EP3496954A1 - Fahrwerkskomponente mit hoher betriebsfestigkeit - Google Patents

Fahrwerkskomponente mit hoher betriebsfestigkeit

Info

Publication number
EP3496954A1
EP3496954A1 EP17758444.8A EP17758444A EP3496954A1 EP 3496954 A1 EP3496954 A1 EP 3496954A1 EP 17758444 A EP17758444 A EP 17758444A EP 3496954 A1 EP3496954 A1 EP 3496954A1
Authority
EP
European Patent Office
Prior art keywords
steel
layer
steel sheet
chassis component
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17758444.8A
Other languages
English (en)
French (fr)
Inventor
David Pieronek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3496954A1 publication Critical patent/EP3496954A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/04Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/12Means of reinforcing disc bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0452Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/50Thermal treatment
    • B60B2310/54Hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/50Thermal treatment
    • B60B2310/54Hardening
    • B60B2310/542Quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/102Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/14Physical forms of metallic parts
    • B60B2360/141Sheet-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/111Weight
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • the invention relates to a chassis component for a motor vehicle, wherein the chassis component is at least partially made of a multilayer steel sheet, wherein the multilayer steel sheet has at least three steel layers comprising two outer and one inner steel layer.
  • the invention relates to a method for producing a chassis component for a motor vehicle, in particular a chassis component according to the invention, in particular a wheel or a part thereof.
  • Motor vehicle wheels (colloquially also called rims) as an example of a suspension component can be cast, for example, from light metal.
  • steel wheels or -feigen characterized by a low production price and good performance characteristics.
  • the wheel is a safety component and is subject to the highest mechanical stresses in continuous operation, so that in particular the life plays an important role.
  • the wheel weight affects with increasing mass unfavorable to the unsprung masses (suspension), rotational inertia and fuel consumption.
  • the manufactured in sheet metal construction vehicle wheels or rims are usually composed of a so-called rim tape and a wheel. While the rim tape provides for the tire in use, the wheel disc connects the wheel to the respective hub.
  • welding such as a MAG welding, used.
  • the wheel components made of steel are nowadays produced without exception by cold forming in a multi-stage process (deep-drawing, flow-forming, profiling).
  • a wheel for a motor vehicle is known, wherein the steel sheet is cold formed.
  • the Radschüssel consists of different steel layers with an inner core layer with lesser
  • the carbon content of the outer layers is limited to at most 0.2 wt .-% in order to ensure the cold workability of the wheel can.
  • Resistance to vibration can be used to safely absorb operating loads.
  • the predominantly used welding methods such as MAG welding or resistance spot welding, lead by the melting of the
  • the invention is based on the object, a generic
  • chassis component for a motor vehicle and a method for producing a chassis component for a motor vehicle, which is characterized by an extremely low weight with high operational stability.
  • the object is achieved in a generic chassis component in that at least one outer steel layer of the multilayer steel sheet has a tensile strength of more than 1200 MPa.
  • martensitic microstructure have a particularly high bending fatigue strength and are therefore ideal for use in components which are exposed to a high, alternating continuous load, such as suspension components and in particular steel wheels or rims.
  • the multi-layered steel sheet has at least three steel layers and thus at least one inner steel layer, sufficient weldability can initially be made possible despite the high strength of at least one outer steel layer.
  • the total hardening can be reduced.
  • the tensile strength as a material property is understood to mean the maximum mechanical tensile stress that the material endures before it breaks or tears.
  • tensile strength is meant in particular the tensile strength R m .
  • the multilayer steel sheet has only three steel layers, the three steel layers are preferably arranged one on top of the other and directly connected to one another, for example by means of roll cladding. However, it is also possible that between an inner steel layer and one or both outer steel layers more
  • Liners are provided.
  • the multilayer steel sheet may preferably have an inner steel layer, or core layer. However, it is also conceivable that further inner steel layers are provided. Preferably, both outer steel layers of the multilayer steel sheet have a tensile strength of more than 1200 MPa. As a result, a chassis component can be provided with an overall improved operational stability.
  • the at least one outer steel layer preferably both outer steel layers, consists of a completely martensitic steel material. It has been shown that completely martensitic steel materials have a particularly high
  • At least one outer steel layer preferably both outer steel layers of the chassis component according to the invention.
  • multilayer steel sheet has a tensile strength of at least 1500 MPa. More preferably, at least one outer steel layer, preferably both outer steel layers of the multilayer steel sheet, may have a tensile strength of at least 1900 MPa or even at least 2100 MPa. It has been shown that even with these
  • an inner steel layer of the multilayer steel sheet has a lower tensile strength and / or higher ductility and, in particular, weldability than at least one outer steel layer, preferably as both outer steel layers.
  • the ductility in particular the breaking elongation (for example, the
  • Elongation at break A 80 serve).
  • the strength of the outer layer in spite of the high strength, can be compensated by the inner layer and so in particular the weldability can be maintained and cracking by residual stresses can be reduced.
  • an inner steel layer of the multi-layered steel sheet has one
  • an inner steel layer of the multilayer steel sheet has an elongation at break A 80 of at least 10%, preferably at least 15% (in the cured, heat treated and / or tempered state).
  • an inner steel sheet of the multi-layered steel sheet has one
  • an inner steel layer is made of a steel material MBW500, which in addition to iron and unavoidable impurities (in% by weight) up to 0.10% C, up to 0.35% Si, up to 1.00% Mn, up to 0.030 % P, up to 0.025% S, at least 0.015% Al, up to 0.10% Nb, up to 0.15% Ti and / or up to 0.005% B.
  • Cr and Mo can optionally be included with a total of no more than 0.5%.
  • the multilayer steel sheet has at least one intermediate steel layer disposed between an outer steel layer and an inner steel layer, wherein the tensile strength of the steel intermediate layer is less than that of the outer steel layer and greater than that of the inner steel layer and / or wherein the ductility the steel intermediate layer is larger than that of the outer steel layer and lower than that of the inner steel layer.
  • the multi-layer steel sheet has an inner steel layer and on both sides in each case an outer steel layer, wherein in each case a steel intermediate layer is provided between the inner steel layer and an outer steel layer.
  • the multi-layer steel sheet is therefore constructed according to an embodiment at least five layers. This further allows tailor-made properties of the chassis component and overall can provide an additional increase in the strength of the suspension component.
  • the multilayer steel sheet is hardened, in particular press-hardened or tempered.
  • hardening can be particularly economically high strength of the outer steel layers be achieved.
  • the hardening can be carried out, for example, as press hardening during hot forming. Hardening can, however, also take place after cold forming. Hardening can also be part of a
  • the at least one outer steel layer therefore consists in particular of a hardenable steel or tempered steel.
  • an inner steel layer may also be hardened and consist of a hardenable steel, whereby, however, a lower strength and / or higher ductility is preferably achieved in comparison with at least one outer steel layer.
  • the composite material can only be cold-formed if the tensile strength of more than 1200 MPa in at least one layer is reached beforehand.
  • the multilayer steel sheet is a hot-formed, a half-hot-formed or a cold-formed steel sheet.
  • a particularly advantageous high formability with high strength at the same time can be achieved in particular by hot working (above the recrystallization temperature). High strength can then be achieved, for example, economically by press hardening. However, it has been shown that cold forming can also take place. Nevertheless, in order to achieve a high strength, hardening or tempering may preferably take place after the cold forming.
  • hot forging the workpiece is heated, but only to a temperature below the recrystallization temperature, thereby providing the benefits of hot working (easier formability and higher
  • At least one outer steel layer preferably both outer steel layers, and / or an inner steel layer consists of a tempering steel, in particular a
  • Manganese-boron steel If one or more steel liners are provided, they preferably also consist of a tempering steel, in particular a manganese-boron steel.
