EP3510317A1 - Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé - Google Patents

Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé

Info

Publication number
EP3510317A1
EP3510317A1 EP17748836.8A EP17748836A EP3510317A1 EP 3510317 A1 EP3510317 A1 EP 3510317A1 EP 17748836 A EP17748836 A EP 17748836A EP 3510317 A1 EP3510317 A1 EP 3510317A1
Authority
EP
European Patent Office
Prior art keywords
installation
liquefied gas
gas
tank
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17748836.8A
Other languages
German (de)
English (en)
Other versions
EP3510317B1 (fr
Inventor
Jean-Marc Bernhardt
Fabien Durand
Cécile GONDRAND
Véronique GRABIE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3510317A1 publication Critical patent/EP3510317A1/fr
Application granted granted Critical
Publication of EP3510317B1 publication Critical patent/EP3510317B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0077Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • F17C2227/0351Water cooling using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/035Treating the boil-off by recovery with cooling with subcooling the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to an installation for storing and cooling a liquefied gas, for example a liquefied natural gas.
  • the present invention relates to a storage method for storing a liquefied gas.
  • Document US3302416A discloses a liquefied natural gas storage facility for storing the liquefied natural gas during its transportation to another building.
  • the cooling device described in US3302416A comprises several compressors, several engines, several heat exchangers configured to cool liquefied gas from the tank and at least one refrigeration source, external to the gas storage facility.
  • the refrigeration source corresponds to an independent equipment compared to compressors, exchangers, etc. component of the storage facility and allows to sub-cool limited quantities of liquefied gas stored so as to avoid a heat input into said installation; and reinjecting the subcooled liquid into different areas of the storage space so as to provide relatively uniform temperature conditions in the stored liquid gas with minimal disturbance of the stratified vapors on the liquid surface.
  • This source of refrigeration can be for example a container in the form of gas bottle, said cycle gas.
  • the storage installation described in this document includes many independent components, which imposes many interfaces between them.
  • these many components form a large buffer volume that needs to be filled at each start of each cycle.
  • the use of an internal system makes it possible to store the cycle gas used to operate the installation, said cycle gas being stored in another external equipment when it is warm and put back into the circuit of the installation once 'he is cold.
  • the present invention is intended in particular to solve, in whole or in part, the problems mentioned above.
  • the present invention may consist in the use of an installation which is described in particular in document WO2009066044 and of which all the features are incorporated by reference in the present application.
  • the installation may comprise at least: a cryogenic device for transferring heat from a cold source to a hot source via a working fluid or cycle gas flowing in a working circuit or closed cycle circuit; Work comprising in series: an isothermal or substantially isothermal compression portion of the fluid, an isobaric or substantially isobaric cooling portion of the fluid, an isothermal or substantially isothermal expansion portion of the fluid and an isobaric or substantially isobaric heating portion of the fluid.
  • the compression portion comprises at least two compressors arranged in series, at least one compressed fluid cooling exchanger disposed at the outlet of each compressor.
  • the expansion portion comprises at least one expansion turbine and at least one expanded fluid heating exchanger, the compressors and the expansion turbine or turbines being driven by at least one engine said high speed.
  • the motor comprises an output shaft whose one end carries and rotates by direct coupling a first compressor and the other end carries and rotates by direct coupling a second compressor or an expansion turbine.
  • high speed motor will be understood to mean engines that typically rotate at a rotation speed of 10,000 revolutions per minute. minute or tens of thousands of revolutions per minute. A low-speed motor runs rather with a speed of a few thousand revolutions per minute.
  • the invention relates to an installation for storing and cooling a liquefied gas, for example a liquefied natural gas, the installation comprising:
  • At least one tank configured to contain liquefied gas, said tank comprising at least one lower region intended to contain the liquefied gas in the liquid state, and at least one upper region intended to contain the vapors of the liquefied gas,
  • the cooling circuit configured to be supplied with liquefied gas in the liquid state coming from the tank, the cooling circuit comprising at least one compressor configured to compress a cycle gas, at least one engine, at least one turbine and at least a first heat exchanger configured to effect a heat exchange between liquefied gas in the liquid state from the reservoir and the cycle gas, for example nitrogen, so as to cool liquefied gas from the reservoir when the installation is in use, and
  • At least one injection member fluidly connected to the cooling circuit via an injection pipe fluidly connecting the cooling circuit and the injection member, the injection member being configured to reinject in the tank liquefied gas cooled,
  • the motor being mechanically connected on the one hand to the compressor to drive the compressor and on the other hand to the turbine so that the turbine drives the motor
  • the installation being characterized in that it comprises at least one connection line configured to recover a liquefied gas to be cooled from at least one remote container, which is distinct and independent of the installation, the said connection line being fluidly connected to the reservoir of the installation.
  • this configuration is compact and compact, because there is no significant distance between the cooling circuit equipment. This reduced distance allows the use of a reduced amount of gas cycle and therefore not to increase too much pressure to go cold to arrive at an operating pressure.
  • the turbine since the turbine is mechanically connected to the compressor via the motor, the plant can operate with a single compressor, which reduces the size of the installation and the fluid connections between the various cooling circuit equipment.
  • connection line is used to cool a liquefied gas to be cooled from a separate container independent of the installation.
  • the term "container separate and independent of the facility” a container that is not part of the installation or the cooling circuit, for example, the container is on the same vessel , on another ship or ashore.
  • the cooling device does not require valves between the compressor and the turbine, because it is sufficient to control and control the speed of the motor to regulate the flow rate of cooling fluid flowing in the first heat exchanger.
  • the installation is particularly quick to implement and put into operation, which is particularly advantageous when the installation must be installed on a liquefied gas transport vehicle, for example on a ship such as a LNG carrier.
  • the first heat exchanger makes it possible to cool, via the cycle gas, liquefied gas from the tank to a temperature below the temperature of the liquefied gas contained in the tank. This cooling is usually referred to as "subcooling".
  • the installation comprises at least one bypass line connected to the injection pipe, said bypass pipe being configured to transfer a portion of the cooled liquefied gas to a remote container, separate and independent of the 'installation.
  • the supply line is at least partly coincident with the bypass line.
  • the feed line is distinct from the bypass line.
  • the motor is connected directly to the compressor.
  • the motor is connected directly to the turbine.
  • the installation further comprises a pump configured to supply the cooling device with liquefied gas in the liquid state coming from the tank.
  • the cooling circuit is fluidly connected to the pump.
  • the pump is arranged in the lower region of the reservoir.
  • the outlet of the turbine is fluidly connected directly to the first heat exchanger.
  • the output of the compressor is fluidically connected indirectly to the first heat exchanger.
  • the cooling circuit further comprises a second heat exchanger configured to perform a heat exchange between the compressed cycle gas from the compressor and the expanded cycle gas from the turbine.
  • the inlet of the compressor is fluidly connected to the outlet of the turbine without intermediate member other than the first heat exchanger and the second heat exchanger.
  • the turbine is fluidly connected to the first heat exchanger by a first connecting pipe, without intermediate component.
  • the compressor is fluidly connected to the first heat exchanger by a second connecting pipe.
  • the cooling circuit comprises at least a first connecting member mechanically connecting the motor to the compressor, and at least one second connecting member mechanically connecting the motor to the turbine.
  • the first connecting member comprises a first rotating shaft.
  • the second connecting member comprises a second rotating shaft.
  • the cooling circuit is configured to operate according to a Brayton cycle.
  • Brayton cycle means a thermodynamic cycle developed by George Brayton that produces a gas, referred to in this invention as cycle gas.
  • the cooling circuit comprises a third heat exchanger configured to perform a heat exchange between the cycle gas and a fluid at ambient temperature, for example water or a cooling fluid, which allows evacuate the heat of the cycle gas to the outside.
