EP3505769B1 - Ventilateur centrifuge multi-pales - Google Patents
Ventilateur centrifuge multi-pales Download PDFInfo
- Publication number
- EP3505769B1 EP3505769B1 EP18188101.2A EP18188101A EP3505769B1 EP 3505769 B1 EP3505769 B1 EP 3505769B1 EP 18188101 A EP18188101 A EP 18188101A EP 3505769 B1 EP3505769 B1 EP 3505769B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holding ring
- impeller
- blades
- centrifugal fan
- center axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000926 separation method Methods 0.000 description 25
- 238000007664 blowing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
- F04D29/282—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/162—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
Definitions
- the present invention relates to a sirocco fan which is a multiblade centrifugal fan used in an air conditioner or the like for example.
- a multiblade centrifugal fan of this kind includes a scroll casing 101 and an impeller 102, as illustrated in FIG. 8 , FIG. 9 , FIG. 10 and FIG. 11 (for example, see Japanese Patent Laid-Open No. 2013-50031 ).
- FIG. 8 illustrates a perspective view of a conventional multiblade centrifugal fan described in the gazette.
- FIG. 9 illustrates a cross-sectional view (X-X' sectional view in FIG. 8 ) on a plane passing through a center axis of an impeller of the conventional multiblade centrifugal fan and a substantially center in a height direction of an air outlet.
- FIG. 10 illustrates a perspective view of the impeller of the conventional multiblade centrifugal fan.
- FIG. 11 illustrates a partial sectional view of a Y-Y' cross section in FIG. 10 of the impeller of the conventional multiblade centrifugal fan.
- the multiblade centrifugal fan includes a scroll casing 101 including an air outlet 103, a bellmouth 104 serving as an air inlet, a helical air flow path 105 and a tongue part 106 in a roughly circular arc shape connecting a lower part of the air outlet 103 with the air flow path 105, and a multiblade centrifugal impeller 102 inside the scroll casing 101, including many blades 109 annularly arranged from a main plate 108 integrated with a bearing 107, and blowing off air sucked from an inlet 110 formed at an end in a rotation axis direction facing the bellmouth 104 into a centrifugal direction from between the blades 109.
- a holding ring 111 for holding the blades 109 is provided on an axial end part on an outer periphery of the impeller 102, and near the tongue part 106 on an inner surface of the scroll casing 101 facing the holding ring 111, a recessed part 112 having a width wider than the holding ring 111 is provided.
- a gap dimension of the scroll casing 101 and the impeller 102 can be made closer than before, and noise and power consumption at the same air volume as before can be reduced.
- a circulating flow W' in which part of air W blown off from the impeller passes through an inner side of the bellmouth and flows from an inlet into the impeller again is generated.
- JP 2012-140881 forming the closest prior art, discloses a multiblade blower capable of reducing noise attributable to a cycle flow.
- the multiblade blower includes an impeller rotating around a rotary shaft and having a plurality of blades in a circumferential direction, and a casing accommodating the impeller and having a bellmouth in one of the axial directions of the rotary shaft for the impeller.
- At least part of communication sections located at a bellmouth side of the clearances between the blades is located outside the end of the bellmouth in a radial direction.
- the impeller has an air flow resistance part plugging a part of the communication sections and extending annularly along the circumferential direction.
- a multiblade centrifugal fan which is defined in appended claim 1, is provided, such a fan includes an impeller and a scroll casing disposed to surround the impeller, a holding ring of the impeller includes a holding ring first end face which is substantially perpendicular to a center axis of the impeller and is an endmost part of the impeller, a holding ring inner surface which is substantially parallel to the center axis of the impeller and connected with the blades, and a connection surface configured between the holding ring first end face and the holding ring inner surface.
- connection part of the holding ring first end face and the connection surface and the connection part of the connection surface and the holding ring inner surface are connected at an obtuse angle, the separation of the air flow is reduced compared to the connection part connected substantially at right angles.
- the multiblade centrifugal fan of the present invention suppresses the separation of the air flow at the connection part of the connection surface and the holding ring inner surface when the circulating flow in which part of the air flow blown off in the centrifugal direction from the impeller passes through a gap between the bellmouth and the holding ring and is sucked again to the impeller flows in again from between the blades along the holding ring, and noise due to the separation of the air flow can be reduced.
