EP3485050B1 - Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung - Google Patents

Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung Download PDF

Info

Publication number
EP3485050B1
EP3485050B1 EP17736568.1A EP17736568A EP3485050B1 EP 3485050 B1 EP3485050 B1 EP 3485050B1 EP 17736568 A EP17736568 A EP 17736568A EP 3485050 B1 EP3485050 B1 EP 3485050B1
Authority
EP
European Patent Office
Prior art keywords
copper
nickel
borides
alloy
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17736568.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3485050A1 (de
Inventor
Kai Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP3485050A1 publication Critical patent/EP3485050A1/de
Application granted granted Critical
Publication of EP3485050B1 publication Critical patent/EP3485050B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a copper-nickel-tin alloy with excellent castability, hot workability and cold workability, high resistance to abrasive wear, adhesive wear and fretting wear and improved corrosion resistance and stress relaxation resistance according to the preamble of one of claims 1 or 2, a method their production according to the preamble of claims 9 or 10 and their use according to the preamble of claims 16 to 18.
  • the binary copper-tin alloys Due to their good strength properties, their good corrosion resistance and conductivity for heat and electricity, the binary copper-tin alloys are of great importance in mechanical engineering and vehicle construction as well as in many areas of electronics and electrical engineering.
  • This group of materials has a high resistance to abrasive wear.
  • the copper-tin alloys ensure good sliding properties and high fatigue strength, which is why they are extremely suitable for sliding elements in engine and vehicle construction as well as in general mechanical engineering.
  • the copper-nickel-tin alloys have compared to the binary copper-tin materials improved mechanical properties such as hardness, tensile strength and yield point.
  • the increase in the mechanical characteristics is achieved through the hardenability of the Cu-Ni-Sn alloys.
  • the precipitation processes are essential for the adjustment of the properties of this group of materials.
  • These copper alloys also include the copper-nickel-tin materials. Therefore, to ensure cold working of the as-cast condition of such alloys, a strip casting process with precise control of the solidification rate of the melt is recommended.
  • Dynamic friction wear also known as fretting in technical terms, is friction wear that occurs between oscillating contact surfaces.
  • fretting In addition to the geometric wear or volume wear of the components, the reaction with the surrounding medium leads to fretting corrosion.
  • the damage to the material can significantly reduce the local strength in the wear zone, in particular the fatigue strength. Fatigue cracks can emanate from the damaged component surface, leading to fatigue fractures/friction fractures. In the case of fretting corrosion, the fatigue strength of a component can fall well below the fatigue limit value of the material.
  • the mechanism of oscillating friction wear is significantly different from the types of sliding wear with unidirectional movement.
  • the effects of corrosion are particularly pronounced in the case of dynamic friction wear.
  • connection elements In motors and machines, electrical connectors are often placed in an environment in which they are subjected to mechanical vibrational movements. If the elements of a connection arrangement are located on different assemblies which, as a result of mechanical loads, carry out movements relative to one another, a corresponding relative movement of the connection elements can occur. These relative movements lead to oscillating wear and fretting corrosion of the contact zone of the connector. Microcracks form in this contact zone, which greatly reduces the fatigue strength of the connector material. A failure of the connector due to fatigue fracture can be the result. Furthermore, due to the fretting corrosion, there is an increase in the contact resistance.
  • a combination of the material properties of wear resistance, ductility and corrosion resistance is therefore decisive for sufficient resistance to dynamic friction wear/fretting corrosion/fretting.
  • U.S. 3,392,017 A is a low-melting copper alloy containing up to 0.4% by weight Si, 1 to 10% by weight Ni, 0.02 to 0.5% by weight B, 0.1 to 1% by weight P and 4 to 25 wt% Sn is known.
  • This alloy can be applied in the form of cast rods as a filler metal to suitable metallic substrate surfaces.
  • the alloy has improved ductility over the prior art and is machinable.
  • this Cu-Sn-Ni-Si-PB alloy can be used for spray deposition.
  • the addition of phosphorus, silicon and boron is intended to improve the self-fluxing properties of the molten alloy and the wetting of the substrate surface and make the use of an additional flux superfluous.
  • the teaching disclosed in this publication specifies a particularly high P content of 0.2 to 0.6% by weight with a mandatory Si content of the alloy of 0.05 up to 0.15% by weight. This underlines the superficial demand for the self-flowing properties of the material. With this high P content, the hot workability of the alloy will be poor and the spinodal segregability of the structure will be insufficient.
  • the size of the hard particles precipitated in a copper-based alloy has a major impact on its wear resistance.
  • the element tin is not contained in this material. This material is applied to a suitable substrate by build-up welding as a wear protection layer.
  • the pamphlet U.S. 5,004,581A describes the same copper alloy as the previous one U.S. 4,818,307 A with an additional content of tin in the content range of 5 to 15% by weight and/or of zinc in the content range of 3 to 30% by weight.
  • the addition of Sn and/or zinc in particular increases the material's resistance to adhesive wear.
  • This material is also applied to a suitable substrate as a wear-resistant layer by means of build-up welding.
  • the copper alloy according to the publications U.S. 4,818,307 A and U.S. 5,004,581A due to the required size of the silicide formations/boride formations of the elements nickel and iron of 5 to 100 ⁇ m only have a very limited cold formability.
  • the publication discloses a precipitation-hardenable copper-nickel-tin alloy U.S. 5,041,176 A out.
  • This copper base alloy contains 0.1 to 10 wt% Ni, 0.1 to 10 wt% Sn, 0.05 to 5 wt% Si, 0.01 to 5 wt% Fe and 0.0001 to 1 % by weight of boron.
  • This material contains dispersely distributed intermetallic phases of the Ni-Si system.
  • the properties of the alloy are also explained using exemplary embodiments that have no Fe content.
  • alloying elements Zn, Mn, Mg, P and B are added to the melt of the alloy for deoxidation.
  • the elements Ti, Cr, Zr, Fe and Co have a grain-refining and strength-enhancing function.
  • alloying with metalloids such as boron, silicon and phosphorus By alloying with metalloids such as boron, silicon and phosphorus, the reduction in processing technology, which is important high base melting temperature. This is why these alloying additions are used in particular in the field of wear-resistant coating materials and high-temperature materials, which include, for example, the alloys of the Ni-Si-B and Ni-Cr-Si-B systems. In these materials, the alloying elements boron and silicon in particular are responsible for the strong reduction in the melting temperature of hard nickel-based alloys, which is why their use as self-fluxing hard nickel-based alloys becomes possible.
  • the silicon borides which are mostly present in the modifications SiB 3 , SiB 4 , SiB 6 and/or SiB n determined by the boron content, differ significantly from silicon in their properties. These silicon borides have a metallic character, which is why they are electrically conductive. They have an extraordinarily high temperature resistance and oxidation resistance.
  • the modification of SiB 6 which is preferred for sintered products, is used, for example, in the manufacture and processing of ceramics because of its very high hardness and its high abrasive wear resistance.
