EP3482450B1 - Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung - Google Patents
Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung Download PDFInfo
- Publication number
- EP3482450B1 EP3482450B1 EP17735116.0A EP17735116A EP3482450B1 EP 3482450 B1 EP3482450 B1 EP 3482450B1 EP 17735116 A EP17735116 A EP 17735116A EP 3482450 B1 EP3482450 B1 EP 3482450B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dipole
- partially circumferential
- frames
- frame
- arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 125000006850 spacer group Chemical group 0.000 claims description 31
- 230000000717 retained effect Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 description 63
- 239000004020 conductor Substances 0.000 description 14
- 230000010287 polarization Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/28—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
- H01Q19/30—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/001—Crossed polarisation dual antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
- H01Q5/385—Two or more parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
Definitions
- the invention relates to an antenna arrangement with at least one dipole-shaped radiator arrangement.
- Dipole radiators are for example from the prior publications DE 197 22 742 A as DE 196 27 015 A known. Such dipole radiators can have a conventional dipole structure or consist of a crossed dipole or a dipole square, etc., for example.
- a so-called vector dipole is, for example, from the prior publication WO 00/39894 A1 known. Its structure seems to be comparable to a dipole square. Due to the specific design of the dipole radiator according to this prior publication and the special feed, however, this dipole radiator acts similar to a crossed dipole that is perpendicular to each other in two standing polarization planes radiates. In terms of construction, it is rather square, in particular due to its outer contour design.
- Dipole radiators of this type are usually fed in such a way that one dipole or radiator half is connected to an outer conductor by direct current (i.e. galvanically), whereas the inner conductor of a coaxial connection cable is connected to the second dipole or radiator half by direct current (i.e. again galvanically).
- the feed takes place in each case at the end regions of the dipole or radiator halves facing one another.
- the respective associated half of the support device of the radiator arrangement can be galvanically connected to ground at the foot area or on the base of the support device, or it can be capacitively coupled to ground.
- a dipole-shaped emitter arrangement which comprises two pairs of emitter halves which are arranged rotated by 90 ° with respect to one another, whereby the dipole-shaped emitter arrangement transmits in two mutually perpendicular polarization planes.
- a passive beam shaping frame is shown, which is arranged parallel to the radiator halves in the direction of the reflector and spaced apart.
- a director is shown which is arranged parallel to the radiator halves, the radiator halves being arranged closer to the reflector than the director.
- a dual polarized antenna is known. This comprises part-circular radiator elements which are surrounded by a common circular radiator element. All radiator elements are designed without interruption and are arranged on a common plane.
- the antenna system comprises “high band” elements and “low band” elements, the latter being designed in a ring shape. Two ring-shaped “low-band” elements are arranged in different planes and surround a “high band” element. The "low-band” elements are designed to be uninterrupted.
- an antenna system with a crossed dipole and a microstrip ring is known.
- the cross dipole is surrounded by the microstrip ring, which can consist of several uninterrupted rings that are arranged in different planes.
- the lowest ring is fed via four T-shaped feed structures, with a coupling from the lower to the upper ring.
- a radiator arrangement which is constructed on a printed circuit board. It includes two pairs of radiator halves, which are arranged on a top side of the circuit board.
- the circuit board is arranged at a distance from a base via a carrier structure.
- the underside of the printed circuit board arrangement comprises parasitic structures made of an electrically conductive material. These are on a common level.
- the EP 2 950 385 A1 describes a multiband antenna. This comprises a dipole antenna structure that is coupled to a ground plane and is designed to radiate electromagnetic waves in a first frequency band.
- the multiband antenna also comprises an inverted-F antenna structure which is coupled to the ground plane and is designed to radiate electromagnetic waves in a second frequency band.
- an antenna structure which has two pairs of radiator halves which are arranged at a distance from the base via a support structure. On the support structure, wings are formed which extend in the direction of the jet halves. Another antenna system extends away from the base in the direction of the radiator half and ends at a distance therefrom.
- the WO 2005/122331 A1 describes a dual-polarized antenna with variable beam inclination.
- the antenna can have dipole radiation elements including directors and can be arranged on a large number of inclined components in order to be able to adjust the downtilt.
