 possible to provide reinforcement elements 19 'for fixing adjacent displacement bodies 80.
  • a reinforcement element 19 ' is provided in the form of a bracket, which is placed over the adjacent webs 84 to connect the hollow bodies 83.
  • a rod-shaped reinforcement element 19 is provided which is placed on the displacement body 80, with an upwardly projecting angular edge 89 being provided on each hollow body 83, in which a recess 90 is formed in the corner area.
  • the rod-shaped reinforcement element 19 can be inserted into the recess 90 in order to pre-fix the displacement bodies 80.
  • a rod-shaped reinforcement element 19 can thus extend diagonally over a multiplicity of displacement bodies 80.
  • a reinforcement element according to FIG Figure 7 instead of the rod-shaped reinforcement element 19, a reinforcement element according to FIG Figure 7 with a loop 17 or a wave shape.
  • the displacement body 80 is shown with the two half-shells 80A and 80B. It is of course possible to make the height of the displacement body 80 and the half-shells larger or smaller, and in Figure 37A shows a higher half-shell 80A 'of a displacement body 80', which is formed from two higher half-shells 80A 'and 80B'. In the case of even higher ceilings, displacement bodies 80 ′′ according to FIGS Figures 38A and 38B are used, which comprise two even higher half-shells 80A "and 80B". The functionality of the displacement bodies 80 'and 80 "otherwise corresponds to the embodiment of FIG Figures 27 to 35 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Road Paving Structures (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Panels For Use In Building Construction (AREA)
  • Bridges Or Land Bridges (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

Die vorliegende Erfindung betrifft eine Betondecke mit einem unteren Bewehrungsgitter und einem oberen Bewehrungsgitter, zwischen denen eine Vielzahl von Verdrängungskörpern angeordnet sind, wobei das untere und obere Bewehrungsgitter sowie die Verdrängungskörper in Beton eingebettet sind, und jeder Verdrängungskörper mindestens einen Kanal zumindest teilweise umgibt, der eine Verbindung zwischen dem Beton am unteren Bewehrungsgitter und dem Beton am oberen Bewehrungsgitter herstellt, einen Bausatz zur Herstellung einer Betondecke und ein Verfahren zur Herstellung einer Betondecke.The present invention relates to a concrete ceiling with a lower reinforcement grid and an upper reinforcement grid, between which a plurality of displacement bodies are arranged, wherein the lower and upper reinforcement grid and the displacement body are embedded in concrete, and each displacement body at least partially surrounds at least one channel, the one Establishes a connection between the concrete on the lower reinforcement grid and the concrete on the upper reinforcement grid, a kit for the production of a concrete ceiling and a method for the production of a concrete ceiling.

Die DE 20 2006 002 540 U1 offenbart ein Modul zur Herstellung von Betonteilen, bei dem eine Vielzahl von kugelförmigen Verdrängungskörpern unverlierbar in ein Gitterwerk aus Stäben angeordnet wird. Dadurch können die kugelförmigen Verdrängungskörper beim anschließenden Gießen von Beton das Gewicht der Deckenkonstruktion reduzieren. Das Einbringen der Verdrängungskörper in das Gitterwerk und die Herstellung eines solchen Gitterwerkes sind vergleichsweise aufwändig. Zudem kann der Abstand zwischen den Verdrängungskörpern variieren, was eine Berechnung der Tragfähigkeit schwierig macht.The DE 20 2006 002 540 U1 discloses a module for the production of concrete parts in which a large number of spherical displacement bodies are arranged in a captive manner in a latticework of bars. This allows the spherical displacement bodies to reduce the weight of the ceiling structure when the concrete is then poured. The introduction of the displacement bodies into the lattice work and the production of such a lattice work are comparatively complex. In addition, the distance between the displacement bodies can vary, which makes it difficult to calculate the load-bearing capacity.

Die US 2013/0036693 offenbart einen donutförmigen Verdrängungskörper, der im mittleren Bereich einen Kanal aufweist, der beim Gießen von Beton befüllt wird. Dadurch wird eine Verbindung zwischen der Unterseite und der Oberseite einer Betondecke hergestellt. Die Verdrängungskörper werden allerdings beabstandet voneinander angeordnet, so dass zwischen den Verdrängungskörpern ebenfalls Streben zur Verbindung der Unterseite mit der Oberseite vorgesehen sind. Um einen definierten Abstand zwischen den Verdrängungskörpern vorzusehen, müssen Bewehrungselemente montiert werden, die mit den Verdrängungskörpern verbunden werden. Die Montage solcher Bewehrungsgitter zur Beabstandung der Verdrängungskörper ist vergleichsweise aufwändig.The US 2013/0036693 discloses a donut-shaped displacement body which has a channel in the central region which is filled when concrete is poured. This creates a connection between the bottom and top of a concrete ceiling. The displacement bodies are, however, arranged at a distance from one another, so that struts are also provided between the displacement bodies for connecting the lower side to the upper side. In order to provide a defined distance between the displacement bodies, reinforcement elements must be installed that are connected to the displacement bodies. The assembly of such reinforcement grids for spacing the displacement bodies is comparatively complex.

Die WO 2015/182817 A1 zeigt eine Betondecke gemäß dem Oberbegriff des Anspruchs 1. Es ist daher Aufgabe der vorliegenden Erfindung, eine Betondecke, einen Bausatz zur Herstellung einer Betondecke sowie ein Verfahren zur Herstellung einer Betondecke zu schaffen, die eine einfache Herstellung der Betondecke und eine vergleichsweise genaue Berechnung der Tragfähigkeit der Betondecke ermöglichen.The WO 2015/182817 A1 shows a concrete ceiling according to the preamble of claim 1. It is therefore the object of the present invention to provide a concrete ceiling, a kit for producing a concrete ceiling and a method for producing a concrete ceiling, which allow simple production of the concrete ceiling and enable a comparatively precise calculation of the load-bearing capacity of the concrete ceiling.

Diese Aufgabe wird mit einer Betondecke mit den Merkmalen des Anspruches 1, einem Bausatz mit den Merkmalen des Anspruches 11 sowie einem Verfahren zur Herstellung einer Betondecke mit den Merkmalen des Anspruches 12 gelöst.This object is achieved with a concrete ceiling with the features of claim 1, a kit with the features of claim 11 and a method for producing a concrete ceiling with the features of claim 12.

Bei der erfindungsgemäßen Betondecke sind eine Vielzahl von Verdrängungskörpern zwischen einem oberen und einem unteren Bewehrungsgitter angeordnet, wobei die Verdrängungskörper in einem mittleren Bereich der Betondecke an mindestens drei Seiten zumindest bereichsweise aneinander anliegen. Dadurch werden die Verdrängungskörper bei der Montage unmittelbar nebeneinander positioniert, und es ist nicht erforderlich, zusätzliche Positionierungsmittel zwischen den Verdrängungskörpern vorzusehen. Die Verbindung zwischen dem Beton im Bereich des unteren Bewehrungsgitters zum Beton im Bereich des oberen Bewehrungsgitters wird zumindest über den Kanal hergestellt, der an oder in jedem Verdrängungskörper ausgebildet ist. Der Kanal kann dabei vollständig von einem einzigen Verdrängungskörper umgeben sein oder von mehreren Verdrängungskörpern, wobei dann jeder Verdrängungskörper einen Teil einer Kanalwand ausbildet. Da die Größe des Kanals in dem Verdrängungskörper oder den Verdrängungskörpern vorgegeben ist, kann vergleichsweise genau vorbestimmt werden, wie viele Streben im Bereich der Verdrängungskörper von unten nach oben verlaufen und welche Geometrie diese besitzen. Dadurch kann die Tragfähigkeit der Betondecke vergleichsweise genau vorherbestimmt werden.In the concrete ceiling according to the invention, a multiplicity of displacement bodies are arranged between an upper and a lower reinforcement grid, the displacement bodies in a central area of the concrete ceiling in at least three areas resting against one another. As a result, the displacement bodies are positioned directly next to one another during assembly, and it is not necessary to provide additional positioning means between the displacement bodies. The connection between the concrete in the area of the lower reinforcement grid to the concrete in the area of the upper reinforcement grid is established at least via the channel which is formed on or in each displacement body. The channel can be completely surrounded by a single displacement body or by several displacement bodies, each displacement body then forming part of a channel wall. Since the size of the channel in the displacement body or bodies is predetermined, it can be predetermined with comparative precision how many struts in the area of the displacement bodies run from bottom to top and what geometry they have. As a result, the load-bearing capacity of the concrete ceiling can be determined comparatively precisely in advance.

Es ist zwischen benachbarten Verdrängungskörpern kein zusätzlicher Abstandshalter vorgesehen, so dass die Positionierung benachbarter Verdrängungskörper durch eine Seitenkante oder eine Seitenwand erfolgt, an der die benachbarten Verdrängungskörper einander berühren. Die Verdrängungskörper können sich dabei im mittleren Bereich der Betondecke an allen ihren Seiten umlaufend zumindest bereichsweise abstützen, wobei je nach Formgebung der Verdrängungskörper drei, vier oder mehr Anlageflächen vorgesehen sein können.No additional spacer is provided between adjacent displacement bodies, so that adjacent displacement bodies are positioned by a side edge or a side wall at which the adjacent displacement bodies touch one another. The displacement bodies can support each other in the middle area of the concrete ceiling on all their sides, at least in some areas, whereby three, four or more contact surfaces can be provided depending on the shape of the displacement bodies.

