EP3513001B1 - Procédé et dispositif de gestion d'énergie d'un système électrique de réchauffage d'aiguillages - Google Patents

Procédé et dispositif de gestion d'énergie d'un système électrique de réchauffage d'aiguillages Download PDF

Info

Publication number
EP3513001B1
EP3513001B1 EP17783700.2A EP17783700A EP3513001B1 EP 3513001 B1 EP3513001 B1 EP 3513001B1 EP 17783700 A EP17783700 A EP 17783700A EP 3513001 B1 EP3513001 B1 EP 3513001B1
Authority
EP
European Patent Office
Prior art keywords
heating
time
power ratio
switched
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17783700.2A
Other languages
German (de)
English (en)
Other versions
EP3513001A1 (fr
Inventor
Mario DÖGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EAN Elektroschaltanlagen Grimma GmbH
Original Assignee
EAN Elektroschaltanlagen Grimma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EAN Elektroschaltanlagen Grimma GmbH filed Critical EAN Elektroschaltanlagen Grimma GmbH
Publication of EP3513001A1 publication Critical patent/EP3513001A1/fr
Application granted granted Critical
Publication of EP3513001B1 publication Critical patent/EP3513001B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B7/00Switches; Crossings
    • E01B7/24Heating of switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles

Definitions

  • Track elements of railways, especially switches, are heated as required to prevent freezing or blocking of the moving parts by snow and ice, especially in winter, and thus to ensure operational safety.
  • Known point heaters are based on systems with hot water steam, gas heating or electrical energy. The economic viability of such point heaters is largely determined by the purchase, maintenance and energy costs.
  • the present invention relates to a method and a device for energy management of an electrical point heating system.
  • switch heating systems include at least one switch which has fixed stock rails and movable tongue rails and a locker linkage, and an electrical distribution with heating outlets for the power supply of electrical heating elements on the rails of the switches with control device for controlling and regulating the rail temperature.
  • Such electrical point heaters consist, among other things, of an electrical distribution with control and regulating devices for switching, controlling, regulating and monitoring each individual heating outlet, a weather-dependent control that activates the heating in ice and snow, and electrical heating elements on the rails of the points that This warms up and prevents the moving parts of the points from freezing.
  • Snow and ice are detected by recording and evaluating air temperature and precipitation. If the actual rail temperature falls below a parameterizable target rail temperature, for example + 4 ° C, the entire point heater is switched on and as a result all points are heated with a delay due to the mass of the rails.
  • a rail temperature sensor on a guide switch regulates the rail temperature to a specific target rail temperature in a two-point or constant temperature control.
  • An energy management system for electrical point heaters to reduce the simultaneously effective power is also known ( DB Netz, "General principles (1), energy management, Leipzig 10.03.2009 ), with which the individual turnouts are heated at different times depending on their operational or contractual importance.
  • Priorities are set for all turnouts of a turnout heater, for example turnouts with priority and subordinate priority, so that these turnouts are mutually heated according to the priority. If the points with priority have reached the target rail temperature, their power consumption drops. This power is then available for heating the turnouts with a lower priority.
  • the switches with subordinate priority reach the target rail temperature with a time delay.
  • the prioritization is based on the importance of the points to be heated and can be set. It is disadvantageous that a lower power for heating is available for switches with subordinate priority and the target rail temperature is reached with a time delay.
  • WO 2010/115436 A1 A method and a device for energy management of an electric point heater with several points is known, in which the control and detection of snow by evaluating the air temperature and precipitation as well as regulating the rail temperature several control and regulating devices for switching, controlling, regulating and monitoring for each heating outlet by reducing the simultaneously effective installed electrical heating output by staggered and staggered power connection of the heating outlets. Cheek and tongue rails of the switch are provided with heat insulation segments, so that heating and cooling times of at least the same length should be generated at the desired rail temperature and minimum operating temperatures.
  • control devices are assigned to one or more heating regimes, each with a different number of groups according to the output of the heating outlets, so that all groups of a heating regime have approximately the same output and each group of a heating regime is assigned to a time window regularly, in succession and all round via group release , in which the control and regulating devices of the group generate heating impulses with a duty cycle between 0% and 100% and the groups of a heating regime are switched in sequence via a group release.
  • the temperature control by means of two-point control takes place at heating intervals by switching on the heating at a rail temperature below + 3 ° C and switching off the heating at a rail temperature above + 7 ° C.
  • the climate control takes place in the operating modes "wet heating” or “low temperature heating”.
  • wet heating when a snowfall is detected by means of moisture or precipitation and air temperature measurement on a guide switch, all switches in a system are switched on and over Rail temperature sensors are heated and regulated to the target rail temperature value of, for example, + 6 ° C, in that all heating elements of the point heating system are switched on and off at the same time for each point by means of a switching device by means of the control device.
  • the "humid heating" heating condition is deemed to be fulfilled if precipitation is present and the rail temperature falls below a pre-parameterized value.
  • the power of all connected heating elements is always switched on and off when the heating is requested, and the actual power during the heating process fluctuates between zero and a maximum value that corresponds to the sum of the connected load of all heating elements. If the ambient temperature is negative, the switch-on points are raised.
  • An optional additional flight snow sensor switches on as an additional snow detector.
  • the operating mode "low temperature heating” takes place in dry conditions and low air temperatures between - 5 ° C and -15 ° C.
  • the "low-temperature heating” serves to bypass the very sluggish heating behavior of the system, which results from the system conditions, and thus pre-heat for a possible precipitation event and to melt ice and flying snow in the switch. If there is no precipitation or ice and flying snow, heating is carried out accordingly without need.
  • the control regulates the heating of all turnouts to a constant + 6 ° C using a wave packet or two-point control via a switching device when the heating condition is fulfilled.