  • the usual wear-resistant hard alloys for surface coating consist of a relatively ductile matrix of the metals iron, cobalt and nickel with embedded silicides and borides as hard particles ( Knotek, O.; Lugscheider, E.; Reimann, H.: A contribution to the assessment of wear-resistant nickel-boron-silicon hard alloys. Journal of Materials Engineering 8 (1977) 10, pp. 331-335 ).
  • the wide use of hard alloys of the Ni-Cr-Si, Ni-Cr-B, Ni-B-Si and Ni-Cr-B-Si systems is based on the increase in wear resistance caused by these hard particles.
  • the Ni-B-Si alloys also contain the borides Ni 3 B and the Ni-Si borides/Ni silicoborides Ni 6 Si 2 B.
  • a certain inertia is also reported of silicide formation in the presence of the element boron.
  • Further investigations of the alloy system Ni-B-Si led to the detection of the high-melting Ni-Si borides Ni 6 Si 2 B and Ni 4.29 Si 2 B 1.43 ( Lugscheider, E.; Reimann, H.; Knotek, O.: The ternary system nickel-boron-silicon.
  • the element zinc is added to copper-nickel-tin alloys to lower the metal price. Functionally, the alloying element zinc causes the stronger formation of Sn-rich or Ni-Sn-rich phases from the melt. In addition, zinc increases the formation of precipitates in the Cu-Ni-Sn spinodal alloys.
  • a certain Pb content is added to the copper-nickel-tin alloys to improve the emergency running properties and for better machinability.
  • the invention is based on the object of providing a high-strength copper-nickel-tin alloy which has excellent hot workability over the entire range of the nickel content and tin content of 2 to 10% by weight in each case. It should be possible to use a starting material for hot forming that has been produced by means of conventional casting processes without the absolute necessity of carrying out spray compacting or thin-strip casting.
  • the copper-nickel-tin alloy After casting, the copper-nickel-tin alloy should be free of gas pores and shrinkage pores as well as stress cracks and be characterized by a structure with a uniform distribution of the tin-enriched phase components.
  • the structure of the copper-nickel-tin alloy should already contain intermetallic phases after casting. This is important so that the alloy already has high strength, high hardness and sufficient wear resistance in the cast state.
  • the as-cast state should already be characterized by high corrosion resistance.
  • the as-cast state of the copper-nickel-tin alloy should not first have to be homogenized by means of a suitable annealing treatment in order to be able to produce sufficient hot workability.
  • a fine-grained structure containing hard particles with high strength, high heat resistance, high hardness, high resistance to stress relaxation and corrosion, sufficient electrical conductivity and a high Degree of resistance to the mechanisms of Set sliding wear and oscillating friction wear which includes at least one annealing or at least one hot forming and/or cold forming in addition to at least one annealing, a fine-grained structure containing hard particles with high strength, high heat resistance, high hardness, high resistance to stress relaxation and corrosion, sufficient electrical conductivity and a high Degree of resistance to the mechanisms of Set sliding wear and oscillating friction wear.
  • the invention is represented by the features of one of claims 1 or 2 in relation to a copper-nickel-tin alloy, by the features of claims 9 or 10 in relation to a production method and by the features of claims 16 to 18 in relation to a use.
  • the further dependent claims relate to advantageous configurations and developments of the invention.
  • the first phase components and/or the second phase components are contained with at least 1% by volume in the cast structure of the alloy.
  • Segregations of this type are understood to mean accumulations of the first phase components and/or the second phase components in the cast structure, which are formed as grain boundary segregations which, when the casting is subjected to thermal and/or mechanical stress, cause damage to the structure in the form of cracks that can lead to fracture.
  • the structure is still free of gas pores, shrinkage pores, stress cracks and discontinuous precipitations of the (Cu, Ni)-Sn system.
  • the alloy is in the as-cast state.
  • the continuous precipitates of the (Cu,Ni)-Sn system are contained with at least 0.1% by volume in the structure of the further processed state of the alloy.
  • the structure is free of segregation.
  • segregations are understood to mean accumulations of the first phase components and/or the second phase components in the structure, which are formed as grain boundary segregations, which cause damage to the structure in the form of cracks, particularly when the components are subjected to dynamic stress, which can lead to fracture.
  • the structure of the alloy is free of gas pores, shrinkage pores and stress cracks. It should be emphasized as an essential feature of the invention that the microstructure in the further processed state is free of discontinuous precipitations of the (Cu,Ni)-Sn system. In this second variant, the alloy is in the processed state.
  • the invention is based on the consideration that a copper-nickel-tin alloy with Si-containing and B-containing phases and with phases of the systems Ni-Si-B, Ni-B, Fe-B, Ni-P, Fe-P, Ni-Si and is provided with other Fe-containing phases. These phases significantly improve the copper-nickel-tin alloy with Si-containing and B-containing phases and with phases of the systems Ni-Si-B, Ni-B, Fe-B, Ni-P, Fe-P, Ni-Si and is provided with other Fe-containing phases. These phases significantly improve the
  • the copper-nickel-tin alloy according to the invention can be produced by means of the sand casting process, shell mold casting process, investment casting process, full mold casting process, die casting process, lost foam process and permanent mold casting process or with the aid of continuous or semi-continuous casting method are produced.
  • the use of process-technically complex and cost-intensive primary shaping techniques is possible, it is not absolutely necessary for the production of the copper-nickel-tin alloy according to the invention.
  • the use of spray compacting or thin-strip casting can be dispensed with.
  • the cast shapes of the copper-nickel-tin alloy according to the invention can be hot-formed directly over the entire range of Sn content and Ni content, for example by hot rolling, extrusion or forging, without carrying out a homogenization anneal that is absolutely necessary.
  • no complex forging processes or upsetting processes have to be carried out at elevated temperature in order to weld, ie close, pores and cracks in the material. This largely eliminates the processing restrictions that previously existed in the production of semi-finished products and components made of copper-nickel-tin alloys passed.
  • the metallic matrix of the structure of the copper-nickel-tin alloy according to the invention consists in the as-cast state with increasing Sn content of the alloy, depending on the casting process, from increasing proportions of tin-enriched phases, which are distributed evenly in the copper mixed crystal (a-phase). are.
  • phase components can be specified with the molecular formula Cu h Ni k Sn m and have a ratio (h+k)/m of the element content in atom % of 2 to 6.
  • the second phase components can be specified with the molecular formula Cu p Ni r Sn s and have a ratio (p+r)/s of the element content in atom % of 10 to 15.
  • the alloy according to the invention is characterized by Si-containing and B-containing phases, which can be divided into two groups.
  • the first group relates to the Si-containing and B-containing phases, which are in the form of silicon borides and can be present in the modifications SiB 3 , SiB 4 , SiB 6 and SiB n .
  • the "n" in the compound SiB n indicates the high solubility of the element boron in the silicon lattice.
  • the second group of Si-containing and B-containing phases relates to the silicate compounds of borosilicates and/or borophosphorus silicates.
  • the structural proportion of the Si-containing and B-containing phases which are in the form of silicon borides and borosilicates and/or borophosphorus silicates, is at least 0.01 and maximum 10% by volume.
