EP1860393B1 - Procédé et dispositif pour reliquéfier un courant de gaz - Google Patents
Procédé et dispositif pour reliquéfier un courant de gaz Download PDFInfo
- Publication number
- EP1860393B1 EP1860393B1 EP06352012A EP06352012A EP1860393B1 EP 1860393 B1 EP1860393 B1 EP 1860393B1 EP 06352012 A EP06352012 A EP 06352012A EP 06352012 A EP06352012 A EP 06352012A EP 1860393 B1 EP1860393 B1 EP 1860393B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- working fluid
- vapour
- natural gas
- heat exchanger
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 152
- 239000012530 fluid Substances 0.000 claims abstract description 101
- 239000003345 natural gas Substances 0.000 claims abstract description 71
- 230000006835 compression Effects 0.000 claims abstract description 63
- 238000007906 compression Methods 0.000 claims abstract description 63
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 39
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims description 12
- 238000009833 condensation Methods 0.000 claims description 11
- 230000005494 condensation Effects 0.000 claims description 11
- 238000010792 warming Methods 0.000 claims description 10
- 238000005057 refrigeration Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 58
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 29
- 239000007789 gas Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000003498 natural gas condensate Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
- F25J1/0025—Boil-off gases "BOG" from storages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0439—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
- F17C2265/034—Treating the boil-off by recovery with cooling with condensing the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/037—Treating the boil-off by recovery with pressurising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/04—Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
Definitions
- This invention relates to a method and apparatus for the reliquefaction of a vapour according to the preamble of claims 1 and 6 which is known from WO 2005/047761 , and particularly to a method and apparatus which are operable on board ship to reliquefy natural gas vapour.
- Natural gas is conventionally transported over large distances in liquefied state.
- ocean going tankers are used to convey liquefied natural gas from a first location in which the natural gas is liquefied to a second location in which it is vaporised and sent to a gas distribution system.
- natural gas liquefies at cryogenic temperatures, i.e. temperatures below - 100°C, there will be continuous boil-off of the liquefied natural gas in any practical storage system. Accordingly, apparatus needs to be provided in order to reliquefy the boiled-off vapour.
- a refrigeration cycle comprising compressing a working fluid in a plurality of compressors, cooling the compressed working fluid by indirect heat exchange, expanding the working fluid, and warming the expanded working fluid in indirect heat exchange with the compressed working fluid, and returning the warmed working fluid to one of the compressors.
- the natural gas vapour, downstream of a compression stage, is at least partially condensed by indirect heat exchange with the working fluid being warmed.
- the working fluid is derived from the natural gas itself and therefore an open refrigeration cycle is operated.
- the expansion of the working fluid is performed by a valve.
- Partially condensed natural gas is obtained.
- the partially condensed natural gas is separated into a liquid phase which is returned to storage and a vapour phase which is mixed with natural gas being sent to a burner for combustion.
- the working fluid is both warmed and cooled in the same heat exchanger so that only one heat exchanger is required.
- the heat exchanger is located on a first skid-mounted platform and the working fluid compressors on a second skid-mounted platform.
- WO-A-98/43029 points out that incomplete condensation of the natural gas vapour reduces the power consumed in the refrigeration cycle (in comparison with complete condensation) and suggests that the residual vapour - which is relatively rich in nitrogen - should be vented to the atmosphere. Indeed, the partial condensation disclosed in WO-A-98/43029 follows well known thermodynamic principles which dictate that the condensate yield is purely a function of the pressure and temperature at which the condensation occurs.
- the liquefied natural gas may be stored at a pressure a little above atmospheric pressure and the boil-off vapour may be partially condensed at a pressure of 4 bar.
- the resulting partially condensed mixture is typically flashed through an expansion valve into a phase separator to enable the vapour to be vented at atmospheric pressure.
- the liquid phase entering the expansion valve contains as much as 10 mole per cent of nitrogen at 4 bar, the resulting vapour phase at 1 bar still contains in the order of 50% by volume of methane.
- some 3000 to 5000 kg of methane may need to be vented daily from the phase separator. Since methane is recognised as a greenhouse gas such a practice would be environmentally unacceptable.
- EP-A-1 132 698 discloses a method that mitigates the problems that are caused when vapour is returned with condensed natural gas to a liquefied natural gas (LNG) storage tank.
- LNG liquefied natural gas
- the nitrogen mole fraction in the liquefied natural gas is less than the nitrogen mole fraction in the boiled-off vapour and even less than that in flash gas formed by the expansion through the valve of the condensed boil-off vapour, dilution of the boiled-off vapour with the liquefied natural gas either upstream or downstream of the condenser, or both, tends to dampen swings in the composition of the vapour phase in the storage tank that would otherwise occur without the mixing of the boiled off vapour or natural gas condensate with the liquefied natural gas from storage.