- the directors are arranged above the respective dipole radiators.
- a dual-polarized folded dipole antenna is known. This comprises a first unit which is designed to transmit and / or receive signals in a first polarization direction. There is also a second unit which is designed to transmit and / or receive signals in a second polarization direction.
- Each unit includes an integrally formed feed section, an input section and a radiation section.
- the feed section is formed using microstrip technology.
- the input section includes a balun transformer.
- radiator arrangements have too small a bandwidth for some applications.
- the dipole-shaped emitter arrangement comprises two pairs of emitter halves which are arranged rotated by 90 ° with respect to one another, so that the dipole-shaped emitter arrangement sends and / or receives in two polarization planes perpendicular to one another.
- Two radiator halves, which form a pair, are arranged diagonally to one another.
- the radiator halves can be arranged or arranged in a radiator plane at a distance in front of a reflector parallel to the latter.
- a balancing and / or support arrangement with a first end and a base at a second end opposite the first end serves to hold the two radiator halves, these being arranged at the first end of the support arrangement.
- the base of the carrier arrangement is fastened or can be fastened to a base body.
- At least two electrically conductive partial circumferential frames are provided, which are arranged at a distance from one another in the height direction (ie along) the carrier arrangement between the radiator plane and the base, with the at least two electrically conductive partial circumferential frames each defining or delimiting an opening .
- the at least two partial circumferential frames are aligned approximately parallel to the radiator plane.
- Each of the two partial peripheral frames includes at least one interruption that extends through the entire width of the partial peripheral frame, so that the respective partial peripheral frame has at least two ends. This achieves a bandwidth not previously achieved.
- each partial peripheral frame formed by the at least one interruption are directed towards one another. This means that the interruption only extends over a smaller length of the corresponding partial circumferential frame (but nevertheless over the entire width).
- the interruption has a length which can be less than 1 cm, preferably less than 5 mm. Instead of an interruption, one can therefore speak of a slot.
- the at least two partial circumferential frames are preferably arranged approximately parallel to one another, but are nevertheless galvanically separated from one another.
- the at least two partial peripheral frames overlap at least completely or at least partially in plan view.
- the at least one interruption extends to less than 30%, preferably to less than 20%, more preferably to less than 10%, more preferably to less than 5% of the length of the partial circumferential frame in plan view of the respective partial peripheral frame.
- the two partial circumferential frames it would also be possible here for the two partial circumferential frames to be arranged rotated relative to one another. Good results are achieved when the interruptions in the at least two partial circumferential frames only partially overlap or are arranged to one another without any overlap. The latter means that in a plan view of the partial circumferential frames, the interruptions are not arranged directly one above the other, that is to say in a straight line that runs perpendicular to the radiator plane.
- each partial peripheral frame has several interruptions, whereby several partial peripheral frame segments are formed.
- the partial circumferential frame is divided into several partial circumferential frame segments.
- These partial peripheral frame segments can all be of the same length. In a special exemplary embodiment, however, it is also possible for one of these partial peripheral frame segments to be longer than others or than all of the other partial peripheral frame segments.
- the partial circumferential frames with their respective interruption or their respective interruptions are preferably arranged symmetrically to one another.
- This means that the interruptions of the at least two partial circumferential frames are arranged rotated relative to one another by ⁇ 360 ° / n, where n is the total number of all interruptions is in the at least two partial circumferential frames.
- the value 2 is assigned to n.
- a corresponding arrangement in accordance with the above formula is also desirable in the event that there are three, four, or five partial circumferential frames.
- the at least two partial peripheral frames are approximately circular in plan view or describe approximately a circle on average.
- the partial circumferential frames also have a different shape, such as a square and / or a rectangular shape. They can also be oval-shaped. In general, an n-polygonal shape is therefore possible.
- all partial circumferential frames have the same shape in plan view, and these can be rotated relative to one another.
- mutual rotation is understood to mean that the center points or the focal points of the at least two partial circumferential frames are still arranged one above the other in plan view after the rotation. A straight line running through these points would preferably be perpendicular to the radiator plane.