  • the injection member is arranged in the upper region of the reservoir.
  • the injection member injects the liquefied gas cooled in the vapor phase, that is to say above the level of liquefied gas in the liquid state.
  • the injection member is arranged in the lower region of the reservoir.
  • the injection member injects the cooled liquefied gas into the liquid phase, that is to say below the level of the liquefied gas in the liquid state.
  • the injection member comprises a plurality of injection nozzles arranged in series and / or in parallel
  • the cooling circuit is configured to cool liquefied gas from the tank at a temperature of between 35 K and 150 K, for example equal to 110 K or 80 K.
  • the cooling circuit is configured to cool liquefied gas from the tank at a rate of between 5m 3 / h and 50m 3 / h.
  • the tank contains a liquefied gas selected from the group consisting of a liquefied natural gas, or other gas rich in methane such as bio-methane, nitrogen, oxygen, argon and their derivatives. mixtures.
  • the cooling circuit contains a cooling fluid selected from the group consisting of nitrogen, argon, neon, helium, and mixtures thereof.
  • the bypass line comprises an end end comprising a connection intended to be connected to a separate container.
  • the bypass line preferably comprises a valve, in particular an isolation valve.
  • the invention also relates to a method of using an installation according to the invention for a liquefied gas, for example a liquefied natural gas, the process comprising at least the following steps: at least partially receiving liquefied gas from a separate container independent of the installation according to the invention via the connecting line fluidly connecting the at least one tank to the remote container, separate and independent of the installation,
  • the method comprises a transfer step carried out after the injection of the cooled liquefied gas, the transfer step of transferring at least a portion of the cooled liquefied gas to at least one remote, separate container and independent of said installation by means of the injection pipe and the bypass pipe of the installation.
  • the transfer of the liquefied gas can be partial or total depending on the number of tanks of the installation and the amount of cooled liquefied gas required.
  • the installation used comprises at least two tanks configured to contain liquefied gas, said method according to the invention being implemented during a journey in which the tanks are full.
  • At least one tank can be empty (empty or almost empty of liquid).
  • the method comprises an additional step of cooling the at least one empty tank of the installation or one or more other empty containers of at least one other installation, the delivery step in cold consisting of:
  • the installation comprises at least two tanks, one of which is empty and the other of which is not empty, to transfer cooled liquefied gas remaining in the non-empty tank to the empty tank. That is to say, in particular for a route of the installation (on a boat), instead of keeping one or more empty tanks, liquefied gas is transferred from a non-empty tank to one or several other empty tanks especially to keep them cold.
  • this cooling step is performed after an unloading of liquefied gas and before a subsequent refilling of the tank or tanks of the installation or the container or containers of at least one other installation.
  • this cooling step is performed continuously to avoid leaving empty and hot tanks and to smooth the thermal load to limit the losses associated with the final peak of vaporization of liquefied gas.
  • the advantage is to keep only liquid in the tanks of a boat allowing the return trip without considering the loss of cold on arrival.
  • the cold reset step is performed during a journey in which at least one of the tanks is empty.
  • the subject of the present invention is also a transport vehicle, for example a transport vessel, for transporting a liquefied gas, for example a liquefied natural gas, the transport vehicle being characterized in that it comprises an installation according to the invention.
  • Figure 1 is a schematic view of an installation according to a first embodiment of the invention
  • Figure 2 is a schematic view of a cooling device comprising the installation of Figure 1;
  • FIG. 3 is a schematic view of an installation according to a variant of the first embodiment of the invention
  • FIG. 4A is a simplified graphical representation illustrating the distribution of the consumption of vaporized natural gas on a boat as a function of time to the engine, to a torch and to a reliquefaction system according to the prior art
  • FIG. 4B is a simplified graphic representation similar to that of FIG. 4A illustrating the distribution of the consumption of natural gas vaporized on a boat as a function of time towards the engine, towards a torch and towards a reliquefaction system according to an example of the 'invention.
  • the installation 1 comprises a reservoir 4 comprising a lower region 4.1 intended to contain liquefied gas 2 in the liquid state and an upper region 4.2 intended to contain the vapors of the liquefied gas.
  • the installation 1 comprises a cooling circuit 10, illustrated in particular in Figure 2.
  • the cooling circuit 10 is located outside the tank, that is to say that the liquefied gas is cooled (only) outside the tank. That is, the liquefied gas is taken from the tank, cooled off the tank and then reinjected cooled in the tank.
  • the cooling device 10 is connected to the fluid inside the tank 4 via a sampling line which plunges into the tank.
  • the tank 4 is equipped with a pump 22 which makes it possible to bring the liquefied gas in the liquid state into the cooling circuit so as to cool it and at least one injection member 20 which makes it possible to reinject the gas
  • the injection member comprises a return line which connects the cooling device (external to the tank) with the interior of the tank 4 and comprises the injection member 20.
  • the injection member 20 may comprise a plurality of nozzles.
  • the installation 1 comprises a connection line 31 configured to convey gas to liquified from at least one remote container 100, separate and independent of the installation 1 to the tank of the installation.
  • the installation 1 comprises an injection pipe 30 fluidly connecting the cooling circuit and the injection member 20, and at least one bypass line 32 connected to the injection pipe 30 and intended to transfer a portion of the liquefied gas 2 cooled to a container (not shown) remote, distinct and independent of the installation 1.
  • This tank 4 of the same or another installation may be fed liquefied gas via the bypass line 32 and a respective injection member 20 where appropriate.
  • bypass line 32 and the connection line 31 can be installed on the same installation.
  • the cooling circuit 10 is closed and autonomous and is configured to be supplied with liquefied gas 2 in the liquid state coming from the tank 4.
  • the cooling circuit 10 comprises at least one compressor 12 configured to compress a cycle gas 3, at least one engine 14, at least one turbine 18, and at least one first heat exchanger 16 configured to perform a heat exchange between liquefied gas 2 and the gas cycle.
  • the motor 14 being mechanically connected on the one hand to the compressor 12 in order to drive the compressor 12 and on the other hand to the turbine 18 so that the turbine 18 drives the motor 14.
  • the cooling circuit 10 further comprises a second heat exchanger 24 configured to effect a heat exchange between the compressed cycle gas 3 and the relaxed cycle gas 3, as illustrated in FIG. 2.
  • the cooling circuit 10 further comprises a third heat exchanger 26 configured to effect a heat exchange between the compressed cycle gas 3 and water or air or any other cooling fluid from an external source.
  • one or tanks 4 contains liquefied natural gas on a vehicle, including a boat
  • the natural gas that vaporizes can be used as a fuel for a vehicle engine and the excess gas is burned in a torch for example .
  • Figure 4A shows the distribution of consumption (y-axis y in tonnes per day) of vaporized natural gas on a vessel as a function of time (x-axis x) to the engine (C: part with horizontal hatch), to the torch (A: part with inclined hatching) and towards the reliquefaction system (B: part without hatching) for a known installation.
  • Figure 4B illustrates the distribution of the consumption in tonnes per day (y-axis) of natural gas vaporized on a vessel as a function of time (x-axis) to the engine (C), to the torch (A) and to the fuel system. reliquefaction (B) for the installation according to the invention. It can be seen that, according to the known installation (FIG. 4A), losses of vaporized gas persist at the end of the journey because the engines and the installation are not sized to recover this gas. While in Figure 4B, thanks to the installation according to the invention, there is no peak at the end of the journey, the losses are minimal thanks to the system of cooling tanks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention concerne principalement une installation (1) pour stocker et refroidir un gaz liquéfié, par exemple un gaz naturel liquéfié, l'installation comprenant au moins un réservoir (4) configuré pour contenir du gaz liquéfié (2), un circuit de refroidissement (10) fermé configuré pour être alimenté en gaz liquéfié (2) à l'état liquide provenant du réservoir (4), au moins un organe d'injection (20) configuré pour réinjecter dans le réservoir le gaz liquéfié (2) refroidi, l'installation (1) étant caractérisée en ce qu'elle comprend au moins une ligne de connexion(31)configurée pour récupérer un gaz à refroidir (2) d'au moins un contenant (100) distant, distinct et indépendant de l'installation.