- a method of reliquefying vapour boiled off from at least one volume of liquefied natural gas held in at least one storage tank comprising compressing the vapour in first and second vapour compression stages in series, condensing the compressed vapour in a condenser by heat exchange with a working fluid flowing in a main endless working fluid cycle, and returning at least some of the resulting condensate to the said storage tank, wherein in the main working fluid cycle the working fluid is, in sequence, compressed in at least one working fluid compressor, cooled in a first heat exchanger, expanded in an expansion turbine, employed in the condenser to perform the condensation of the natural gas vapour, warmed in the said first heat exchanger in heat exchange with the working fluid being cooled and returned to the said working fluid compressor, characterised in that in the main working fluid cycle intermediate the passage of the working fluid through the condenser and its passage through the first heat exchanger, the working fluid is employed to precool in a second heat exchanger the compressed natural gas vapour downstream of
- the invention also provides apparatus for reliquefying natural gas vapour comprising at least one storage tank for holding at least one volume of liquefied natural gas, first and second vapour compression stages in series for compressing boiled-off natural gas vapour communicating with at least one vapour space in the said storage tank, a condenser for condensing the compressed vapour having a natural gas inlet communicating with the second vapour compression stage and an outlet communicating with the said storage tank, wherein the condenser is arranged so as to be cooled, in use, by a working fluid, the condenser forming part of an endless main working fluid cycle comprising, in sequence, (a) at least one working fluid compressor for compressing a flow of the working fluid, (b) a cooling path through a first heat exchanger for cooling the working fluid flow, (c) an expansion turbine for expanding the flow of working fluid, (d) the condenser, (e) a warming path through the first heat exchanger for warming the working fluid, and (f) an inlet to the said working fluid compressor,
- thermodynamic efficiency of operation in comparison with the corresponding methods and apparatuses disclosed in the prior documents mentioned above.
- the improvement in thermodynamic efficiency can be exploited by means of a reduced power consumption.
- the proportion of the working fluid that is diverted from the main working fluid cycle to the third heat exchanger is controlled in response to the temperature at the inlet to the second vapour compression stage.
- the condenser is operated such that sub-cooled liquefied natural gas exits from it.
- the said storage tank contains only a relatively small amount of liquefied natural gas return of the condensate to the tank has the effect of enriching the boiled-off vapour in nitrogen.
- the vapour presented to the condenser for condensation may contain an excess of nitrogen with the consequence that not only is the condensate not sub-cooled but it is not even fully condensed.
- the storage tank contains a liquefied natural gas having a high nitrogen content, for example, one that gives a boil-off gas containing 20 to 40% by volume of nitrogen
- the condensate which contains uncondensed vapour
- the storage tank contains a liquefied natural gas having a high nitrogen content, for example, one that gives a boil-off gas containing 20 to 40% by volume of nitrogen
- the condensate which contains uncondensed vapour
- the storage tank contains a liquefied natural gas having a high nitrogen content, for example, one that gives a boil-off gas containing 20 to 40% by volume of nitrogen
- the first and second vapour compression stages are preferably driven by a single plural speed motor.
- vapour upstream of the first vapour compression stage is precooled by having mixed therewith a stream of condensed natural gas taken from the condenser.
- flow rate of the stream of condensed natural gas vapour is controlled in response to the temperature at the inlet to the first compression stage.
- the five thermally-insulated storage tanks 2, 4, 6, 8 and 10 are provided in the hull of a ship or other sea-going vessel (not shown). Two or more of the storage tanks 2, 4, 6, 8 and 10 are provided with a submerged orifice pipe 12 located in its bottom region through which LNG is introduced. For reasons of ease of illustration, the orifice pipes in the tanks 2, 4 and 6 are not shown in the drawing. If only some of the storage tanks are provided with submerged orifice pipes, redistribution of returning LNG to tanks not so provided is by operation of liquid pumps (not shown).
- the orifice pipe 12 is in normal operation submerged in a volume 16 of LNG. In each of the tanks 2, 4, 6, 8 and 10 there is a vapour space 18 above the volume 16 of LNG therein.
- each of the tanks has a top outlet 22 for vapour which communicates with a boiled-off gas header 24. Extending from the header 24 is a main pipeline 26 for the boiled-off gas. Located in the pipeline 26 is a mixer 28, in which, in operation, the vapour may be mixed with condensed LNG from a downstream part of the installation. In operation, the condensed LNG evaporates in the boiled-off gas and thereby reduces the temperature of this gas.
- a sensor 27 is provided downstream of the mixer and generates signals representative of the temperature at the inlet to a first compression stage 40, which signals are relayed to a valve controller 30, which in turn controls the setting of the flow-control valve 32 in a LNG condensate pipeline 34 that terminates in a spray nozzle 36 within the mixer 28.