  • the Ni phosphides, Fe phosphides, Ni silicides, Fe silicides and/or the Fe-rich particles separate preferentially on the already existing primary nuclei of the silicon borides, Ni—Si borides and the Ni borides and Fe borides, which are present individually and/or as addition compounds and/or mixed compounds, as secondary nuclei.
  • Ni-Si borides and the Ni borides are each contained in the structure at 1 to 15% by volume.
  • the Ni phosphides and Ni silicides are each present with a structural proportion of 1 to 5% by volume.
  • the Fe borides, Fe phosphides and the Fe silicides and/or Fe-rich particles each account for 0.1 to 5% by volume of the microstructure.
  • These phases are referred to below as crystallization nuclei.
  • the element tin and/or the first phase constituents and/or the second phase constituents of the metallic matrix preferentially crystallize in the regions of the nuclei, whereby the nuclei are coated by tin and/or the first phase constituents and/or the second phase constituents.
  • These crystallization nuclei which are encased by tin and/or the first phase components and/or the second phase components, are referred to below as hard particles of the first class.
  • the hard particles of the first class have a size of less than 80 ⁇ m.
  • the size of the first-class hard particles is less than 50 ⁇ m.
  • the island-like arrangement of the first phase components and/or the second phase components changes into a network-like arrangement in the structure.
  • the first phase components can have a proportion of up to 30% by volume.
  • the second phase components take on a structural proportion of up to 20% by volume.
  • the first phase components and/or the second phase components are contained with at least 1% by volume in the as-cast structure of the alloy.
  • the conventional copper-nickel-tin alloys have a relatively large solidification interval. This large solidification interval increases the risk of gas absorption during casting and causes uneven, coarse, mostly dendritic crystallization of the melt. The result is often gas pores and coarse Sn-rich segregations, at the phase boundary of which shrinkage pores and stress cracks often occur. In this group of materials, the Sn-rich segregations also occur preferentially at the grain boundaries.
  • the combined content of boron, silicon and phosphorus activates various processes in the melt of the alloy according to the invention, which significantly change its solidification behavior compared to conventional copper-nickel-tin alloys.
  • the elements boron, silicon and phosphorus perform a deoxidizing function in the melt of the invention.
  • By adding boron and silicon it is possible to reduce the phosphorus content without reducing the intensity of the deoxidation of the melt.
  • This measure makes it possible to suppress the disadvantageous effects of sufficient deoxidation of the melt by means of a phosphorus additive.
  • a high P content would further extend the already very large solidification interval of the copper-nickel-tin alloy, which would increase the susceptibility to porosity and segregation of this type of material.
  • the adverse effects of adding phosphorus are reduced by limiting the P content in the alloy of the present invention to the range of 0.001 to 0.15 wt%.
  • the cast state of the invention has a very uniform structure with a fine distribution of the individual phase components.
  • segregations enriched with tin do not occur in the alloy according to the invention, particularly at the grain boundaries.
  • the elements boron, silicon and phosphorus bring about a reduction in the metal oxides.
  • the elements are oxidized themselves, usually rise to the surface of the castings and form a protective layer there as boron silicates and/or boron phosphorus silicates and phosphorus silicates, which protects the castings from gas absorption.
  • Extraordinarily smooth surfaces of the castings made from the alloy according to the invention were found, which indicate the formation of such a protective layer.
  • the structure of the as-cast state of the invention was also free of gas pores over the entire cross-section of the cast parts.
  • a basic idea of the invention is the transfer of the effect of boron silicates, boron phosphorus silicates and phosphorus silicates with regard to the adjustment of the different thermal expansion coefficients of the joining partners during diffusion soldering to the processes during casting, hot forming and thermal treatment of the copper-nickel-tin materials. Due to the wide solidification range of these alloys, it occurs between the staggered crystallizing Sn-poor and Sn-rich Structural areas to large mechanical stresses that can lead to cracks and pores. Furthermore, these damage characteristics can also occur during hot forming and high-temperature annealing of copper-nickel-tin alloys due to the different hot forming behavior and the different thermal expansion coefficients of the Sn-poor and Sn-rich microstructure components.
  • the combined addition of boron, silicon and phosphorus to the copper-nickel-tin alloy according to the invention causes, on the one hand, a structure with a uniform island-like and/or network-like distribution of the first phase components and/or the second phase components during the solidification of the melt by means of the effect of the crystallization nuclei Phase components of the metallic matrix.
  • the Si-containing and B-containing phases formed during solidification of the melt which are in the form of boron silicates and/or boron phosphorus silicates, ensure, together with the phosphorus silicates, the necessary adjustment of the thermal expansion coefficients of the first phase components and/or the second Phase components and the copper mixed crystal of the metallic matrix. This prevents the formation of pores and stress cracks between the phases with different Sn contents.
  • the alloy content of the copper-nickel-tin alloy according to the invention also causes a significant change in the grain structure in the cast state. It could be determined that a substructure with a grain size of the subgrains of less than 30 ⁇ m is formed in the primary cast structure.
  • the alloy according to the invention can be subjected to further processing by annealing or by hot working and/or cold working in addition to at least one annealing.
  • One possibility for further processing of the copper-nickel-tin alloy according to the invention consists in converting the castings into the final shape with the required properties by means of at least one cold forming together with at least one annealing.
  • the alloy according to the invention already has high strength in the cast state. As a result, the castings have lower cold formability, which makes further processing more difficult. For this reason, it has proven to be advantageous to carry out a homogenization annealing of the castings before cold forming.
  • accelerated cooling after the homogenization annealing processes has proven to be advantageous. It has been shown that due to the inertia of the precipitation mechanisms and segregation mechanisms, cooling methods with a lower cooling rate can be used in addition to water quenching. The use of accelerated air cooling has thus proven to be just as practicable in order to sufficiently reduce the effect of the precipitation processes and demixing processes in the structure, which increase hardness and increase strength, during the homogenization annealing of the invention.
  • the outstanding effect of the crystallization nuclei for the recrystallization of the structure of the invention can be seen in the structure, which can be adjusted after cold forming by means of annealing in the temperature range from 170 to 880° C. and an annealing time of between 10 minutes and 6 hours.
  • the extraordinarily fine structure of the recrystallized alloy enables further cold forming steps with a degree of forming ⁇ of mostly over 70%. To this In this way, high-strength states of the alloy can be produced.
  • the level of the parameter R p0.2 is significant for the sliding elements and guide elements. Furthermore, a high value of R p0.2 is a prerequisite for the necessary spring properties of connectors in electronics and electrical engineering.