- the present invention relates to a multiblade centrifugal fan as defined in appended claim 1.
- connection part of the holding ring first end face and the connection surface and the connection part of the connection surface and the holding ring inner surface are connected at an obtuse angle, the separation of the air flow is reduced compared to the connection part connected substantially at right angles.
- the separation of the air flow at the connection part of the connection surface and the holding ring inner surface when a circulating flow in which part of the air flow blown off in a centrifugal direction from the impeller passes through a gap between the bellmouth and the holding ring and is sucked again to the impeller flows in again from between the blades along the holding ring is suppressed, and noise due to the separation of the air flow can be reduced.
- connection surface is in an arc shape in a cross-sectional view in which the holding ring is cut in a center axis direction of the impeller at an arbitrary position.
- a second embodiment is that each of the blades is stretched to a position in contact with the connection surface. Thus, part of the flow along the holding ring is guided to the blade.
- FIG. 1 illustrates a perspective view of the multiblade centrifugal fan in the first embodiment of the present invention.
- FIG. 2 illustrates a cross-sectional view (A-A' sectional view in FIG. 1 ) viewing a longitudinal section at an arbitrary position between the bellmouth serving as an air inlet and the main plate of the impeller of the multiblade centrifugal fan in the first embodiment of the present invention from a bellmouth side to a center side of the impeller.
- FIG. 3 illustrates a cross-sectional view (B-B' sectional view in FIG. 2 ) on a plane passing through a center axis of the impeller and a substantially center in a height direction of the air outlet of the multiblade centrifugal fan in the first embodiment of the present invention.
- FIG. 4 illustrates a perspective view of the impeller of the multiblade centrifugal fan in the first embodiment of the present invention.
- the multiblade centrifugal fan includes an impeller 1 and a scroll casing 2.
- the impeller 1 includes a main plate 3, a bearing 4 disposed at a substantially center of the main plate 3 and integrated with the main plate 3, a plurality of blades 5 disposed radially with respect to the center axis of the main plate 3 so as to be tilted forward to a rotation direction M on the outer periphery of the main plate 3, and a holding ring 6 which fixes the outer periphery of the plurality of blades 5 on a side opposite to a part where the blades 5 and the main plate 3 are joined.
- a rotating shaft of a fan motor (not illustrated) is pivoted.
- the scroll casing 2 includes an air outlet 7, a bellmouth 8 serving as an air inlet, and a tongue part 9 in a circular arc shape disposed at a position at which a gap between the outer periphery of the impeller 1 and the inner periphery of the scroll casing 2 is minimum.
- FIG. 5 illustrates a partial sectional view of a C-C' cross section of the impeller in the first embodiment of the present invention.
- the holding ring 6 includes a holding ring first end face 6a which is substantially perpendicular to the center axis of the impeller 1 and is the endmost part of the impeller 1, a holding ring second end face 6b which is substantially perpendicular to the center axis of the impeller 1 and is positioned facing the holding ring first end face 6a, a holding ring inner surface 6c which is substantially parallel to the center axis of the impeller 1 and connected with the blades 5, a holding ring outer surface 6d which is substantially parallel to the center axis of the impeller 1 and is an outermost periphery of the impeller 1, and a connection surface 6e configured between the holding ring first end face 6a and the holding ring inner surface 6c, and includes a first connection part 6f which is a connection part of the holding ring first end face 6a and the connection surface 6e and a second connection part 6g which is a connection part of the connection surface 6e and the holding ring inner surface 6c.
- an angle D which is an angle formed by a line connecting the first connection part 6f with the second connection part 6g and the center axis Z of the impeller 1 on a side close to the holding ring 6 is 20° to 70°.
- the air is blown by the series of flow, and in the multiblade centrifugal fan like the one of the present embodiment in particular, the air jetted to the outer periphery of the impeller 1 at a high speed is converted to the pressure when the speed is lowered as the gap between the impeller 1 and the scroll casing 2 is enlarged from the tongue part 9, and compatibility of a high air volume and a static pressure is realized.