- the mixer 28 may thus be operated so as to provide natural gas at a chosen essentially constant cryogenic temperature below, say, minus 100°C to the first compression stage 40.
- the boiled-off gas flows from the mixer 28 into the first compression stage.
- the outlet of the first compression stage 40 indirectly communicates with the inlet of a second compression stage 42.
- the compression stages 40 and 42 are typically driven by a single electric motor 44 through, if desired, an integral gearbox 45.
- the motor 44 is typically able to be operated at two different speeds.
- Resulting compressed gas is supplied from the second compression stage 42 to a condenser 46, typically in the form of a plate fin or spirally wound heat exchanger, in which it is condensed and once condensed subjected to subcooling.
- the resulting sub-cooled condensate flows from the condenser 46 along a pipeline 48 to a condensate return header 50 which feeds the orifice pipes 12 in the bottom regions of the tanks 8 and 10, or if each tank is equipped with the orifice pipe 12, to the tanks 2, 4, 6, 8 and 10.
- Cooling for the condenser 46 is provided by a working or heat exchange fluid such as nitrogen flowing at a first pressure in an essentially closed refrigeration cycle 60 such as a Brayton cycle.
- a working or heat exchange fluid such as nitrogen flowing at a first pressure in an essentially closed refrigeration cycle 60 such as a Brayton cycle.
- nitrogen passing out of the condenser 46 is warmed in heat exchange with returning compressed nitrogen at a second pressure higher than the first in a gas-to-gas heat exchanger 62.
- the resulting warmed nitrogen flows to a compressor 64 which typically comprises three compression stages 66, 68 and 70 all having rotors (not shown) mounted on an integral gearbox (not shown) or on the same shaft 72 able to be driven by a motor 74 through a gearbox 75.
- a first intercooler 78 is located downstream of the outlet from the first compression stage 66 and upstream of the inlet to the second compression stage 68.
- a second intercooler 80 is located downstream of the outlet from the second compression stage 68 and upstream of the inlet to the third compression stage 70.
- An aftercooler 82 is located downstream of the outlet from the third compression stage 70.
- the intercoolers 78 and 80 and the aftercooler 82 are typically all cooled by water and are operated so as to remove the heat of compression from the circulating nitrogen in operation of the Brayton cycle.
- the resulting aftercooled compressed nitrogen flow passes through the heat exchanger 62 as the previously mentioned returning cold nitrogen stream.
- the compressed nitrogen stream is thus cooled to a lower temperature in the heat exchanger 62.
- the compressed cooled nitrogen flow passes to an expansion turbine 84 where it is expanded with the performance of extra work.
- the expansion turbine 84 is typically mounted on the same integral gearbox (not shown) or on the same shaft as the compression stages 66, 68 and 70.
- the expansion turbine 84 thus helps to drive the compression stages 66, 68 and 70.
- the expansion of the nitrogen in the turbine 84 generates the refrigeration necessary for the condensation of the natural gas vapour in the condenser 46.
- the nitrogen thus continuously passes through an endless circuit.
- a particular feature of the Brayton cycle 60 illustrated in the drawing is that the nitrogen does not pass directly from the condenser 46 to the heat exchanger 62. Instead it passes through a second gas-to-gas countercurrent heat exchanger 86.
- the purpose of this heat exchanger is to pre-cool the natural gas to a temperature close to its condensation temperature upstream of entering the condenser 46.
- the natural gas is consequently not only liquefied but also sub-cooled in the condenser 46.
- the sub-cooling of the liquefied natural gas keeps down the formation of flash gas when the LNG is returned to the tanks.
- a further feature of the particular form of Brayton cycle 6 shown in the drawings is that a part of the nitrogen is withdrawn from a region of the Brayton cycle downstream of the outlet from the condenser 46 but upstream of the inlet to the second heat exchanger 86 and flows through a third heat exchanger 88 which is located downstream of the first natural gas compression stage 40 but upstream of the second natural gas compression stage 42 and thus serves to remove the heat of compression generated in the natural gas by operation of the first compression stage 40.
- the nitrogen passing through the third heat exchanger 88 is warmed.
- the warmed nitrogen flow is returned to the Brayton cycle 60 at a region downstream of the outlet from the second heat exchanger 86 but upstream of the inlet to the warming passages through the first heat exchanger 62.
- a control valve 90 controls the rate of flow of nitrogen working fluid through the third heat exchanger in response to a temperature sensor (not shown) at the inlet to the second natural gas compression stage 42.
- the control valve 90 operates to maintain a constant temperature at the inlet to the second natural gas compression stage 42.
- the temperature at the inlet to the first natural gas compression stage 40 is typically in the order of minus 100°C or even lower.
- the pressure at the inlet is typically a little above 1 bar.
- the natural gas typically leaves the first compression stage at a temperature of minus 65°C and a pressure in the order of 2 bar.