  • the structure of the alloy according to the invention remains free of discontinuous precipitations of the (Cu,Ni)-Sn system, regardless of the degree of cold working. It was thus possible to establish for particularly advantageous embodiments of the invention that the microstructure of the invention remains free of discontinuous precipitations of the (Cu,Ni)—Sn system even with extremely small degrees of cold deformation of less than 20%.
  • the conventional, spinodally separable Cu-Ni-Sn materials are considered to be very difficult or impossible to hot-work.
  • the effect of the crystallization nuclei could also be observed during the process of hot working the copper-nickel-tin alloy according to the invention.
  • Mainly the crystallization nuclei are for it responsible for the fact that the dynamic recrystallization takes place favorably during the hot forming of the alloy according to the invention in the temperature range from 600 to 880°C. This results in a further increase in the uniformity and fine-grained structure.
  • the semi-finished products and components can be cooled after hot forming in calmed or accelerated air or with water.
  • an extraordinarily smooth surface of the parts could also be determined after the hot forming of the castings.
  • This observation points to the formation of Si-containing and B-containing phases, which are in the form of boron silicates and/or boron phosphorus silicates, and of phosphorus silicates, which takes place in the material during hot forming.
  • the silicates, together with the crystallization nuclei, also cause the different thermal expansion coefficients of the phases of the metallic matrix of the invention to be equalized during hot working.
  • the surface of the hot-formed parts and the structure were free of cracks and pores, just as they were after casting.
  • At least one annealing treatment of the cast state and/or the hot-formed state of the invention can be carried out in the temperature range from 170 to 880°C for a period of 10 minutes to 6 hours, alternatively with cooling in calmed or accelerated air or with water.
  • One aspect of the invention relates to an advantageous method for further processing the as-cast condition or the hot-worked condition or the annealed cast condition or the annealed hot-worked condition State, which includes the implementation of at least one cold forming.
  • At least one annealing treatment of the cold-formed state of the invention can preferably be carried out in the temperature range from 170 to 880° C. for a period of 10 minutes to 6 hours, alternatively with cooling in calmed or accelerated air or with water.
  • Stress relief annealing/ageing annealing can advantageously be carried out in the temperature range from 170 to 550° C. with a duration of 0.5 to 8 hours.
  • crystallization nuclei encased by precipitations of the (Cu,Ni)-Sn system, are referred to below as second-class hard particles.
  • the size of the second-class hard particles decreases in comparison to the size of the first-class hard particles.
  • there is progressive comminution of the hard particles of the second class since these, as the hardest components of the alloy, cannot support the change in shape of the surrounding metallic matrix.
  • the resulting second-class hard particles and/or the resulting segments of the second-class hard particles have a size of less than 40 ⁇ m to even less than 5 ⁇ m, depending on the degree of cold forming.
  • the Ni content and the Sn content of the invention range between 2.0 and 10.0% by weight.
  • a Ni content and/or a Sn content of less than 2.0% by weight would result in insufficient strength and hardness values.
  • the running properties of the alloy would be insufficient under a sliding load.
  • the alloy's resistance to abrasive and adhesive wear would not meet the requirements.
  • With a Ni content and/or a Sn content of more than 10.0% by weight the toughness properties of the alloy according to the invention would deteriorate rapidly, as a result of which the dynamic load capacity of the components made from the material is reduced.
  • the content of nickel and tin in the range of 3.0 to 9.0 wt. In this respect, the range of 4.0 to 8.0% by weight each for the content of the elements nickel and tin is particularly preferred for the invention.
  • Ni-containing and Sn-containing copper materials that the degree of spinodal segregation of the structure increases with an increasing Ni/Sn ratio of the element contents in % by weight of the elements nickel and tin. This is valid for a Ni content and a Sn content from about 2% by weight.
  • the mechanism of precipitation formation in the (Cu,Ni)-Sn system becomes more important, which leads to a reduction in the proportion of the spinodally segregated microstructure.
  • One consequence is, in particular, a more pronounced formation of discontinuous precipitations of the (Cu,Ni)-Sn system as the Ni/Sn ratio decreases.
  • One of the essential features of the copper-nickel-tin alloy according to the invention is the decisive suppression of the influence of the Ni/Sn ratio on the formation of discontinuous precipitations in the structure.
  • the microstructure of the invention largely independent of the Ni/Sn ratio and independent of the aging conditions, there is no precipitation of discontinuous precipitates of the (Cu,Ni)-Sn system.
  • the continuous precipitates of the (Cu,Ni)-Sn system are contained with at least 0.1% by volume in the structure of the further processed state of the alloy.
  • the element iron is added to the alloy according to the invention at 0.01 to 1.0% by weight. Iron contributes to increasing the proportion of crystallization nuclei and thus supports the fine-grain formation of the structure during the casting process.
  • the Fe-containing hard particles in the structure increase the strength, hardness and wear resistance of the alloy. If the Fe content is below 0.01% by weight, these effects on the structure and the properties of the alloy are only observed to an insufficient extent. If the Fe content exceeds 1.0% by weight, the structure increasingly contains cluster-like accumulations of Fe-rich particles. The Fe content of these clusters would only be available to a lesser extent for the formation of crystallization nuclei and hard particles. In addition, the toughness properties of the invention would deteriorate. An Fe content of 0.02 to 0.6% by weight is advantageous. An iron content in the range from 0.06 to 0.4% by weight is preferred.
  • Ni-Fe-Si borides and/or Ni-Fe-Si borides can also form in the structure of the alloy according to the invention in addition to the Ni-Si borides.
  • the structure of the invention also contains other Fe-containing phases.
  • these other Fe-containing phases are present as Fe silicides and/or as Fe-rich particles structure.
  • the effect of the crystallization nuclei during the solidification/cooling of the melt, the effect of the crystallization nuclei as recrystallization nuclei and the effect of the silicate-based phases for the purpose of wear protection and corrosion protection can only reach a technically significant level in the alloy according to the invention if the silicon content is at least 0 .01% by weight and the boron content is at least 0.002% by weight. On the other hand, if the Si content exceeds 1.5% by weight and/or the B content exceeds 0.45% by weight, the casting performance deteriorates. The excessively high content of crystallization nuclei would make the melt significantly more viscous. In addition, reduced toughness properties of the alloy according to the invention would result.
  • the range for the Si content within the limits of 0.05 to 0.9% by weight is rated as advantageous.
  • a silicon content of 0.1 to 0.6% by weight has proven to be particularly advantageous.
  • a content of 0.01 to 0.4% by weight is considered advantageous for the element boron.
  • a boron content of 0.02 to 0.3 has proven particularly advantageous % by weight.
  • a lower limit for the element ratio of the elements silicon and boron has proven to be important in order to ensure a sufficient content of Ni-Si borides and of phases containing Si and B, which are in the form of borosilicates and/or borophosphorus silicates.
  • the minimum Si/B ratio of the element contents of the elements silicon and boron in % by weight of the alloy according to the invention is 0.4.
  • the minimum Si/B ratio of the element contents of the elements silicon and boron in % by weight of 0.8 is advantageous for the alloy according to the invention.