- the at least two partial circumferential frames preferably have the same inner and the same outer diameter. However, it would also be possible for only the inside diameter or only the outside diameter to be the same. Furthermore, it would also be conceivable that neither the inside diameter nor the outside diameter of the at least two frames is the same. It is therefore conceivable that all partial peripheral frames have different geometries. It would also be possible for the at least two partial circumferential frames to be arranged offset from one another by a certain length, wherein they still at least partially overlap in plan view. The overlap preferably takes place over the entire length of the partial circumferential frames, with the exception of the respective interruptions, but not necessarily over the entire width. The overlap can also only take place over a section.
- the at least two partial circumferential frames are preferably constructed symmetrically, in particular radially symmetrically.
- the at least two partial circumferential frames are preferably approximately the same width in plan view. It could also be possible that one frame is wider than the other frame. This relates not only to the diameter, but also to the width of the actual frame web of the partial peripheral frame.
- the at least two partial circumferential frames have several frame sections that are contiguous, with the distances between the individual frame sections alternating from a larger distance to a smaller distance and vice versa towards a longitudinal axis that penetrates the center of the dipole-shaped radiator arrangement changed.
- the individual frame sections are preferably connected to one another via an approximately radially extending connecting section.
- the partial peripheral frames can have a meandering or gear-like basic structure in plan view.
- At least one dielectric is introduced between the at least two partial circumferential frames.
- the shape of the dielectric is adapted to the shape of the respective partial peripheral frame in a plan view of the dipole-shaped radiator arrangement.
- the at least one dielectric is arranged congruently or rotated with respect to one or both partial circumferential frames in a plan view of the dipole-shaped radiator arrangement.
- the height of the coupling can also be adjusted here.
- the dielectric can also be created in that one or all of the partial circumferential frames are hard anodized, as a result of which an insulating hard anodized layer is formed.
- the dipole-shaped radiator arrangement also has a director, the director being aligned parallel to the radiator plane.
- the radiator halves are arranged closer to the base than the director.
- the director can have a round, rectangular, oval or generally n-polygonal basic structure in plan view. This basic structure is preferably predominantly free of openings.
- the dipole-shaped radiator arrangement comprises at least one holding and spacing element.
- the partial circumferential frames are, for example, sandwiched together with a dielectric located between them in the holding and spacer element.
- the holding and spacer element can also have a holding clamp or have the shape of a holding clamp, this being designed to apply an additional holding force to the arrangement of the partial circumferential frame and dielectric.
- the retaining clip preferably has a U-shape or a shape similar to this shape.
- the at least one retaining clip includes a support section.
- the support section is arranged within the interruption of a partial peripheral frame, as a result of which two end faces of the two ends, which are formed by the interruption on the partial peripheral frame, are supported on the support section.
- the individual partial circumferential frames can be aligned symmetrically to one another because preferably at least one support section of a retaining clip engages in each interruption.
- This also ensures that the partial circumferential frames are arranged non-rotatably on the dipole-shaped radiator arrangement after assembly.
- the holding and spacing element comprises in another embodiment a support profile.
- the support profile is adapted to the contour of at least one peripheral frame and has a length that corresponds to at least a partial length of the peripheral frame.
- the inside of the at least one partial circumferential frame is supported on the at least one support profile or on its outside. This increases the stability of the entire arrangement and at the same time it is ensured that the partial circumferential frames are fixed in place after assembly and remain fixed in place.
- the at least one holding and spacer element is via a preferably releasable force and / or form-fit connection, which is preferably a clip or snap connection, on one or on all radiator halves or directly on the Support arrangement held.
- a preferably releasable force and / or form-fit connection which is preferably a clip or snap connection, on one or on all radiator halves or directly on the Support arrangement held.
- Other types of force-fit and / or form-fit connection are also conceivable.
- the at least one holding and spacer element can also comprise a spacer, for example in the form of the dielectric. This is then placed between the individual partial circumferential frames and provides galvanic isolation.
- the holding and spacer element is preferably produced in one piece together with the spacer or the dielectric. Production is preferably carried out in a plastic injection molding process.