- the gas is typically cooled in the heat exchanger to a temperature in the order of minus 130°C and enters the second natural gas compression stage at this temperature.
- the natural gas typically leaves the second compression stage 42 at a pressure in the order of 5 bar and a temperature of about minus 75°C.
- the natural gas is cooled in the second heat exchanger to a temperature at which it will begin to condense.
- the exact value of this temperature will depend on the composition of the natural gas. The greater the mole fraction of nitrogen in the natural gas, the lower will be the temperature at which it starts to condense.
- the condenser 46 is not required to desuperheat the natural gas in normal operation, more efficient heat exchange is made possible than in previously known cycles in which the corresponding condenser has been required both to desuperheat and to condense the natural gas. As a result of the intercooling, desuperheating and separate condensing with subcooling, the power consumption of the refrigeration cycle is reduced.
- the natural gas leaves the condenser 46 as a sub-cooled liquid.
- its exit temperature is in the order of minus 165°C depending on the composition of the natural gas.
- One of the advantages of such a low exit temperature is that relatively little, if any, flash gas is formed on reintroduction of the LNG into the tanks 2, 4, 6, 8 and 10 through the orifice pipes 12.
- any flash gas that is formed may be dissolved or condensed in the liquid before it reaches the surface.
- the expansion turbine 84 typically has an inlet temperature in the order of minus 104°C, an outlet temperature in the order of minus 168°C, and an outlet pressure in the order of 10 bar. If the composition of the natural gas is, say, 8.5% by volume of nitrogen and 91.5% by volume of methane, this temperature is sufficiently low for the condensate produced in the condenser 46 to have a desired degree of sub-cooling.
- the ship in which the tanks 2, 4, 6, 8 and 10 are located is required to transport sufficiently less than the maximum amount of LNG for the liquid head in the tanks not to be sufficient to prevent flashing of condensate returned through the orifice pipes 12 or to ensure complete dissolution of fine bubbles of flash gas that are formed in the volumes 16 of LNG.
- the vapour that flows from the tanks 2, 4, 6, 8 and 10 to the first compression stage 40 is enriched in nitrogen.
- its condensation temperature at the outlet pressure of the second natural gas vapour compression stage 42 falls. Indeed, when the tanks are relatively lightly laden with LNG the degree of enrichment may become so great that the condenser 46 no longer fully condenses the vapour.
- the mixture of condensate and uncondensed vapour may be selectively directed through a valve 100 into a phase separator 102. Liquid is withdrawn from the bottom of the phase separator 102 and sent to the conduit 50. Vapour passes from the phase separator 102 to a vent line 104 which leads through a heater 106 to a gas combustion unit 108 so that the natural gas content of the vapour may be burned and the resulting combustion gases vented to the atmosphere.
- the minimum and maximum flows of natural gas vapour in operation of the apparatus shown in the drawing can vary widely. It is therefore typically preferred to employ two sets of first and second natural gas compression stages 40 and 42, the two sets being in parallel with one another. Thus, there are typically two third heat exchangers 88 in parallel with one another. Whether one or both sets are used depends on the rate of vaporisation of the natural gas in the tanks 2, 4, 6, 8 and 10. Similarly, they may be two or more sets of nitrogen compression stages 66, 68 and 70 in parallel, and two or more expansion turbines 84 in parallel.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation By Low-Temperature Treatments (AREA)
Claims (11)
- Procédé de reliquéfaction de vapeur évaporée d'au moins un volume (16) de gaz naturel liquéfié contenu dans au moins un réservoir de stockage, comprenant la compression de la vapeur dans un premier et un deuxième étages de compression de la vapeur placés en série (40, 42), la condensation de la vapeur comprimée dans un condenseur (46) par échange thermique avec un fluide de travail circulant dans un cycle (60) de réfrigération principal sans fin, et le renvoi dans ledit réservoir de stockage d'au moins une partie du condensat (50) obtenu, dans lequel, dans le cycle principal du fluide de réfrigération, le fluide de travail est, en séquence, comprimé dans au moins un compresseur (64) du fluide de travail, refroidi dans un premier échangeur (62) de chaleur, détendu dans une turbine (84) de détente, utilisé dans le condenseur pour effectuer la condensation de la vapeur de gaz naturel, réchauffé dans ledit premier échangeur (62) de chaleur par échange thermique avec le fluide de travail en cours de refroidissement et renvoyé audit compresseur du fluide de travail, et dans lequel, dans le cycle principal du fluide de travail entre le passage du fluide de travail dans le condenseur (46) et son passage dans le premier échangeur (62) de chaleur, le fluide de travail est utilisé pour pré-refroidir, dans un deuxième échangeur (86) de chaleur, la vapeur de gaz naturel comprimée, en aval du deuxième étage (42) de compression de la vapeur mais en amont du condenseur (46), caractérisé en ce qu' un flux du fluide de travail est dévié d'une zone du cycle principal du fluide de travail où le fluide de travail circule du condenseur (46) vers le deuxième échangeur (86) de chaleur et est envoyé à travers au moins un troisième échangeur (88) de chaleur afin de refroidir la vapeur de gaz naturel entre le premier et le deuxième étages (40, 42) de compression de la vapeur, le fluide de travail dévié étant renvoyé au cycle principal du fluide de travail dans une zone où le fluide de travail circule du deuxième échangeur (86) de chaleur vers le premier échangeur (62) de chaleur.