  • the minimum Si/B ratio of the element contents of the elements silicon and boron in % by weight of 1 is preferred.
  • Important for another important feature of the invention is the determination of an upper limit of 8 for the Si/B ratio of the element contents of the elements silicon and boron in % by weight. After casting, parts of the silicon are dissolved in the metallic matrix and bound in the hard particles of the first class.
  • the maximum Si/B ratio of the element contents of the elements silicon and boron in % by weight of the alloy according to the invention is 8 or thermomechanical further processing of the cast state of the alloy-forming silicides to below 3 ⁇ m. Furthermore, this limits the content of silicides. Limiting the Si/B ratio of the element contents of the elements silicon and boron in % by weight to the maximum value of 6 has proven to be particularly advantageous in this respect.
  • the precipitation of the crystallization nuclei influences the viscosity of the melt of the alloy according to the invention. This circumstance underlines why the addition of phosphorus must not be dispensed with. Phosphorus causes the melt to be sufficiently thin despite the crystallization nuclei, which is of great importance for the castability of the invention.
  • the phosphorus content of the alloy according to the invention is 0.001 to 0.15% by weight.
  • the P content no longer contributes to ensuring sufficient castability of the invention. If the phosphorus content of the alloy assumes values above 0.15% by weight, then on the one hand an excessive Ni content is bound in the form of phosphides, which reduces the spinodal segregability of the structure. On the other hand, with a P content above 0.15% by weight, the hot workability of the invention would deteriorate significantly. For this reason, a P content of 0.01 to 0.15% by weight has proven particularly advantageous. A P content in the range from 0.02 to 0.09% by weight is preferred.
  • the alloying element phosphorus is very important for another reason. Together with the required maximum Si/B ratio of the element contents of the elements silicon and boron in % by weight of 8, it is due to the phosphorus content of the alloy that after further processing of the invention Ni phosphides, Silicides and Fe-silicides and / or Fe-rich particles individually and / or as Addition compounds and/or mixed compounds are present and are encased by precipitations of the system (Cu, Ni)-Sn, with a maximum size of 3 ⁇ m and with a content of 2 to 35% by volume in the structure.
  • Ni phosphides, Fe phosphides, Ni silicides, Fe silicides and/or Fe-rich particles which are present individually and/or as addition compounds and/or mixed compounds, are encased by precipitations of the (Cu,Ni)-Sn system and a maximum size of 3 ⁇ m are referred to below as hard particles of the third class.
  • the hard particles of the third class even have a size of less than 1 ⁇ m.
  • these third-class hard particles supplement the second-class hard particles in their function as wear carriers. They increase the strength and hardness of the metallic matrix and thus improve the resistance of the alloy to abrasive wear. On the other hand, the third-class hard particles increase the alloy's resistance to adhesive wear. Finally, these third-class hard particles bring about a significant increase in the high-temperature strength and the stress relaxation resistance of the alloy according to the invention. This represents an important prerequisite for the use of the alloy according to the invention, in particular for sliding elements and components and connecting elements in electronics/electrical engineering.
  • the alloy according to the invention Due to the content of hard particles of the first class in the structure of the cast state and of hard particles of the second and third class in the structure of the further processed state, the alloy according to the invention has the Character of a precipitation-hardenable material.
  • the invention corresponds to a precipitation hardenable and spinodally demixable copper-nickel-tin alloy.
  • the sum of the element contents of the elements silicon, boron and phosphorus is advantageously at least 0.2% by weight.
  • the cast variant and the further processed variant of the alloy according to the invention can contain the following optional elements:
  • the element cobalt can be added to the copper-nickel-tin alloy according to the invention in a content of up to 2.0% by weight. Due to the similarity relationship between the elements nickel, iron and cobalt and due to the Si-boride-forming, boride-forming, silicide-forming and phosphide-forming properties of cobalt with regard to nickel and iron, the alloying element cobalt can be added in order to participate in the formation of the crystallization nuclei and the hard particles first , second and third class of the alloy. Thereby, the Ni content bound in the hard particles can be reduced.
  • Ni content that is effectively available in the metallic matrix for the spinodal segregation of the structure increases.
  • Advantagely 0.1 to 2.0% by weight of Co it is thus possible to increase the strength and hardness of the invention considerably.
  • the element zinc can be added to the copper-nickel-tin alloy according to the invention in a content of 0.1 to 2.0% by weight. It has been found that the alloying element zinc, depending on the Ni content and Sn content of the alloy, increases the proportion of the first phase components and/or second phase components in the metallic matrix of the invention, thereby increasing strength and hardness. They are to be held responsible for this Interactions between the Ni content and the Zn content. As a result of these interactions between the Ni content and the Zn content, a decrease in the size of the first and second class hard particles was also determined, which were thus formed in a more finely distributed manner in the structure. Below 0.1% by weight of Zn, these effects on the structure and mechanical properties of the invention could not be observed.
  • the toughness properties of the alloy were lowered to a lower level.
  • the corrosion resistance of the copper-nickel-tin alloy according to the invention deteriorated.
  • a zinc content ranging from 0.1 to 1.5% by weight can be added to the invention.
  • the copper-nickel-tin alloy according to the invention can have small amounts of lead, which are above the impurity limit, up to a maximum of 0.25% by weight.
  • the copper-nickel-tin alloy is free of lead except for any unavoidable impurities, which means that current environmental standards are met.
  • lead contents of up to a maximum of 0.1% by weight of Pb are contemplated.
  • Si-containing and B-containing phases which are in the form of boron silicates and/or boron phosphorus silicates, as well as phosphorus silicates, not only leads to a significant reduction in the content of pores and cracks in the structure of the alloy according to the invention.
  • These silicate-based phases also assume the role of an anti-wear and anti-corrosion coating on the components.
  • the alloying element tin contributes to the formation of a so-called tribolayer between the sliding partners. Especially under mixed friction conditions this mechanism is significant when the emergency running properties of a material are increasingly important.
  • the tribological layer leads to a reduction in the purely metallic contact surface between the sliding partners, which prevents the elements from welding or seizing.
  • the parts made of the alloy according to the invention form, similar to casting and hot forming, phases containing Si and B, which are in the form of boron silicates and/or boron phosphorus silicates, as well as phosphorus silicates . These compounds further reinforce the tribolayer, which forms primarily due to the alloying element tin, resulting in increased adhesive wear resistance of the sliding elements made from the alloy according to the invention.
  • the alloy according to the invention thus ensures a combination of the properties of wear resistance and corrosion resistance.
  • This combination of properties leads to a high resistance to the mechanisms of sliding wear, as required, and to a high material resistance to fretting corrosion.