- the Figures 1 , 2 and 4th show a three-dimensional representation of an antenna arrangement 20 according to the invention which has at least one dipole-shaped radiator arrangement 1.
- the dipole-shaped radiator arrangement 1 comprises two pairs 2, 3 of radiator halves 2a, 2b, 3a, 3b. These two pairs 2, 3 of radiator halves 2a, 2b and 3a, 3b are shown in plan view Figure 7C clearly visible, which shows an antenna arrangement 20 with at least two dipole-shaped radiator arrangements 1.
- These two pairs 2, 3 of radiator halves 2a, 2b or 3a, 3b are arranged rotated by 90 ° to one another so that the dipole-shaped radiator arrangement 1 in two mutually perpendicular polarization planes 4a, 4b (see Figure 7C ) sends and / or receives.
- the radiator halves 2a, 2b or 3a, 3b are aligned in a radiator plane 5.
- This emitter plane 5 is for example in Figure 7B which shows a side view of the antenna arrangement 20 with at least two dipole-shaped radiator arrangements 1.
- the radiator halves 2a, 2b or 3a, 3b can be or are arranged at a distance in front of a reflector 6, parallel to the latter.
- the reflector 6 is in Figure 2 shown.
- the dipole-shaped radiator arrangement 1 also comprises a balancing and / or support arrangement 7, which is referred to below as a support arrangement 7, which has a first end 7a and a second end 7b.
- the second end 7b is opposite the first end 7a.
- the Radiator halves 2a, 2b or 3a, 3b are arranged at the first end 7a of the carrier arrangement 7.
- the second end 7b of the carrier arrangement 7 can be fastened or fastened at least indirectly to the reflector 6.
- An indirect fastening can be present, for example, when the second end 7b of the carrier arrangement 7 is fastened to a circuit board 21, wherein a metal layer of this circuit board 21 could simultaneously form the reflector 6.
- a circuit board 21 is for example in the Figures 7A to 8C shown.
- a separate reflector 6 below the circuit board 21 could also be present.
- a direct attachment to the reflector 6 would exist if the carrier arrangement 7 is attached directly to the reflector 6 with the second end 7b. This fact is in Figure 2 shown.
- the reflector 6 or the circuit board 21 can also be referred to as a base body.
- the second end 7b of the carrier arrangement 7 can also be referred to as the base 10.
- the carrier arrangement 7 consists and / or comprises a carrier 7c.
- the carrier arrangement comprises one carrier 7c for each radiator half 2a, 2b or 3a, 3b.
- Each of these supports 7c extends essentially or exclusively parallel along a longitudinal axis 8 (see FIG Figure 7B , 8B ), which penetrates the dipole-shaped radiator arrangement 1 in the middle.
- the carriers 7c are galvanically connected to the radiator halves 2a, 2b and 3a, 3b at the first end 7a, that is to say at the first end 7a of the carrier arrangement 7.
- a capacitive coupling of the carrier 7c to the first end 7a of the carrier arrangement 7 would also be possible.
- a gap 9 is formed in each case, which preferably extends from the first end 7a to the second end 7b and is used for balancing.
- the carriers 7 are preferably galvanically connected to one another at the second end 7b of the carrier arrangement 7, that is to say at their base 10.
- the dipole-shaped radiator arrangement 1 is preferably fed in such a way that two cables, each with an inner and an outer conductor, are connected to a pair 2, 3 of the radiator halves 2a, 2b or 3a, 3b.
- the outer conductor of the first cable is connected to a first radiator half 2a of the first pair 2.
- the inner conductor of the first cable is connected to the second radiator half 2b of the first pair 2.
- the outer conductor of the second cable is connected to the first radiator half 3a of the second pair 3.
- the inner conductor of the second cable is correspondingly connected to the second radiator half 3b of the second pair 3.
- the inner conductors therefore cross one another.
- the connection is preferably made at the first end 7a of the carrier arrangement 7. In principle, it would also be possible for the outer conductors to cross one another.
- the radiator halves 2a, 2b or 3a, 3b have an essentially square radiator frame 11.
- the radiator frames 11 of the radiator halves 2a, 2b or 3a, 3b each have a recess 12 which delimit an opening.