Erfindungsgemäß ist das Verhältnis des Querschnitts des Kanals in dem Verdrängungskörper zur Fläche der Verdrängungskörper in Draufsicht zwischen 0,2 bis 0,45, insbesondere zwischen 0,3 bis 0,4. Die Fläche des Kanals ist somit im Verhältnis zur Gesamtfläche des Verdrängungskörpers in Draufsicht vergleichsweise groß, wobei gewährleistet wird, dass beim Gießen von Beton die Kanäle auch gefüllt werden. Dadurch kann die Berechnung der Tragfähigkeit auf Basis der Fläche der Kanäle erfolgen. Die Kanäle können dabei in Draufsicht kreisförmig, quadratisch, rautenförmig oder eine andere Geometrie besitzen. Vorzugsweise besitzt jeder Kanal eine engste Stelle, die in einem mittleren Bereich des Verdrängungskörpers vorgesehen ist. Der Durchmesser eines Kanals in einem Verdrängungskörper kann beispielsweise zwischen 200 mm bis 450 mm, insbesondere 250 mm bis 400 mm, betragen. Falls der Kanal eine von der Kreisform abweichende Geometrie besitzt, kann diese Geometrie auf den obigen Durchmesserbereich umgerechnet werden, wenn die Fläche des Kanals der Fläche eines berechneten Durchmessers entspricht.According to the invention, the ratio of the cross section of the Channel in the displacement body to the surface of the displacement body in plan view between 0.2 to 0.45, in particular between 0.3 to 0.4. The area of the channel is thus comparatively large in relation to the total area of the displacement body in plan view, which ensures that the channels are also filled when concrete is poured. This means that the load-bearing capacity can be calculated based on the area of the channels. The channels can be circular, square, diamond-shaped or some other geometry in plan view. Each channel preferably has a narrowest point which is provided in a central region of the displacement body. The diameter of a channel in a displacement body can for example be between 200 mm to 450 mm, in particular 250 mm to 400 mm. If the channel has a geometry that differs from the circular shape, this geometry can be converted to the above diameter range if the area of the channel corresponds to the area of a calculated diameter.

Vorzugsweise werden die Verdrängungskörper lose auf das untere Bewehrungsgitter aufgelegt. Dadurch wird die Montage vereinfacht.The displacement bodies are preferably placed loosely on the lower reinforcement grid. This simplifies assembly.

Die Verdrängungskörper sind in Draufsicht vorzugsweise quadratisch ausgebildet, so dass der Bereich einer Decke, in dem die Verdrängungskörper angeordnet werden sollen, leicht mit den Verdrängungskörpern belegt werden kann.The displacement bodies are preferably square in plan view, so that the area of a ceiling in which the displacement bodies are to be arranged can easily be covered with the displacement bodies.

In einer weiteren Ausgestaltung sind zwischen benachbarten Verdrängungskörpern Freiräume vorgesehen, wobei in Draufsicht die Fläche der Freiräume kleiner ist als die Fläche der Kanäle. Solche Freiräume könne beispielsweise im Eckbereich zwischen benachbarten Verdrängungskörpern bestehen, wenn diese abgerundete oder abgeschrägte Ecken aufweisen, so dass dort ebenfalls kleinere Freiräume oder Kanäle gebildet werden, die eine Verbindung des Betons in vertikale Richtung ermöglichen. Alternativ können die Freiräume auch als Kanäle ausgebildet sein, die zwischen zwei oder mehr Verdrängungskörpern gebildet werden.In a further embodiment, free spaces are provided between adjacent displacement bodies, the area of the free spaces being smaller than the area of the channels in plan view. Such free spaces can exist, for example, in the corner area between adjacent displacement bodies if these have rounded or beveled corners, so that smaller free spaces or channels are also formed there, which enable the concrete to be connected in the vertical direction. Alternatively, the free spaces can also be designed as channels that are formed between two or more displacement bodies.

Vorzugsweise umfasst ein Verdrängungskörper mehrere Hohlkörper, die über Abstandshalter miteinander verbunden sind. Beispielsweise können vier Hohlkörper vorgesehen sein, die über trennbare Stege miteinander verbunden sind, so dass bei Bedarf der Verdrängungskörper im Bereich der Stege getrennt werden kann, und, je nach Bauraum der Betondecke, der Verdrängungskörper auch halbiert werden kann, um eine Betondecke zu füllen. Die einzelnen Hohlkörper können dabei im Wesentlichen geschlossen ausgebildet sein, so dass kein Beton in die Hohlkörper beim Durchtrennen der Abstandshalter oder Stege strömt.A displacement body preferably comprises a plurality of hollow bodies which are connected to one another via spacers. For example, four hollow bodies can be provided, which are connected to one another via separable webs, so that if necessary the displacement body can be separated in the area of the webs and, depending on the construction space of the concrete ceiling, the displacement body can also be halved to fill a concrete ceiling. The individual hollow bodies can be designed essentially closed, so that no concrete flows into the hollow body when the spacers or webs are cut.

Bei der erfindungsgemäßen Betondecke sind die Bewehrungsgitter vorzugswese im Wesentlichen flach ausgebildet. Die Bewehrungsgitter stehen daher vorzugsweise nicht in die Ebene der Verdrängungskörper hinein und können aus winklig, vorzugsweise rechtwinklig zueinander verlaufenden Streben gebildet sein.In the concrete ceiling according to the invention, the reinforcement grids are preferably essentially flat. The reinforcement grids therefore preferably do not protrude into the plane of the displacement bodies and can be formed from struts extending at an angle, preferably at right angles to one another.

Bei dem erfindungsgemäßen Verfahren zur Herstellung einer Betondecke wird zunächst ein unteres Bewehrungsgitter positioniert, auf das dann eine Vielzahl von Verdrängungskörpern aufgelegt werden, wobei in einem mittleren Bereich des Bewehrungsgitters die Verdrängungskörper an mindestens drei Seiten zumindest bereichsweise aneinander anliegen, um sich gegenseitig zu positionieren. Nach dem Ablegen der Verdrängungskörper wird dann ein oberes Bewehrungsgitter auf die Vielzahl von Verdrängungskörpern aufgelegt und durch ein- oder mehrmaliges Gießen von Beton eine Betondecke hergestellt. Durch das lose Auflegen der Verdrängungskörper entfällt die Notwendigkeit, eine vorbestimmte Beabstandung der Verdrängungskörper vorzusehen, beispielsweise über Bewehrungskörbe oder spezielle Abstandshalter. Dies vereinfacht die Montage, da die Verdrängungskörper unmittelbar aneinander anliegend positioniert werden können. Bis auf die randseitig angeordneten Verdrängungskörper werden wie Verdrängungskörper im mittleren Bereich vorzugsweise an allen Seiten von benachbarten Verdrängungskörpern abgestützt bzw. positioniert, insbesondere ohne zusätzliche Abstandshalter.In the method according to the invention for producing a concrete ceiling, a lower reinforcement grid is first positioned on which a large number of displacement bodies are then placed, with the displacement bodies in a central area of the reinforcement grid resting against one another on at least three sides, at least in areas, in order to position one another. After the displacement bodies have been deposited, an upper reinforcement grid is then placed on the large number of displacement bodies and a concrete ceiling is produced by pouring concrete one or more times. The loose placement of the displacement bodies eliminates the need to provide a predetermined spacing of the displacement bodies, for example using reinforcement cages or special spacers. This simplifies assembly, since the displacement bodies can be positioned directly adjacent to one another. With the exception of the displacement bodies arranged at the edge, like displacement bodies in the central region, they are preferably supported or positioned on all sides by adjacent displacement bodies, in particular without additional spacers.

Die Verdrängungskörper können dabei in Draufsicht quadratisch oder rechteckförmig ausgebildet sein und liegen in einem mittleren Bereich an vier Seiten aneinander an. Die Verdrängungskörper sind somit für eine Decke Strukturgeber, wobei vorzugsweise der Kanal innerhalb eines Verdrängungskörpers die Geometrie einer Strebe zwischen der Unterseite und der Oberseite eines Verdrängungskörpers vorgibt, was eine vergleichsweise genaue Berechnung der Tragfähigkeit der Betondecke ermöglicht.The displacement bodies can be square or rectangular in plan view and are in contact with one another on four sides in a central area. The displacement bodies are thus structure generators for a ceiling, the channel within a displacement body preferably specifying the geometry of a strut between the bottom and the top of a displacement body, which enables a comparatively precise calculation of the load-bearing capacity of the concrete ceiling.

Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele mit Bezug auf die beigefügten Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Schnittansicht durch eine erfindungsgemäße Betondecke;
Figur 2
eine perspektivische Ansicht der Betondecke der Figur 1 ohne Beton;
Figur 3
eine perspektivische Ansicht der Verdrängungskörper der Betondecke der Figur 1;
Figur 4
eine Seitenansicht von zwei Verdrängungskörpern der Betondecke der Figur 1;
Figur 5
eine perspektivische Ansicht eines Verdrängungskörpers der Betondecke der Figur 1;
Figuren 6A und 6B
zwei Ansichten der Halbschalen des Verdrängungskörpers der Figur 5;
Figur 7
eine perspektivische Ansicht eines Verdrängungskörpers mit einem optionalen Bewehrungselement;
Figur 8
eine Ansicht eines Verdrängungskörpers mit einem optionalen modifizierten Bewehrungselement;
Figur 9
eine perspektivische Ansicht mehrerer Verdrängungskörper gemäß einem zweiten Ausführungsbeispiel;
Figur 10
eine perspektivische Ansicht eines Verdrängungskörpers der Figur 9;
Figuren 11A bis 16
mehrere Ansichten des Verdrängungskörpers der Figur 10, teilweise im Schnitt;
Figur 17
mehrere Verdrängungskörper gemäß einem dritten Ausführungsbeispiel;
Figur 18
eine perspektivische Ansicht eines Verdrängungskörpers der Figur 17;
Figur 19
eine Ansicht einer Halbschale eines Verdrängungskörpers der Figur 18;
Figur 20
eine perspektivische Ansicht mehrerer Verdrängungskörper gemäß einem vierten Ausführungsbeispiel;
Figur 21
eine Ansicht von zwei benachbarten Verdrängungskörpern der Figur;
Figur 22
eine perspektivische Ansicht eines Verdrängungskörpers der Figur 20;
Figur 23
eine perspektivische Ansicht mehrerer in Draufsicht dreieckförmiger Verdrängungskörper;
Figur 24
eine Ansicht eines Verdrängungskörpers der Figur 23;
Figuren 25 A und B
zwei Ansichten eines weiteren Ausführungsbeispiels;
Figur 26
eine Ansicht eines weiteren Ausführungsbeispiels von benachbarten Verdrängungskörpern;
Figuren 27 bis 30
mehrere Ansichten eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Verdrängungskörpers;
Figur 31
eine perspektivische Ansicht mehrerer Verdrängungskörper der Figur 27;
Figuren 32 und 33
zwei Ansichten der Verdrängungskörper der Figur 31 mit Bewehrungsgittern;
Figuren 34 und 35
zwei Ansichten der Verdrängungskörper der Figur 27 mit Bewehrungselementen, und
Figuren 36 bis 38
mehrere Ansichten von Verdrängungskörpern mit unterschiedlicher Bauhöhe.
The invention is explained in more detail below on the basis of several exemplary embodiments with reference to the accompanying drawings. Show it:
Figure 1
a sectional view through a concrete ceiling according to the invention;
Figure 2
a perspective view of the concrete ceiling of Figure 1 without concrete;
Figure 3
a perspective view of the displacement bodies of the concrete ceiling Figure 1 ;
Figure 4
a side view of two displacement bodies of the concrete ceiling of Figure 1 ;
Figure 5
a perspective view of a displacement body of the concrete ceiling Figure 1 ;
Figures 6A and 6B
two views of the half-shells of the sinker Figure 5 ;
Figure 7
a perspective view of a displacement body with an optional reinforcement element;
Figure 8
a view of a displacement body with an optional modified reinforcement element;
Figure 9
a perspective view of a plurality of displacement bodies according to a second embodiment;
Figure 10
a perspective view of a displacement body of FIG Figure 9 ;
Figures 11A through 16
several views of the sinker of the Figure 10 , partly in section;
Figure 17
several displacement bodies according to a third embodiment;
Figure 18
a perspective view of a displacement body of FIG Figure 17 ;
Figure 19
a view of a half-shell of a displacement body of Figure 18 ;
Figure 20
a perspective view of a plurality of displacement bodies according to a fourth embodiment;
Figure 21
a view of two adjacent displacement bodies of the figure;
Figure 22
a perspective view of a displacement body of FIG Figure 20 ;
Figure 23
a perspective view of several in plan view triangular displacement body;
Figure 24
a view of a displacement body of Figure 23 ;
Figures 25 A and B
two views of a further embodiment;
Figure 26
a view of a further embodiment of adjacent displacement bodies;
Figures 27 to 30
several views of a further embodiment of a displacement body according to the invention;
Figure 31
a perspective view of several displacement bodies of Figure 27 ;
Figures 32 and 33
two views of the displacement body of the Figure 31 with reinforcement mesh;
Figures 34 and 35
two views of the displacement body of the Figure 27 with reinforcement elements, and
Figures 36 to 38
several views of displacement bodies with different heights.

Eine Betondecke 1 umfasst ein oberes Bewehrungsgitter 2, das eine Vielzahl von Längsstreben 3 und Querstreben 4 aufweist, die miteinander verbunden sind. Ferner ist ein unteres Bewehrungsgitter 5 vorgesehen, das ebenfalls eine Vielzahl von Längsstreben 6 und senkrecht hierzu verlaufender Querstreben 7 aufweist, wie dies in den Figuren 1 und 2 gezeigt ist.A concrete ceiling 1 comprises an upper reinforcement grid 2, which has a plurality of longitudinal struts 3 and transverse struts 4 which are connected to one another. Furthermore, a lower reinforcement grid 5 is provided, which is also a A plurality of longitudinal struts 6 and transverse struts 7 extending perpendicular thereto, as shown in FIG Figures 1 and 2 is shown.

Zwischen den flachen Bewehrungsgittern 2 und 5 sind eine Vielzahl von Verdrängungskörpern 10 angeordnet, die beispielsweise aus Kunststoff hergestellt sind und für eine Beabstandung des oberen Bewehrungsgitters 2 von dem unteren Bewehrungsgitter 5 sorgen. Die Verdrängungskörper 10 liegen in einem Randbereich aneinander an und werden nicht durch zusätzliche Positionierungsmittel beabstandet voneinander gehalten. In jedem Verdrängungskörper 10 ist ein Kanal 11 ausgebildet, der eine Verbindung zwischen dem Beton an dem unteren Bewehrungsgitter 5 und dem Beton an dem oberen Bewehrungsgitter 2 herstellt. Durch die Kanäle 11 wird somit eine Stützstruktur in der Betondecke 1 geschaffen, die von den Verdrängungskörpern 10 vorgegeben wird.Between the flat reinforcement grids 2 and 5, a multiplicity of displacement bodies 10 are arranged, which are made, for example, of plastic and ensure that the upper reinforcement grid 2 is spaced apart from the lower reinforcement grid 5. The displacement bodies 10 rest against one another in an edge region and are not kept at a distance from one another by additional positioning means. In each displacement body 10, a channel 11 is formed, which creates a connection between the concrete on the lower reinforcement grid 5 and the concrete on the upper reinforcement grid 2. The channels 11 thus create a support structure in the concrete ceiling 1, which is predetermined by the displacement bodies 10.

Wie in Figur 3 gezeigt ist, besitzt jeder Verdrängungskörper 10 um den Kanal 11 einen ringförmigen Abschnitt 12 mit Vorsprüngen und dazwischen angeordneten Vertiefungen 15. Jeder Kanal 11 ist in Draufsicht rautenförmig ausgebildet, kann aber auch kreisförmig oder quadratisch ausgebildet sein. Der Kanal 11 besitzt in einem mittleren Bereich der Verdrängungskörper 10 den engsten Querschnitt und weitet sich dann nach außen auf. Über die Vertiefungen 15 wird gewährleistet, dass beim Einführen von Beton die Kanäle 11 sicher befüllt werden können, wobei der Beton innerhalb der Vertiefungen 15 aufspreizende Stützstege ausbildet.As in Figure 3 is shown, each displacement body 10 has around the channel 11 an annular section 12 with projections and recesses 15 arranged between them. Each channel 11 is diamond-shaped in plan view, but can also be circular or square. The channel 11 has the narrowest cross section in a central area of the displacement body 10 and then widens outwards. The depressions 15 ensure that the channels 11 can be safely filled when concrete is introduced, the concrete forming support webs within the depressions 15.

An jedem Verdrängungskörper 10 ist in einer mittleren Höhe ein seitlich hervorstehender Rand 14 ausgebildet, der zur Positionierung eines benachbarten Verdrängungskörpers 10 dient.On each displacement body 10, a laterally protruding edge 14 is formed at a central height, which edge 14 is used to position an adjacent displacement body 10.

In Figur 4 sind zwei Verdrängungskörper 10 in einer Seitenansicht gezeigt. An Vorsprüngen oder ringförmigen Abschnitten 12 stehen jeweils Stege 13 hervor, die die Vertiefungen 15 umgeben. Eine Höhe h der Verdrängungskörper liegt vorzugsweise in einem Bereich zwischen 40 mm bis 400 mm, insbesondere 80 mm bis 300 mm.In Figure 4 two displacement bodies 10 are shown in a side view. On projections or annular sections 12, webs 13 each protrude, which surround the depressions 15. A height h of the displacement body is preferably in a range between 40 mm to 400 mm, in particular 80 mm to 300 mm.