  • the invention is excellently suited for use as a sliding element and plug connector, since it has a high degree of resistance to sliding wear and oscillating wear, so-called fretting.
  • the hard particles of the third class make a significant contribution to increasing the fatigue strength.
  • the hard particles of the third class, together with the hard particles of the second class, represent obstacles to the propagation of fatigue cracks, which can be introduced into the stressed component, particularly in the case of dynamic friction wear, the so-called fretting.
  • the hard particles of the second and third class supplement in particular the anti-wear and anti-corrosion effect of the Si-containing and B-containing phases, which are designed as boron silicates and/or boron phosphorus silicates, and the phosphorus silicates with regard to increasing the resistance of the alloy according to the invention to dynamic friction wear, the so-called fretting.
  • High temperature strength and stress relaxation resistance are other important properties of an alloy used in higher temperature applications.
  • a high density of fine precipitates is considered to be advantageous in order to ensure sufficiently high heat resistance and stress relaxation resistance.
  • such precipitations are the hard particles of the third class and the continuous precipitations of the (Cu,Ni)—Sn system.
  • the alloy according to the invention Due to the uniform and fine-grained structure with largely no pores, no cracks and no segregation and the content of first-class hard particles, the alloy according to the invention has a high degree of strength, hardness, ductility, complex wear resistance and corrosion resistance even in the cast state.
  • This combination of properties means that sliding elements and guide elements can be produced from the cast format.
  • the cast state of the invention can also be used for the production of fitting housings and housings of water pumps, oil pumps and fuel pumps.
  • the alloy of the present invention can be used for propellers, blades, propellers and hubs for shipbuilding.
  • the further processed variant of the invention can be used for areas of application with a particularly strong, complex and/or dynamic component stress.
  • the invention is suitable for the metal objects in constructions for the rearing of organisms living in sea water (aquaculture). Furthermore, pipes, seals and connecting bolts which are required in the maritime and chemical industries can be produced from the invention.
  • the material is of great importance for the use of the alloy according to the invention for the production of percussion instruments.
  • cymbals of high quality have hitherto been made from mostly tin-containing copper alloys by means of hot forming and at least one annealing before they are brought into their final shape, usually by means of a bell or bowl. The basins are then annealed again before their final machining takes place.
  • the production of the different variants of the cymbal eg ride cymbal, hi-hat, crash cymbal, China cymbal, splash cymbal and effect cymbal
  • different structural proportions of the Phases of the metallic matrix and the different hard particles can be set in a very wide range. In this way it is already possible to influence the sound of the cymbals on the alloy side.
  • the invention can be used in particular for the production of composite plain bearings in order to be applied to a composite partner by means of a joining method. It is thus possible to produce a composite between disks, plates or strips of the invention and steel cylinders or steel strips, preferably made of heat-treated steel, by means of forging, soldering or welding with the optional implementation of at least one annealing in the temperature range from 170 to 880°C.
  • composite bearing shells or composite bearing bushes can be produced by roll-bonding, inductive or conductive roll-bonding or by laser roll-bonding, also with the optional implementation of at least one annealing in the temperature range from 170 to 880°C.
  • high-performance composite sliding elements such as composite bearing shells or composite bearing bushes can also be produced as a three-layer system, with a bearing back made of steel, the actual bearing made of the alloy according to the invention and the overlay made of tin or the Sn-rich coating.
  • This multi-layer system has a particularly beneficial effect on the adaptability and shrinkability of the plain bearing and improves the embedding ability of foreign particles and abrasive particles, whereby thermal or thermomechanical stress on the plain bearing does not result in damage due to the layer composite system being broken as a result of pore formation and cracking in the border area of the individual layers.
  • the great potential of copper-nickel-tin materials can also be used for the field of tin-plated components, line elements, guide elements and connecting elements in electronics and electrical engineering by using the alloy according to the invention.
  • the structure of the invention reduces the damage mechanism of pore formation and cracking in the boundary area between the alloy according to the invention and the tinning, even at elevated temperatures, which counteracts an increase in the electrical contact resistance of the components or even detachment of the tinning.
  • the different hard particles serve as chip breakers.
  • the resulting short crumbly chips and/or tangled chips facilitate machinability, which is why the semi-finished products and components from the cast state and the further processed state of the alloy according to the invention have better machinability.
  • the exemplary embodiments A to C are characterized by a Ni content of 5.48 to 6.15% by weight, an Sn content of 4.94 to 5.76% by weight, an Fe content of 0.079 to 0. 22% by weight, an Si content of 0.26 to 0.31% by weight, a B content of 0.14 to 0.20% by weight, a P content of 0.048 to 0.072% by weight. -% and characterized by a remainder of copper.
  • the reference material R belongs to the conventional copper-nickel-tin alloys that correspond to the state of the art. It has a Ni content of 5.78% by weight, an Sn content of 5.75% by weight, a P content of about 0.032% by weight and the remainder is copper.
  • the structure of the continuously cast plates of the reference material R shows gas and shrinkage pores as well as Sn-rich segregations, especially at the grain boundaries.
  • the metallic matrix of the as-cast state of the exemplary embodiment A consists of a copper mixed crystal with, based on the overall structure, approx. 10 to 15% by volume of island-shaped embedded first phase components, which can be specified with the empirical formula Cu h Ni k Sn m and a ratio (h+k)/m of the element contents in atomic % from 2 to 6.
  • the compounds CuNi 14 Sn 23 and CuNi 9 Sn 20 with a ratio (h+k)/m of 3.4 and 4 could be determined.
  • the metallic matrix with, based on the overall structure about 5 to 10% by volume of second phase components are embedded in islands, which can be specified with the molecular formula Cu p Ni r Sn s and a ratio (p + r) / s of Have element contents in atomic percent from 10 to 15.
  • the compounds CuNi 3 Sn 8 and CuNi 4 Sn 7 with a ratio (p+r)/s of 11.5 and 13.3 were detected.
  • the first and second phase components of the metallic matrix are predominantly crystallized in the area of the crystallization nuclei and encase them.
  • the analysis of the first-class hard particles in the cast state of exemplary embodiment A gave indications of the compound SiB 6 as a representative of the Si-containing and B-containing phases, of Ni 6 Si 2 B as a representative of the Ni-Si borides, of Ni 3 B as a Representatives of the Ni borides, FeB as a representative of the Fe borides, Ni 3 P as a representative of the Ni phosphides, Fe 2 P as a representative of the Fe phosphides, Ni 2 Si as a representative of the Ni silicides and Fe -rich particles that are present individually and/or as addition compounds and/or mixed compounds in the structure.
  • these hard particles are encased by tin and/or the first phase components and/or second phase components of the metallic matrix.
  • a substructure formed in the primary casting grains In the cast structure of exemplary embodiments A to C of the invention, these sub-grains have a grain size of less than 10 ⁇ m.