- Each radiator frame 11 is made of four sides, two sides of a radiator frame 11 being arranged parallel to two other sides of another radiator frame 11.
- the radiator halves 2a, 2b or 3a, 3b are fed at the point at which two inner sides 11b of a radiator half 2a, 2b or 3a, 3b meet.
- Each inner side 11b is connected to an outer side 11a.
- the outer corner is preferably beveled (not shown).
- the radiator halves 2a, 2b or 3a, 3b can also be designed without a recess 12.
- the sides of the recess 12 are arranged parallel to the sides of the radiator frame 11.
- the sides of the recess 12 can also be rotated at an angle, in particular of 45 °, with respect to the sides of the radiator frame 11.
- the recesses 12 of the radiator frame 11 have the shape of a square when viewed from above. However, they can be generally rectangular or have a different cross section. This means that the recesses 12 can be selected to be different over a wide range with regard to their size and shape.
- radiator frames 11 of the radiator halves 2a, 2b or 3a, 3b are connected at their first corners to the first end 7a of the individual supports 7c of the support arrangement 7.
- the other corners are preferably less beveled or not beveled.
- the beveled corners are those corners of the radiator frame 11 which are most distant from the longitudinal axis 8.
- At least two electrically conductive partial circumferential frames 15a, 15b are additionally provided, which are arranged at a distance from one another between the radiator plane 5 and the base 10 in the height direction of the carrier arrangement 7.
- the at least two electrically conductive partial circumferential frames 15a, 15b each define or delimit an opening 17.
- the at least two partial circumferential frames 15a, 15b are aligned parallel to the radiator plane 5. They are also preferably aligned approximately parallel to one another.
- the wording "approximately” means that the at least two partial circumferential frames 15a, 15b are also inclined to one another by a few degrees, preferably by less than 5 °, more preferably by less than 3 °, more preferably by less than 1 ° can.
- Each of the at least two partial peripheral frames 15a, 15b comprises at least one interruption 16.
- the interruption 16 penetrates the entire width of the respective partial peripheral frame 15a, 15b at at least one point, so that the respective partial peripheral frame 15a, 15b has at least two ends 18.
- the at least two ends 18 of the partial circumferential frames 15a, 15b formed by the at least one interruption 16 are directed towards one another.
- the interruptions 16 preferably extend only over a certain length of the respective partial circumferential frame 15a, 15b, so that the interruptions 16 can also be referred to as a slot.
- the partial circumferential frames 15a, 15b consist of an electrically conductive material or are coated with an electrically conductive material.
- the partial circumferential frames 15a, 15b are preferably produced in a stamping process, the respective interruptions 16 also being introduced in this process, for example.
- a dielectric 19 is introduced between the partial circumferential frames 15a, 15b, which also functions as a spacer at the same time, so that the at least two partial circumferential frames 15a, 15b are arranged galvanically separated from one another.
- the distance between the individual partial circumferential frames 15a, 15b could also take place via the suspension of the individual partial circumferential frames 15a, 15b. In this case, air would act as a dielectric.
- the at least two partial circumferential frames 15a, 15b are in particular also galvanically separated from the carrier arrangement 7 and the radiator halves 2a, 2b, 3a, 3b and furthermore in particular galvanically separated from all other structures.
- the at least two partial circumferential frames 15a, 15b are in particular arranged closer to the reflector 6 or the common base body 6, 21, on which the base 10 of the carrier arrangement 7 is arranged, than all (directly) fed radiator halves 2a, 2b, 3a, 3b or . all (directly) fed emitters.
- Figure 3A are the two partial peripheral frames 15a, 15b from the Figures 1 and 2 shown in isolation.
- the at least one interruption 16 extends to less than 30%, preferably to less than 20%, more preferably to less than 10%, more preferably to less than 5% of the length of the partial circumferential frame 15a, 15b.
- the at least two partial circumferential frames 15a, 15b are arranged rotated relative to one another. This means that the interruptions 16 of the at least two partial circumferential frames 15a, 15b are arranged completely without overlapping with respect to one another. This achieves a very high bandwidth. In principle, it would also be possible for the interruptions 16 to partially overlap. Complete overlapping, that is to say a congruent arrangement of the interruptions 16, is not desirable.