Die Verdrängungskörper 10 sind in Draufsicht quadratisch ausgebildet, so dass eine Breite L an den beiden Seitenkanten etwa gleich ist, wobei die Breite in einem Bereich zwischen 300 mm bis 700 mm, insbesondere 400 mm bis 600 mm, beträgt.The displacement bodies 10 are square in plan view, so that a width L is approximately the same at the two side edges, the width being in a range between 300 mm to 700 mm, in particular 400 mm to 600 mm.

Der Kanal 11 besitzt an der engsten Stelle eine Fläche von mindestens 100 cm2, insbesondere mehr als 150 cm2. Wird die engste Querschnittsfläche kreisförmig ausgestaltet, liegt der Durchmesser vorzugsweise in einem Bereich zwischen 200 mm und 450 mm, insbesondere 250 mm bis 400 mm.The channel 11 has an area of at least 100 cm 2 , in particular more than 150 cm 2 , at its narrowest point. If the narrowest cross-sectional area is designed to be circular, the diameter is preferably in a range between 200 mm and 450 mm, in particular 250 mm to 400 mm.

Das Verhältnis der Fläche des Kanals 11 im Bereich des engsten Querschnittes zur Gesamtfläche des Verdrängungskörpers 10 in Draufsicht beträgt vorzugsweise mindestens 0,1 beispielsweise zwischen 0,2 bis 0,45, insbesondere 0,3 bis 0,4. Dadurch wird durch den Kanal 11 eine "Betonsäule" innerhalb des Verdrängungskörpers 10 ausgebildet, deren geometrische Abmessungen vorgegeben sind und die daher eine vergleichsweise genaue Berechnung der Tragfähigkeit ermöglicht.The ratio of the area of the channel 11 in the area of the narrowest cross-section to the total area of the displacement body 10 in plan view is preferably at least 0.1, for example between 0.2 to 0.45, in particular 0.3 to 0.4. As a result, a “concrete column” is formed within the displacement body 10 through the channel 11, the geometric dimensions of which are predetermined and which therefore enables a comparatively precise calculation of the load-bearing capacity.

In Figur 5 ist ein Verdrängungskörper 10 gezeigt, der für die Herstellung einer Betondecke 1 lose auf ein unteres Bewehrungsgitter 5 auflegbar ist. Benachbarte Verdrängungskörper 10 werden dabei aneinander anliegend positioniert, außer diejenigen Verdrängungskörper 10, die in einem Randbereich der Betondecke 1 angeordnet sind, da bei diesen Verdrängungskörpern zumindest an der Außenseite ein benachbarter Verdrängungskörper 10 fehlt.In Figure 5 a displacement body 10 is shown, which can be placed loosely on a lower reinforcement grid 5 for the production of a concrete ceiling 1. Adjacent displacement bodies 10 are positioned adjacent to one another, with the exception of those displacement bodies 10 that are arranged in an edge region of the concrete ceiling 1, since these displacement bodies lack an adjacent displacement body 10 at least on the outside.

Jeder Verdrängungskörper 10 ist in dem dargestellten Ausführungsbeispiel aus zwei Halbschalen 10A und 10 gebildet, die zusammengesteckt werden können und einen Hohlraum umgeben. Der Hohlraum innerhalb der Verdrängungskörper 10 kann wahlweise Luft enthalten, aber auch ein Füllungselement, beispielsweise einen Schaumkörper.In the illustrated embodiment, each displacement body 10 is formed from two half-shells 10A and 10 which can be plugged together and surround a cavity. The cavity within the displacement body 10 can optionally contain air, but also a filling element, for example a foam body.

Zur Erhöhung der Festigkeit kann es sinnvoll sein, zumindest an einzelnen Verdrängungskörpern 10 Bewehrungselemente 16 vorzusehen, wie dies in Figur 7 gezeigt ist. Ein solches Bewehrungselement 16 kann durch einen gebogenen Draht gebildet sein, der beispielsweise eine Schlaufe 17 umfasst, die in den Kanal 11 eingesteckt ist. Das Bewehrungselement 16 ist mit zwei Streben an dem Rand 13 des Verdrängungskörpers 10 fixiert.To increase the strength, it can be useful to provide reinforcement elements 16 at least on individual displacement bodies 10, as shown in FIG. Such a reinforcement element 16 can be formed by a bent wire which, for example, comprises a loop 17 which is inserted into the channel 11. The reinforcement element 16 is fixed to the edge 13 of the displacement body 10 with two struts.

Wie in Figur 8 gezeigt ist, kann an dem Steg 13 eine Aussparung 18 vorgesehen sein, in die eine Strebe eines Bewehrungselementes einfügbar ist. Das Bewehrungselement 19 kann auch stabförmig ausgebildet sein, ohne eine Schlaufe 17.As in Figure 8 is shown, a recess 18 can be provided on the web 13, into which a strut of a reinforcement element can be inserted. The reinforcement element 19 can also be rod-shaped without a loop 17.

In Figur 9 ist ein modifiziertes Ausführungsbeispiel einer Einheit aus Verdrängungskörpern 20 dargestellt, die im mittleren Bereich einen Kanal 21 aufweisen, der im Querschnitt kreisförmig ausgebildet ist, wobei jeder Kanal 21 in einem mittleren Bereich der Verdrängungskörper 20 einen engsten Querschnitt aufweist. Um jeden Kanal 21 ist ein ringförmiger Abschnitt 22 der Verdrängungskörper 20 ausgebildet. An jedem ringförmigen Abschnitt 22 ist im Eckbereich eine Vertiefung 23 vorgesehen, die ein Einströmen von Beton in den Kanal 21 ermöglicht. Die Verdrängungskörper 20 weisen an äußeren Seitenflächen Kanten oder Ränder 24 auf, die zur Positionierung der benachbarten Verdrängungskörper 20 dienen.In Figure 9 a modified embodiment of a unit of displacement bodies 20 is shown, which have a channel 21 in the central region, which is circular in cross section, each channel 21 having a narrowest cross section in a central region of the displacement bodies 20. An annular section 22 of the displacement body 20 is formed around each channel 21. In the corner region of each annular section 22, a recess 23 is provided which enables concrete to flow into the channel 21. The displacement bodies 20 have edges or rims 24 on outer side surfaces which serve to position the adjacent displacement bodies 20.

Wie in den Figuren 11A und 11B gezeigt ist, sind die Verdrängungskörper 20 aus zwei Halbschalen 20A und 20B gebildet, die über Rast- oder Halteelemente aneinander fixierbar sind. An der unteren Halbschale 20B ist eine Rastaufnahme 26 ausgebildet, in die ein Raststeg 25 an der oberen Halbschale 20A eingreift, wie dies aus Figur 11B gezeigt ist. Über den Umfang verteilt können mehrere dieser Rastverbindungen vorgesehen sein, um die Halbschalen 20A und 20B aneinander zu fixieren.As in the Figures 11A and 11B is shown, the displacement bodies 20 are formed from two half-shells 20A and 20B, which can be fixed to one another via locking or holding elements. A latching receptacle 26 is formed on the lower half-shell 20B, into which a latching web 25 engages on the upper half-shell 20A, as shown in FIG Figure 11B is shown. Several of these locking connections can be provided distributed over the circumference in order to fix the half-shells 20A and 20B to one another.

In den Figuren 12A und 12B ist ein Schnitt durch den Verdrängungskörper 20 im Bereich von Halteelementen gezeigt. An der unteren Halbschale 20B steht ein Haltesteg 27 nach oben hervor, der in eine Aufnahme 28 an der oberen Halbschale 20A eingreift, so dass im Randbereich zwischen den beiden Halbschalen 20A und 20B stattfindet.In the Figures 12A and 12B shows a section through the displacement body 20 in the area of holding elements. On the lower half-shell 20B, a retaining web 27 protrudes upwards, which engages in a receptacle 28 on the upper half-shell 20A, so that it takes place in the edge area between the two half-shells 20A and 20B.

In Figur 14 ist die obere Halbschale 20A innen gezeigt, wobei die untere Halbschale 20B identisch ausgestaltet sein kann, wobei die Halbschalen 20A und 20B um 180° versetzt ineinander gesteckt werden können. Im Randbereich befinden sich Raststege 25, Rastaufnahme 26, Haltestege 27 und Aufnahmen 28 zur Verstärkung des Randbereiches. Ein Rand 24 der Verdrängungskörper 20 ist somit vergleichsweise formstabil und kann zur Positionierung benachbarter Verdrängungskörper 20 eingesetzt werden.In Figure 14 the upper half-shell 20A is shown on the inside, wherein the lower half-shell 20B can be configured identically, wherein the half-shells 20A and 20B can be inserted into one another offset by 180 °. In the edge area there are locking webs 25, locking receptacles 26, holding webs 27 and receptacles 28 for reinforcing the edge area. An edge 24 of the displacement body 20 is thus comparatively dimensionally stable and can be used for positioning adjacent displacement bodies 20.

In Figur 15 sind zwei Halbschalen 20A in einer gestapelten Position gezeigt, und in Figur 16 sind zwei Halbschalen 20B in einer gestapelten Position gezeigt.In Figure 15 two half-shells 20A are shown in a stacked position, and in FIG Figure 16 two half-shells 20B are shown in a stacked position.