  • the present invention is therefore based on the object of specifying a method for energy management of electrical point heating systems and to provide a corresponding device, as a result of which simple adjustment of the output depending on predeterminable operating parameters and reliable functioning of the point heating systems with optimal energy use is achieved.
  • the invention advantageously leads to an optimal use of energy when heating individual switches in an electrical switch heating system while at the same time ensuring the function of all switches.
  • peak power can be avoided and energy saved compared to conventional systems.
  • many elements of generic electrical point heating systems can be used, for example the usual heating elements can be used.
  • a major advantage of the present invention is to achieve a reduction in the energy supply costs by reducing the actual electrical power regardless of priorities but with the same heating of all connected turnouts 12 by forming the active power ratios (L a ), so that compared to. the state of the art (e.g. WO 2010/115436 A1 ) an even more flexible adjustment of the power distribution (through time-shifted and staggered power connection of the heating outlets (6)) is possible and even more energy can be saved.
  • the present invention relates to a method for energy management of an electrical point heating system.
  • This electrical point heating system has at least two points (12), on each of which at least one heating element (7) is arranged, at least one switching distribution (1) with at least one heating outlet (6), in particular one heating outlet (6) per point (12), and at least one control device (3) for controlling and regulating the rail temperature (X).
  • step a during the heating operation of the electrical point heating system, successive cycle times (Zt) are formed cyclically, preferably by microcontroller timers in the control device (3).
  • step b) at least one power ratio (L) corresponding to the number of switched-on and switched-off heating outlets (6) is then formed for each cycle time (Zt), preferably as a function of the operating parameters (B).
  • the "power ratio” refers to the ratio or quotient of the number of switched-on or switched-off heating outlets (6) to the total number of heating outlets (6) of the electric point heating system. Examples are given below in the description of the embodiments.
  • step c during each cycle time (Zt), at least one fixed power ratio (L f ) or one power ratio (L e ) correlating with at least one externally detectable operating parameter (B e ), the heating outputs (6) are activated in order, starting with the ones switched on or switched-off heating outputs (6) according to the power ratio (L) and deactivating the other heating outputs (6) in continuous step-by-step mode of operation.
  • step) d at least one active power ratio (L a), to obtain an adjustment of at least one active power ratio (L a) is carried out of that occurs in dependence of an actual control deviation and a limit value "maximum deviation" is determined by at Switching on the electric point heating system with a project-specific performance ratio (L pro ) between 50% and 80% within the heating-up time (t up ), an existing control deviation (xw up ) at the beginning of the heating-up time (t up ) and a stored maximum control deviation (xw max ) is compared, wherein if the maximum control deviation (xw max ) is exceeded, the at least one active power ratio (L a ) is adjusted to 100%,
  • the maximum control deviation (xw max ) is determined from the stored quotient of an experience-based control deviation heating up (xw up ) and an experience-based heating up time (t up ) multiplied by a project-specific parameterizable maximum heating up time (t up-max ).
  • step d1) step d) is repeated after a predeterminable time period or when the maximum control deviation (xw max ) is undershot or exceeded.
  • This predeterminable time period is 1 minute to 15 minutes, preferably 3 minutes to 10 minutes, in particular 5 minutes.
  • a step d2) can be carried out, in which the time course of the heating is recorded at least on a switch (12) of the electrical point heating system and the time course of the control deviation (xw up ) is monitored therefrom, starting from a parameterizable control deviation (xw up ) the time course of the control deviation (xw n ) is integrated over time and compared with a limit value.
  • This limit value is the product of the maximum permissible control deviation (xw max ) and the maximum permissible time to compensate for the maximum control deviation (xw max ). If the limit value is exceeded, the next higher power ratio (L) and / or the power ratio L 100% is activated for at least one heating outlet (6) or the entire electrical point heating system.
  • Step e) provides that in the event of a weather-related heating request (Hz) for at least one switch (12), the theoretical heating-up time until the specifiable rail set temperature (X s ) of the switch (12) is calculated and compared with a parameterizable heating-up time (t on ) becomes.
  • step e) can be carried out such that for a control deviation xw n during weather-related heating requests (Hz) for at least one switch (12) Heating for this switch (12) is switched off during the following cycle times (Zt) as long as the control deviation xw n is zero.
  • heating request signals the need for heating energy for one or more switches (12).
  • the heating request can be generated in particular by the data of a weather station at the location of at least one switch (12) and / or by a weather service.
  • the "parameterizable heating-up time” means that the heating-up time (t up ) can be adjusted depending on the externally ascertainable operating parameters (B). Examples are given below in the description of the embodiments.
  • step e1 provides for the active power ratio (L a ) to be increased at least for the heating output (6) concerned by increasing the number of heating outputs (6) switched on per cycle time (Zt) by one and the number of heating outputs (6) switched off per cycle time (Zt) is reduced by one or the power ratio (L a ) is increased to 100%.
  • step e1) can be carried out in such a way that if the control deviation xw n of the switch (12) falls below the maximum control deviation xw max, the active power ratio (L a ) of at least the affected heating outlet (6) is reduced by reducing the number of pro Cycle time (Zt) switched on heating outputs (6) is reduced by one and the number of heating outputs (6) switched off per cycle time (Zt) is increased by one.
  • the method according to the invention provides that, after and / or before each cycle time (Zt), the respective rail temperature (X) of at least one switch (12) connected to the electrical point heating system is compared with the specifiable target rail temperature (X s ), with evaluation
  • This comparison changes the assignment of the switched on and off heating outputs (6) by switching off heating outputs (6) with excess heating in favor of heating outputs (6) with heating deficit during the respective cycle time (Zt).
  • step f) can also be carried out, in which, when the rack deviation (xw n ) of the switch (12) reaches the value zero, the active power ratio (L a ) of at least the affected heating outlet (6) is blocked by this The heating outlet (6) is switched off until the control deviation (xw n ) becomes greater than zero.