Description

Installation, procédé pour stocker et reliquéfier un gaz liquéfié et
véhicule de transport associé
La présente invention concerne une installation pour stocker et refroidir un gaz liquéfié, par exemple un gaz naturel liquéfié. De plus, la présente invention concerne un procédé de stockage pour stocker un gaz liquéfié.
On connaît du document US3302416A une installation de stockage de gaz naturel liquéfié permettant de stocker le gaz naturel liquéfié pendant son transport vers un autre bâtiment. Le dispositif de refroidissement décrit dans le document US3302416A comprend plusieurs compresseurs, plusieurs moteurs, plusieurs échangeurs thermiques configurés pour refroidir du gaz liquéfié provenant du réservoir et au moins une source de réfrigération, extérieure à l'installation de stockage de gaz. La source de réfrigération correspond à un équipement indépendant par rapport aux compresseurs, échangeurs, etc. composant l'installation de stockage et permet de sous-refroidir des quantités limitées de gaz liquéfié stocké de manière à pouvoir éviter un apport de chaleur dans ladite installation; et de réinjecter le liquide sous-refroidi dans différentes zones de l'espace de stockage de manière à fournir des conditions de température relativement uniformes dans le gaz liquide stocké avec un minimum de perturbations des vapeurs stratifiées sur la surface liquide. Cette source de réfrigération peut être par exemple un contenant sous forme de bouteille de gaz, dit gaz de cycle.
Cependant, l'installation de stockage décrite dans ce document comprend de nombreux composants indépendants, ce qui impose de nombreuses interfaces de liaison entre eux. En outre, ces nombreux composants forment un grand volume tampon qui nécessite d'être rempli à chaque démarrage de chaque cycle. L'usage d'un système interne permet de stocker le gaz de cycle servant à faire fonctionner l'installation, ledit gaz de cycle étant stocké dans un autre équipement extérieur quand il est chaud et remis dans le circuit de l'installation une fois qu'il est froid.
En outre, dans ce document, seule la fonction de transport est mise en exergue, on ne se soucie pas du chargement et du déchargement du gaz liquéfié. En effet, dans ce document, il est simplement décrit que pendant le transport du gaz liquéfié, on s'assure que la pression ne monte pas et donc on reliquéfie tout ce qui s'évapore. Cependant il n'est pas question de la décharge dudit gaz une fois arrivé à destination. La liquéfaction du gaz naturel rend envisageable et rentable son transport par voie maritime. Pendant la navigation, sous les effets des entrées thermiques sur les stockages et des phénomènes de ballottement, de grandes quantités de gaz sont générés par évaporation. Pour réguler les fluctuations de pression résultantes, ce gaz évaporé peut être soit utilisé pour la propulsion, soit brûlé au niveau d'une torche soit reliquéfié. Tout transfert de liquide vers un stockage où les conditions de pression et de température diffèrent de celles du stockage d'origine engendre de l'évaporation du gaz naturel liquéfié, pour des raisons de température (réservoir chaud) et/ou pression (flash du liquide). Ce cas de figure se présente dans les situations suivantes : transfert d'un navire souteur à un client, remplissage d'un méthanier au terminal, remise en froid des stockages à la fin du voyage retour à vide d'un méthanier.
La présente invention a notamment pour but de résoudre, en tout ou partie, les problèmes mentionnés ci-avant.
La présente invention peut consister en l'utilisation d'une installation qui est décrite notamment dans le document WO2009066044 et dont l'ensemble des caractéristiques est incorporé par renvoi dans la présente demande. L'installation peut comprendre au minimum : un dispositif cryogénique destiné à transférer de la chaleur d'une source froide vers une source chaude via un fluide de travail ou gaz de cycle circulant dans un circuit de travail ou circuit de cycle fermé, le circuit de travail comprenant en série : une portion de compression isotherme ou sensiblement isotherme du fluide, une portion de refroidissement isobare ou sensiblement isobare du fluide, une portion de détente isotherme ou sensiblement isotherme du fluide et une portion de réchauffement isobare ou sensiblement isobare du fluide. La portion de compression comprend au moins deux compresseurs disposés en série, au moins un échangeur de refroidissement du fluide comprimé disposé à la sortie de chaque compresseur. La portion de détente comprend au moins une turbine de détente et au moins un échangeur de réchauffement du fluide détendu, les compresseurs et la ou les turbines de détente étant entraînés par au moins un moteur dit à haute vitesse. Le moteur comprend un arbre de sortie dont l'une des extrémités porte et entraine en rotation par accouplement direct un premier compresseur et dont l'autre extrémité porte et entraine en rotation par accouplement direct un second compresseur ou une turbine de détente.
Dans la présente invention, on entendra par "moteur à haute vitesse" des moteurs tournant typiquement à une vitesse de rotation de 10 000 tours par minute ou plusieurs dizaines de milliers de tours par minute. Un moteur basse vitesse tourne plutôt avec une vitesse de quelques milliers de tours par minute.
L'invention a pour objet une installation, pour stocker et refroidir un gaz liquéfié, par exemple un gaz naturel liquéfié, l'installation comprenant:
- au moins un réservoir configuré pour contenir du gaz liquéfié, ledit réservoir comprenant au moins une région inférieure destinée à contenir le gaz liquéfié à l'état liquide, et au moins une région supérieure destinée à contenir les vapeurs du gaz liquéfié,
- au moins un circuit de refroidissement fermé configuré pour être alimenté en gaz liquéfié à l'état liquide provenant du réservoir, le circuit de refroidissement comprenant au moins un compresseur configuré pour comprimer un gaz de cycle, au moins un moteur, au moins une turbine, et au moins un premier échangeur thermique configuré pour opérer un échange thermique entre du gaz liquéfié à l'état liquide provenant du réservoir et le gaz de cycle, par exemple de l'azote, de façon à refroidir du gaz liquéfié provenant du réservoir lorsque l'installation est en service, et