In den Figuren 17 und 18 ist ein weiteres Ausführungsbeispiel von Verdrängungskörpern 30 gezeigt, die in Draufsicht quadratisch ausgebildet sind und mittig jeweils einen Kanal 31 aufweisen, der im Querschnitt kreisförmig ausgebildet ist. Jeder Kanal 31 ist von einem ringförmigen Abschnitt 32 des Verdrängungskörpers umgeben, der an vier Seiten Vertiefungen 33 aufweist. Die Vertiefungen 33 sind jedoch nicht im Eckbereich, sondern mittig an einer Seitenfläche des Verdrängungskörpers 30 angeordnet. Die Verdrängungskörper 30 weisen einen äußeren Rand 34 auf, der zur Positionierung benachbarter Verdrängungskörper 30 dient, wobei an dem Rand 34 Rastaufstege 35, Haltestege 36 oder andere Mittel zur Positionierung vorgesehen sein können.In the Figures 17 and 18th a further embodiment of displacement bodies 30 is shown, which are square in plan view and each have a central channel 31 which is circular in cross section. Each channel 31 is surrounded by an annular section 32 of the displacement body which has recesses 33 on four sides. However, the recesses 33 are not arranged in the corner area, but rather in the middle on a side surface of the displacement body 30. The displacement bodies 30 have an outer edge 34 which is used to position adjacent displacement bodies 30, with locking webs 35, holding webs 36 or other means for positioning being provided on the edge 34.

In Figur 19 ist eine Halbschale 30A eines Verdrängungskörpers 30 gezeigt, der einen umlaufenden Rand aufweist, an dem ein Raststeg 35, eine Rastaufnahme 37 und ein Haltesteg 36 und ein Haltesteg 38 ausgebildet sind.In Figure 19 a half-shell 30A of a displacement body 30 is shown which has a circumferential edge on which a locking web 35, a locking receptacle 37 and a holding web 36 and a holding web 38 are formed.

In den Figuren 20 und 21 sind Ausführungsbeispiele von Verdrängungskörpern 40 gezeigt, die in Draufsicht quadratisch ausgebildet sind und im mittleren Bereich einen im Querschnitt kreisförmigen Kanal 41 umfassen. Jeder Kanal 41 ist von einem ringförmigen Abschnitt 42 an dem Verdrängungskörper 40 umgeben, wobei der ringförmige Abschnitt 42 ohne Vertiefungen ausgebildet ist. Jeder Verdrängungskörper 40 umfasst einen Randabschnitt 43, der zur Positionierung eines benachbarten Verdrängungskörpers 40 eingesetzt werden kann, wie dies in Figur 21 gezeigt ist.In the Figures 20 and 21st Exemplary embodiments of displacement bodies 40 are shown, which are square in plan view and include a channel 41 with a circular cross-section in the central region. Each channel 41 is surrounded by an annular section 42 on the displacement body 40, the annular section 42 being designed without recesses. Each displacement body 40 comprises an edge section 43 which can be used for positioning an adjacent displacement body 40, as shown in FIG Figure 21 is shown.

In Figur 22 ist eine Halbschale 40A eines Verdrängungskörpers 40 dargestellt, und die Verdrängungskörper 40 können aus zwei Halbschalen 40A hergestellt werden.In Figure 22 a half-shell 40A of a displacement body 40 is shown, and the displacement bodies 40 can be produced from two half-shells 40A.

In den Figuren 23 und 24 ist ein weiteres Ausführungsbeispiel von Verdrängungskörpern 50 gezeigt, die in Draufsicht nicht quadratisch, sondern dreieckförmig ausgebildet sind. In jedem Verdrängungskörper 50 befindet sich ein Kanal 51, der einen kreisförmigen Querschnitt besitzt. Der Verdrängungskörper 50 besitzt an den drei Spitzen des Dreieckes Abflachungen 53, die in einer zusammengesetzten Position der Verdrängungskörper 50 Freiräume 52 ausbilden, so dass eine Verbindung des Betons im Bereich des unteren Bewehrungsgitters 5 zu dem Beton im Bereich des oberen Bewehrungsgitters 2 nicht nur durch die Kanäle 51 erfolgt, sondern auch durch die Freiräume 52. Die Fläche der Freiräume 52 ist dabei geringer ausgebildet als die Fläche der Kanäle 51 in Draufsicht gesehen.In the Figures 23 and 24 Another embodiment of displacement bodies 50 is shown, which are not square, but triangular in plan view. In each displacement body 50 there is a channel 51 which has a circular cross section. The displacement body 50 has flattened areas 53 at the three tips of the triangle which, in an assembled position of the displacement bodies 50, form free spaces 52 so that a connection of the concrete in the area of the lower reinforcement grid 5 to the concrete in the area of the upper reinforcement grid 2 is not only possible through the Channels 51 takes place, but also through the free spaces 52. The area of the free spaces 52 is designed to be smaller than the area of the channels 51 seen in plan view.

In den Figuren 25A und 25B ist ein weiteres Ausführungsbeispiel von Verdrängungskörpern 60 gezeigt, die jeweils einen mittleren Kanal 61 aufweisen, der von einem ringförmigen Abschnitt des Verdrängungskörpers 60 umschlossen ist. Zusätzlich weist der Verdrängungskörper an jeder Seitenfläche eine halbkreisförmige Freifläche 62 auf, und im Eckbereich eine viertelkreisförmige Freifläche 63. Die Verdrängungskörper 60 können dabei so aneinander gelegt werden, dass die Stege 64 zwischen der Freifläche 62 und der Freifläche 63 aneinander anliegen, wie dies in Figur 25A gezeigt ist.In the Figures 25A and 25B Another exemplary embodiment of displacement bodies 60 is shown, each having a central channel 61 which is enclosed by an annular section of the displacement body 60. In addition, the displacement body has a semicircular free surface 62 on each side surface, and a quarter-circular free surface 63 in the corner area. The displacement bodies 60 can be placed against one another in such a way that the webs 64 between the free surface 62 and the free surface 63 rest against one another, as shown in FIG Figure 25A is shown.

Figur 26 zeigt ein Ausführungsbeispiel mit vier Verdrängungskörpern 70, die einen Kanal 71 umgeben. Der Kanal 71 ist dabei von den vier Verdrängungskörpern 70 umgeben. Jeder Verdrängungskörper 70 besitzt vier nach außen abragende Stege 72, wobei zwei Stirnseiten der benachbarten Stege 72 aneinander anliegen. Dadurch ist die Größe des Kanals 71 durch die Geometrie der Stege 72 und der Verdrängungskörper 70 vorgegeben, die in dem gezeigten Ausführungsbeispiel in Draufsicht kreisförmig ist. Auch andere Querschnittsformen für den Kanal 71 sind möglich. Die Höhe der Verdrängungskörper 70 kann wie bei den ersten Ausführungsbeispielen entsprechend den Festigkeitsanforderungen gewählt sein. Figure 26 shows an embodiment with four displacement bodies 70 which surround a channel 71. The channel 71 is surrounded by the four displacement bodies 70. Each displacement body 70 has four outwardly protruding webs 72, two end faces of the adjacent webs 72 resting against one another. As a result, the size of the channel 71 is predetermined by the geometry of the webs 72 and the displacement body 70, which in the exemplary embodiment shown is circular in plan view. Other cross-sectional shapes for the channel 71 are also possible. As in the first exemplary embodiments, the height of the displacement body 70 can be selected according to the strength requirements.

In den dargestellten Ausführungsbeispielen sind die Kanäle im Querschnitt kreisförmig oder rautenförmig. Auch andere Geometrien für die Kanäle können eingesetzt werden.In the exemplary embodiments shown, the channels are circular or diamond-shaped in cross section. Other geometries for the channels can also be used.

Die Verdrängungskörper 10, 20, 30, 40, 50, 60 können an ihrer Kontaktfläche lose aneinander anliegen. Es ist aber auch möglich, Verbindungselemente, wie Haken oder andere Bauteile, vorzusehen, die eine Fixierung der Verdrängungskörper 10, 20, 30, 40, 50, 60 aneinander ermöglichen.The displacement bodies 10, 20, 30, 40, 50, 60 can rest loosely against one another at their contact surface. However, it is also possible to provide connecting elements, such as hooks or other components, which enable the displacement bodies 10, 20, 30, 40, 50, 60 to be fixed to one another.

In Figur 27 ist ein weiteres Ausführungsbeispiel eines Verdrängungskörpers 80 gezeigt, der aus zwei Halbschalen 80A und 80B zusammengesetzt ist. Die beiden Halbschalen 80A und 80B sind an einem umlaufenden Rand 86 miteinander verbunden, der jeweils im mittleren Bereich einer Seitenkante eine Stufe 87 aufweist. Die Halbschalen 80A und 80B sind baugleich ausgebildet, wobei in den Figuren 28A und 28B die obere Halbschale in zwei Ansichten im Detail gezeigt ist.In Figure 27 Another embodiment of a displacement body 80 is shown, which is composed of two half-shells 80A and 80B. The two half-shells 80A and 80B are connected to one another at a circumferential edge 86, which has a step 87 in the middle area of a side edge. The half-shells 80A and 80B are constructed identically, with Figures 28A and 28B the upper half-shell is shown in detail in two views.