  • a tempering steel in particular a manganese-boron steel.
  • At least one outer steel layer or a steel intermediate layer of manganese-boron steel MBW1500 which in addition to iron and unavoidable
  • Impurities up to 0.25% C, up to 0.40% Si, up to 1.40% Mn, up to 0.025% P, up to 0.010% S, at least 0.015% Al, to to 0.05% Ti, up to 0.50% Cr + Mo and / or up to 0.005% B.
  • tensile strengths R m of more than 1500 MPa can be achieved.
  • Manganese boron steel MBW1900 steel liner which in addition to iron and unavoidable impurities (in% by weight) up to 0.38% C, up to 0.40% Si, up to 1.40% Mn, up to 0.025% P, up to 0.010% S, at least 0.015% Al, up to 0.13% Ti, up to 0.50% Cr + Mo and / or up to 0.005% B.
  • tensile strengths R m of over 1900 MPa can be achieved.
  • Steel liner made of manganese-boron steel 37MnB4, which in addition to iron and
  • unavoidable impurities 0.34% to 0.40% C, up to 0.40% Si, 0.80% to 1.10% Mn, up to 0.025% P, up to 0.008% S , 0.020% to 0.060% Al, 0.15% to 0.60% Cr, 0.020% to 0.050% Ti and / or 0.0010 to 0.0050% B contains.
  • Steel liner made of manganese-boron steel 40MnB4, which in addition to iron and
  • unavoidable impurities 0.38% to 0.44% C, 0.015% to 0.40% Si, 0.80% to 1.10% Mn, up to 0.020% P, up to 0.008% S, 0.020% to 0.060% Al, 0.20% to 0.40% Cr, 0.020% to 0.050% Ti and / or 0.0010 to 0.0040% B.
  • Steel intermediate layer of tempered steel C45 which in addition to iron and unavoidable impurities (in% by weight) 0.42% to 0.50% C, up to 0.40% Si, 0.50% to 0.80% Mn, up to 0.025% P, up to 0.010% S, up to 0.40% Cr, up to 0.10% Mo, up to 0.40% Ni and / or up to 0.63% Cr + Mo + Ni ,
  • the steel materials described allow a high tensile strength and can be formed by hot forming, so that they are also very high strength
  • Hot forming steels can be referred to.
  • an inner steel layer for example, consists of a manganese steel MBW500.
  • At least one outer steel layer preferably both outer steel layers, has a carbon content of at least 0.2% by weight, preferably at least 0.25% by weight, more preferably at least 0.3% by weight. on.
  • a high tensile strength can be achieved in particular advantageous.
  • At least one outer steel layer, preferably in each case both outer steel layers, of the multi-layered steel sheet constitutes at least 5% and / or at most 25% of the thickness of the multilayered steel sheet. It has been shown that sufficient
  • Total strength of the vehicle component can be reliably achieved when an outer steel layer makes up at least 5% of the total thickness of the multi-layer steel sheet. If the thickness of an outer steel layer is limited to at most 25% of the total thickness of the multilayer steel sheet, the beneficial influence of an inner steel remains Steel layer on the weldability and the mechanical properties of the suspension component sufficiently large.
  • the chassis component is a wheel or a part thereof, in particular a
  • Motor vehicle such as a handlebar, torsion, stabilizer, an axle or parts thereof are formed as described.
  • a motor vehicle is, for example, a passenger car or a light or heavy commercial vehicle, such as a truck.
  • the object mentioned at the outset is also achieved by a method for producing a chassis component for a motor vehicle, in particular a chassis component according to the invention, in particular a wheel or a part thereof, comprising the method comprising: providing a multilayer steel sheet, wherein the multilayer steel sheet Steel sheet comprising at least three steel sheets comprising two outer and one inner steel sheet, wherein at least one outer steel sheet of the multi-layer steel sheet enables a tensile strength of more than 1200 MPa; Forming the multilayer steel sheet into the chassis component; and setting a tensile strength of more than 1200 MPa for the at least one outer steel layer of the multi-layer steel sheet.
  • a chassis component with particularly high strength and bending fatigue strength can be provided by the method.
  • a high level of operational stability can be achieved at the same time the multi-layer steel sheet in particular a sufficient weldability and low sensitivity to hydrogen-induced cracking can be achieved.
  • a correspondingly high tensile strength of more than 1200 MPa, preferably at least 1500 MPa, more preferably more than 1900 MPa, can be achieved, for example, by the fact that, as already described, a tempering steel, in particular a manganese-boron steel, is provided for the at least one outer steel layer becomes.
  • the forming of the multilayer steel sheet can be at significantly lower
  • the forming can be a hot forming, a half-warm forming or a cold forming.
  • the setting of the high tensile strength is then preferably only with or after the forming.
  • the multilayer steel sheet for adjusting the tensile strength is hardened, in particular press-hardened or tempered.
  • Embodiments of the method according to the invention also be disclosed a correspondingly manufactured suspension component.
  • the disclosure of embodiments of the chassis component according to the invention is intended to disclose corresponding method steps for the production thereof.
  • Fig. 1 is a schematic representation of an embodiment of a
  • suspension components according to the invention in the form of a motor vehicle wheel in section; and Fig. 2a-c three embodiments of multi-layer steel sheets in section, which can be used in embodiments of the suspension component according to the invention or in embodiments of the method according to the invention.
  • Fig. 1 shows a schematic representation of an embodiment of a suspension component according to the invention in the form of a wheel 1 in section.
  • the wheel 1 is assembled in a conventional manner from a separately manufactured annular rim tape 2 and a plate-shaped wheel dish 3.
  • the wheel disc 3 is seated in the opening of the rim tape 2 and rests with its peripheral surface on the inside of the rim strip 2.
  • An inseparable connection between the rim tape 2 and the wheel disc 3 is made by joining in the form of one or more welds or welds.
  • the wheel disc 3 and / or the rim tape 2 are at least partially made of a multi-layer steel sheet.
  • FIGS. 2a-c show three exemplary embodiments of multilayer steel sheets in section, which can be used to produce the wheel disc 3 and / or the rim tape 2.
  • the multilayer steel sheet 10 shown in section in FIG. 2a has three steel layers comprising two outer steel layers 11, 12 and one inner steel layer 13.
  • the two outer steel layers 11, 12 are made of an alloyed tempered steel (manganese-boron steel MBW1500) and each have a tensile strength of at least 1500 MPa after the press-hardening or tempering of the steel sheet.
  • the two outer steel layers 11, 12 of the multi-layer steel sheet 10 each make up 25% of the thickness of the multi-layered steel sheet 10.
  • the inner steel layer 13 of the multi-layer steel sheet 10 has a smaller one
  • the inner steel layer 13 is made of manganese-boron steel (MBW500) but with a tensile strength of only about 500 MPa after press-hardening or tempering.
  • the multilayer steel sheet 20 shown in section in FIG. 2b likewise has three
  • Steel layers comprising two outer steel layers 21, 22 and an inner steel layer 23 on.
  • the two outer steel layers 21, 22 are made of an alloyed tempered steel (manganese-boron steel MBW1900) and each have a tensile strength of at least 1900 MPa after the press-hardening or tempering of the steel sheet.
  • the two outer steel layers 21, 22 of the multi-layered steel sheet 20 each make up less than 25% of the thickness of the multi-layered steel sheet 20.
  • the inner steel layer 23 of the multi-layer steel sheet 20 has a smaller one
  • the inner steel layer 23 is made of a manganese-boron steel (MBW500) but with a tensile strength of only about 500 MPa after press-hardening or tempering.
  • MMW500 manganese-boron steel
  • the multi-layer steel sheet 30 shown in section in FIG. 2 c has five steel layers comprising two outer steel layers 31, 32, one inner steel layer 33, and a total of two steel intermediate layers 34, 35, one steel intermediate layer between each inner steel layer 33 and one of the outer steel layers 31, 32 is arranged.
  • the two outer steel layers 31, 32 are made of an alloyed tempered steel (manganese-boron steel) and each have a tensile strength of at least 2100 MPa after the press-hardening or tempering of the steel sheet.
  • the two outer steel layers 31, 32 of the multi-layered steel sheet 30 each make up less than 25% of the thickness of the multi-layered steel sheet 20.
  • the inner steel layer 33 of the multi-layered steel sheet 30 has a smaller one
  • the inner steel layer 33 again consists of a manganese-boron steel (MBW500) with a tensile strength of only about 500 MPa after press-hardening or tempering.
  • MMW500 manganese-boron steel
  • the tensile strength of the steel liners 34, 35 is at least 1500 MPa, but less than that of the outer steel layers 31, 32 and greater than that of the inner steel layer 33.
  • the ductility of the steel intermediate layers 34, 35 is greater than that of the outer steel layers 31, 32 but less than that of the inner steel layer 33.
  • the multilayer steel sheets 10, 20, 30 can be brought into the shape of the wheel dish 3 or the rim strip 2 shown in FIG. 1, for example by hot forming, hot forging or cold forming.
  • the hot forming can be combined, for example, with a press hardening.
  • during cold forming can be connected to the cold forming, for example, a separate compensation, consisting of hardening and tempering.