- au moins un organe d'injection relié fluidiquement au circuit de refroidissement via une conduite d'injection reliant fluidiquement le circuit de refroidissement et l'organe d'injection, l'organe d'injection étant configuré pour réinjecter dans le réservoir le gaz liquéfié refroidi,
le moteur étant relié mécaniquement d'une part au compresseur afin d'entraîner le compresseur et d'autre part à la turbine afin que la turbine entraine le moteur,
l'installation étant caractérisée en ce qu'elle comprend au moins une ligne de connexion configurée pour récupérer un gaz liquéfié à refroidir d'au moins un contenant distant, distinct et indépendant de l'installation, ladite ligne de connexion étant reliée fluidiquement au réservoir de l'installation.
Grâce à cette configuration d'installation et notamment du fait du circuit de refroidissement fermé et autonome, il n'est pas nécessaire de faire appel à un volume tampon de stockage de gaz de cycle, ce qui diminue la capacité fluidique totale du circuit. En effet, dans cette configuration, la mise en froid est réalisée initialement: le gaz de cycle est déjà à une pression déterminée et sur-dimensionnée dans tous les équipements du circuit de refroidissement.
En outre, cette configuration est compacte et peu encombrante, car il n'y a pas de distance importante entre les équipements du circuit de refroidissement. Cette distance réduite permet l'utilisation d'une quantité de gaz de cycle réduite et donc de ne pas augmenter trop la pression pour descendre en froid pour arriver à une pression d'opération. De plus, comme la turbine est reliée mécaniquement au compresseur par l'intermédiaire du moteur, l'installation peut fonctionner avec un unique compresseur, ce qui réduit le dimensionnement de l'installation et des liaisons fluidiques entre les différents équipements du circuit de refroidissement.
De plus, la ligne de connexion permet de refroidir un gaz liquéfié à refroidir provenant d'un contenant distinct et indépendant de l'installation.
Dans la présente demande et selon l'invention, on entendra par "contenant distinct et indépendant de l'installation" un contenant qui ne fait pas partie de l'installation ni du circuit de refroidissement, par exemple, le contenant est sur le même navire, sur un autre navire ou à terre.
En outre, le dispositif de refroidissement ne nécessite pas de vannes entre le compresseur et la turbine, car il suffit de contrôler et commander la vitesse du moteur pour réguler le débit de fluide de refroidissement circulant dans le premier échangeur thermique. Ainsi, l'installation est particulièrement rapide à implanter et à mettre en service, ce qui est particulièrement avantageux lorsque l'installation doit être implantée sur un véhicule de transport de gaz liquéfié, par exemple sur un navire tel qu'un méthanier.
Lorsque l'installation est en service, le premier échangeur thermique permet de refroidir, via le gaz de cycle, du gaz liquéfié provenant du réservoir à une température inférieure à la température du gaz liquéfié contenu dans le réservoir. Ce refroidissement est usuellement dénommé « sous-refroidissement ».
Selon une caractéristique de l'invention, l'installation comprend au moins une conduite de dérivation raccordée à la conduite d'injection, ladite conduite de dérivation étant configurée pour transférer une partie du gaz liquéfié refroidi vers un contenant distant, distinct et indépendant de l'installation.
Ceci permet d'alimenter au moins un contenant distinct et indépendant pour une utilisation de gaz liquéfié refroidi.
Selon une caractéristique de l'invention, la ligne d'alimentation est confondue au moins en partie avec la conduite de dérivation. Alternativement, la ligne d'alimentation est distincte de la conduite de dérivation.
Selon une autre caractéristique de l'invention, le moteur est relié directement au compresseur.
Selon une autre caractéristique de l'invention, le moteur est relié directement à la turbine. Selon une caractéristique de l'invention, l'installation comprend en outre une pompe configurée pour alimenter le dispositif de refroidissement en gaz liquéfié à l'état liquide provenant du réservoir. En d'autres termes, le circuit de refroidissement est relié fluidiquement à la pompe.
Selon une caractéristique de l'invention, la pompe est agencée dans la région inférieure du réservoir.
Selon une caractéristique de l'invention, la sortie de la turbine est reliée fluidiquement directement au premier échangeur thermique.
Selon une caractéristique de l'invention, la sortie du compresseur est relié fluidiquement indirectement au premier échangeur thermique.
Selon une caractéristique de l'invention, le circuit de refroidissement comprend en outre un deuxième échangeur thermique configuré pour opérer un échange thermique entre le gaz de cycle comprimé provenant du compresseur et du gaz de cycle détendu provenant de la turbine.
Selon une caractéristique de l'invention, l'entrée du compresseur est reliée fluidiquement à la sortie de la turbine sans organe intermédiaire autre que le premier échangeur thermique et le deuxième échangeur thermique.
Selon une autre caractéristique de l'invention, la turbine est reliée fluidiquement au premier échangeur thermique par un premier conduit de liaison, sans composant intermédiaire.
Selon une autre caractéristique de l'invention, le compresseur est relié fluidiquement au premier échangeur thermique par un deuxième conduit de liaison.
Selon une caractéristique de l'invention, le circuit de refroidissement comprend au moins un premier organe de liaison reliant mécaniquement le moteur au compresseur, et au moins un deuxième organe de liaison reliant mécaniquement le moteur à la turbine.
Selon une autre caractéristique de l'invention, le premier organe de liaison comprend un premier arbre mobile en rotation.
Selon une autre caractéristique de l'invention, le deuxième organe de liaison comprend un deuxième arbre mobile en rotation.
Selon une caractéristique de l'invention, le circuit de refroidissement est configuré pour fonctionner selon un cycle de Brayton. Dans la présente demande, on entendra par « cycle de Brayton », un cycle thermodynamique développé par George Brayton que réalise un gaz, appelé dans la présente invention gaz de cycle. Selon une caractéristique de l'invention, le circuit de refroidissement comprend un troisième échangeur thermique configuré pour réaliser un échange thermique entre le gaz de cycle et un fluide à température ambiante par exemple de l'eau ou un fluide refroidissant, ce qui permet d'évacuer la chaleur du gaz de cycle vers l'extérieur.