Der Verdrängungskörper 80 umfasst vier Hohlkörper 83, die in Draufsicht die Form eines Viertelkreissegmentes besitzen. Jeder Hohlkörper 83 ist mit zwei benachbarten Hohlkörpern 83 über Abstandshalter in Form von Stegen 84 verbunden. An jedem Steg 84 ist eine Markierung 85 vorgesehen, die als Hilfestellung dient, wenn der Verdrängungskörper 80 in zwei Teile aufgeteilt werden soll, beispielsweise weil ein Rand einer Betondecke nicht mehr Platz für einen ganzen Verdrängungskörper 80 bietet, aber noch mit einem halben Verdrängungskörper 80 mit zwei Hohlkörpern 83 aufgefüllt werden kann.The displacement body 80 comprises four hollow bodies 83 which, in plan view, have the shape of a quarter-circle segment. Each hollow body 83 has two adjacent hollow bodies 83 are connected via spacers in the form of webs 84. A marking 85 is provided on each web 84, which serves as an aid when the displacement body 80 is to be divided into two parts, for example because an edge of a concrete ceiling no longer offers space for a whole displacement body 80, but still includes half a displacement body 80 two hollow bodies 83 can be filled.

Wie in Figur 28B gezeigt ist, befinden sich im Bereich der Stege 84 auf der Seite zu den Hohlkörpern 83 Wandabschnitte 88 in den Stegen 84, so dass bei einem Durchtrennen der Stege 84 kein oder nur wenig Beton in die Hohlkörper 83 einströmen kann. In jedem Hohlkörper 83 sind an der Innenseite Verstärkungsrippen 92 vorgesehen, die dem Verdrängungskörper 80 eine höhere Formstabilität geben.As in Figure 28B shown, in the area of the webs 84 on the side facing the hollow bodies 83, wall sections 88 are located in the webs 84, so that when the webs 84 are severed, little or no concrete can flow into the hollow bodies 83. Reinforcing ribs 92 are provided on the inside of each hollow body 83, which give the displacement body 80 greater dimensional stability.

Die beiden Halbschalen 80A und 80B können gemäß Figur 29 zunächst übereinander positioniert und dann aufeinander gelegt werden. In dieser Position können optional Befestigungsstifte 82 in eine Öffnung 91 an einem Randabschnitt eingesteckt werden, um die beiden Halbschalen 80A und 80B aneinander zu fixieren. Die Befestigungsstifte 82 durchdringen dabei die beiden Ränder der Halbschalen 80A und 80B, so dass diese nicht mehr relativ zueinander verrutschen können.The two half-shells 80A and 80B can according to Figure 29 first positioned on top of each other and then placed on top of each other. In this position, fastening pins 82 can optionally be inserted into an opening 91 on an edge section in order to fix the two half-shells 80A and 80B to one another. The fastening pins 82 penetrate the two edges of the half-shells 80A and 80B, so that they can no longer slip relative to one another.

Die so hergestellten Verdrängungskörper 80 können gemäß Figur 31 nebeneinander gelegt werden, wobei es nicht notwendig ist, weitere Befestigungsmittel vorzusehen. Jeder Verdrängungskörper 80 in einem mittleren Bereich liegt an vier weiteren Verdrängungskörpern 80 an. Zwischen den vier Hohlkörpern 83 eines Verdrängungskörpers 80 ist ein Kanal 81 ausgebildet, der beim Eingießen von Beton der Betondecke eine definierte Struktur gibt.The displacement bodies 80 produced in this way can according to FIG Figure 31 be placed next to each other, it is not necessary to provide further fastening means. Each displacement body 80 in a central area rests against four further displacement bodies 80. Between the four hollow bodies 83 of a displacement body 80, a channel 81 is formed which gives the concrete ceiling a defined structure when concrete is poured in.

In Figur 32 sind die Verdrängungskörper 80 zwischen einem unteren Bewehrungsgitter 5 und einem oberen Bewehrungsgitter 2 angeordnet, die jeweils Längsstreben 3 und 6 und Querstreben 4 und 7 aufweisen, wie dies auch aus Figur 33 zu sehen ist. In dieser Position kann nun Beton vergossen werden, so dass eine untere Betonschicht 9 unter dem unteren Bewehrungsgitter 5 und eine obere Betonschicht 8 über dem oberen Bewehrungsgitter 2 vorgesehen wird. Der Beton strömt durch die Kanäle 81 innerhalb der Verdrängungskörper 80.In Figure 32 the displacement bodies 80 are arranged between a lower reinforcement grid 5 and an upper reinforcement grid 2, each of which has longitudinal struts 3 and 6 and transverse struts 4 and 7, as is also shown in FIG Figure 33 you can see. In this position, concrete can now be poured, so that a lower concrete layer 9 is provided under the lower reinforcement grid 5 and an upper concrete layer 8 is provided above the upper reinforcement grid 2. The concrete flows through the channels 81 within the displacement bodies 80.

Optional ist es gemäß Figur 34 möglich, Bewehrungselemente 19' zur Fixierung benachbarter Verdrängungskörper 80 vorzusehen. In Figur 34 ist ein Bewehrungselement 19' in Form eines Bügels vorgesehen, der über die benachbarten Stege 84 zur Verbindung der Hohlkörper 83 gelegt wird.It is optional according to Figure 34 possible to provide reinforcement elements 19 'for fixing adjacent displacement bodies 80. In Figure 34 a reinforcement element 19 'is provided in the form of a bracket, which is placed over the adjacent webs 84 to connect the hollow bodies 83.

In Figur 35 ist ein stangenförmiges Bewehrungselement 19 vorgesehen, das auf die Verdrängungskörper 80 aufgelegt wird, wobei an jedem Hohlkörper 83 ein nach oben ragender winkelförmiger Rand 89 vorgesehen ist, in dem im Eckbereich eine Aussparung 90 ausgebildet ist. Das stangenförmige Bewehrungselement 19 kann in die Aussparung 90 eingefügt werden, um so die Verdrängungskörper 80 vorzufixieren. Ein stangenförmiges Bewehrungselement 19 kann sich somit diagonal über eine Vielzahl von Verdrängungskörpern 80 erstrecken. Optional kann statt dem stangenförmigen Bewehrungselement 19 auch ein Bewehrungselement gemäß Figur 7 mit einer Schlaufe 17 oder eine Wellenform eingesetzt werden.In Figure 35 a rod-shaped reinforcement element 19 is provided which is placed on the displacement body 80, with an upwardly projecting angular edge 89 being provided on each hollow body 83, in which a recess 90 is formed in the corner area. The rod-shaped reinforcement element 19 can be inserted into the recess 90 in order to pre-fix the displacement bodies 80. A rod-shaped reinforcement element 19 can thus extend diagonally over a multiplicity of displacement bodies 80. Optionally, instead of the rod-shaped reinforcement element 19, a reinforcement element according to FIG Figure 7 with a loop 17 or a wave shape.

In den Figuren 36A und 36B ist der Verdrängungskörper 80 mit den beiden Halbschalen 80A und 80B gezeigt. Es ist natürlich möglich, die Höhe der Verdrängungskörper 80 und der Halbschalen größer oder kleiner auszubilden, und in Figur 37A ist eine höhere Halbschale 80A' eines Verdrängungskörpers 80' gezeigt, der aus zwei höheren Halbschalen 80A' und 80B' gebildet ist. Bei noch höheren Decken können auch Verdrängungskörper 80" gemäß den Figuren 38A und 38B eingesetzt werden, die zwei noch höhere Halbschalen 80A" und 80B" umfassen. Die Funktionalität der Verdrängungskörper 80' und 80" entspricht allerdings im Übrigen dem Ausführungsbeispiel der Figuren 27 bis 35.In the Figures 36A and 36B the displacement body 80 is shown with the two half-shells 80A and 80B. It is of course possible to make the height of the displacement body 80 and the half-shells larger or smaller, and in Figure 37A shows a higher half-shell 80A 'of a displacement body 80', which is formed from two higher half-shells 80A 'and 80B'. In the case of even higher ceilings, displacement bodies 80 ″ according to FIGS Figures 38A and 38B are used, which comprise two even higher half-shells 80A "and 80B". The functionality of the displacement bodies 80 'and 80 "otherwise corresponds to the embodiment of FIG Figures 27 to 35 .