  • distinguishable control types mean control types of the electrical point heating system which can be variably adapted to external circumstances depending on the operating parameters (B).
  • the setpoint surcharges are preferably 1 K per precipitation amount of snow and / or 1 K depending on the type of precipitation and depending on the air and / or rail temperature of the unheated rail.
  • the externally ascertainable operating parameters (B) are preferably selected from air temperature, air humidity, rail temperature (X), snow, flying snow and / or rain.
  • the snow depth is determined with a suitable sensor by detecting the "snow" operating parameter, thereby activating or deactivating a "low-temperature heating” type of control for the specifiable operating parameter "air temperature” by recording and evaluating the time profile of the operating parameter "air temperature”"a parameterizable temperature value (T par ), preferably greater than + 3 ° C, over a predefinable time, preferably 5 minutes to 30 minutes, in particular 15 minutes, and / or by recording the operating parameter" rain "over a parameterizable time (t par ), preferably 5 minutes to 30 minutes, in particular 15 minutes.
  • T par parameterizable temperature value
  • step a) of the method according to the invention the cyclically successive cycle times (Zt) of the same duration from 1 second to 300 seconds, preferably 50 seconds to 70 seconds, in particular 60 seconds, are formed with or without a pause.
  • the pause can be between 1 second and 10 seconds.
  • the at least one active power ratio (L a ) is formed from the quotient of the number of switched-on heating outputs (6) or switched-off heating outputs (6) and the total number of heating outputs (6) of the electric point heating system, a lower limit of the Power ratio (L) is preferably 40%.
  • the recorded time profile of the rail temperature (X) can be stored on at least one switch (12) in the control device (3) and the end value of the rail temperature (X e ) can be compared with a predefinable rail target temperature (X s ), the number the switched-off heating outputs (6) is formed during at least one cycle time (Zt) by the largest temperature difference determined in this way.
  • the actual power is determined during each cycle time (Zt) and the minimum actual power, the average actual power and the maximum actual power are stored within a predefinable time period, preferably 5 minutes to 60 minutes, in particular 15 minutes.
  • the control device (3) can activate a power ratio (L) as a function of the externally detectable operating parameters (B), which is from 40% to 80%, preferably 60%, and is set to 100% when a maximum operating value is exceeded becomes.
  • the active power ratio (L a ) is monitored during each cycle time (Zt), so that if the power ratio (L a ) is increased at least once , a power ratio (L a ) of 100% is reached, in a first memory, which is connected to the control device (3), the current operating parameters (B) are stored for this moment, with these stored operating parameters (B ) with the then current operating parameters (B), so that if the then current operating parameters (B) are the same or worse for the electric point heating system than the stored operating parameters (B), a power ratio of 100% is set immediately.
  • the "switching distribution” is the unit in which individual elements of the electrical point heating system are housed together, in particular the control device (3), at least one switching device (5) with one heating outlet (6), in particular one heating outlet (6) per switch (12 ), to the outside and at least one controller (10).
  • the switching distribution (1) is connected to the power network (9).
  • the "control device” is a process unit for controlling and regulating the rail temperature (X) to which the individual controllers (10) are connected.
  • the control device (3) is supplied with relevant data by the weather station (s) (2).
  • the "circuit diagram” designates the assignment and the number of switched-on or switched-off heating outputs (6).
  • control device (3) and the at least one controller (10) are preferably designed as microcontrollers (hardware), while the controller function is software.
  • the power corresponds to the product of the power ratio L and the installed connected power P of all heating elements 7 of the electric point heating system, with the power ratio L remaining the same.
  • the maximum number of power ratios L results from the number of heating outlets 6 of the electric point heating system reduced by one. However, this maximum number is limited due to the insufficient heating of the turnouts 12 at power ratios of less than about 35% and for economic reasons in electric turnout heating systems with more than 15 turnouts 12.
  • the power ratio L can be switched over while heating is running.
  • the syntax of a power ratio L is derived from the cycle ratio of the heating times to the cooling times.
  • Power ratio 50% corresponds to all heating outlets 6 of an electric point heating system 1 cycle heating to 1 cycle cooling (1H: 1K) and requires two, four etc. heating outlets 6.
  • Power ratio 66.6% corresponds to all heating outlets 6 of an electric point heating system 2 cycles of heating to 1 cycle of cooling (1H: 1K) and requires three, six etc. number of heating outlets 6.
  • Power ratio 75% corresponds to all heating outlets 6 of an electrical point heating system 3 cycles heating to 1 cycle cooling (3H: 1K) and requires at least four, eight etc. heating outlets 6.
  • the sequence of switching the heating outlets 6 on and off is not fixed. This can be done in sequence. If the switching state of heating outputs 6 in heating mode is not changed in the following cycle time Zt during heating, ie not switched off, there is no switching operation of the respective heating outlets 6 to protect the switching contacts between the cycle times Zt.
  • a variable number of heating outlets 6 is switched on and the remaining part of the heating outlets 6 is switched off during cyclical successive cycle times Zt in each cycle time Zt, and the assignment of the switched on and off heating outputs 6 is changed step by step during each cycle time Zt, the number the switched on and off heating outlets 6 and thus the duty cycle of each heating outlet 6 remains the same and / or is changed depending on the rail temperature X and / or the weather. If all the heating outlets 6 of the electric point heating system are switched on, the power ratio is 100% and the cycle times Zt are interrupted and switched off, ie the actual power consumption corresponds to the connected load.
  • the power ratio is in the range from 1% to 99%, preferably between 40% and 75%, ie the actual output corresponds to the product of installed Power P max and the power ratio L.
  • the power ratios L are formed from the ratio of any number of heating outlets 6, preferably from the ratio of the heating outlets 6 switched on per cycle time Zt, to the number of heating outlets 6 present in the electric point heating system or a subset of heating outlets 6.
  • the power ratios L can be between a minimum value which corresponds to the ratio of one switched-on heating outlet 6 to all heating outputs 6 and a maximum value of 100% which corresponds to the ratio of all switched-on to all heating outputs 6.
  • a power ratio of between 50% and 75% is preferably set when the electrical point heating system is switched on.