Selon une caractéristique de l'invention, l'organe d'injection est agencé dans la région supérieure du réservoir. En d'autres termes, l'organe d'injection injecte le gaz liquéfié refroidi dans la phase vapeur, c'est-à-dire au-dessus du niveau du gaz liquéfié à l'état liquide.
En variante, l'organe d'injection est agencé dans la région inférieure du réservoir. En d'autres termes, l'organe d'injection injecte le gaz liquéfié refroidi dans la phase liquide, c'est-à-dire en-dessous du niveau du gaz liquéfié à l'état liquide.
Selon une caractéristique de l'invention, l'organe d'injection comprend plusieurs buses d'injection agencées en série et/ou en parallèle
Selon une caractéristique de l'invention, le circuit de refroidissement est configuré pour refroidir du gaz liquéfié provenant du réservoir à une température comprise entre 35 K et 150 K, par exemple égale à 110K ou 80 K.
Selon une autre caractéristique de l'invention, le circuit de refroidissement est configuré pour refroidir du gaz liquéfié provenant du réservoir à raison d'un débit compris entre 5m3/h et 50m3/h.
Selon une caractéristique de l'invention, le réservoir contient un gaz liquéfié sélectionné dans le groupe constitué par un gaz naturel liquéfié, ou autre gaz riche en méthane comme le bio-méthane, l'azote, l'oxygène, l'argon et leurs mélanges.
Selon une caractéristique de l'invention, le circuit de refroidissement contient un fluide de refroidissement sélectionné dans le groupe comprenant par de l'azote, l'argon, le néon, l'hélium, et leurs mélanges.
Selon une caractéristique de l'invention, la conduite de dérivation comprend une extrémité terminale comprenant un raccord destiné à être raccordé à un contenant distinct.
Selon une caractéristique de l'invention, la conduite de dérivation comprend de préférence une vanne, notamment une vanne d'isolation.
L'invention a également pour objet un procédé d'utilisation d'une installation selon l'invention pour un gaz liquéfié, par exemple un gaz naturel liquéfié, le procédé comprenant au moins les étapes suivantes : recevoir au moins partiellement du gaz liquéfié provenant d'un contenant distinct et indépendant de l'installation selon l'invention via la ligne de connexion reliant fluidiquement le au moins un réservoir au contenant distant, distinct et indépendant de l'installation,
- alimenter le circuit de refroidissement en gaz liquéfié provenant du réservoir, refroidir le gaz liquéfié provenant du réservoir au moyen du circuit de refroidissement, et
injecter le gaz liquéfié refroidi dans le réservoir au moyen de l'organe d'injection.
Selon une caractéristique de l'invention, le procédé comprend une étape de transfert réalisée après l'injection du gaz liquéfié refroidi, l'étape de transfert consistant à transférer au moins une partie du gaz liquéfié refroidi vers au moins un contenant distant, distinct et indépendant de ladite installation au moyen de la conduite d'injection et de la conduite de dérivation de l'installation.
Avantageusement, le transfert du gaz liquéfié peut être partiel ou total suivant le nombre de réservoirs de l'installation et suivant la quantité de gaz liquéfié refroidi demandé.
Selon une caractéristique de l'invention, l'installation utilisée comprend au moins deux réservoirs configurés pour contenir du gaz liquéfié, ledit procédé selon l'invention étant mis en œuvre lors d'un trajet au cours duquel les réservoirs sont pleins.
Après livraison au moins un réservoir peut être vide (vide ou quasi vide de liquide).
Selon une caractéristique de l'invention, le procédé comprend une étape supplémentaire de remise en froid du au moins un réservoir vide de l'installation ou d'un ou plusieurs autres contenants vides d'au moins une autre installation, l'étape de remise en froid consistant à :
- transférer du gaz liquéfié refroidi restant dans le au moins un réservoir de l'installation vers un ou plusieurs contenants vides d'au moins une autre installation ou
- à transférer du gaz liquéfié refroidi restant dans au moins un contenant d'au moins une autre installation vers le au moins un réservoir vide de l'installation ou
-lorsque l'installation comprend au moins deux réservoirs dont un est vide et l'autre non vide, à transférer du gaz liquéfié refroidi restant dans le réservoir non vide vers le réservoir vide. C'est-à-dire que, en vue notamment d'un trajet de l'installation (sur un bateau), au lieu de conserver un ou plusieurs réservoirs vides, du gaz liquéfié est transféré d'un réservoir non vide vers un ou plusieurs autres réservoir vides notamment pour les maintenir en froid.
Avantageusement, cette étape de remise en froid est réalisée après un déchargement de gaz liquéfié et avant un remplissage ultérieur du ou des réservoirs de l'installation ou du ou des contenants d'au moins une autre installation.
Avantageusement, cette étape de remise en froid est réalisée en continu pour éviter de laisser des réservoirs vides et chauds et pour permettre de lisser la charge thermique afin de limiter les pertes liées au pic final de vaporisation de gaz liquéfié.
L'avantage est de conserver ainsi uniquement du liquide dans les réservoirs d'un bateau permettant le voyage retour sans considérer les pertes de mise en froid à l'arrivée.
Ceci permet d'augmenter au final la quantité de liquide transportée à destination dans le même bateau.
Selon une caractéristique de l'invention, l'étape de remise en froid est réalisée lors d'un trajet au cours duquel au moins un des réservoirs est vide.
Par ailleurs, la présente invention a également pour objet un véhicule de transport, par exemple un navire de transport, pour transporter un gaz liquéfié, par exemple un gaz naturel liquéfié, le véhicule de transport étant caractérisé en ce qu'il comprend une installation selon l'invention.
Les modes de réalisation et les variantes mentionnés ci-avant peuvent être pris isolément ou selon toute combinaison techniquement possible.