- Procédé selon la revendication 1, dans lequel la proportion du fluide de travail qui est déviée du cycle principal (60) du fluide de travail vers le troisième échangeur (88) de chaleur est contrôlée en réponse à la température à l'entrée du deuxième étage (42) de compression de la vapeur.
- Procédé selon la revendication 1 ou la revendication 2, dans lequel, lorsque ledit réservoir de stockage est totalement rempli de gaz naturel liquéfié, le condenseur (46) est mis en oeuvre de telle sorte que du gaz naturel liquéfié sous-refroidi en sorte.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la vapeur en amont du premier étage (40) de compression de la vapeur est pré-refroidie par mélange (28) avec elle d'un courant de gaz naturel condensé (34) prélevé du condenseur.
- Procédé selon la revendication 4, dans lequel le débit du courant de gaz naturel condensé (34) est contrôlé en réponse à la température à l'entrée du premier étage (40) de compression.
- Dispositif de reliquéfaction de vapeur de gaz naturel comprenant au moins un réservoir de stockage (16) destiné à contenir au moins un volume de gaz naturel liquéfié, un premier et un deuxième étages (40, 42) de compression de la vapeur placés en série, destinés à comprimer la vapeur de gaz naturel évaporée, communiquant avec au moins un espace vapeur dans ledit réservoir de stockage, un condenseur (46) destiné à condenser la vapeur comprimée, ayant une entrée de gaz naturel communiquant avec le deuxième étage (42) de compression de la vapeur et une sortie communiquant avec ledit réservoir de stockage (16), dans lequel le condenseur est agencé de manière à être refroidi, en utilisation, par un fluide de travail (60), le condenseur faisant partie d'un cycle principal (60) sans fin du fluide de travail comprenant, en séquence, (a) au moins un compresseur (64) du fluide de travail destiné à comprimer un flux du fluide de travail, (b) un parcours de refroidissement à travers un premier échangeur (62) de chaleur afin de refroidir le flux du fluide de travail, (c) une turbine (84) de détente destinée à détendre le flux du fluide de travail, (d) le condenseur (46), (e) un parcours de réchauffement à travers le premier échangeur (64) de chaleur afin de réchauffer le fluide de travail, (f) une entrée dans ledit compresseur (64) du fluide de travail, et (g) un deuxième échangeur (86) de chaleur pour refroidir le gaz naturel par échange thermique avec le fluide de travail, le deuxième échangeur (86) de chaleur ayant un parcours pour la vapeur de gaz naturel situé entre le deuxième étage (42) de compression de la vapeur et le condenseur (46), et un parcours pour le fluide de travail situé entre la sortie pour le fluide de travail hors du condenseur (46) et l'entrée du parcours de réchauffement à travers le premier échangeur (62) de chaleur, caractérisé en ce qu'il y a un troisième échangeur (88) de chaleur pour refroidir la vapeur de gaz naturel entre le premier et le deuxième étages (40, 42) de compression de la vapeur de gaz naturel, ceci par échange thermique avec le fluide de travail dévié du cycle principal du fluide de travail, le troisième échangeur (88) de chaleur ayant un parcours pour le fluide de travail communiquant au niveau de son entrée avec une zone du cycle du fluide de travail située entre la sortie du fluide de travail hors du condenseur (46) et l'entrée pour le fluide de travail dans le deuxième échangeur (86) de chaleur, et au niveau de sa sortie avec une zone du cycle du fluide de travail située entre la sortie du fluide de travail hors du deuxième échangeur (86) de chaleur et l'entrée dans le parcours de réchauffement traversant le premier échangeur (62) de chaleur.
- Dispositif selon la revendication 6, dans lequel se trouve une vanne (90) pour contrôler la proportion du fluide de travail qui est déviée du cycle principal du fluide de travail vers le troisième échangeur (88) de chaleur en réponse à la température à l'entrée pour le deuxième étage (42) de compression de la vapeur.
- Dispositif selon la revendication 6 ou la revendication 7, dans lequel le premier et le deuxième étages (40, 42) de compression de la vapeur sont entraînés par un moteur unique (45) à plusieurs vitesses.