  • the heating elements 7 of each point 12 being supplied with energy via a heating outlet 6 with controller 10 in the switching distribution 1 when heating (Hz) is requested. Accordingly, five heating outlets 6 are present in the switching distribution 1.
  • the integer of the two values is 3, ie three heating outlets 6 are switched on and two heating outlets 6 are switched off in each cycle time Zt.
  • a power ratio L is activated in the control device 3 during each cycle time Zt.
  • the air temperature is e.g. 0 ° C and precipitation is rain
  • the power ratio 60% is activated according to the previous example, i.e. during each cycle time Zt three heating outlets 6 are switched on and two heating outlets 6 are switched off.
  • the heating outlets 6.1, 6.2 and 6.3 are switched on and the heating outlets 6.4 and 6.5 are switched off.
  • the circuit diagram is continuously advanced by one in the manner of a step-by-step mechanism, so that the heating outlets 6.2, 6.3 and 6.4 are switched on and the heating outlets 6.5 and 6.1 are switched off, and thus the same number of heating outlets 6 is switched on and off as during the previous cycle time Zt.
  • the circuit diagram is always shifted by one step during the heating time in each cycle time Zt.
  • a monitoring function is activated.
  • the time course of the control deviation xw n is recorded during heating in the control circuit of each switch 12 and, after integration of the recorded time course of the control deviation xw n, compared with the limit value and a greater power ratio L is activated when the limit value is exceeded.
  • a control deviation xw n of 5 K should not be exceeded within a maximum permissible heating-up time of, for example, 10 minutes.
  • the existing integral of the control deviation xw n is determined by recording the control deviation xw n over time and compared with the limit value integral. If the limit value integral is exceeded, the switch is made to the next higher power ratio L or to power ratio L 100%, and if the control deviation is zero, there is no heating requirement for this switch 12 and this heating output 6 is not switched on during the cycle time Zt.
  • various operating modes are activated in the control device 3 as a function of the existing and / or predicted weather conditions in order to ensure the safe functioning of the electric point heating system in winter with a variable power ratio L and changing switching sequences of the heating outlets 6 within cycle times Zt.
  • a first solution is to suspend "low temperature heating” depending on the probability of precipitation.
  • the weather service queries the forecast values for the probability and type of precipitation. If the probability of precipitation is below 60% for the next 30 minutes at low temperatures, "low temperature heating” is suppressed. If the probability of precipitation is over 60%, a distinction is made as to whether the expected precipitation is Snow or rain, and then the "low temperature heating" activated accordingly as a preheating function. When it rains, the preheating is switched on when there is a 80% probability of precipitation, whereas in the case of forecast snow, heating is started at a probability of 60%.
  • the rail temperature X is kept constant at 0 ° C until the actual precipitation event occurs.
  • Another solution to save energy is to activate the "low temperature heating” in the case of possible flying snow depending on the amount of snow fallen in the past and subsequent monitoring of the temporal course of the air temperature and the "rain” precipitation in such a way that the amount of snow, preferably the snow depth, from the a snow detector per unit of time is determined with the duration of the snowfall and a signal "flying snow possible” is set and stored at a parameterizable minimum snow height.
  • the snow depth is added as long as the "Flying snow possible” signal has not been reset.
  • the "Flying snow possible” signal is reset after snow has fallen as soon as the air temperature has been above 0 ° C, preferably greater than + 3 ° C, for a long time.
  • Another solution is the individual specification of the target rail temperature X s depending on the type of precipitation and the amount of precipitation.
  • the target rail temperature X s does not have to be as high in the rain as in the case of snow.
  • the value also depends on the actual amount of precipitation.
  • the data recorded by the precipitation sensor are included in the control regime, so that the target rail temperature X s dynamically adapts to the precipitation events on site. If the precipitation sensor detects "drizzle” or "rain”, the rail is only heated to +1 ° C in order to prevent the rain from freezing over on cold sliding chairs or tongue rails. Compared to the current state of the art + 6 ° C, considerable savings are possible. In the event of snowfall, depending on the amount of precipitation, a corresponding target rail temperature is selected (cf. Fig. 3 ).
  • Operating modes according to the invention for electrical point heating systems with heating request Hz by a weather station 2 and / or connection to a weather service with an energy management system can be implemented as follows.
  • FIG. 1 An electrical point heating system according to the prior art is shown with three heating outlets 6. If the weather is suitable, the heating request Hz is generated by the weather station 2 in the control device 3 and all heating outlets 6 are switched on simultaneously. At least one rail temperature sensor 8 regulates the rail temperature X during the heating request Hz between two parameterizable setpoints, for example + 4 ° C and + 7 ° C.
  • the time course of the power P is shown as a function of the weather-dependent heating request time according to the prior art.
  • the heating condition is fulfilled, ie the air temperature is less than or equal to + 3 ° C and precipitation occurs.
  • the electrical point heating system is switched on and the power P corresponds to the installed power P max , which corresponds to the sum of all installed heating elements 7 of the electrical point heating system, and all the points 12 are heated.
  • the power consumption corresponds to the installed heating power P max of the heating elements 7 of all turnouts 12. From time t1 to time t2, the turnouts 12 are heated up to the target rail temperature Xs.
  • the target rail temperature X s is reached at time t2 and at this point all heating outlets 6 are switched off and the rails of all switches 12 cool.
  • the power is zero from time t2.
  • the heating of all switches 12 is switched on again and the switches 12 are heated up to the upper setpoint. From here on, the power P corresponds again to the installed power P max of the heating elements 7 of all switches 12. If no precipitation is detected at the time tn, the heating device Hz is omitted from the control device 3 and the heating is switched off completely.
  • FIG 3 the switching states of an electrical point heating system with five heating outlets 6.1 to 6.5 for five points 12 are shown for the inventive method with circulating heating operation with a power ratio L 60%.
  • Heating request Hz are 60% of the five heating outputs 6, that is three heating outputs 6, switched on during the first cycle time Zt, the others are switched off.
  • the cycle time Zt is, for example, 60 seconds.