- connection surface 6e is configured between the holding ring first end face 6a and the holding ring inner surface 6c
- connection part 6f of the holding ring first end face 6a and the connection surface 6e and the connection part 6g of the connection surface 6e and the holding ring inner surface 6c are connected at the obtuse angle so that the separation of the air flow flowing in again to the impeller 1 is reduced compared to the impeller having the connection part connected substantially at right angles.
- connection surface 6e is configured between the holding ring first end face 6a and the holding ring inner surface 6c
- connection part 6f of the holding ring first end face 6a and the connection surface 6e and the connection part 6g of the connection surface 6e and the holding ring inner surface 6c are connected at the obtuse angle so that the separation of the air is reduced compared to the connection part connected substantially at right angles, and the noise due to the separation of the air flow can be reduced.
- FIG. 6 illustrates a partial sectional view of the C-C' cross section of the holding ring of the connection surface in the arc shape in the first embodiment of the present invention.
- connection surface of the present embodiment By turning the connection surface of the present embodiment to a connection surface 6h in the arc shape as illustrated in FIG. 6 , the separation of the air flow is reduced compared to the connection surface 6e in a polygonal shape.
- FIG. 7 illustrates a perspective enlarged view of the impeller in the first embodiment of the present invention.
- the multiblade centrifugal fan according to the present invention suppresses the separation at the holding ring of the circulating flow in which part of the air flow jetted from the impeller outer periphery flows in from between the blades, and is applicable for purposes of an air conditioner, an air cleaner, a drier and a car air conditioner or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
Claims (3)
- Ventilateur centrifuge multipale comprenant : une roue (1) comprenant une plaque principale (3), une pluralité de pales (5) disposées sur une périphérie externe de la plaque principale (3) radialement par rapport à un axe central de la plaque principale (3) et une bague de maintien (6) pour fixer une périphérie externe de la pluralité de pales (5) sur un côté opposé à une partie où les pales (5) et la plaque principale (3) sont reliées ; et un carter à volute (2) disposé pour entourer la roue (1), le carter à volute (2) comprenant une sortie d'air (7) et une tulipe d'aspiration (8) servant d'entrée d'air,
la bague de maintien (6) comprenant au moins une première face d'extrémité (6a) de bague de maintien qui est sensiblement perpendiculaire à un axe central (Z) de la roue (1) et qui est une partie extrême de la roue (1), une deuxième face d'extrémité (6b) de bague de maintien qui est sensiblement perpendiculaire à l'axe central (Z) de la roue (1) et qui est positionnée en regard de la première face d'extrémité (6a) de bague de maintien, une surface interne (6c) de bague de maintien qui est sensiblement parallèle à l'axe central (Z) de la roue (1) et qui est reliée aux pales (5), une surface externe (6d) de bague de maintien qui est sensiblement parallèle à l'axe central (Z) de la roue (1) et qui est une périphérie la plus externe de la roue (1) et une surface de liaison (6e, 6h) conçue entre la première face d'extrémité (6a) de bague de maintien et la surface interne (6c) de bague de maintien,
caractérisé en ce que sur le côté opposé à une partie où les pales et la plaque principale sont reliées, la bague de maintien (6) est un seul élément qui fixe la pluralité de pales (5) les unes aux autres. - Ventilateur centrifuge multipale selon la revendication 1, dans lequel la surface de liaison (6h) est en forme d'arc dans une vue en coupe transversale dans laquelle la bague de maintien (6) est coupée dans une direction d'axe central de la roue (1) en une position arbitraire.