BezugszeichenlisteList of reference symbols

11
BetondeckeConcrete ceiling
22
BewehrungsgitterReinforcement mesh
33
LängsstrebeLongitudinal strut
44th
QuerstrebeCross brace
55
BewehrungsgitterReinforcement mesh
66th
LängsstrebeLongitudinal strut
77th
QuerstrebeCross brace
88th
BetonschichtConcrete layer
99
BetonschichtConcrete layer
1010
VerdrängungskörperDisplacement body
10A10A
HalbschaleHalf shell
10B10B
HalbschaleHalf shell
1111
Kanalchannel
1212
Abschnittsection
1313
Stegweb
1414th
Randedge
1515th
Vertiefungdeepening
1616
BewehrungselementReinforcement element
1717th
Schlaufeloop
1818th
AussparungRecess
19, 19'19, 19 '
BewehrungselementReinforcement element
2020th
VerdrängungskörperDisplacement body
20A20A
HalbschaleHalf shell
20B20B
HalbschaleHalf shell
2121st
Kanalchannel
2222nd
Abschnittsection
2323
Vertiefungdeepening
2424
Randedge
2525th
RaststegLocking bar
2626th
RastaufnahmeSnap recording
2727
HaltestegHolding bridge
2828
Aufnahmeadmission
3030th
VerdrängungskörperDisplacement body
30A30A
HalbschaleHalf shell
3131
Kanalchannel
3232
Abschnittsection
3333
Vertiefungdeepening
3434
Randedge
3535
RaststegLocking bar
3636
HaltestegHolding bridge
3737
RastaufnahmeSnap recording
3838
HaltestegHolding bridge
4040
VerdrängungskörperDisplacement body
40A40A
HalbschaleHalf shell
4141
Kanalchannel
4242
Abschnittsection
4343
RandabschnittEdge section
5050
VerdrängungskörperDisplacement body
5151
Kanalchannel
5252
Freiraumfree space
5353
AbflachungFlattening
6060
VerdrängungskörperDisplacement body
6161
Kanalchannel
6262
FreiflächeOpen space
6363
FreiflächeOpen space
6464
Stegweb
7070
VerdrändungskörperDisplacement body
7171
Kanalchannel
7272
Stegweb
80, 80', 80"80, 80 ', 80 "
VerdrängungskörperDisplacement body
80A, 80A', 80A"80A, 80A ', 80A "
HalbschaleHalf shell
80B, 80B', 80B"80B, 80B ', 80B "
HalbschaleHalf shell
8181
Kanalchannel
8282
BefestigungsstiftFixing pin
8383
HohlkörperHollow body
8484
Stegweb
8585
Markierungmark
8686
Randedge
8787
Stufestep
8888
WandabschnittWall section
8989
Randedge
9090
AussparungRecess
9191
Öffnungopening
9292
Verstärkungsrippeh HöheReinforcement rib height
LL.
Breitewidth

Claims (13)

  1. Concrete ceiling (1), comprising a lower reinforcing mesh (5) and an upper reinforcing mesh (2), between which a plurality of displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) are disposed, wherein the lower and upper reinforcing meshes (2, 5) and the displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) are embedded in concrete and each displacement body (10, 20, 30, 40, 50, 60, 70, 80) at least partially surrounds at least one channel (11, 21, 31, 41, 51, 61, 71, 81) which establishes a connection between the concrete on the lower reinforcing mesh (5) and the concrete on the upper reinforcing mesh (2), wherein the displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) abut one another on at least three sides at least in sections in a central region of the concrete ceiling, characterized in that no additional spacers are provided between adjacent displacement bodies (10, 20, 30, 40, 50, 60, 70), so that the positioning of adjacent displacement bodies takes place by a side edge or a side wall, at which the adjacent displacement bodies contact each other and the ratio of the cross-section of the channel (11, 21, 31, 41, 51, 61) in a displacement body (10, 20, 30, 40, 50, 60) to the surface area of the displacement bodies (10, 20, 30, 40, 50, 60) in plan view is at least between 0.2 and 0.45.
  2. Concrete ceiling according to claim 1, characterized in that the displacement bodies (10, 20, 30, 40, 50, 60, 70) arranged in a central region of the concrete ceiling (1) rest at least in sections circumferentially against one another on all their sides.
  3. Concrete ceiling according to claim 1 or 2, characterized in that the ratio of the cross-section of the channel (11, 21, 31, 41, 51, 61) in a displacement body (10, 20, 30, 40, 50, 60) to the surface area of the displacement bodies (10, 20, 30, 40, 50, 60) in plan view is between 0.3 and 0.4.
  4. Concrete ceiling according to one of the preceding claims, characterized in that the diameter of the channel (11, 21, 31, 41, 51, 61, 71) in a displacement body (10, 20, 30, 40, 50, 60, 70) is between 200 mm and 450 mm, in particular between 250 mm and 400 mm.
  5. Concrete ceiling according to one of the preceding claims, characterized in that the displacement bodies (10, 20, 30, 40, 50, 60, 70) lie loosely on the lower reinforcing mesh (5).
  6. Concrete ceiling according to one of the preceding claims, characterized in that the displacement bodies (10, 20, 30, 40) are formed substantially square in plan view.
  7. Concrete ceiling according to one of the preceding claims, characterized in that free spaces are provided between adjacent displacement bodies (10, 20, 30, 40, 50, 60), wherein the surface area of the free spaces in plan view is smaller than the area of the channels (11, 21, 31, 41, 51, 61).
  8. Concrete ceiling according to one of the preceding claims, characterized in that at least one of the reinforcing meshes (2, 5) is formed substantially flat and preferably does not engage in the plane of the displacement bodies (10, 20, 30, 40, 50, 60, 70).
  9. Concrete ceiling according to one of the preceding claims, characterized in that the displacement body (80) has a plurality of hollow bodies (83) which are connected to one another via spacers (84).
  10. Concrete ceiling according to claim 9, characterized in that four hollow bodies (83) are provided which are connected to one another via separable webs.
  11. Kit for producing a concrete ceiling (1) according to one of the preceding claims having at least two reinforcing meshes (2, 5) and a plurality of displacement bodies (10, 20, 30, 40, 50, 60, 70).
  12. Method for producing a concrete ceiling (1) according to one of claims 1 to 10, comprising the following steps:
    - positioning a lower reinforcing mesh (5);
    - placing a plurality of displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) on the lower reinforcing mesh (5), wherein in a central region of the reinforcing mesh (5) the displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) abut one another on at least three sides at least in regions in order to position one another mutually, wherein the displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) are positioned side by side without additional spacers so that the positioning of adjacent displacement bodies is effected by a side edge or a side wall at which the adjacent displacement bodies contact each other,
    - placing an upper reinforcing mesh (2) on the plurality of displacement bodies (10, 20, 30, 40, 50, 60, 70, 80), and
    - pouring concrete once or several times to produce a concrete ceiling (1).
  13. Method according to claim 12, characterized in that the displacement bodies (10, 20, 30, 40, 50, 60, 70, 80) abut one another on four sides in a central region of the reinforcing mesh (2, 5).
EP17778250.5A 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling Active EP3519645B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI201730621T SI3519645T1 (en) 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling
PL17778250T PL3519645T3 (en) 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling
RS20201560A RS61260B1 (en) 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling
HRP20210125TT HRP20210125T1 (en) 2016-09-28 2021-01-22 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016118298.2A DE102016118298B8 (en) 2016-09-28 2016-09-28 Concrete pavement, kit for the construction of a concrete pavement and method for the production of a concrete pavement
PCT/EP2017/074542 WO2018060279A1 (en) 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling

Publications (2)

Publication Number Publication Date
EP3519645A1 EP3519645A1 (en) 2019-08-07
EP3519645B1 true EP3519645B1 (en) 2020-11-04

Family

ID=59388049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17778250.5A Active EP3519645B1 (en) 2016-09-28 2017-09-27 Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling

Country Status (34)