  • the switching sequence is switched one step further.
  • all heating outlets 6.1 to 6.5 were switched on for a total of 3 x 60 seconds. Due to the long dead time of the rails, there are no disadvantages of heating due to the switching state OFF.
  • Figure 4 is the performance of the switching states after Figure 3 given an assumed installed heating power P of 10 KW per switch 12 over five cycle times Zt and the resulting total power.
  • the total power is 30 KW.
  • FIG. 5 An electrical point heating system according to the invention with three heating outlets 6 is shown.
  • a controller 10 with input rail temperature sensor X n , input rail setpoint temperature X s depending on the active operating mode, output control signal Y n "heating ON", output control deviation xw n and output Y max arranged.
  • a shift register 13 with clock 14 is arranged between the control device 3 and the control input St of a switching device 9. The controller 10 receives the current operating mode from the control device 3, ie the target rail temperature X s .
  • the shift register 13 receives the current power ratio L from the control unit 3 and the clock 14 activates the number of switching devices 5 corresponding to the power ratio L during each clock time Zt and deactivates the other switching devices 5 cyclically by the connection between the control signal Y n "heating switch" and Control input St switching device can be closed or opened via contacts of the clock 14. Via the connection of control output Y n of controller 10 and switching device 5, the power ratio L of each heating outlet 6 can be changed individually to 100% and / or 0% depending on the control deviation switch xw n .
  • the switching sequence for switch 12.1 is shown.
  • the parameterized is activated from time t1 based on the heating request Hz Power ratio L or the increase in the power ratio L to 100% depending on the comparison of the control deviation switch 12.1 (xws1) with the calculated limit value maximum control deviation xw max accordingly Figure 7 .
  • the pitch control deviation xw n is the time t1 for example. 10 K.
  • the operator of the electrical point heating system has parameterized the parameterized heating time t par with 15 minutes project-specifically.
  • control deviation switch 12.2 (xw2) at the time t1 is less than 5 K, e.g. 4 K, and is therefore smaller than the maximum control deviation xw max , so that the heating of the switch 12.2 from time t2 with a power ratio L 66.6% up to the time tn and also with a time delay to dry the switch 12.1.
  • control deviation of switch 12.3 (xw3) at time t1 is less than 5 K, for example 2 K, and is zero at time tx3.
  • the control deviation xw n of the switch 12.3 is zero, there is no heating requirement and the power ratio L for switch 12.3 is set to 0%. Only when the control deviation of the switch 12.3 is greater than zero, the power ratio L 66.6% is activated again. If there are more than three switches 12, several power ratios L can be formed.
  • the heating for switch 12.3 begins at time t3 at intervals of 120 seconds and the control deviation is greater than 2 K at time t1. In the case of control deviation greater than 2 K, the monitoring function for switch 12.3 is switched off at time t1. The limit value product is not exceeded, so that heating continues in cyclical operation. At time tx3 the control deviation becomes zero and the further switching on of the switch 12.3 remains switched off as long as the control deviation xw n is zero.
  • the slope deviation is dXw from the quotient of the control deviation xw during heating and the heating time t on from 5 ° K divided by 10 minutes formed, ie, the slope deviation dXw is 0.5 K / min.
  • the project-specific programmable maximum heating time t on-max is parameterized specific plant individual, for example, 15 minutes
  • the maximum control deviation xw max from the product of a project-specific configurable maximum heating time t on-max and pitch control deviation xw formed sidewalk, ie for example the product of a project-specific programmable maximum heating time tup-max of 15 minutes, multiplied by pitch control deviation xw sidewalk of 0.5 K / min gives a maximum control deviation xw max of 7.5 K.
  • control deviation xw n 12 detects an electrical point heating system at all points and If the maximum control deviation xw max is exceeded, the power ratio L of at least this switch 12 is increased, for example to 100%, and is reduced if it falls below.
  • the Figure 8 shows in heating the course of the heating of the rail actual temperature X n at the time t1 to the rail set temperature X S during the heating-up time t to the time t1 to the time t2, and the profile of the rail actual temperature X n during the regulating heating tr from the time t2 for each control cycle tz, a control cycle tz being shown, for example, from time t2 to time t3 and consisting of a heating time component, here the heating is switched on, and a cooling time component, here the heating is switched off. Due to the inertia of the rails, the actual rail temperature X n overshoots.
  • control deviation xw n of each switch 12 of the electrical switch heating system is recorded and monitored at the beginning of the heating-up time at the time t1 and during the control time tr within each control cycle tz between the times t2 and t3 by comparison with the maximum control deviation xw max and corresponding Switching to a higher or lower power ratio L in the event of deviations, taking into account a parameterizable hysteresis control deviation XH.
  • the actual rail temperature X1 of the switch 12.1 is, for example - 4 ° C and it is a project-specific parameterizable maximum heating-up time tauf-max of 15 minutes parameterized.
  • the control deviation xw1 from the maximum control deviation xw max is 7.5 K minus the actual rail temperature X1 - Xn at time t1 (7.5 K - - 4 K) 11.5 K.
  • control deviation xw1 is greater than maximum control deviation xw max and the power ratio L is increased at time t1, for example to 100%.
  • the control deviation xw n is zero and the heating is switched off and after a short overshoot of the actual rail temperature X1, the rail cools down.
  • the detection of the control deviation occurs xw rule and comparing the deviation xw rule with the maximum control deviation xw max analog during heating and depending on the lowering of the power ratio L, for example, to the configured value of 66.6% below Consideration of a parameterizable hysteresis control deviation xwH.
  • a target rail temperature X s of 0 ° C. and no increase in the target rail temperature X s as a function of the amount of precipitation and the ambient temperature.
  • the rail target temperature X s of + 1 ° C and no increase in the rail target temperature X s depend on the amount of precipitation and an ambient temperature offset of 1 K to the rail target temperature X s an ambient or rail temperature cold rail per - 1 ° C.
  • the target rail temperature X s is + 3 ° C and the target rail temperature X s is increased by 1 K depending on the amount of snow recorded and the snow depth derived from it per time unit, e.g. Snow depth from 2 cm per hour and an additional ambient temperature offset from 1 K to the target rail temperature X s from an ambient or rail temperature cold rail per -1 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Railway Tracks (AREA)
  • Road Paving Structures (AREA)