Abstract

Die Erfindung betrifft eine Fahrwerkskomponente für ein Kraftfahrzeug, wobei die Fahrwerkskomponente (1) zumindest teilweise aus einem mehrlagigen Stahlblech (10, 20, 30) gefertigt ist, wobei das mehrlagige Stahlblech (10, 20, 30) zumindest drei Stahllagen umfassend zwei äußere (11, 12; 21, 22; 31, 32) und eine innere Stahllage (13, 23, 33) aufweist, und wobei zumindest eine äußere Stahllage (11, 12; 21, 22; 31, 32) des mehrlagigen Stahlblechs (10, 20, 30) eine Zugfestigkeit von mindestens 1200 MPa aufweist. Die Erfindung betrifft zudem ein Verfahren zur Herstellung einer Fahrwerkskomponente für ein Kraftfahrzeug, insbesondere ein Rad (1) oder eines Teils hiervon.

Description

Fahrwerkskomponente mit hoher Betriebsfestigkeit
Die Erfindung betrifft eine Fahrwerkskomponente für ein Kraftfahrzeug, wobei die Fahrwerkskomponente zumindest teilweise aus einem mehrlagigen Stahlblech gefertigt ist, wobei das mehrlagige Stahlblech zumindest drei Stahllagen umfassend zwei äußere und eine innere Stahllage aufweist. Zudem betrifft die Erfindung ein Verfahren zur Herstellung einer Fahrwerkskomponente für ein Kraftfahrzeug, insbesondere einer erfindungsgemäßen Fahrwerkskomponente, insbesondere eines Rades oder eines Teils hiervon.
Kraftfahrzeugräder (umgangssprachlich auch Felgen genannt) als ein Beispiel einer Fahrwerkskomponente können beispielsweise aus Leichtmetall gegossen werden.
Alternativ hierzu ist es zudem bekannt, Kraftfahrzeugräder bzw. Felgen in
Blechbauweise aus Stahl herzustellen. Dabei zeichnen sich Stahlräder bzw. -feigen durch einen günstigen Herstellpreis und gute Gebrauchseigenschaften aus. Dabei ist zu berücksichtigen, dass das Rad ein Sicherheitsbauteil ist und höchsten mechanischen Beanspruchungen im Dauerbetrieb unterliegt, sodass insbesondere die Lebensdauer eine wichtige Rolle spielt. Aber auch im Hinblick auf eine Minimierung der ungefederten Massen des Fahrzeugs werden Schmiederäder aus Leichtmetall wegen ihres geringen Gewichts als besonders günstig angesehen. Denn das Radgewicht wirkt sich mit zunehmender Masse ungünstig auf die ungefederten Massen (Fahrwerk), rotatorische Massenträgheit und den Spritverbrauch aus. Jedoch ist es mittlerweile ebenfalls möglich, bei einem deutlich günstigeren Herstellpreis aus festem und dennoch gut verformbarem Stahlblech Kraftfahrzeugräder zu fertigen, die aufgrund ihrer geringen Wandstärke ein noch geringeres Gewicht besitzen können.
Dabei werden die in Blechbauweise gefertigten Kraftfahrzeugräder bzw. Felgen in der Regel aus einem sogenannten Felgenband und einer Radschüssel zusammengesetzt. Während das Felgenband im Gebrauch die Aufnahme für den Reifen bereitstellt, stellt die Radschüssel die Verbindung des Rades zur jeweiligen Radnabe her. Als Fügetechnik zwischen den beiden Radkomponenten Felgenband und Radschüssel wird beispielsweise das Schweißen, etwa ein MAG-Schweißung, eingesetzt.
Die Radkomponenten aus Stahl werden heutzutage ausnahmslos durch Kaltumformung im Mehrstufenverfahren (Tiefziehen, Drückwalzen, Profilieren) hergestellt. So ist beispielsweise aus der DE 10 2008 048 389 B4 ein Rad für ein Kraftfahrzeug bekannt, wobei das Stahlblech kaltumgeformt wird. Die Radschüssel besteht dabei aus unterschiedlichen Stahllagen mit einer innenliegenden Kernlage mit geringerer
Festigkeit. Dabei wird der Kohlenstoffgehalt der Außenlagen auf höchstens 0,2 Gew.-% begrenzt, um die Kaltumformbarkeit der Radschüssel sicherstellen zu können.
Um weitere Gewichtsreduzierungen erreichen zu können, müsste zum einen durch Geometrieanpassungen der Steifigkeitsverlust bei geringerer Blechdicke kompensiert werden und/oder zum anderen Material mit noch höherer Festigkeit bzw.
Schwingfestigkeit zur sicheren Aufnahme der Betriebsbelastungen eingesetzt werden.
In Bezug auf die Problematik der Umformbarkeit ist aus dem Stand der Technik ebenfalls die Möglichkeit der Warmumformung bekannt, mit der zwar grundsätzlich eine hohe Umformbarkeit bei gleichzeitig hoher Festigkeit erreicht werden kann. Damit die hohe Werkstofffestigkeit von Warmumformstählen aber in eine gesteigerte
Bauteilperformance umsetzbar ist, müssen potenziellen Schwachstellen eliminiert werden, wobei hier oftmals die Fügetechnik den limitierenden Faktor darstellt.
Insbesondere die überwiegend eingesetzten Schweißverfahren, wie MAG-Schweißen oder Widerstandspunktschweißen, führen durch das Aufschmelzen des
Grundwerkstoffes und die hohen Temperaturen zu Anlasseffekten des martensitischen Gefüges. Dadurch kommt es zur Ausbildung einer Erweichungszone im Bereich der Schweißnaht, die sich durch eine geringere Festigkeit und gleichzeitig geringe Duktilität auszeichnet. Das führt im Betrieb durch die schwingenden Lasten oder bei einem Crash in Verbindung mit der metallurgischen und geometrischen Kerbe oftmals zu einem vorzeitigen Versagen im Bereich der Schweißnaht. Problematisch ist zusätzlich, dass neben der hohen Werkstofffestigkeit nur eine geringe Duktilität aufweist und sich damit bei einer Überlastung im Rad kritisch verhalten kann (z. B. Misuse-Lastfall, Bordsteinanprall). Zudem kann das Material aufgrund der hohen Festigkeit zu Wasserstoffversprödung neigen. Damit kann die hohe Werkstofffestigkeit nicht ohne weiteres in eine höhere Bauteilperformance umgesetzt werden und der Leichtbau stößt hier an technische Grenzen.
Insofern war man bisher davon ausgegangen, dass bei Fahrwerkskomponenten in Stahlblechbauwiese eine weiterhin erhöhte Bauteilperformance nicht oder nicht ohne weiteres wirtschaftlich erreichbar ist, da eine erhöhte Festigkeit entweder die erforderlichen Umformgrade nicht mehr erreichen lässt oder aber anderweitigen Eigenschaften, wie etwa einer ausreichenden Fügbarkeit (Schweißeignung), entgegen steht.
Der Erfindung liegt nun die Aufgabe zugrunde, eine gattungsgemäße
Fahrwerkskomponente für ein Kraftfahrzeug und ein Verfahren zur Herstellung einer Fahrwerkskomponente für ein Kraftfahrzeug anzugeben, welche sich durch ein äußerst geringes Gewicht bei gleichzeitig hoher Betriebsfestigkeit auszeichnet.
Die Aufgabe wird bei einer gattungsgemäßen Fahrwerkskomponente dadurch gelöst, dass zumindest eine äußere Stahllage des mehrlagigen Stahlblechs eine Zugfestigkeit von mehr als 1200 MPa aufweist.
Durch umfangreiche, interne Untersuchungen wurde zum einen festgestellt, dass die Stahlwerkstoffe mit hoher Festigkeit, insbesondere mit einer überwiegend
martensitischen Gefügestruktur eine besonders hohe Biegewechselfestigkeit aufweisen und sich damit ideal für den Einsatz in Komponenten eignen, welche einer hohen, wechselnden Dauerbelastung ausgesetzt sind, wie etwa Fahrwerkskomponenten und insbesondere Stahlrädern bzw. Felgen.
Zum anderen war unerwartet, dass, entgegen der bisherigen Annahme, Stahlbleche mit einer Festigkeit von mehr als 1200 MPa in einem mehrlagigen Stahlblech mit zumindest drei Stahllage als äußere Stahllage eingesetzt werden können, ohne jedoch den eingangs dargestellten Nachteile ausgesetzt zu sein, sodass trotz der hohen Festigkeit eine gleichzeitig hohe Betriebsfestigkeit erreicht werden kann.