- Dispositif selon l'une quelconque des revendications 6 à 8, comprenant en plus un mélangeur (28) en amont du premier étage (40) de compression de la vapeur, dans lequel la vapeur de gaz naturel peut être refroidie, le mélangeur ayant une entrée pour le gaz naturel condensé qui communique (34) avec le condenseur (46).
- Dispositif selon la revendication 9, comprenant une vanne (32) pour contrôler le flux de condensat (34) vers le mélangeur (28) et manoeuvrable de manière à maintenir constante la température à l'entrée du premier étage (40) de compression.
- Dispositif selon l'une quelconque des revendications 6 à 10, dans lequel une sortie pour le condensat (48) hors du condenseur (46) peut sélectivement être placée, par l'intermédiaire d'une vanne (100) de détente, en communication avec un séparateur (102) de phases ayant une sortie pour renvoyer le liquide vers le réservoir (16) de stockage et une sortie pour faire passer la vapeur vers une unité (108) de combustion.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06352012A EP1860393B1 (fr) | 2006-05-23 | 2006-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
AT06352012T ATE423298T1 (de) | 2006-05-23 | 2006-05-23 | Verfahren und vorrichtung zur rückverflüssigung eines gasstromes |
DE602006005229T DE602006005229D1 (de) | 2006-05-23 | 2006-05-23 | Verfahren und Vorrichtung zur Rückverflüssigung eines Gasstromes |
KR1020087028557A KR101419069B1 (ko) | 2006-05-23 | 2007-05-23 | 증기의 재액화 방법 및 장치 |
JP2009511608A JP5241707B2 (ja) | 2006-05-23 | 2007-05-23 | 蒸気を再液化するための方法と装置 |
US12/301,057 US20100000253A1 (en) | 2006-05-23 | 2007-05-23 | Method and apparatus for the reliquefaction of a vapour |
CN2007800184802A CN101495828B (zh) | 2006-05-23 | 2007-05-23 | 蒸汽再液化的方法和设备 |
EP07804964A EP2024698A2 (fr) | 2006-05-23 | 2007-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
PCT/IB2007/002771 WO2007144774A2 (fr) | 2006-05-23 | 2007-05-23 | Procédé et appareil de reliquéfaction d'une vapeur |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06352012A EP1860393B1 (fr) | 2006-05-23 | 2006-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1860393A1 EP1860393A1 (fr) | 2007-11-28 |
EP1860393B1 true EP1860393B1 (fr) | 2009-02-18 |
Family
ID=37149854
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06352012A Active EP1860393B1 (fr) | 2006-05-23 | 2006-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
EP07804964A Withdrawn EP2024698A2 (fr) | 2006-05-23 | 2007-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07804964A Withdrawn EP2024698A2 (fr) | 2006-05-23 | 2007-05-23 | Procédé et dispositif pour reliquéfier un courant de gaz |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100000253A1 (fr) |
EP (2) | EP1860393B1 (fr) |
JP (1) | JP5241707B2 (fr) |
KR (1) | KR101419069B1 (fr) |
CN (1) | CN101495828B (fr) |
AT (1) | ATE423298T1 (fr) |
DE (1) | DE602006005229D1 (fr) |
WO (1) | WO2007144774A2 (fr) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ582507A (en) * | 2007-07-09 | 2012-08-31 | Lng Technology Pty Ltd | A method and system for production of liquid natural gas |
US20100122542A1 (en) * | 2008-11-17 | 2010-05-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for adjusting heating value of natural gas |
NO333898B1 (no) * | 2009-12-22 | 2013-10-14 | Waertsilae Oil & Gas Systems As | Fremgangsmåte og system for lasting av varm cargo |
DE102010000946B4 (de) | 2010-01-15 | 2022-12-15 | Tge Marine Gas Engineering Gmbh | Verfahren und Tankanlage für das Verflüssigen von Boil-Off Gas |
CN101858683A (zh) * | 2010-04-30 | 2010-10-13 | 浙江大学 | 一种利用液氮冷能制取液化天然气的系统 |
CN101881549B (zh) * | 2010-06-25 | 2014-02-12 | 华南理工大学 | 一种液化天然气接收站蒸发气体再冷凝回收系统及其回收方法 |
CA2723641A1 (fr) * | 2010-11-23 | 2012-05-23 | W. Claire Energy Corporation | Procede et appareil de compression de gaz naturel humide |
KR101302028B1 (ko) * | 2011-09-02 | 2013-09-04 | 삼성중공업 주식회사 | 증발가스 재액화 시스템 |