Claims (12)

  1. Procédé de gestion énergétique d'une installation électrique de chauffage d'aiguillage présentant au moins deux aiguilles (12) sur chacune desquelles est disposé au moins un élément chauffant (7), au moins un distributeur de commutation (1) avec au moins une sortie de chauffage (6) par aiguille (12) et au moins un dispositif de commande (3) permettant de commander et réguler la température du rail (X), ledit procédé comprenant les étapes suivantes :
    a) pendant la phase de chauffage de l'installation électrique de chauffage d'aiguillage, formation de temps de cycle (Zt) se succédant de façon cyclique,
    b) pour chaque temps de cycle (Zt), formation d'au moins un rapport de puissance (L) en fonction du nombre de sorties de chauffage (6) branchées et débranchées,
    c) pendant chaque temps de cycle (Zt) formation d'au moins un rapport de puissance fixe (Lf) ou d'un rapport de puissance (Le) en corrélation avec au moins un paramètre de fonctionnement (B) pouvant être saisi de manière externe, activation dans l'ordre des sorties de chauffage (6) en commençant par les sorties de chauffage (6) branchées ou débranchées en fonction du rapport de puissance (L) et désactivation des autres sorties de chauffage (6) en procédant par étapes sur le pourtour,
    d) de ce fait, mise en œuvre d'au moins un rapport de puissance actif (La), une adaptation dudit au moins un rapport de puissance actif (La) étant effectuée en fonction d'un écart de régulation effectif et une valeur limite « Écart de régulation maximal » étant déterminée par la saisie d'un écart de régulation existant (xwauf) au début du temps de chauffe (tauf), l'installation électrique de chauffage d'aiguillage étant mise en marche avec un rapport de puissance spécifique au projet (Lpro) entre 60 et 75 % pendant le temps de chauffe (tauf), de sorte que le quotient de l'écart de régulation existant (xwauf) et d'un temps de chauffe (tauf) donne une augmentation de l'écart de régulation (xwsteig) qui est enregistrée, permettant ainsi, à partir du produit de l'augmentation de l'écart de régulation (xwsteig) et d'un temps de chauffe maximal (tauf-max) paramétrable de façon spécifique au projet, de déterminer un écart de régulation maximal autorisé pendant le chauffage (xwmax), ledit au moins un rapport de puissance actif (La) étant adapté à une valeur de 100 % en cas de dépassement de l'écart de régulation maximal (xwmax),
    d1) répétition de l'étape d) après un laps de temps prédéfinissable ou lorsque l'écart de régulation n'atteint pas ou dépasse l'écart de régulation maximal (xwmax),
    e) en cas de demande de chauffage (Hz) due aux conditions atmosphériques pour au moins une aiguille (12), calcul du temps de chauffe théorique jusqu'à obtention de la température de consigne prédéfinissable du rail (Xs) de l'aiguille (12) et comparaison de ce temps avec un temps de chauffe paramétrable (tauf),
    e1) en cas de dépassement du temps de chauffe paramétrable (tauf), augmentation du rapport de puissance actif (La) d'au moins la sortie de chauffage (6) concernée, en augmentant d'une unité le nombre de sorties de chauffage (6) branchées par temps de cycle (Zt) et en diminuant d'une unité le nombre de sorties de chauffage (6) débranchées par temps de cycle (Zt) ou en augmentant le rapport de puissance (La) à une valeur de 100 %,
    la température de rail (X) concernée d'au moins une aiguille (12) raccordée à l'installation électrique de chauffage d'aiguillage étant comparée après et/ou avant chaque temps de cycle (Zt) avec la température de consigne prédéfinissable du rail (Xs) et l'affectation des sorties de chauffage (6) branchées et débranchées au sein des groupes (G) affectables étant, suite à l'évaluation de cette comparaison, modifiée par le débranchement de sorties de chauffage (6) présentant un excédent d'échauffement au profit de sorties de chauffage (6) présentant un déficit d'échauffement pendant le temps de cycle (Zt) concerné.
  2. Procédé selon la revendication 1, dans lequel, en fonction du au moins un paramètre de fonctionnement (B) pouvant être saisi de manière externe, des types de commande distincts auxquels sont affectées des valeurs de température de consigne de rail (Xs) correspondantes sont créés par l'ajout de majorations de consigne à des consignes de base paramétrables lorsque le au moins un paramètre de fonctionnement (B) pouvant être saisi de manière externe est dépassé ou/ou n'est pas atteint.
  3. Procédé selon la revendication 1 ou 2, dans lequel le paramètre de fonctionnement (B) pouvant être saisi de manière externe est choisi parmi : température de l'air, humidité de l'air, température du rail (X), neige, neige poudreuse et/ou pluie.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la saisie du paramètre de fonctionnement « Neige » a pour effet de déterminer la hauteur de neige par un capteur approprié et d'activer ou de désactiver ainsi un type de commande « Chauffage à basse température » au paramètre de fonctionnement prédéfinissable « Température de l'air », une valeur de température paramétrable (Tpar) sur un laps de temps prédéfinissable ayant été saisie via la saisie et l'évaluation de l'évolution chronologique du paramètre de fonctionnement « Température de l'air » et/ou via la saisie du paramètre de fonctionnement « Pluie » sur un laps de temps paramétrable (tpar).