Dadurch, dass das mehrlagige Stahlblech zumindest drei Stahllagen und somit zumindest eine innere Stahllage aufweist, kann zunächst trotz der hohen Festigkeit zumindest einer äußeren Stahllage eine ausreichende Schweißeignung ermöglicht werden. Denn durch eine Vermischung der Bestandteile der Werkstoffe des mehrlagigen Stahlblechs im Bereich der Schweißnaht kann die Gesamtaufhärtung reduziert werden. Zudem kann vorteilhaft eine deutlich geringere Empfindlichkeit gegenüber
wasserstoffinduzierter Rissbildung erreicht werden, da die Gesamtfestigkeit des mehrlagigen Stahlblechs beispielsweise durch die zumindest eine innere Lage reduziert werden kann und sich die Eigenspannungen über eine innere Lage abbauen können. Zudem konzentrieren sich die Bauteilbeanspruchungen von Fahrwerksbauteilen maßgeblich an der Bauteiloberfläche, so dass eine hohe Festigkeit der Randschichten, sich positiv auf die Lebensdauer des Bauteils auswirkt. Im Ergebnis können daher entgegen der bisherigen Annahme Stahlwerkstoffe mit einer deutlich höheren Festigkeit bei einer Fahrwerkskomponente in Stahlblechbauweise eingesetzt werden.
Unter der Zugfestigkeit als Werkstoffeigenschaft wird die maximale mechanische Zugspannung, die der Werkstoff aushält, bevor er bricht oder reißt, verstanden. Unter der Zugfestigkeit wird insbesondere die Zugfestigkeit Rm verstanden.
Weist das mehrlagige Stahlblech lediglich drei Stahllagen auf, sind die drei Stahllagen vorzugsweise aufeinander angeordnet und unmittelbar miteinander verbunden, beispielsweise mittels Walzplattieren. Es ist jedoch ebenfalls möglich, dass zwischen einer inneren Stahllage und einer oder beiden äußeren Stahllagen weitere
Zwischenlagen vorgesehen sind.
Das mehrlagige Stahlblech kann bevorzugt eine innere Stahllage, oder auch Kernlage aufweisen. Ebenfalls ist jedoch denkbar, dass weitere innere Stahllagen vorgesehen sind. Vorzugsweise weisen beide äußere Stahllagen des mehrlagigen Stahlblechs eine Zugfestigkeit von mehr als 1200 MPa auf. Hierdurch kann eine Fahrwerkskomponente mit einer insgesamt weiterhin verbesserten Betriebsfestigkeit bereitgestellt werden.
Bevorzugt besteht die zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen, aus einem vollständig martensitischen Stahlwerkstoff. Es hat sich gezeigt, dass vollständig martensitische Stahlwerkstoffe eine besonders hohe
Biegewechselfestigkeit aufweisen und sich somit ideal für den Einsatz in
dauerbelasteten Fahrwerkskomponenten eignen.
Gemäß einer Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente weist zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen des
mehrlagigen Stahlblechs eine Zugfestigkeit von mindestens 1500 MPa auf. Weiter bevorzugt kann zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen des mehrlagigen Stahlblechs eine Zugfestigkeit von mindestens 1900 MPa oder sogar von mindestens 2100 MPa aufweisen. Es hat sich gezeigt, dass selbst bei diesen
Festigkeit durch ein mehrlagiges Stahlblech die eigentlich zu erwartenden Nachteile durch die hohe Festigkeit, wie mangelnde Schweißbarkeit oder wasserstoffinduzierte Rissbildung, kompensiert werden können.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente weist eine innere Stahllage des mehrlagigen Stahlblechs eine geringere Zugfestigkeit und/oder eine höhere Duktilität sowie insbesondere Schweißeignung als zumindest eine äußere Stahllage, vorzugsweise als beide äußere Stahllagen, auf. Als Maß für die Duktilität kann dabei insbesondere die Bruchdehnung (beispielsweise die
Bruchdehnung A80 dienen). Dadurch kann die Festigkeit der äußeren Lage, trotz der hohen Festigkeit, durch die innere Lage ausgeglichen werden und so insbesondere die Schweißeignung aufrechterhalten und Rissbildung durch Eigenspannungen verringert werden kann.
Beispielsweise weist eine innere Stahllage des mehrlagigen Stahlblechs eine
Zugfestigkeit von höchstens 1000 MPa, vorzugsweise höchstens 800 MPa, besonders bevorzugt höchstens 600 MPa auf. Beispielsweise weist eine innere Stahllage des mehrlagigen Stahlblechs eine Bruchdehnung A80 von mindestens 10% vorzugsweise mindestens 15% (im gehärteten, wärmebehandelten und/oder vergüteten Zustand) auf.
Beispielsweise weist eine innere Stahllage des mehrlagigen Stahlblechs einen
geringeren Kohlenstoffgehalt als eine oder vorzugsweise beide äußeren Stahllagen auf. Beispielsweise besteht eine innere Stahllage aus einem Stahlwerkstoff mit einem
Kohlenstoffgehalt von höchstens 0,15 Gew.-%, vorzugsweise höchstens 0,1 Gew.-%. Beispielsweise besteht eine innere Stahllage aus einem Stahlwerkstoff MBW500, welcher neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) bis zu 0,10% C, bis zu 0,35% Si, bis zu 1,00% Mn, bis zu 0,030% P, bis zu 0,025% S, mindestens 0,015% AI, bis zu 0,10% Nb, bis zu 0,15% Ti und/oder bis zu 0,005% B enthält. Cr und Mo können optional mit in Summe von maximal 0,5% enthalten sein.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente weist das mehrlagige Stahlblech zumindest eine zwischen einer äußeren Stahllage und einer inneren Stahllage angeordnete Stahlzwischenlage auf, wobei die Zugfestigkeit der Stahlzwischenlage geringer als die der äußeren Stahllage und größer als die der inneren Stahllage ist und/oder wobei die Duktilität der Stahlzwischenlage größer als die der äußeren Stahllage und geringer als die der inneren Stahllage ist.
Beispielsweise weist das mehrlagige Stahlblech eine innere Stahllage und beidseitig jeweils eine äußere Stahllage auf, wobei zwischen der inneren Stahllage und einer äußeren Stahllage jeweils eine Stahlzwischenlage vorgesehen ist. Das mehrlagige Stahlblech ist also gemäß einer Ausgestaltung zumindest fünflagig aufgebaut. Dies ermöglicht weiterhin maßgeschneiderte Eigenschaften der Fahrwerkskomponente und kann insgesamt eine zusätzliche Steigerung der Festigkeit der Fahrwerkskomponente ermöglichen.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente ist das mehrlagige Stahlblech gehärtet, insbesondere pressgehärtet oder vergütet. Durch ein Härten können besonders wirtschaftlich hohe Festigkeiten der äußeren Stahllagen erreicht werden. Das Härten kann beispielsweise als Presshärten im Rahmen einer Warmumformung durchgeführt werden. Das Härten kann jedoch auch im Anschluss an eine Kaltumformung erfolgen. Das Härten kann ebenfalls im Rahmen einer