JP2013087911A (ja) * | 2011-10-20 | 2013-05-13 | Mitsubishi Heavy Ind Ltd | 貯蔵槽の圧力上昇抑制装置、これを備えた圧力上昇抑制システム、この抑制方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備 |
US9927068B2 (en) * | 2011-12-02 | 2018-03-27 | Fluor Technologies Corporation | LNG boiloff gas recondensation configurations and methods |
KR101784530B1 (ko) | 2012-10-18 | 2017-10-11 | 현대중공업 주식회사 | 부유식 액화가스 생산 저장장치 |
EP2746707B1 (fr) * | 2012-12-20 | 2017-05-17 | Cryostar SAS | Procédé et appareil de reliquéfaction de gaz naturel |
US20140174105A1 (en) * | 2012-12-24 | 2014-06-26 | General Electric Campany | Systems and methods for re-condensation of boil-off gas |
DE102013010414B4 (de) * | 2013-06-21 | 2016-05-12 | Tge Marine Gas Engineering Gmbh | Rückverflüssigung von Boil-Off-Gasen |
KR101459962B1 (ko) | 2013-10-31 | 2014-11-07 | 현대중공업 주식회사 | 액화가스 처리 시스템 |
GB201414893D0 (en) * | 2014-08-21 | 2014-10-08 | Liquid Gas Equipment Ltd | Method of cooling boil off gas and apparatus therefor |
CN104266454A (zh) * | 2014-09-05 | 2015-01-07 | 西安交通大学 | 燃气-超临界二氧化碳联合动力的液化天然气生产系统 |
CN104405599B (zh) * | 2014-09-24 | 2017-02-01 | 西安交通大学 | 一种利用太阳能的燃气‑超临界二氧化碳联合动力发电系统 |
US10449485B2 (en) * | 2015-10-09 | 2019-10-22 | Ngk Insulators, Ltd. | Method of producing nitrogen-depleted gas, method of producing nitrogen-enriched gas, method of nitrogen separation, and system of nitrogen separation |
US10393429B2 (en) * | 2016-04-06 | 2019-08-27 | Air Products And Chemicals, Inc. | Method of operating natural gas liquefaction facility |
WO2017192136A1 (fr) * | 2016-05-04 | 2017-11-09 | Innovative Cryogenic Systems, Inc. | Installation destinée à alimenter un élément consommateur de gaz en gaz combustible et à liquéfier ledit gaz combustible |
CN109563968B (zh) * | 2016-05-04 | 2021-01-15 | 创新低温系统公司 | 用于向气体消耗构件供给可燃气体并用于液化所述可燃气体的设备 |
FR3055692B1 (fr) * | 2016-09-06 | 2018-08-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Installation, procede pour stocker et reliquefier un gaz liquefie et vehicule de transport associe |
CN106678538A (zh) * | 2016-12-31 | 2017-05-17 | 中船重工(上海)新能源有限公司 | 多能互补的液化天然气bog回收方法及其实施装置 |
FR3066257B1 (fr) * | 2018-01-23 | 2019-09-13 | Gaztransport Et Technigaz | Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie |
JP6929391B2 (ja) * | 2017-06-13 | 2021-09-01 | コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド | 蒸発ガス再液化システム及び船舶 |
RU2753266C1 (ru) * | 2018-01-12 | 2021-08-12 | НУОВО ПИНЬОНЕ ТЕКНОЛОДЖИ - С.р.л. | Термодинамическая система, содержащая флюид, и способ снижения давления в ней |
US20230296294A1 (en) * | 2020-08-12 | 2023-09-21 | Cryostar Sas | Simplified cryogenic refrigeration system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO133287C (fr) * | 1972-12-18 | 1976-04-07 | Linde Ag | |
GB1472533A (en) * | 1973-06-27 | 1977-05-04 | Petrocarbon Dev Ltd | Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas |
US4525185A (en) * | 1983-10-25 | 1985-06-25 | Air Products And Chemicals, Inc. | Dual mixed refrigerant natural gas liquefaction with staged compression |
US4618310A (en) * | 1984-06-07 | 1986-10-21 | Exxon Research & Engineering Co. | Method of multi-stage compressor surge control |
US4843829A (en) * | 1988-11-03 | 1989-07-04 | Air Products And Chemicals, Inc. | Reliquefaction of boil-off from liquefied natural gas |
JP3908881B2 (ja) * | 1999-11-08 | 2007-04-25 | 大阪瓦斯株式会社 | ボイルオフガスの再液化方法 |
GB0001801D0 (en) * | 2000-01-26 | 2000-03-22 | Cryostar France Sa | Apparatus for reliquiefying compressed vapour |
GB0005709D0 (en) * | 2000-03-09 | 2000-05-03 | Cryostar France Sa | Reliquefaction of compressed vapour |
GB0120661D0 (en) * | 2001-08-24 | 2001-10-17 | Cryostar France Sa | Natural gas supply apparatus |
NO322620B1 (no) * | 2003-10-28 | 2006-11-06 | Moss Maritime As | Anordning til lagring og transport av flytendegjort naturgass |
NO20035047D0 (no) * | 2003-11-13 | 2003-11-13 | Hamworthy Kse Gas Systems As | Apparat og metode for temperaturkontroll av kondensering av gass |