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel à l'étape a) les temps de cycle (Zt) de même durée de 1 à 300 secondes, de préférence de 50 à 70 secondes, qui se succèdent de façon cyclique, sont formés avec ou sans pause.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le au moins un rapport de puissance actif (La) est formé à partir du quotient du nombre de sorties de chauffage (6) branchées ou de sorties de chauffage (6) débranchées et du nombre total de sorties de chauffage (6) de l'installation électrique de chauffage d'aiguillage.
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la séquence de commutation des sorties de chauffage (6) est modifiée après et/ou avant chaque temps de cycle (Zt).
  8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'évolution chronologique saisie de la température du rail (X) à au moins une aiguille (12) est enregistrée dans le dispositif de commande (3) et la valeur finale de la température du rail (Xe) comparée à une température de consigne prédéfinissable du rail (Xs), le nombre de sorties de chauffage (6) débranchées pendant au moins un temps de cycle (Zt) étant formé par la plus grande différence de température déterminée de la sorte.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel, lorsqu'à une aiguille (12) avec une sortie de chauffage (6) non débranchée, la température du rail (X) est supérieure à la température de consigne du rail (Xs), ladite sortie de chauffage (6) est débranchée pendant le temps de cycle (Zt) actuel.
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la puissance effective est déterminée pendant chaque temps de cycle (Zt) et la puissance effective minimale, la puissance effective moyenne et la puissance effective maximale sont enregistrées pendant un laps de temps prédéfinissable.
  11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le rapport de puissance actif (La) est surveillé pendant chaque temps de cycle (Zt), de sorte que si un rapport de puissance (La) de 100 % est obtenu à au moins une seule augmentation du rapport de puissance actif (La), les paramètres de fonctionnement (B) momentanés sont enregistrés dans une première mémoire reliée au dispositif de commande (3), lesdits paramètres de fonctionnement (B) enregistrés étant comparés aux paramètres de fonctionnement (B) actuels lors d'une demande de chauffage (Hz) suivante, de sorte que si les paramètres de fonctionnement (B) alors actuels sont identiques aux paramètres de fonctionnement (B) enregistrés ou moins bons que ces derniers pour l'installation électrique de chauffage d'aiguillage, un rapport de puissance (La) de 100 % est réglé immédiatement.
  12. Dispositif de gestion énergétique d'une installation électrique de chauffage d'aiguillage présentant au moins deux aiguilles (12) sur chacune desquelles est disposé au moins un élément chauffant (7), au moins un distributeur de commutation (1) avec au moins une sortie de chauffage (6) par aiguille (12) et au moins un dispositif de commande (3) permettant de commander et réguler la température du rail (X), ledit dispositif comprenant :
    - au moins un régulateur (10) disposé entre le dispositif de commande (3) dans le distributeur de commutation (1) et un appareil de commutation (5) de la au moins une sortie de chauffage (6), ledit au moins un régulateur (10) étant relié au dispositif de commande (3) via une connexion binaire et/ou une connexion par bus,
    - au moins un registre à décalage (13) avec horloge (14) relié audit au moins un régulateur (10) via une connexion binaire et/ou une connexion par bus,
    - au moins une sortie « Signal de commande de chauffage d'aiguille ACTIVÉ » (Yn) du régulateur (10) reliée via l'horloge (14) du registre à décalage (13) à une entrée de commande de l'appareil de commutation (5) ou reliée directement à l'appareil de commutation (5) par un signal de commande max (Stmax),
    le rapport de puissance actif (La) pouvant être transmis au registre à décalage (13) via une connexion entre le dispositif de commande (3) et le registre à décalage (13), et la température de consigne du rail (Xs) pouvant être transmise du dispositif de commande (3) audit au moins un régulateur pendant chaque temps de cycle (Zt), et un rapport de puissance (L) différant du rapport de puissance actif (La) pouvant être transmis dudit au moins un régulateur (10) à l'appareil de commutation (5) par le signal de commande max (Stmax) via une ligne directe, et
    au moins une mémoire étant disposée dans le distributeur de commutation (1), reliée au dispositif de commande (3) via une connexion binaire et/ou une connexion par bus, ladite connexion permettant de transmettre au moins un paramètre de fonctionnement (B), et dans lequel au moins une mémoire peut être enregistrée et consultée par le dispositif de commande (3) depuis celle-ci.
EP17783700.2A 2016-09-17 2017-09-14 Procédé et dispositif de gestion d'énergie d'un système électrique de réchauffage d'aiguillages Active EP3513001B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016011117.8A DE102016011117A1 (de) 2016-09-17 2016-09-17 Verfahren und Einrichtung zum Energiemanagement einer elektrischen Weichenheizungsanlage
PCT/DE2017/000297 WO2018050141A1 (fr) 2016-09-17 2017-09-14 Gestion d'énergie d'un système électrique de réchauffage d'aiguillages