L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à des modes de réalisation selon la présente invention, donnés à titre d'exemples non limitatifs et expliqués avec référence aux dessins schématiques annexés, dans lesquels:
la figure 1 est une vue schématique d'une installation conforme à un premier mode de réalisation de l'invention ;
la figure 2 est une vue schématique d'un dispositif de refroidissement composant l'installation de la figure 1 ;
la figure 3 est une vue schématique d'une installation conforme à une variante du premier mode de réalisation de l'invention ; et - la figure 4A est une représentation graphique simplifiée illustrant la répartition de la consommation du gaz naturel vaporisé sur un bateau en fonction du temps vers le moteur, vers une torche et vers un système de reliquéfaction selon l'art antérieur,
la figure 4B est une représentation graphique simplifiée similaire à celle de la figure 4A illustrant la répartition de la consommation du gaz naturel vaporisé sur un bateau en fonction du temps vers le moteur, vers une torche et vers un système de reliquéfaction selon un exemple de l'invention.
Comme illustré en figure 1, l'installation 1 selon un premier mode de réalisation comprend un réservoir 4 comprenant une région inférieure 4.1 destinée à contenir du gaz liquéfié 2 à l'état liquide et une région supérieure 4.2 destinée à contenir les vapeurs du gaz liquéfié 2. En outre, l'installation 1 comprend un circuit de refroidissement 10, illustré notamment en figure 2. De préférence, le circuit 10 de refroidissement est situé à l'extérieur du réservoir, c'est-à-dire que le gaz liquéfié est refroidi (uniquement) à l'extérieur du réservoir. C'est-à-dire que le gaz liquéfié est prélevé dans le réservoir, est refroidi hors du réservoir puis réinjecté refroidi dans le réservoir. Le dispositif 10 de refroidissement est relié au fluide à l'intérieur du réservoir 4 via une conduite de prélèvement qui plonge dans le réservoir. Le réservoir 4 est équipé d'une pompe 22 qui permet d'amener le gaz liquéfié à l'état liquide dans le circuit de refroidissement de manière pour le refroidir et d'au moins un organe d'injection 20 qui permet de réinjecter le gaz liquéfié refroidi dans le réservoir 4. L'organe d'injection comprend une conduite de retour qui relie le dispositif de refroidissement (externe au réservoir) avec l'intérieur du réservoir 4 et comprend l'organe d'injection 20. Avantageusement, l'organe d'injection 20 peut comprendre plusieurs buses.
En outre et comme illustré en figure 1 selon un premier mode de réalisation de l'installation, l'installation 1 comprend une ligne de connexion 31 configurée pour acheminer du gaz à liquéfié d'au moins un contenant 100 distant, distinct et indépendant de l'installation 1 vers le réservoir de l'installation.
Selon une variante du premier mode de réalisation illustrée en figure 3, l'installation 1 comprend une conduite d'injection 30 reliant fluidiquement le circuit de refroidissement et l'organe d'injection 20, et au moins une conduite de dérivation 32 raccordée à la conduite d'injection 30 et destinée à transférer une partie du gaz liquéfié 2 refroidi vers un contenant (non représenté) distant, distinct et indépendant de l'installation 1.
Par exemple, un autre réservoir 4 est représenté en pointillé à la figure
3. Ce réservoir 4 de la même installation ou d'une autre installation peut être alimenté en gaz liquéfié via la conduite 32 de dérivation et un organe d'injection 20 respectif le cas échéant.
Bien entendu, dans une autre variante non représentée, la conduite de dérivation 32 et la ligne de connexion 31 peuvent être installées sur la même installation.
Comme illustré en figure 2 et quelle que soit la configuration de l'installation 1, le circuit de refroidissement 10 est fermé et autonome et est configuré pour être alimenté en gaz liquéfié 2 à l'état liquide provenant du réservoir 4. Le circuit de refroidissement 10 comprend au moins un compresseur 12 configuré pour comprimer un gaz de cycle 3, au moins un moteur 14, au moins une turbine 18, et au moins un premier échangeur thermique 16 configuré pour opérer un échange thermique entre du gaz liquéfié 2 et le gaz de cycle.
Comme on peut le voir en figure 2, le moteur 14 étant relié mécaniquement d'une part au compresseur 12 afin d'entraîner le compresseur 12 et d'autre part à la turbine 18 afin que la turbine 18 entraine le moteur 14.
Le circuit de refroidissement 10 comprend en outre, un deuxième échangeur thermique 24 configuré pour opérer un échange thermique entre le gaz de cycle 3 comprimé et du gaz de cycle 3 détendu, comme illustré en figure 2.
Le circuit de refroidissement 10 comprend en outre, un troisième échangeur thermique 26 configuré pour opérer un échange thermique entre le gaz de cycle 3 comprimé et de l'eau ou de l'air ou tout autre fluide de refroidissement provenant d'une source extérieure.
Dans le cas où un ou des réservoirs 4 contient du gaz naturel liquéfié sur un véhicule, notamment un bateau, le gaz naturel qui se vaporise peut être utilisé comme combustible pour un moteur du véhicule et le gaz en excès est brûlé dans une torche par exemple.
La figure 4A illustre la répartition de la consommation (axe des ordonnées y en tonnes par jour) du gaz naturel vaporisé sur un bateau en fonction du temps (axe des abscisses x) vers le moteur (C : partie avec hachures horizontales), vers la torche (A : partie avec hachures inclinées) et vers le système de reliquéfaction (B : partie sans hachures) pour une installation connue.
La figure 4B illustre la répartition de la consommation en tonnes par jour (axe y) du gaz naturel vaporisé sur un bateau en fonction du temps (axe x) vers le moteur (C), vers la torche (A) et vers le système de reliquéfaction (B) pour l'installation selon l'invention. On constate que selon l'installation connue (figure 4A), des pertes de gaz vaporisé persistent en fin de trajet car les moteurs et l'installation ne sont pas dimensionnés pour récupérer ce gaz. Tandis qu'en figure 4B, grâce à l'installation selon l'invention, il n'existe plus de pic en fin de trajet, les pertes sont minimes grâce notamment au système de remise en froid des réservoirs.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés aux figures annexées. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