NO323496B1 (no) * | 2004-01-23 | 2007-05-29 | Hamwrothy Kse Gas System As | Fremgangsmate for rekondensering av avkoksgass |
JP4544885B2 (ja) * | 2004-03-22 | 2010-09-15 | 三菱重工業株式会社 | ガス再液化装置およびガス再液化方法 |
US20060156758A1 (en) * | 2005-01-18 | 2006-07-20 | Hyung-Su An | Operating system of liquefied natural gas ship for sub-cooling and liquefying boil-off gas |
NO20051315L (no) * | 2005-03-14 | 2006-09-15 | Hamworthy Kse Gas Systems As | System og metode for kjoling av en BOG strom |
WO2007011155A1 (fr) * | 2005-07-19 | 2007-01-25 | Shinyoung Heavy Industries Co., Ltd. | Appareil de reliquéfaction de gaz d’évaporats de gaz naturel liquéfié |
-
2006
- 2006-05-23 DE DE602006005229T patent/DE602006005229D1/de not_active Expired - Fee Related
- 2006-05-23 EP EP06352012A patent/EP1860393B1/fr active Active
- 2006-05-23 AT AT06352012T patent/ATE423298T1/de not_active IP Right Cessation
-
2007
- 2007-05-23 CN CN2007800184802A patent/CN101495828B/zh active Active
- 2007-05-23 US US12/301,057 patent/US20100000253A1/en not_active Abandoned
- 2007-05-23 JP JP2009511608A patent/JP5241707B2/ja active Active
- 2007-05-23 WO PCT/IB2007/002771 patent/WO2007144774A2/fr active Application Filing
- 2007-05-23 EP EP07804964A patent/EP2024698A2/fr not_active Withdrawn
- 2007-05-23 KR KR1020087028557A patent/KR101419069B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2009538405A (ja) | 2009-11-05 |
CN101495828A (zh) | 2009-07-29 |
EP2024698A2 (fr) | 2009-02-18 |
DE602006005229D1 (de) | 2009-04-02 |
CN101495828B (zh) | 2011-10-19 |
KR101419069B1 (ko) | 2014-07-11 |
US20100000253A1 (en) | 2010-01-07 |
KR20090020574A (ko) | 2009-02-26 |
WO2007144774A3 (fr) | 2008-10-16 |
WO2007144774A2 (fr) | 2007-12-21 |
ATE423298T1 (de) | 2009-03-15 |
EP1860393A1 (fr) | 2007-11-28 |
JP5241707B2 (ja) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1860393B1 (fr) | Procédé et dispositif pour reliquéfier un courant de gaz | |
EP1132698B1 (fr) | Reliquéfaction de vapeur comprimée | |
US10030815B2 (en) | Method and apparatus for reliquefying natural gas | |
KR102064167B1 (ko) | 액화 천연 가스 생산 시스템 및 온실 가스 제거 방법 | |
EP1120615B1 (fr) | Dispositif de recompression de vapeurs sous pression | |
US20210364229A1 (en) | Systems and Methods of Removing Contaminants in a Liquid Nitrogen Stream Used to Liquefy Natural Gas | |
RU2141611C1 (ru) | Способ сжижения | |
US20140083132A1 (en) | Process for liquefaction of natural gas | |
WO2007011155A1 (fr) | Appareil de reliquéfaction de gaz d’évaporats de gaz naturel liquéfié | |
CA3056587C (fr) | Methode de cascade arctique pour liquefaction de gaz naturel dans un cycle haute pression avec un prerefroidissement par l'ethane et un sous-refroidissement par l'azote, et une plante pour sa mise en oeuvre | |
TW201715189A (zh) | 藉由預冷卻天然氣供給流以增加效率的液化天然氣(lng)生產系統 | |
KR100747372B1 (ko) | 증발가스의 재액화 장치 및 재액화 방법 | |
RU2719258C2 (ru) | Система и способ обработки газа, полученного при испарении криогенной жидкости | |
EP2047193A2 (fr) | Production de gnl | |
JP2024535276A (ja) | 蒸発ガス再液化システム及びそれを含む船舶 | |
KR100747371B1 (ko) | 증발가스 재액화 장치 및 그 장착 방법 | |
KR101714675B1 (ko) | 저장탱크를 포함하는 선박 | |
EP3924676A1 (fr) | Procédé de refroidissement de gaz d'évaporation et appareil associé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080515 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006005229 Country of ref document: DE Date of ref document: 20090402 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090529 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090518 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090727 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090531 |
|
26N | No opposition filed |
Effective date: 20091119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090518 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090519 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 19 |