Vergütungsbehandlung (Härten und Anlassen) durchgeführt werden. Die zumindest eine äußere Stahllage besteht daher insbesondere aus einem härtbaren Stahl oder Vergütungsstahl. Grundsätzlich kann auch eine innere Stahllage gehärtet sein und aus einem härtbaren Stahl bestehen, wobei dabei jedoch vorzugsweise im Vergleich zu zumindest einer äußeren Stahllage eine geringere Festigkeit und/oder höhere Duktilität erreicht wird. Alternativ kann für einige Anwendungen der Werkstoffverbund auch nur kaltumgeformt werden, wenn zuvor die Zugfestigkeit von größer 1200 MPa in mindestens einer Lage erreicht wird.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente ist das mehrlagige Stahlblech ein warmumgeformtes, ein halbwarmumgeformtes oder ein kaltumgeformtes Stahlblech. Eine besonders vorteilhaft hohe Umformbarkeit bei gleichzeitig hoher Festigkeit kann insbesondere durch eine Warmumformung (oberhalb der Rekristallisationstemperatur) erreicht werden. Eine hohe Festigkeit kann dann beispielsweise wirtschaftlich durch ein Presshärten erreicht werden. Allerdings hat sich gezeigt, dass ebenfalls eine Kaltumformung erfolgen kann. Um dennoch eine hohe Festigkeit zu erreichen, kann ein Härten oder Vergüten bevorzugt im Anschluss an die Kaltumformung erfolgen. Bei der Halbwarmumformung erwärmt man das Werkstück, jedoch nur auf eine Temperatur unterhalb der Rekristallisationstemperatur, wodurch man die Vorteile der Warmumformung (leichtere Umformbarkeit und höheres
Umformvermögen) mit den Vorteilen des Kaltumformens (Verfestigung, höhere
Genauigkeit) verbinden kann.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente besteht zumindest eine äußere Stahllage, vorzugsweises beide äußere Stahllagen, und/oder eine innere Stahllage aus einem Vergütungsstahl, insbesondere einem
Mangan-Bor-Stahl. Sind eine oder mehr Stahlzwischenlagen vorgesehen, bestehen diese vorzugsweise ebenfalls aus einem Vergütungsstahl, insbesondere einem Mangan-Bor- Stahl. Beispielsweise besteht zumindest eine äußere Stahllage, vorzugsweises beide äußere Stahllagen, eine innere Stahllage und/oder eine Stahlzwischenlage aus einem legierten oder unlegierten Vergütungsstahl.
Beispielsweise besteht zumindest eine äußere Stahllage oder eine Stahlzwischenlage aus Mangan-Bor-Stahl MBW1500, welcher neben Eisen und unvermeidbaren
Verunreinigungen (in Gew.-%) bis zu 0,25% C, bis zu 0,40% Si, bis zu 1,40% Mn, bis zu 0,025% P, bis zu 0,010% S, mindestens 0,015% AI, bis zu 0,05% Ti, bis zu 0,50% Cr+Mo und/oder bis zu 0,005% B enthält. Mit einem derartigen Stahl können beispielsweise Zugfestigkeiten Rm von über 1500 MPa erreicht werden.
In einem weiteren Beispiel besteht zumindest eine äußere Stahllage oder eine
Stahlzwischenlage aus Mangan-Bor-Stahl MBW1900, welcher neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) bis zu 0,38% C, bis zu 0,40% Si, bis zu 1,40% Mn, bis zu 0,025% P, bis zu 0,010% S, mindestens 0,015% AI, bis zu 0,13% Ti, bis zu 0,50% Cr+Mo und/oder bis zu 0,005% B enthält. Mit einem derartigen Stahl können beispielsweise Zugfestigkeiten Rm von über 1900 MPa erreicht werden.
In einem weiteren Beispiel besteht zumindest eine äußere Stahllage oder eine
Stahlzwischenlage aus Mangan-Bor-Stahl 37MnB4, welcher neben Eisen und
unvermeidbaren Verunreinigungen (in Gew.-%) 0,34% bis 0,40% C, bis zu 0,40% Si, 0,80% bis 1,10% Mn, bis zu 0,025% P, bis zu 0,008% S, 0,020% bis 0,060% AI, 0,15% bis 0,60% Cr, 0,020% bis 0,050% Ti und/oder 0,0010 bis 0,0050% B enthält.
In einem weiteren Beispiel besteht zumindest eine äußere Stahllage oder eine
Stahlzwischenlage aus Mangan-Bor-Stahl 40MnB4, welcher neben Eisen und
unvermeidbaren Verunreinigungen (in Gew.-%) 0,38% bis 0,44% C, 0,015% bis 0,40% Si, 0,80% bis 1,10% Mn, bis zu 0,020% P, bis zu 0,008% S, 0,020% bis 0,060% AI, 0,20% bis 0,40% Cr, 0,020% bis 0,050% Ti und/oder 0,0010 bis 0,0040% B enthält.
In einem weiteren Beispiel besteht zumindest eine äußere Stahllage oder eine
Stahlzwischenlage aus Vergütungsstahl C45, welcher neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,42% bis 0,50% C, bis zu 0,40% Si, 0,50% bis 0,80% Mn, bis zu 0,025% P, bis zu 0,010% S, bis zu 0,40% Cr, bis zu 0,10% Mo, bis zu 0,40% Ni und/oder bis zu 0,63% Cr+Mo+Ni enthält.
Die beschriebenen Stahlwerkstoffe ermöglichen eine hohe Zugfestigkeit und können mittels Warmumformung umgeformt werden, sodass diese auch als höchstfeste
Warmumformstähle bezeichnet werden können.
Wie bereits ausgeführt, besteht eine innere Stahllage beispielsweise aus einem Mangan- Bohr-Stahl MBW500.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente weist zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen, einen Kohlenstoffgehalt von mindestens 0,2 Gew.-%, bevorzugt mindestens 0,25 Gew.-%, weiter bevorzugt mindestens 0,3 Gew.-% auf. Durch einen erhöhten Kohlenstoffgehalt kann insbesondere vorteilhaft eine hohe Zugfestigkeit erreicht werden. Wie bereits ausgeführt, wurde festgestellt, dass durch das Vorsehen eines mehrlagigen Stahlblechs entsprechend hohe Zugfestigkeiten vorgesehen werden können und gleichzeitig die Anforderungen an Fahrwerkskomponenten, insbesondere Kraftfahrzeugräder bzw. Felgen, erfüllt werden können und trotz des äußerst hohen Kohlenstoffgehalts die erforderliche Schweißeignung erhalten werden kann. Es hat sich sogar gezeigt, dass ein Kohlenstoffgehalt von mindestens 0,34 Gew-%, mindestens 0,38 Gew.-% oder sogar mindestens 0,4 Gew.-% möglich ist.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente macht zumindest eine äußere Stahllage, vorzugsweise jeweils beide äußere Stahllagen, des mehrlagigen Stahlblechs mindestens 5% und/oder höchstens 25% der Dicke des mehrlagigen Stahlblechs aus. Es hat sich gezeigt, dass eine ausreichende
Gesamtfestigkeit der Fahrzeugkomponente prozesssicher erreicht werden kann, wenn eine äußere Stahllage mindestens 5% der Gesamtdicke des mehrlagigen Stahlblechs ausmacht. Wird die Dicke einer äußeren Stahllage auf höchstens 25% der Gesamtdicke des mehrlagigen Stahlblechs begrenzt, bleibt der vorteilhafte Einfluss einer inneren Stahllage auf die Schweißeignung und die mechanischen Eigenschaften der Fahrwerkskomponente ausreichend groß.
Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Fahrwerkskomponente ist die Fahrwerkskomponente ein Rad oder ein Teil hiervon, insbesondere eine
Radschüssel und/oder ein Felgenband. Insbesondere bei Kraftfahrzeugrädern ist es notwendig, eine hohe Festigkeit bei geringen Blechdicken zu erreichen und gleichzeitig das Fügen einzelner Radkomponenten, wie der Radschüssel oder dem Felgenband, insbesondere mittels Schweißbarkeit zu ermöglichen. Es hat sich herausgestellt, dass es bereits ausreichend sein kann, wenn die beschriebenen Fahrwerkskomponenten jedenfalls die Radschüssel umfasst. Das Felgenband kann abweichend hergestellt sein. Ebenfalls ist es jedoch denkbar, dass andere Fahrwerkskomponenten eines
Kraftfahrzeugs, wie etwa ein Lenker, Torsionsprofil, Stabilisator, eine Achse oder Teile hiervon wie beschrieben ausgebildet sind.
Ein Kraftfahrzeug ist beispielsweise ein Personenkraftwagen oder ein leichtes oder schweres Nutzfahrzeug, wie beispielsweise ein Lastkraftwagen.
Gemäß einer zweiten Lehre der Erfindung wird die eingangs genannte Aufgabe auch durch ein Verfahren zur Herstellung einer Fahrwerkskomponente für ein Kraftfahrzeug, insbesondere einer erfindungsgemäßen Fahrwerkskomponente, insbesondere eines Rades oder eines Teils hiervon, gelöst, das Verfahren umfassend: Bereitstellen eines mehrlagigen Stahlblechs, wobei das mehrlagige Stahlblech zumindest drei Stahllagen umfassend zwei äußere und eine innere Stahllage aufweist, wobei zumindest eine äußere Stahllage des mehrlagigen Stahlblechs eine Zugfestigkeit von mehr als 1200 MPa ermöglicht; Umformen des mehrlagigen Stahlblechs zu der Fahrwerkskomponente; und Einstellen einer Zugfestigkeit von mehr als 1200 MPa für die zumindest eine äußere Stahllage des mehrlagigen Stahlblechs.