  • the hardness HB of the as-cast state of the exemplary embodiments is significantly higher than the hardness of the continuously cast R (Table 2).
  • Table 2 also shows the hardness values that were determined on the continuously cast alloys A to C and R aged at 330, 400 and 470°C for a period of 3 hours.
  • the increase in hardness from 94 to 145 HB is greatest for the reference material R.
  • This hardening is particularly due to thermally activated segregation of the Sn-rich phase in the structure.
  • the phase components enriched with tin are separated in the structure of the exemplary embodiments A to C in a much finer way in the area of the hard particles. For this reason, the hardness of the alloy A aged at 400° C. increases only slightly from 169 to 173 HB.
  • the hardness HB of the exemplary embodiment C also does not increase so markedly from 156 to 178 as a result of the aging.
  • a project of the invention is to maintain the good cold workability of conventional copper-nickel-tin alloys despite the
  • production program 1 was carried out with the continuously cast plates of alloys A and R according to Table 3. This production program consisted of a cycle of cold forming and annealing, with the cold rolling steps being carried out with the maximum possible degree of cold forming.
  • the structure of the further processed exemplary embodiment A contains the hard particles of the second class (in 3 labeled 3).
  • the size of the third-class hard particles of less than 3 ⁇ m is characteristic of the further processed alloy according to the invention.
  • the further processed exemplary embodiment A of the invention after aging at 450° C., it is even less than 1 ⁇ m (in 4 marked 5).
  • This production program 2 pursued the goal of processing the continuously cast plates of materials A and R into strips by means of cold forming and annealing, with identical parameters for the degrees of cold forming and the annealing temperatures being used in each case (Table 5). Due to the high hardness of the cast condition of example A, this was again annealed before the first cold-rolling step at a temperature of 740° C. for a period of 2 hours and then cooled in water in an accelerated manner. As with production program 1, this resulted in the properties of the cast condition of A and R being matched with regard to strength and hardness.
  • the alloy A strip exhibited the highest strength and hardness values (Table 6).
  • the increase in strength R m (from 498 to 717 MPa) and R p0.2 (from 439 to 649 MPa) as well as the hardness HB (from 166 to 230 MPa) falls due to the spinodal segregation of the structure ) is most evident in alloy R.
  • the structure of the aged states of alloy R is very uneven with a grain size between 5 and 30 ⁇ m.
  • the structure of the aged states of the reference material R is characterized by discontinuous precipitations of the system (Cu, Ni)-Sn (in 1 and 2 denoted by 1).
  • the structure of the further processed state of the reference material R also contains Ni phosphides (in 1 and 2 labeled 2).
  • the structure of the aged strips of embodiment A of the invention is very uniform with a grain size of 2 to 8 ⁇ m.
  • the structure of Example A lacks the discontinuous precipitates even after aging at 450°C for 3 hours followed by air cooling.
  • second-class hard particles can be detected in the structure. These phases are in 5 and 6 marked with 3.
  • the strengths R m and R p0.2 of the strips of alloy A assume the values of 690 and 618 MPa as a result of the spinodal segregation of the structure.
  • R m and R p0.2 are therefore lower than the characteristic values of the correspondingly aged state of alloy R. This is due to the fact that in exemplary embodiment A the Ni content, which is bound in the hard particles, is responsible for the strength-increasing spinodal segregation of the structure is missing. If the strength level of R is required, it is possible to add a higher proportion of the alloying element nickel to the alloy according to the invention.
  • the next step included testing the hot formability of the continuously cast alloys A and R.
  • the cast plates were hot rolled at a temperature of 720°C (Table 7).
  • the parameters of production program 2 were adopted for the further process steps of cold forming and intermediate annealing. ⁇ b> ⁇ u>Table 7: ⁇ /u> ⁇ /b> Production program 3 of strips from the continuously cast plates of example A and the reference material R No.
  • the cast plates of embodiment A of the invention could be hot-rolled without damage and, after several cold-rolling and annealing processes, could be manufactured to the final thickness of 3.0 mm.
  • the properties of the outsourced strips (Tab. 8) largely correspond to those of the strips that were produced without hot forming using production program 2 (Tab. 6).
  • microstructure of the strips from embodiment A of the alloy according to the invention which were produced with and without a hot forming step, is also comparable. That's how it goes 7 and 8 the uniform structure of the strips from example A emerges, which were produced with a hot forming stage and a final aging at 400° C./3 h/air cooling. In 7 and 8 the hard particles of the second class, labeled 3, can again be seen.
  • the hard particles of the third class even assume a size of less than 1 ⁇ m (with 5 in 8 designated).
  • the subsequent experimental stage included testing the hot forming behavior of embodiment A of the invention at the higher hot rolling temperature of 780°C.
  • the aim was also to reduce the number of cold rolling/annealing cycles in production program 3. This measure made it possible to investigate the cold formability of the hot-rolled strip condition of alloy A.
  • Alloy A continuously cast slabs showed excellent hot formability.
  • the hot-rolled plates could also be cold-rolled without any problems with an extremely high cold-forming degree ⁇ of 84%.
  • the last cold rolling step took place after recrystallization annealing at 690°C with the same degree of cold deformation ⁇ of 14%.
  • the grain size of the very uniform structure is 5 to 10 ⁇ m (Table 10).
  • the spinodal segregation of the structure of the alloy according to the invention leads to a pronounced increase in strength and hardness.
  • the tensile strength R m increases from 557 MPa in the cold-rolled condition to 692 MPa in the aged condition.
  • the HB hardness also increases from 177 to 210.
  • Table 11 shows the ones used in production program 5 Process steps listed. The production was carried out with a cycle of cold forming and annealing. Again, only the Alloy A cast slabs were annealed at 740°C prior to the first cold rolling.
  • this thermomechanical treatment increased the coverage of the grain boundaries of alloy R with Sn-rich segregations.
  • the crack-free and uniform structure of the belts of example A is characterized by the arrangement of the hard particles of the second and third class.
  • the hard particles of the third class also have a size of less than 1 ⁇ m after this production program 5.
  • Exemplary embodiment A has a high degree of aging ability, which is expressed by interaction of the mechanisms of precipitation hardening and spinodal segregation of the structure.
  • the characteristic values R m and R p0.2 increase from 518 to 633 and from 451 to 575 MPa as a result of aging at 400°C.
  • the degree of precipitation hardening and the degree of spinodal segregation of the structure of the invention can be adapted to the required material properties by varying the chemical composition, the degree of deformation for the cold forming(s) and by varying the aging conditions. In this way, it is possible to tailor the strength, hardness, ductility and electrical conductivity of the alloy according to the invention to the intended area of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)
EP17736568.1A 2016-07-18 2017-06-27 Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung Active EP3485050B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016008753.6A DE102016008753B4 (de) 2016-07-18 2016-07-18 Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
PCT/EP2017/000757 WO2018014992A1 (de) 2016-07-18 2017-06-27 Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung

Publications (2)

Publication Number Publication Date
EP3485050A1 EP3485050A1 (de) 2019-05-22
EP3485050B1 true EP3485050B1 (de) 2022-07-27

Family

ID=59295155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17736568.1A Active EP3485050B1 (de) 2016-07-18 2017-06-27 Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung

Country Status (7)

Country Link
US (1) US11035030B2 (ja)
EP (1) EP3485050B1 (ja)
JP (1) JP7097826B2 (ja)
KR (1) KR102420968B1 (ja)
CN (1) CN109477166B (ja)
DE (1) DE102016008753B4 (ja)
WO (1) WO2018014992A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147673A (ja) * 2020-03-19 2021-09-27 三菱マテリアル株式会社 Cu−Ni−Si系銅合金板、めっき皮膜付Cu−Ni−Si系銅合金板及びこれらの製造方法
JP7433263B2 (ja) 2021-03-03 2024-02-19 日本碍子株式会社 Cu-Ni-Sn合金の製造方法
CN113913646B (zh) * 2021-10-29 2022-09-16 宁波金田铜业(集团)股份有限公司 一种铜镍锡合金铸锭的制备方法
CN114086027A (zh) * 2021-11-25 2022-02-25 江西理工大学 一种抗高温软化的Cu-Ni-Sn系高强高弹铜合金及其制备方法
CN114381622A (zh) * 2021-12-31 2022-04-22 西安斯瑞先进铜合金科技有限公司 一种真空感应熔炼高强高弹耐磨CuNiSn合金材料的制备方法
CN114645155B (zh) * 2022-03-23 2023-01-13 浙江惟精新材料股份有限公司 一种高强度铜合金及其制备方法
CN115786766A (zh) * 2022-11-23 2023-03-14 河南科技大学 一种油气开采用多元Cu-Ni-Sn基合金及其制备方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129197A (en) 1937-07-03 1938-09-06 Jr John W Bryant Bronze alloy
US3392017A (en) 1965-04-15 1968-07-09 Eutectic Welding Alloys Welding consumable products
DE2033744B2 (de) 1970-07-08 1971-12-30 Deutsche Edelstahlwerke Ag, 4150 Krefeld Verwendung einer nickellegierung zur herstellung harter ver schleissfester und korrosionsbestaendiger ueberzugsschichten auf metallischen gegenstaenden
CA980223A (en) 1972-10-10 1975-12-23 John T. Plewes Method for treating copper-nickel-tin alloy compositions and products produced therefrom
ZA744645B (en) 1973-08-27 1976-02-25 Ppg Industries Inc Electroconductive, corrosion resistant high silicon alloy
GB1509179A (en) * 1974-11-20 1978-04-26 Paragon Plastics Ltd Compression joints
KR950004935B1 (ko) 1986-09-30 1995-05-16 후루까와 덴끼 고교 가부시끼가이샤 전자 기기용 구리 합금
JPH08942B2 (ja) 1986-12-19 1996-01-10 トヨタ自動車株式会社 分散強化Cu基合金
CN87100204B (zh) * 1987-01-05 1988-11-23 上海冶金专科学校 弹性元件用变形铜合金
JP2555067B2 (ja) * 1987-04-24 1996-11-20 古河電気工業株式会社 高力銅基合金の製造法
JPS63274729A (ja) * 1987-04-30 1988-11-11 Furukawa Electric Co Ltd:The 電子・電気機器用銅合金
JPH0637680B2 (ja) 1987-06-15 1994-05-18 三菱電機株式会社 疲労特性に優れたCu−Ni−Sn合金
DE69017975T2 (de) 1989-07-31 1995-08-10 Toyota Motor Co Ltd Dispersionsverstärkte Kupfer-Basis-Legierung zum Aufpanzern.
JPH03115538A (ja) 1989-09-29 1991-05-16 Tsuneaki Mikawa 粒子分散強化特殊銅合金
GB9008957D0 (en) 1990-04-20 1990-06-20 Shell Int Research Copper alloy and process for its preparation
DE4126079C2 (de) 1991-08-07 1995-10-12 Wieland Werke Ag Bandgießverfahren für ausscheidungsbildende und/oder spannungsempfindliche und/oder seigerungsanfällige Kupferlegierungen
US6716292B2 (en) 1995-06-07 2004-04-06 Castech, Inc. Unwrought continuous cast copper-nickel-tin spinodal alloy
NZ309290A (en) 1995-06-07 2000-02-28 Inc Castech Unwrought continuous cast copper-nickel-tin spinodal alloy
US6379478B1 (en) 1998-08-21 2002-04-30 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
KR100371128B1 (ko) 2000-07-25 2003-02-05 한국통산주식회사 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti), 보론(B) 합금
DE10208635B4 (de) 2002-02-28 2010-09-16 Infineon Technologies Ag Diffusionslotstelle, Verbund aus zwei über eine Diffusionslotstelle verbundenen Teilen und Verfahren zur Herstellung der Diffusionslotstelle
CN101124698A (zh) * 2005-03-07 2008-02-13 古河电气工业株式会社 布线连接器具用金属材料
CN101146920A (zh) * 2005-03-24 2008-03-19 日矿金属株式会社 电子材料用铜合金
TW200706662A (en) * 2005-03-29 2007-02-16 Nippon Mining Co Cu-Ni-Si-Zn-Sn based alloy strip excellent in thermal peeling resistance of Tin plating, and Tin plated strip thereof
JP3871064B2 (ja) * 2005-06-08 2007-01-24 株式会社神戸製鋼所 電気接続部品用銅合金板
JP4655834B2 (ja) * 2005-09-02 2011-03-23 日立電線株式会社 電気部品用銅合金材とその製造方法
JP2009179864A (ja) * 2008-01-31 2009-08-13 Kobe Steel Ltd 耐応力緩和特性に優れた銅合金板
JP5207927B2 (ja) * 2008-11-19 2013-06-12 株式会社神戸製鋼所 高強度かつ高導電率を備えた銅合金
JP5476149B2 (ja) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 強度異方性が小さく曲げ加工性に優れた銅合金
JP4677505B1 (ja) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5607459B2 (ja) * 2010-08-27 2014-10-15 古河電気工業株式会社 銅合金の鋳塊及びその製造方法、それより得られる銅合金板材
US9845521B2 (en) * 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
AT511196B1 (de) 2011-06-14 2012-10-15 Miba Gleitlager Gmbh Mehrschichtlagerschale
JP5647703B2 (ja) * 2013-02-14 2015-01-07 Dowaメタルテック株式会社 高強度Cu−Ni−Co−Si系銅合金板材およびその製造法並びに通電部品

Also Published As

Publication number Publication date
DE102016008753A1 (de) 2018-01-18
US11035030B2 (en) 2021-06-15
WO2018014992A1 (de) 2018-01-25
JP2019524985A (ja) 2019-09-05
EP3485050A1 (de) 2019-05-22
CN109477166B (zh) 2020-08-11
JP7097826B2 (ja) 2022-07-08
KR20190030660A (ko) 2019-03-22
KR102420968B1 (ko) 2022-07-15
CN109477166A (zh) 2019-03-15
US20190264312A1 (en) 2019-08-29
US20200248293A9 (en) 2020-08-06
DE102016008753B4 (de) 2020-03-12

Similar Documents

Publication Publication Date Title
EP3485049B1 (de) Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung
EP3485050B1 (de) Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung
EP3485047B1 (de) Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung
EP3485051B1 (de) Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung
EP3485048B1 (de) Kupfer-nickel-zinn-legierung, verfahren zu deren herstellung sowie deren verwendung
EP3423604B1 (de) Zinnhaltige kupferlegierung, verfahren zu deren herstellung sowie deren verwendung
EP2465956B1 (de) Hartphasenhaltige Kupfer-Zinn-Mehrstoffbronze, Herstellungsverfahren und Verwendung
EP2508630B1 (de) Hartphasenhaltige Kupfer-Zinn-Mehrstoffbronze, Herstellungsverfahren und Verwendung
EP3423605B1 (de) Zinnhaltige kupferlegierung, verfahren zu deren herstellung sowie deren verwendung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 32/00 20060101ALI20220118BHEP

Ipc: C22F 1/08 20060101ALI20220118BHEP

Ipc: C22C 9/06 20060101ALI20220118BHEP

Ipc: C22C 9/02 20060101AFI20220118BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1507124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013529

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221027

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013529

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

26N No opposition filed

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230510

Year of fee payment: 7

Ref country code: FR

Payment date: 20230510

Year of fee payment: 7

Ref country code: DE

Payment date: 20230630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230504

Year of fee payment: 7

Ref country code: CH

Payment date: 20230702

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627