Country Link
US (1) US10801201B2 (en)
EP (1) EP3519645B1 (en)
JP (1) JP7003121B2 (en)
KR (1) KR102381670B1 (en)
CN (1) CN109790711B (en)
AU (1) AU2017336229B2 (en)
BR (1) BR112019005345B1 (en)
CA (1) CA3038415A1 (en)
CL (1) CL2019000789A1 (en)
CO (1) CO2019002969A2 (en)
CY (1) CY1123803T1 (en)
DE (1) DE102016118298B8 (en)
DK (1) DK3519645T3 (en)
EA (1) EA037867B1 (en)
ES (1) ES2844750T3 (en)
GE (1) GEP20217284B (en)
HR (1) HRP20210125T1 (en)
HU (1) HUE052194T2 (en)
IL (1) IL265604B (en)
JO (1) JOP20190062B1 (en)
LT (1) LT3519645T (en)
MA (1) MA46333B1 (en)
MD (1) MD3519645T2 (en)
MX (1) MX2019003461A (en)
MY (1) MY195292A (en)
PH (1) PH12019500652A1 (en)
PL (1) PL3519645T3 (en)
PT (1) PT3519645T (en)
RS (1) RS61260B1 (en)
SA (1) SA519401434B1 (en)
SI (1) SI3519645T1 (en)
UA (1) UA124771C2 (en)
WO (2) WO2018059762A1 (en)
ZA (1) ZA201901561B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019277210B2 (en) * 2018-06-01 2023-07-20 Matter Up Pty Ltd Void former
AT522885B1 (en) * 2020-05-04 2021-03-15 Green Code Gmbh Acoustic bodies, especially for ceiling elements, to reduce the reverberation time of sound
DE102020126633A1 (en) * 2020-10-12 2022-04-14 Studio Werner Sobek Gmbh Arrangement for integration into a component, preferably gradient component
US20220381028A1 (en) * 2021-05-26 2022-12-01 Peter Sing Reinforced honeycomb concrete substrate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT102332B (en) 1999-07-12 2012-07-09 Antonio Francisco Febra LOST MOLD ELEMENT FOR FUNGIFORM LAX CONSTRUCTION
JP3709394B2 (en) * 1999-11-26 2005-10-26 積水化成品工業株式会社 Hollow slab embedding material, hollow slab substrate having the embedding material, and structure having a hollow slab structure in which the embedding material is fixed
DE202006002540U1 (en) * 2006-02-17 2006-08-03 Cobiax Technologies Ag Concrete production module for producing concrete parts like concrete semifinished products or concrete ceilings has insertable displacers fitted alongside each other in a lengthwise direction
CN101413313A (en) * 2007-10-18 2009-04-22 邱则有 Core die for concrete filling
CN102094520A (en) * 2007-10-18 2011-06-15 湖南邱则有专利战略策划有限公司 Mandrel for concrete filling
BRMU8701789Y1 (en) 2007-11-22 2016-01-05 Termotécnica Ltda constructive arrangement introduced into ribbed slab formwork
CN101906874A (en) * 2009-06-04 2010-12-08 湖南邱则有专利战略策划有限公司 Concrete pore-forming core mould
KR101076407B1 (en) * 2009-10-22 2011-10-25 한양대학교 산학협력단 Doughnut type concrete former, biaxial hollow core slab using the concrete former and construction method thereof
KR101229450B1 (en) * 2010-04-27 2013-02-04 삼성중공업 주식회사 Integrated lightweight materials set for hollow core and two way hollow core slab thereby
KR101339470B1 (en) * 2011-06-28 2013-12-10 김석균 Void slab unit and void slab construction method using the same
KR20150018149A (en) * 2013-08-09 2015-02-23 박상목 A fixing structure of soundproofing panel for slab
KR101527716B1 (en) * 2014-05-30 2015-06-11 삼성물산 주식회사 The buoyancy protection device of hollow former and construction method of two-way hollow core slab using the same
KR101589622B1 (en) * 2014-05-30 2016-01-29 삼성물산(주) Panel unit that plural doughnut type hollow former which is pre-assembled and manufacturing method thereof, construction method of two-way hollow core slab using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109790711A (en) 2019-05-21
ZA201901561B (en) 2021-03-31
WO2018060279A1 (en) 2018-04-05
AU2017336229A1 (en) 2019-04-11
LT3519645T (en) 2021-01-11
AU2017336229B2 (en) 2023-05-18
EP3519645A1 (en) 2019-08-07
MA46333B1 (en) 2021-04-30
US10801201B2 (en) 2020-10-13
RS61260B1 (en) 2021-01-29
KR102381670B1 (en) 2022-03-31
HRP20210125T1 (en) 2021-03-19
DE102016118298B8 (en) 2018-01-18
WO2018059762A1 (en) 2018-04-05
CL2019000789A1 (en) 2019-07-19
UA124771C2 (en) 2021-11-17
CO2019002969A2 (en) 2019-06-19
JP2019533103A (en) 2019-11-14
EA037867B1 (en) 2021-05-28
ES2844750T3 (en) 2021-07-22
KR20190054139A (en) 2019-05-21
CY1123803T1 (en) 2022-05-27
IL265604A (en) 2019-05-30
CA3038415A1 (en) 2018-04-05
JOP20190062A1 (en) 2019-03-28
CN109790711B (en) 2021-04-20
BR112019005345A2 (en) 2019-06-11
BR112019005345B1 (en) 2023-03-14
SI3519645T1 (en) 2021-03-31
MX2019003461A (en) 2019-06-03
GEP20217284B (en) 2021-08-10
MY195292A (en) 2023-01-12
DE102016118298B3 (en) 2017-11-09
US20190249426A1 (en) 2019-08-15
PL3519645T3 (en) 2021-05-17
EA201990776A1 (en) 2019-08-30
JOP20190062B1 (en) 2023-09-17
IL265604B (en) 2021-06-30
PT3519645T (en) 2021-01-07
SA519401434B1 (en) 2021-12-13
MD3519645T2 (en) 2021-02-28
HUE052194T2 (en) 2021-04-28
PH12019500652A1 (en) 2019-07-29
JP7003121B2 (en) 2022-02-10
MA46333A (en) 2019-08-07
DK3519645T3 (en) 2021-02-08

Similar Documents

Publication Publication Date Title
EP3519645B1 (en) Concrete ceiling, kit for producing a concrete ceiling, and method for producing a concrete ceiling
DE9407358U1 (en) Element for use in the manufacture of reinforced concrete structures with cavities and filler for the manufacture of such an element
WO2016015786A1 (en) Percolation block element, percolation block, and transport unit
EP1718814A1 (en) Method and auxiliary agent for producing concrete elements, especially concrete semi-finished products and/or concrete surfaces, and auxiliary agent for producing concrete surfaces
DE102013015434A1 (en) Spacer for a reinforcement layer, reinforcement arrangement for a concrete component and method for producing a reinforcement arrangement
EP4105404A1 (en) Positioning aid for use in mounting a concrete molding insert
DE60101794T2 (en) ADDITIONAL DEVICE FOR A MODULAR ELEMENT FOR CAVES AND FLOOR STRUCTURES
EP0980936B1 (en) Reinforcing cage and its arrangement for the building of floors with hollow form units
EP0927796B1 (en) Form panel and system
DE202021105966U1 (en) Spacer bar
EP3321444A1 (en) Marking element, textile reinforced concrete with marking element and method for producing a textile reinforced concrete with marking element
DE3933198C2 (en) Bar grating
EP0353560A1 (en) Spacer for concrete reinforcements
EP0537727B1 (en) Joining arrangement for panels and/or reinforcement of a composite formwork
EP2492400A1 (en) In-built unit
DE3019861A1 (en) FLOOR CONSTRUCTION, ESPECIALLY FOR FLOOR HEATERS
DE804118C (en) Method and device for producing a reinforced concrete ceiling
DE29808491U1 (en) Reinforcement element for shear reinforcement
DE102007036005A1 (en) Topsoil stabilization hard plastic grid for e.g. playing field, horse stadium has peripheral cylindrical elements
DE102021117719A1 (en) concrete molding insert
EP4407114A1 (en) Retention module and arrangement of retention modules
EP4116516A1 (en) Concrete mould insert
DE29915250U1 (en) Spacers
DE1609558C3 (en) Wall construction
EP3907342A1 (en) Reinforcing element and reinforcement system for absorbing forces in concrete slabs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1330999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008076

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3519645

Country of ref document: PT

Date of ref document: 20210107

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20201230

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35848

Country of ref document: SK

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210202

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20201104

REG Reference to a national code

Ref country code: MD

Ref legal event code: VAGR

Ref document number: 3519645

Country of ref document: MD

Date of ref document: 20210228

Kind code of ref document: T2

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E020335

Country of ref document: EE

Effective date: 20210111

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210125

Country of ref document: HR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210400283

Country of ref document: GR

Effective date: 20210416

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E052194

Country of ref document: HU

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 46333

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2844750

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008076

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210125

Country of ref document: HR

Payment date: 20210917

Year of fee payment: 5

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20210915

Year of fee payment: 5

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210125

Country of ref document: HR

Payment date: 20220926

Year of fee payment: 6

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20220923

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230630

Year of fee payment: 7

Ref country code: IE

Payment date: 20230630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230630

Year of fee payment: 7

Ref country code: PL

Payment date: 20230628

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210125

Country of ref document: HR

Payment date: 20230915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230915

Year of fee payment: 7

Ref country code: RO

Payment date: 20230919

Year of fee payment: 7

Ref country code: NO

Payment date: 20230908

Year of fee payment: 7

Ref country code: NL

Payment date: 20230911

Year of fee payment: 7

Ref country code: MC

Payment date: 20230918

Year of fee payment: 7

Ref country code: LU

Payment date: 20230918

Year of fee payment: 7

Ref country code: GB

Payment date: 20230921

Year of fee payment: 7

Ref country code: FI

Payment date: 20230918

Year of fee payment: 7

Ref country code: EE

Payment date: 20230915

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230911

Year of fee payment: 7

Ref country code: BG

Payment date: 20230915

Year of fee payment: 7

Ref country code: AT

Payment date: 20230926

Year of fee payment: 7

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20230918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230921

Year of fee payment: 7

Ref country code: SE

Payment date: 20230908

Year of fee payment: 7

Ref country code: RS

Payment date: 20230925

Year of fee payment: 7

Ref country code: IS

Payment date: 20230925

Year of fee payment: 7

Ref country code: HU

Payment date: 20230924

Year of fee payment: 7

Ref country code: HR

Payment date: 20230915

Year of fee payment: 7

Ref country code: GR

Payment date: 20230915

Year of fee payment: 7

Ref country code: FR

Payment date: 20230921

Year of fee payment: 7

Ref country code: DK

Payment date: 20230817

Year of fee payment: 7

Ref country code: DE

Payment date: 20230628

Year of fee payment: 7

Ref country code: BE

Payment date: 20230911

Year of fee payment: 7

Ref country code: AL

Payment date: 20230629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230919

Year of fee payment: 7

Ref country code: LV

Payment date: 20230921

Year of fee payment: 7

Ref country code: LT

Payment date: 20230914

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231009

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 7

Ref country code: CY

Payment date: 20230915

Year of fee payment: 7

Ref country code: CH

Payment date: 20231001

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230915

Year of fee payment: 7