Durch das Verfahren kann zum einen eine Fahrwerkskomponente mit besonders hoher Festigkeit und Biegewechselfestigkeit bereitgestellt werden. Zum anderen kann trotz der hohen Festigkeit eine gleichzeitig hohe Betriebsfestigkeit erreicht werden, da durch das mehrlagige Stahlblech insbesondere eine ausreichende Schweißeignung und geringe Empfindlichkeit gegenüber wasserstoffinduzierter Rissbildung erreicht werden kann.
Eine entsprechend hohe Zugfestigkeit von mehr als 1200 MPa, vorzugsweise mindestens 1500 MPa, besonders bevorzugt mehr als 1900 MPa, kann beispielsweise dadurch erreicht werden, dass wie bereits beschrieben ein Vergütungsstahl, insbesondere ein Mangan-Bor-Stahl, für die zumindest eine äußere Stahllage vorgesehen wird.
Das Umformen des mehrlagigen Stahlblechs kann jedoch bei deutlich geringerer
Zugfestigkeit, das heißt im noch nicht gehärteten oder vergüteten Zustand erfolgen. So kann gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens, das Umformen ein Warmumformen, ein Halbwarmumformen oder ein Kaltumformen sein.
Das Einstellen der hohen Zugfestigkeit erfolgt dann vorzugsweise erst mit oder nach der Umformung. So kann gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens das mehrlagige Stahlblech zum Einstellen der Zugfestigkeit gehärtet, insbesondere pressgehärtet oder vergütet, werden.
In Bezug auf weitere Ausgestaltungen und Vorteile des erfindungsgemäßen Verfahrens wird auf die Ausführungen zur erfindungsgemäßen Fahrwerkskomponente verwiesen. Insbesondere soll durch die vorherige oder folgende Beschreibung bevorzugter
Ausführungsformen des erfindungsgemäßen Verfahrens auch eine entsprechend hergestellte Fahrwerkskomponente offenbart sein. Ebenfalls soll durch die Offenbarung von Ausführungsformen der erfindungsgemäßen Fahrwerkskomponente entsprechende Verfahrensschritte zur Herstellung hiervon offenbart sein.
Im Weiteren soll die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung näher erläutert werden. Die Zeichnung zeigt in
Fig. 1 eine schematische Darstellung eines Ausführungsbeispiels einer
erfindungsgemäßen Fahrwerkskomponenten in Form eines Kraftfahrzeugrades im Schnitt; und Fig. 2a-c drei Ausführungsbeispiele mehrlagiger Stahlbleche im Schnitt, welche bei Ausführungsbeispielen der erfindungsgemäßen Fahrwerkskomponente oder bei Ausführungsbeispielen des erfindungsgemäßen Verfahrens verwendet werden können.
Fig. 1 zeigt zunächst eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Fahrwerkskomponente in Form eines Rades 1 im Schnitt. Das Rad 1 ist in an sich bekannter Weise aus einem separat gefertigten ringförmigen Felgenband 2 und einer tellerförmigen Radschüssel 3 zusammengesetzt. Die Radschüssel 3 sitzt in der Öffnung des Felgenbandes 2 und liegt mit ihrer Umfangsfläche an der Innenseite des Felgenbandes 2 an. Eine unlösbare Verbindung zwischen dem Felgenband 2 und der Radschüssel 3 ist durch ein Fügen in Form einer oder mehrere Schweißnähte oder Schweißpunkte hergestellt.
Die Radschüssel 3 und/oder das Felgenband 2 sind dabei zumindest teilweise aus einem mehrlagigen Stahlblech gefertigt. Die Fig. 2a-c zeigen hierzu drei Ausführungsbeispiele mehrlagiger Stahlbleche im Schnitt, welche zur Herstellung der Radschüssel 3 und/oder des Felgenbandes 2 verwendet werden können.
Das in Fig. 2a im Schnitt gezeigte mehrlagige Stahlblech 10 weist drei Stahllagen umfassend zwei äußere Stahllagen 11, 12 und eine innere Stahllage 13 auf. Die beiden äußeren Stahllagen 11, 12 bestehen aus einem legierten Vergütungsstahl (Mangan-Bor- Stahl MBW1500) und weisen nach dem Presshärten oder Vergüten des Stahlblechs jeweils eine Zugfestigkeit von mindestens 1500 MPa auf. Die beiden äußeren Stahllagen 11, 12 des mehrlagigen Stahlblechs 10 machen jeweils 25% der Dicke des mehrlagigen Stahlblechs 10 aus.
Die innere Stahllage 13 des mehrlagigen Stahlblechs 10 weist eine geringere
Zugfestigkeit und eine höhere Duktilität als beide äußeren Stahllagen 11, 12 auf. Auch die innere Stahllage 13 besteht aus einem Mangan-Bor-Stahl (MBW500), jedoch mit einer Zugfestigkeit von lediglich etwa 500 MPa nach dem Presshärten oder Vergüten. Das in Fig. 2b im Schnitt gezeigte mehrlagige Stahlblech 20 weist ebenfalls drei
Stahllagen umfassend zwei äußere Stahllagen 21, 22 und eine innere Stahllage 23 auf. Die beiden äußeren Stahllagen 21, 22 bestehen aus einem legierten Vergütungsstahl (Mangan-Bor-Stahl MBW1900) und weisen nach dem Presshärten oder Vergüten des Stahlblechs jeweils eine Zugfestigkeit von mindestens 1900 MPa auf. Die beiden äußeren Stahllagen 21, 22 des mehrlagigen Stahlblechs 20 machen jeweils weniger als 25% der Dicke des mehrlagigen Stahlblechs 20 aus.
Die innere Stahllage 23 des mehrlagigen Stahlblechs 20 weist eine geringere
Zugfestigkeit und eine höhere Duktilität als beide äußeren Stahllagen 21, 22 auf. Auch die innere Stahllage 23 besteht aus einem Mangan-Bor-Stahl (MBW500), jedoch mit einer Zugfestigkeit von lediglich etwa 500 MPa nach dem Presshärten oder Vergüten.
Das in Fig. 2c im Schnitt gezeigte mehrlagige Stahlblech 30 weist im Unterschied zu den Stahlblechen 10, 20 fünf Stahllagen umfassend zwei äußere Stahllagen 31, 32, eine innere Stahllage 33, und insgesamt zwei Stahlzwischenlagen 34, 35 auf, wobei jeweils eine Stahlzwischenlage zwischen der inneren Stahllage 33 und einer der äußeren Stahllagen 31, 32 angeordnete ist. Die beiden äußeren Stahllagen 31, 32 bestehen aus einem legierten Vergütungsstahl (Mangan-Bor-Stahl) und weisen nach dem Presshärten oder Vergüten des Stahlblechs jeweils eine Zugfestigkeit von mindestens 2100 MPa auf. Die beiden äußeren Stahllagen 31, 32 des mehrlagigen Stahlblechs 30 machen jeweils weniger als 25% der Dicke des mehrlagigen Stahlblechs 20 aus.
Die innere Stahllage 33 des mehrlagigen Stahlblechs 30 weist eine geringere
Zugfestigkeit und eine höhere Duktilität als beide äußeren Stahllagen 31, 32 und auch als die Stahlzwischenlagen 34, 35 auf. Die innere Stahllage 33 besteht wiederum aus einem Mangan-Bor-Stahl (MBW500) mit einer Zugfestigkeit von lediglich etwa 500 MPa nach dem Presshärten oder Vergüten.
Die Zugfestigkeit der Stahlzwischenlagen 34, 35 beträgt mindestens 1500 MPa, ist aber geringer als die der äußeren Stahllagen 31, 32 und größer als die der inneren Stahllage 33. Zudem ist die Duktilität der Stahlzwischenlagen 34, 35 größer als die der äußeren Stahllagen 31, 32 aber geringer als die der inneren Stahllage 33.
Die mehrlagigen Stahlbleche 10, 20, 30 können beispielsweise durch Warmumformen, Halbwarmumformen oder Kaltumformen in die in Fig. 1 gezeigt Form der Radschüssel 3 oder des Felgenbands 2 gebracht werden. Das Warmumformen kann beispielsweise mit einem Presshärten kombiniert werden. Insbesondere beim Kaltumformen kann sich an das Kaltumformen beispielsweise eine separate Vergütung, bestehend aus Härten und Anlassen, anschließen.