REVENDICATIONS
1. Installation (1) pour stocker et refroidir un gaz liquéfié, par exemple un gaz naturel liquéfié, l'installation comprenant:
- au moins un réservoir (4) configuré pour contenir du gaz liquéfié (2), ledit réservoir (4) comprenant au moins une région inférieure (4.1) destinée à contenir le gaz liquéfié (2) à l'état liquide, et au moins une région supérieure (4.2) destinée à contenir les vapeurs du gaz liquéfié (2),
- au moins un circuit de refroidissement (10) fermé configuré pour être alimenté en gaz liquéfié (2) à l'état liquide provenant du réservoir (4), le circuit de refroidissement (10) comprenant au moins un compresseur (12) configuré pour comprimer un gaz de cycle (3), au moins un moteur (14), au moins une turbine (18), et au moins un premier échangeur thermique (16) configuré pour opérer un échange thermique entre du gaz liquéfié (2) à l'état liquide provenant du réservoir (4) et le gaz de cycle (3), par exemple de l'azote, de façon à refroidir du gaz liquéfié (2) provenant du réservoir (4) lorsque l'installation est en service, et
- au moins un organe d'injection (20) relié fluidiquement au circuit de refroidissement (10) via une conduite (30) d'injection, l'organe d'injection (20) étant configuré pour réinjecter dans le réservoir le gaz liquéfié (2) refroidi,
- le moteur (14) étant relié mécaniquement d'une part au compresseur (12) afin d'entraîner le compresseur (12) et d'autre part à la turbine (18) afin que la turbine (18) entraine le moteur (14),
l'installation (1) étant caractérisée en ce qu'elle comprend au moins une ligne de connexion (31) configurée pour récupérer un gaz à refroidir (2) d'au moins un contenant (100) distant, distinct et indépendant de l'installation, ladite ligne de connexion (31) étant reliée fluidiquement au réservoir (4) de l'installation.
2. Installation selon la revendication 1, comprenant au moins une conduite de dérivation (32) raccordée à la conduite d'injection (30), ladite conduite de dérivation étant configurée pour transférer une partie du gaz liquéfié (2) refroidi vers un contenant distant, distinct et indépendant de l'installation.
3. Installation selon l'une quelconque des revendications 1 ou 2, dans laquelle la sortie de la turbine (18) est reliée fluidiquement directement à l'entrée du premier échangeur thermique (16).
4. Installation selon l'une quelconque des revendications 1 à 3, dans laquelle la sortie du compresseur (12) est relié fluidiquement indirectement au premier échangeur thermique (16).
5. Installation selon l'une quelconque des revendications 1 à 4, dans laquelle le circuit de refroidissement (10) comprend en outre un deuxième échangeur thermique (24) configuré pour opérer un échange thermique entre le gaz de cycle (3) comprimé provenant du compresseur (12) et du gaz de cycle (3) détendu provenant de la turbine (18).
6. Installation selon la revendication 5, dans laquelle l'entrée du compresseur (12) est reliée fluidiquement à la sortie de la turbine (18) sans organe intermédiaire autre que le premier échangeur thermique (16) et le deuxième échangeur thermique (24).
7. Installation selon l'une quelconque des revendications 1 à 6, dans laquelle le circuit de refroidissement (10) comprend au moins un premier organe de liaison reliant mécaniquement le moteur (14) au compresseur (12), et au moins un deuxième organe de liaison reliant mécaniquement le moteur (14) à la turbine (18).
8. Installation selon l'une quelconque des revendications 1 à 7, dans laquelle le circuit de refroidissement (10) comprend un troisième échangeur thermique (26) configuré pour réaliser un échange thermique entre le gaz de cycle (3) et un fluide à température ambiante par exemple de l'eau ou un fluide refroidissant.
9. Installation selon l'une quelconque des revendications 1 à 8, dans laquelle l'organe d'injection (20) est agencé dans la région supérieure (4.2) du réservoir (4).
10. Installation selon l'une quelconque des revendications précédentes, dans laquelle le circuit de refroidissement est configuré pour refroidir du gaz liquéfié provenant du réservoir à une température comprise entre 35 K et 150 K, par exemple égale à 110K ou 80 K
11. Installation selon l'une quelconque des revendications précédentes, dans laquelle le réservoir (4) contient un gaz liquéfié sélectionné dans le groupe constitué par un gaz naturel liquéfié, ou autre gaz riche en méthane comme le bio-méthane, l'azote, l'oxygène, l'argon et leurs mélanges.
12. Installation selon l'une quelconque des revendications précédentes, dans laquelle le circuit de refroidissement (10) contient un fluide de refroidissement sélectionné dans le groupe comprenant par de l'azote, l'argon, le néon, l'hélium, et leurs mélanges.
13. Procédé d'utilisation d'une installation selon l'une quelconque des revendications précédentes, pour un gaz liquéfié, le procédé comprenant au moins les étapes suivantes :
recevoir au moins partiellement du gaz liquéfié provenant d'un contenant distinct et indépendant de l'installation (1) via la ligne de connexion (31) reliant fluidiquement le au moins un réservoir (4) au contenant (100) distant, distinct et indépendant de l'installation,
- alimenter le circuit de refroidissement (10) en gaz liquéfié (2) provenant du réservoir (4),
- refroidir le gaz liquéfié (2) provenant du réservoir (4) au moyen du circuit de refroidissement (10), et
- injecter le gaz liquéfié (2) refroidi dans le réservoir (4) au moyen de l'organe d'injection (20).
14. Procédé selon la revendication 13 comprenant une étape de transfert réalisée après l'injection du gaz liquéfié refroidi, l'étape de transfert consistant à transférer au moins une partie du gaz liquéfié refroidi vers au moins le contenant distant, distinct et indépendant de l'installation ou vers un autre contenant distant, distinct et indépendant de l'installation, au moyen de la conduite d'injection et de la conduite de dérivation de l'installation.
15. Procédé selon la revendication 14, comprenant une étape supplémentaire de remise en froid du au moins un réservoir de l'installation ou d'un ou plusieurs autres contenants vides d'au moins une autre installation, l'étape de remise en froid consistant à : - transférer du gaz liquéfié refroidi restant dans le au moins un réservoir de l'installation vers un ou plusieurs contenants vides d'au moins une autre installation ou
- à transférer du gaz liquéfié refroidi restant dans au moins un contenant d'au moins une autre installation vers le au moins un réservoir vide de l'installation ou
- lorsque l'installation comprend au moins deux réservoirs dont un est vide et l'autre non vide, à transférer du gaz liquéfié refroidi restant dans le réservoir non vide vers le réservoir vide.
16. Véhicule de transport par exemple un navire de transport, pour transporter un gaz liquéfié, par exemple un gaz naturel liquéfié, le véhicule de transport étant caractérisé en ce qu'il comprend une installation selon l'une quelconque des revendications 1 à 12.
EP17748836.8A 2016-09-06 2017-07-19 Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé Active EP3510317B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658258A FR3055692B1 (fr) 2016-09-06 2016-09-06 Installation, procede pour stocker et reliquefier un gaz liquefie et vehicule de transport associe
PCT/FR2017/051964 WO2018046809A1 (fr) 2016-09-06 2017-07-19 Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé

Publications (2)

Publication Number Publication Date
EP3510317A1 true EP3510317A1 (fr) 2019-07-17
EP3510317B1 EP3510317B1 (fr) 2022-11-16

Family

ID=57583217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17748836.8A Active EP3510317B1 (fr) 2016-09-06 2017-07-19 Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé

Country Status (11)

Country Link
US (1) US11549646B2 (fr)
EP (1) EP3510317B1 (fr)
JP (1) JP7110179B2 (fr)
KR (1) KR102370344B1 (fr)
CN (1) CN109906337B (fr)
AU (1) AU2017324488B2 (fr)
CA (1) CA3035849C (fr)
DK (1) DK3510317T3 (fr)
ES (1) ES2935644T3 (fr)
FR (1) FR3055692B1 (fr)
WO (1) WO2018046809A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143793A1 (fr) 2022-01-28 2023-08-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de stockage de gaz liquéfié.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106874B1 (fr) * 2020-02-05 2022-07-01 Air Liquide Procédé de livraison de gaz liquéfié
US20210396353A1 (en) * 2020-06-17 2021-12-23 China Energy Investment Corporation Limited System for managing pressure in underground cryogenic liquid storage tank and method for the same
EP4417861A1 (fr) * 2023-02-15 2024-08-21 Horisont Energi AS Système et procédé de réfrigération du contenu d'un réservoir de stockage intermédiaire lco2 au niveau d'un terminal de réception de co2

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302416A (en) * 1965-04-16 1967-02-07 Conch Int Methane Ltd Means for maintaining the substitutability of lng
US6557593B2 (en) * 1993-04-28 2003-05-06 Advanced Technology Materials, Inc. Refillable ampule and method re same
NO322620B1 (no) * 2003-10-28 2006-11-06 Moss Maritime As Anordning til lagring og transport av flytendegjort naturgass
JP4819690B2 (ja) * 2003-11-06 2011-11-24 エクソンモービル アップストリーム リサーチ カンパニー 冷凍用のコンプレッサの非同期運転のための駆動システムおよびガスタービン出力冷凍コンプレッサの運転方法
EP1860393B1 (fr) * 2006-05-23 2009-02-18 Cryostar SAS Procédé et dispositif pour reliquéfier un courant de gaz
US8820096B2 (en) 2007-02-12 2014-09-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
KR100804970B1 (ko) 2007-03-20 2008-02-20 대우조선해양 주식회사 Lng 운반선의 적재운항 중 lng 저장탱크의 lng체적 계산 및 안전밸브 설정압력 확인 시스템
FR2924205B1 (fr) 2007-11-23 2013-08-16 Air Liquide Dispositif et procede de refrigeration cryogenique
JP5148319B2 (ja) * 2008-02-27 2013-02-20 三菱重工業株式会社 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
JP2013087911A (ja) * 2011-10-20 2013-05-13 Mitsubishi Heavy Ind Ltd 貯蔵槽の圧力上昇抑制装置、これを備えた圧力上昇抑制システム、この抑制方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
FR3004513B1 (fr) 2013-04-11 2015-04-03 Gaztransp Et Technigaz Procede et systeme de traitement et d'acheminement de gaz naturel vers un equipement de production d'energie pour la propulsion d'un navire
GB201316227D0 (en) * 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
DE102013018333A1 (de) * 2013-10-31 2015-04-30 Linde Aktiengesellschaft Boil-off-Gas-Management
KR101537277B1 (ko) * 2014-01-03 2015-07-20 대우조선해양 주식회사 연료가스 공급 시스템
EP2899116A3 (fr) * 2014-01-22 2015-11-25 Meyer Werft GmbH & Co. KG Procédé et dispositif de réservoir pour la reliquéfaction et le refroidissement de gaz naturel liquide dans des systèmes de réservoir
FR3028305A1 (fr) * 2014-11-10 2016-05-13 Gaztransport Et Technigaz Dispositif et procede de refroidissement d'un gaz liquefie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143793A1 (fr) 2022-01-28 2023-08-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de stockage de gaz liquéfié.
FR3132343A1 (fr) 2022-01-28 2023-08-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de stockage de gaz liquéfié.

Also Published As

Publication number Publication date
WO2018046809A1 (fr) 2018-03-15
ES2935644T3 (es) 2023-03-08
KR20190044108A (ko) 2019-04-29
CN109906337A (zh) 2019-06-18
DK3510317T3 (da) 2023-02-06
US20190257475A1 (en) 2019-08-22
CN109906337B (zh) 2021-08-17
US11549646B2 (en) 2023-01-10
CA3035849A1 (fr) 2018-03-15
JP2019526763A (ja) 2019-09-19
AU2017324488A1 (en) 2019-04-18
CA3035849C (fr) 2022-08-09
FR3055692B1 (fr) 2018-08-24
KR102370344B1 (ko) 2022-03-03
JP7110179B2 (ja) 2022-08-01
EP3510317B1 (fr) 2022-11-16
FR3055692A1 (fr) 2018-03-09
AU2017324488B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
EP3628911B1 (fr) Dispositif et procédé de remplissage de réservoirs de gaz sous pression
EP3743652B1 (fr) Pompe à chaleur cryogénique et son utilisation pour le traitement de gaz liquéfié
EP3433557B1 (fr) Système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz
EP3864336B1 (fr) Procédé et installation de stockage et de distribution d'hydrogène liquéfié
EP3510317B1 (fr) Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé
EP3218639B1 (fr) Dispositif et procede de refroidissement d'un gaz liquefie
FR3066250B1 (fr) Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
EP3743651A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
EP3433530A1 (fr) Installation d'alimentation en gaz combustible d'un organe consommateur de gaz et de liquefaction dudit gaz combustible
FR3077867A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
EP3344936A1 (fr) Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique
EP3669114A1 (fr) Dispositif et procede d'alimentation en combustible d'une installation de production d'energie
WO2022129755A1 (fr) Système d'alimentation et de refroidissement pour ouvrage flottant
FR3066249A1 (fr) Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
FR2829745A1 (fr) Procede et dispositif de lutte contre l'incendie
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
WO2023143793A1 (fr) Installation et procédé de stockage de gaz liquéfié.
CA3230450A1 (fr) Procede et dispositif de transfert de fluide cryogenique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017063740

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1531961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230202

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221116

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2935644

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230308

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1531961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230316

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017063740

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 7

Ref country code: ES

Payment date: 20230927

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 8