- Ventilateur centrifuge multipale selon la revendication 1 ou 2, dans lequel chacune des pales (5) est étirée jusqu'à une position en contact avec la surface de liaison (6e, 6h).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017249168A JP6844526B2 (ja) | 2017-12-26 | 2017-12-26 | 多翼遠心ファン |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3505769A1 EP3505769A1 (fr) | 2019-07-03 |
EP3505769B1 true EP3505769B1 (fr) | 2021-04-07 |
Family
ID=63207560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18188101.2A Active EP3505769B1 (fr) | 2017-12-26 | 2018-08-08 | Ventilateur centrifuge multi-pales |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3505769B1 (fr) |
JP (1) | JP6844526B2 (fr) |
CN (1) | CN109958633B (fr) |
ES (1) | ES2871900T3 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022009284A1 (fr) * | 2020-07-06 | 2022-01-13 | 三菱電機株式会社 | Turbine à aubes multiples et soufflante centrifuge |
CN112050297B (zh) * | 2020-09-04 | 2022-05-17 | 青岛海信日立空调系统有限公司 | 超薄室内机 |
WO2022130519A1 (fr) * | 2020-12-16 | 2022-06-23 | 三菱電機株式会社 | Soufflante, unité intérieure et dispositif de climatisation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010035526A1 (fr) * | 2008-09-25 | 2010-04-01 | ダイキン工業株式会社 | Ventilateur centrifuge |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1137090A (ja) * | 1997-07-16 | 1999-02-09 | Molten Corp | ガス給湯器等の送風用ファン |
JP3879764B2 (ja) * | 2004-07-14 | 2007-02-14 | ダイキン工業株式会社 | 遠心送風機 |
JP4581992B2 (ja) * | 2004-07-14 | 2010-11-17 | ダイキン工業株式会社 | 遠心送風機および該遠心送風機を備えた空気調和装置 |
JP2007187102A (ja) * | 2006-01-13 | 2007-07-26 | Daikin Ind Ltd | 遠心送風機 |
JP5682751B2 (ja) * | 2010-12-28 | 2015-03-11 | ダイキン工業株式会社 | 多翼送風機 |
JP5618951B2 (ja) | 2011-08-30 | 2014-11-05 | 日立アプライアンス株式会社 | 多翼送風機および空気調和機 |
JP6634929B2 (ja) * | 2015-12-16 | 2020-01-22 | 株式会社デンソー | 遠心送風機 |
-
2017
- 2017-12-26 JP JP2017249168A patent/JP6844526B2/ja active Active
-
2018
- 2018-08-08 ES ES18188101T patent/ES2871900T3/es active Active
- 2018-08-08 EP EP18188101.2A patent/EP3505769B1/fr active Active
- 2018-08-17 CN CN201810938653.2A patent/CN109958633B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010035526A1 (fr) * | 2008-09-25 | 2010-04-01 | ダイキン工業株式会社 | Ventilateur centrifuge |
Also Published As
Publication number | Publication date |
---|---|
JP6844526B2 (ja) | 2021-03-17 |
JP2019113037A (ja) | 2019-07-11 |
CN109958633A (zh) | 2019-07-02 |
ES2871900T3 (es) | 2021-11-02 |
CN109958633B (zh) | 2022-02-18 |
EP3505769A1 (fr) | 2019-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10584718B2 (en) | Impeller and blower | |
EP3505769B1 (fr) | Ventilateur centrifuge multi-pales | |
CN108474391B (zh) | 离心压缩机 | |
JPWO2016068280A1 (ja) | 送風装置および掃除機 | |
US10138893B2 (en) | Single suction centrifugal blower | |
JP2016031064A (ja) | 多段ポンプ | |
US20220372992A1 (en) | Rotating machinery | |
WO2017170105A1 (fr) | Compresseur centrifuge | |
US10975883B2 (en) | Centrifugal rotary machine | |
US11215195B2 (en) | Centrifugal compressor and turbo refrigerator | |
US20180149158A1 (en) | Centrifugal blower | |
US10859092B2 (en) | Impeller and rotating machine | |
US10844863B2 (en) | Centrifugal rotary machine | |
US10876544B2 (en) | Rotary machine and diaphragm | |
KR101781694B1 (ko) | 원심팬 | |
EP3486495A1 (fr) | Ventilateur centrifuge multi-pales | |
US20220381249A1 (en) | Centrifugal compressor | |
JP2019082129A (ja) | 送風機 | |
US20210199122A1 (en) | Propeller fan | |
KR20060100184A (ko) | 송풍장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191022 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200316 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1380036 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018015043 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210407 Ref country code: AT Ref legal event code: MK05 Ref document number: 1380036 Country of ref document: AT Kind code of ref document: T Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2871900 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210708 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018015043 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210808 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210808 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230825 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231027 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240826 Year of fee payment: 7 |