Claims

P a t e n t a n s p r ü c h e
Fahrwerkskomponente für ein Kraftfahrzeug,
wobei die Fahrwerkskomponente (1) zumindest teilweise aus einem mehrlagigen Stahlblech (10, 20, 30) gefertigt ist,
wobei das mehrlagige Stahlblech (10, 20, 30) zumindest drei Stahllagen umfassend zwei äußere (11, 12; 21, 22; 31, 32) und eine innere Stahllage (13, 23, 33) aufweist, und
wobei zumindest eine äußere Stahllage (11, 12; 21, 22; 31, 32) des
mehrlagigen Stahlblechs (10, 20, 30) eine Zugfestigkeit von mindestens 1200 MPa aufweist.
Fahrwerkskomponente nach Anspruch 1, wobei zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen (11, 12; 21, 22; 31, 32) des mehrlagigen Stahlblechs (10, 20, 30) eine Zugfestigkeit von mindestens 1500 MPa aufweist.
Fahrwerkskomponente nach Anspruch 1 oder 2, wobei eine innere Stahllage (13, 23, 33) des mehrlagigen Stahlblechs (10, 20, 30) eine geringere Zugfestigkeit und/oder eine höhere Duktilität als zumindest eine äußere Stahllage,
vorzugsweise als beide äußere Stahllagen (11, 12; 21, 22; 31, 32), aufweist.
Fahrwerkskomponente nach einem der Ansprüche 1 bis 3, wobei das mehrlagige Stahlblech (10, 20, 30) zumindest eine zwischen einer äußeren Stahllage (11, 12; 21, 22; 31, 32) und einer inneren Stahllage (13, 23, 33) angeordnete
Stahlzwischenlage (34, 35) aufweist,
wobei die Zugfestigkeit der Stahlzwischenlage (34, 35) geringer als die der äußeren Stahllage (11, 12; 21, 22; 31, 32) und größer als die der inneren
Stahllage (13, 23, 33) ist und/oder wobei die Duktilität der Stahlzwischenlage größer als die der äußeren Stahllage (11, 12; 21, 22; 31, 32) und geringer als die der inneren Stahllage (13, 23, 33) ist. Fahrwerkskomponente nach einem der Ansprüche 1 bis 4, wobei das mehrlagige Stahlblech (10, 20, 30) gehärtete, insbesondere pressgehärtet oder vergütet, ist.
Fahrwerkskomponente nach einem der Ansprüche 1 bis 5, wobei das mehrlagige Stahlblech (10, 20, 30) ein warmumgeformtes, ein halbwarmumgeformtes oder ein kaltumgeformtes Stahlblech ist.
Fahrwerkskomponente nach einem der Ansprüche 1 bis 6, wobei zumindest eine äußere Stahllage, vorzugsweises beide äußere Stahllagen (11, 12; 21, 22; 31, 32), und/oder eine innere Stahllage (13, 23, 33) aus einem Vergütungsstahl, insbesondere einem Mangan-Bor-Stahl besteht.
Fahrwerkskomponente nach einem der Ansprüche 1 bis 7, wobei zumindest eine äußere Stahllage, vorzugsweise beide äußere Stahllagen (11, 12; 21, 22; 31, 32), einen Kohlenstoffgehalt von mindestens 0,2 Gew.-%, bevorzugt mindestens 0,25 Gew.-%, weiter bevorzugt mindestens 0,3 Gew.-% aufweist.
Fahrwerkskomponente nach einem der Ansprüche 1 bis 8, wobei zumindest eine äußere Stahllage, vorzugsweise jeweils beide äußere Stahllagen (11, 12; 21, 22; 31, 32), des mehrlagigen Stahlblechs (10, 20, 30) mindestens 5% und/oder höchstens 25% der Dicke des mehrlagigen Stahlblechs (10, 20, 30) ausmacht.
) Fahrwerkskomponente nach einem der Ansprüche 1 bis 9, wobei die
Fahrwerkskomponente ein Rad (1) oder ein Teil hiervon, insbesondere eine Radschüssel (3) und/oder ein Felgenband (2), ist.
) Verfahren zur Herstellung einer Fahrwerkskomponente für ein Kraftfahrzeug, insbesondere nach einem der Ansprüche 1 bis 10, insbesondere eines
Kraftfahrzeugrades (1) oder eines Teils hiervon, umfassend:
Bereitstellen eines mehrlagigen Stahlblechs (10, 20, 30), wobei das mehrlagige Stahlblech zumindest drei Stahllagen umfassend zwei äußere (11, 12; 21, 22; 31, 32) und eine innere Stahllage (13, 23, 33) aufweist, wobei zumindest eine äußere Stahllage (11, 12; 21, 22; 31, 32) des mehrlagigen Stahlblechs (10, 20, 30) eine Zugfestigkeit von mehr als 1200 MPa ermöglicht; Umformen des mehrlagigen Stahlblechs (10, 20, 30) zu der
Fahrwerkskomponente (1); und
Einstellen einer Zugfestigkeit von mehr als 1200 MPa für die zumindest eine äußere Stahllage (11, 12; 21, 22; 31, 32) des mehrlagigen Stahlblechs (10, 20, 30).
Verfahren nach Anspruch 11, wobei das Umformen ein Warmumformen,
Halbwarmumformen oder ein Kaltumformen ist.
13) Verfahren nach Anspruch 11 oder 12, wobei das mehrlagige Stahlblech (10, 20, 30) zum Einstellen der Zugfestigkeit gehärtet, insbesondere pressgehärtet oder vergütet, wird.
EP17758444.8A 2016-08-12 2017-08-08 Fahrwerkskomponente mit hoher betriebsfestigkeit Withdrawn EP3496954A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016115036.3A DE102016115036A1 (de) 2016-08-12 2016-08-12 Fahrwerkskomponente mit hoher Betriebsfestigkeit
PCT/EP2017/070060 WO2018029191A1 (de) 2016-08-12 2017-08-08 Fahrwerkskomponente mit hoher betriebsfestigkeit