Publications (2)

Publication Number Publication Date
EP3513001A1 EP3513001A1 (fr) 2019-07-24
EP3513001B1 true EP3513001B1 (fr) 2020-07-29

Family

ID=60083045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17783700.2A Active EP3513001B1 (fr) 2016-09-17 2017-09-14 Procédé et dispositif de gestion d'énergie d'un système électrique de réchauffage d'aiguillages

Country Status (6)

Country Link
EP (1) EP3513001B1 (fr)
CN (1) CN109790689B (fr)
DE (1) DE102016011117A1 (fr)
DK (1) DK3513001T3 (fr)
RU (1) RU2720854C1 (fr)
WO (1) WO2018050141A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097074A1 (fr) * 2020-11-05 2022-05-12 Esa Elektroschaltanlagen Grimma Gmbh Procédé et dispositif de chauffage d'éléments de voie

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018005033A1 (de) 2018-06-26 2020-01-02 Ean Elektroschaltanlagen Gmbh Verfahren und Einrichtung zum verstärkten Beheizen von Fahrwegelementen
DE102018007263B4 (de) * 2018-09-16 2023-03-30 Ean Elektroschaltanlagen Grimma Gmbh Verfahren und Einrichtung zur Steuerung und Regelung einer Weichenheizung
CN110593024B (zh) * 2019-10-22 2024-06-21 中铁第四勘察设计院集团有限公司 一种基于调度计划的道岔智能融雪系统及方法
CN112039427B (zh) * 2020-08-27 2022-07-22 平潭煜想时代科技有限公司 太阳能集电器发电方法、太阳能集电器
CN112054763B (zh) * 2020-08-27 2022-07-22 平潭煜想时代科技有限公司 太阳能光伏发电器除雪方法和太阳能光伏发电器
CN113960097A (zh) * 2021-10-28 2022-01-21 中国铁道科学研究院集团有限公司铁道建筑研究所 一种加热融雪道岔临界运行策略试验装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742085B4 (de) * 1997-09-24 2009-03-12 Pintsch Aben B.V. Weichenheizungssystem
DE19832535C2 (de) 1998-07-20 2002-10-10 Ean Elektroschaltanlagen Gmbh Einrichtung zur Regelung und Überwachung von Weichenheizungen
DE19849637C1 (de) 1998-10-28 2000-10-05 Esa Elektroschaltanlagen Grimm Einrichtung zur zentralen Steuerung, Überwachung und Diagnose von Weichenheizungen
DE19932833A1 (de) 1999-07-14 2001-01-25 Nodus Gmbh Verfahren zum Regeln der Gesamtleistung mindestens einer energietechnischen Anlage, umfassend eine Gruppe Verbraucher, insbesondere elektrischer Verbraucher
DE10043571C1 (de) 2000-09-01 2002-05-08 Ean Elektroschaltanlagen Gmbh Schalt-, Steuerungs- und Regeleinrichtung für elektrische Weichenheizungen
EP2265762A1 (fr) 2009-04-07 2010-12-29 EAN Elektroschaltanlagen Grimma GmbH Procede et dispositif de gestion energetique pour chauffages d'aiguilles electriques
CA2787215C (fr) * 2011-08-16 2019-12-31 Railway Equipment Company, Inc. Commutateur de chauffage a charge equilibree
KR20130137359A (ko) * 2012-06-07 2013-12-17 한국철도공사 저전력 분기기 융설장치
DE102012214781A1 (de) * 2012-08-20 2014-02-20 Siemens Aktiengesellschaft Verfahren zur Überprüfung der Funktionsfähigkeit von Weichenheizungen eines Schienennetzes
PL2720513T3 (pl) * 2012-10-15 2015-10-30 Iff Gmbh Indukcyjne ogrzewanie zwrotnic i/lub szyn
WO2015049879A1 (fr) * 2013-10-03 2015-04-09 東日本旅客鉄道株式会社 Système d'enlèvement de matières indésirables d'une voie ferrée et dispositif d'enlèvement de matières indésirables d'une voie ferrée
CN104562865A (zh) * 2013-12-24 2015-04-29 北京中铁通电务技术开发有限公司 铁路道岔电加热融雪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097074A1 (fr) * 2020-11-05 2022-05-12 Esa Elektroschaltanlagen Grimma Gmbh Procédé et dispositif de chauffage d'éléments de voie

Also Published As

Publication number Publication date
DE102016011117A1 (de) 2018-03-22
EP3513001A1 (fr) 2019-07-24
RU2720854C1 (ru) 2020-05-13
CN109790689B (zh) 2021-02-09
CN109790689A (zh) 2019-05-21
DK3513001T3 (da) 2020-09-28
WO2018050141A1 (fr) 2018-03-22

Similar Documents

Publication Publication Date Title
EP3513001B1 (fr) Procédé et dispositif de gestion d'énergie d'un système électrique de réchauffage d'aiguillages
EP3047554B1 (fr) Procédé de commande d'une consommation de puissance d'un groupe de plusieurs éoliennes
EP3563461B1 (fr) Procédé de fonctionnement d'un parc éolien
EP3156651B1 (fr) Dispositif d'augmentation de pression
EP3056379B1 (fr) Procede de commande ou de reglage d'un dispositif d'actionnement
EP3203574A1 (fr) Commande de duree de vie pour accumulateur d'energie
DE102014112458A1 (de) Verfahren zur Steuerung einer Kühlvorrichtung zur Lebensdauererhöhung Abwärme erzeugender Komponenten und Kühlvorrichtung
EP2265762A1 (fr) Procede et dispositif de gestion energetique pour chauffages d'aiguilles electriques
EP3015707B1 (fr) Éolienne et procédé de dégivrage d'une éolienne
DE102010033633B4 (de) Einschalt-Steuerungsverfahren und Einschalt-Steuerungsvorrichtung
DE2419663C3 (de) Einrichtung zur Koordination und Schaltung des Energiebedarfs mehrerer unabhängig voneinander arbeitender elektrischer Verbraucher
EP3097624B1 (fr) Onduleur, en particulier comme une partie d'un production d'energie composite, et procédé
EP3292608A1 (fr) Procédé de commande d'un flux d'énergie dans un réseau de distribution d'énergie d'une installation de chemin de fer, abonné, dispositif de conduite et réseau de distribution d'énergie
EP3587666B1 (fr) Procédé et dispositif de chauffage renforcé des éléments de voie de circulation
DE102010056301B4 (de) Verfahren zur automatischen Optimierung einer Aufheizphase eines Heizsystems sowie ein Heizsystem
EP0076398B1 (fr) Procédé pour régler la température de l'eau de départ respectivement de retour d'une installation de chauffage à eau chaude
DE2846753A1 (de) Verfahren und einrichtung zum ein- und ausschalten einer umwaelzpumpe einer heizungsanlage
DE3325993A1 (de) Regel- und steuerverfahren zum betrieb einer heizungsanlage sowie regel- und steuereinrichtung zur durchfuehrung des verfahrens
EP0569739B1 (fr) Procédé et dispositif pour régler une pompe dans une installation de chauffage
DE102014010019B4 (de) Verfahren zum Schalten von dezentralen Energiewandlern
DE19651484A1 (de) Verfahren zur Leistungsaufnahmeoptimierung eines Verbundes elektrisch geheizter bzw. gekühlter Verbraucher
DE19716645A1 (de) Verfahren und Vorrichtung zur Übertragung von elektrischer Leistung zwischen einem Stromerzeuger und einem Stromnetz
EP3024106B1 (fr) Dispositif de commutation pour une installation electrique destinee au demarrage temporise apres la reception d'un signal de commande
EP3109965A1 (fr) Procede de commande d'un consommateur
DE3111281C2 (de) Verfahren zum Betrieb einer Einkanal-Klimaanlage für Reisezugabteilwagen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200214

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOEGE, MARIO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006476

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1295927

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006476

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211028

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240920

Year of fee payment: 8