Publications (1)

Publication Number Publication Date
EP3496954A1 true EP3496954A1 (de) 2019-06-19

Family

ID=59738289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17758444.8A Withdrawn EP3496954A1 (de) 2016-08-12 2017-08-08 Fahrwerkskomponente mit hoher betriebsfestigkeit

Country Status (5)

Country Link
US (1) US10661532B2 (de)
EP (1) EP3496954A1 (de)
CN (1) CN109562637A (de)
DE (1) DE102016115036A1 (de)
WO (1) WO2018029191A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210415A1 (de) * 2017-05-16 2018-11-22 Thyssenkrupp Steel Europe Ag Warmumformmaterial, bauteil und verwendung
DE102019115165A1 (de) * 2019-06-05 2020-12-10 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines Stahlverbundwerkstoffs
CN113025876A (zh) 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢组件
US11549165B2 (en) * 2021-06-09 2023-01-10 Halliburton Energy Services, Inc. Functionally graded variable entropy alloys with resistance to hydrogen induced cracking
CN115106727A (zh) * 2022-07-18 2022-09-27 洪荣州 一种汽车车轮幅板的生产工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006606B3 (de) * 2005-02-11 2006-03-16 Thyssenkrupp Steel Ag Verfahren zum Herstellen von walzplattiertem Warmband zur Weiterverarbeitung zu Kaltband und gewickeltes Coil aus solchem Warmband
DE102006019567B3 (de) 2006-04-27 2007-11-08 Daimlerchrysler Ag Verfahren zum Herstellen umgeformter Stahlbauteile
DE102007019485A1 (de) 2007-04-25 2008-11-06 Braun, Elisabeth Radfelge, insbesondere für Kraftfahrzeuge
DE102008048389B4 (de) 2008-09-22 2015-02-05 Thyssenkrupp Steel Europe Ag Felge für ein Kraftfahrzeug
DE102011087936B3 (de) * 2011-12-07 2013-02-21 ThyssenKrupp Carbon Components GmbH Rad aus Faserverbundwerkstoffen und Verfahren zur Herstellung
DE102011120361B4 (de) * 2011-12-07 2022-09-29 ThyssenKrupp Carbon Components GmbH Radfelgen mit einem Felgenbett ausFaserverbundwerkstoff und Verfahren zur Herstellung
GB2503936B (en) * 2012-07-13 2020-03-04 Gkn Wheels Ltd Manufacture of wheels
CN202782468U (zh) * 2012-10-15 2013-03-13 宁波郎泰机械有限公司 越野车轮毂
DE102014008718B3 (de) 2014-06-18 2015-02-19 Thyssenkrupp Ag Maßgeschneidertes Halbzeug und Kraftfahrzeugbauteil
DE102014112755B4 (de) * 2014-09-04 2018-04-05 Thyssenkrupp Ag Verfahren zum Umformen eines Werkstücks, insbesondere einer Platine, aus Stahlblech

Also Published As

Publication number Publication date
WO2018029191A1 (de) 2018-02-15
CN109562637A (zh) 2019-04-02
US10661532B2 (en) 2020-05-26
DE102016115036A1 (de) 2018-02-15
US20190176436A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
EP2271541B1 (de) Verwendung eines metallischen verbundwerkstoffs in einer fahrzeugstruktur
EP3496954A1 (de) Fahrwerkskomponente mit hoher betriebsfestigkeit
EP2886332B1 (de) Stahlflachprodukt, und verfahren zur herstellung eines bauteils für eine fahrzeugkarosserie und einer karosserie für ein kraftfahrzeug.
EP2228459B1 (de) Bauteil mit unterschiedlichen Festigkeitseigenschaften
EP3416832B1 (de) Fahrzeugrad und verwendung
DE102015112327A1 (de) Karosserie- oder Fahrwerkbauteil eines Kraftfahrzeuges mit verbesserter Crashperformance sowie Verfahren zu dessen Herstellung
DE202012000616U1 (de) Struktur- und/oder Karosseriebauteil für ein Kraftfahrzeug mit verbesserten Crasheigenschaften und Korrosionsschutz
DE102015114989B3 (de) Verfahren zum Herstellen einer Bauteilstruktur mit verbesserten Fügeeigenschaften und Bauteilstruktur
WO2010031863A1 (de) Felge für ein kraftfahrzeug
DE102014116695A1 (de) Karosserie- oder Fahrwerkbauteil eines Kraftfahrzeugs mit Korrosionsschutz sowie Verfahren zu dessen Herstellung
EP3625045B1 (de) Warmumformmaterial, bauteil und verwendung
EP3571323A1 (de) Verfahren zur herstellung eines fahrzeugrades in blechbauweise
EP3475009B1 (de) Fahrzeugrad und verwendung
WO2019243147A1 (de) Verfahren zur herstellung einer radschüssel
EP3625044B1 (de) Warmumformmaterial, bauteil und verwendung
WO2019201635A1 (de) Verfahren und werkzeug zur herstellung eines fahrzeug-rades
EP3296104B1 (de) Verfahren zur herstellung eines karosseriebauteils mit reduzierter rissneigung
EP3577240B1 (de) Verfahren zur herstellung eines fahrzeugrades in stahlblechbauweise
EP1992710B1 (de) Verwendung einer Stahllegierung
WO2017050558A1 (de) Halbzeug und verfahren zur herstellung einer fahrzeugkomponente, verwendung eines halbzeugs und fahrzeugkomponente
EP3414109A1 (de) Nutzfahrzeugrad und verwendung
DE102010012831A1 (de) Getriebetunnel
EP3625048A1 (de) Warmumformmaterial, bauteil und verwendung
WO2018073240A1 (de) Fahrzeugrad und verwendung
EP3691889A1 (de) Warmumformverbundmaterial, dessen herstellung, bauteil und dessen verwendung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220301