- the partial peripheral frames 15a, 15b have several interruptions 16, whereby each partial peripheral frame 15a, 15b is divided into several partial peripheral frame segments 15a 1 , 15a 2 , 15a 3 , 15a 4 ; 15b 1 , 15b 2 , 15b 3 , 15b 4 are divided. It is possible that one of the partial peripheral frame segments 15a 1 , 15b 1 , of a partial peripheral frame 15a, 15b is longer than the other or the other partial peripheral frame segments 15a 2 , 15a 3 , 15a 4 ; 15b 2 , 15b 3 , 15b 4 of the respective partial peripheral frame 15a, 15b. Alternatively, they could all be of the same length.
- the interruptions 16 preferably each have the same size. However, they could also differ in their size and shape.
- the at least two partial peripheral frames 15a, 15b are approximately circular in plan view.
- the at least two partial circumferential frames 15a, 15b completely, ie completely, cover one another in plan view with the exception of the respective interruption 16.
- the at least two partial circumferential frames 15a, 15b only partially overlap in plan view with the exception of the respective interruption 16. This would be the case if a partial circumferential frame 15a is arranged offset with respect to another partial circumferential frame 15b, the offset occurring transversely to the longitudinal axis 8.
- an only partial overlap could also take place in that the (inner / outer) Diameter of a partial peripheral frame 15a is smaller or larger than the diameter of the at least one other partial peripheral frame 15b. Even over a changing width b of the respective frame web of a partial circumferential frame 15a, 15b, an only partial overlap could be realized.
- the width b of the partial peripheral frames 15a, 15b need not be constant. You can change within a partial circumferential frame 15a, 15b over its length.
- the at least two partial peripheral frames 15a, 15b would also be possible.
- these could have the shape of an oval, a rectangle (in particular a square) or, more generally, the shape of an n-polygon.
- a dipole-shaped radiator arrangement 1 which has three partial circumferential frames 15a, 15b, 15c arranged parallel to one another. Each of these at least three partial circumferential frames 15a, 15b, 15c has at least one interruption 16.
- the at least three partial peripheral frames 15a, 15b, 15c are shown separately again. All three partial circumferential frames 15a, 15b, 15c define an opening 17 through which the carrier arrangement 7 is guided.
- the respective interruptions 16 are not shown overlapping. “Overlapping” is to be understood as meaning that the interruptions 16 of three adjacent partial peripheral frames 15a, 15b, 15c are not arranged congruently in plan view.
- the interruption 16 of the first partial circumferential frame 15a could be arranged at the same point as in plan view the interruption 16 of the third partial peripheral frame 15c when the second partial peripheral frame 15b has its interruption 16 at a different location in plan view.
- the interruptions 16 are always rotated relative to one another in plan view.
- the Figures 6A to 6C show a further exemplary embodiment of the at least two partial circumferential frames 15a, 15b.
- a dielectric 19d which is preferably made of plastic, is located between the two partial circumferential frames 15a, 15b.
- the two partial circumferential frames 15a, 15b each have several frame sections 25a, 25b, the distances between the individual frame sections 25a, 25b alternating from a larger distance to a smaller distance towards a longitudinal axis 8 which passes through the center of the dipole-shaped radiator arrangement 1 and vice versa alternates.
- the two partial peripheral frames 15a, 15b have in the Figures 6A to 6C the shape of a gear, or the individual frame sections 25a, 25b run approximately in a meander shape.
- the individual frame sections 25a, 25b are connected to one another via a connecting section 25c.
- This connecting section 25c preferably runs radially.
- the at least two partial circumferential frames 15a, 15b each preferably have more than three, more preferably each more than five frame sections 25a, 25b.
- the at least one interruption 16 is made in each partial circumferential frame 15a, 15b in one of the frame sections.
- the frame section 25a which is further spaced from the longitudinal axis 8, can also be referred to as the outer frame section 25a.
- that frame section 25b which is arranged closer to the longitudinal axis 8 is also referred to as the inner frame section 25b.
- An inner frame section 25b is connected at its ends to two outer frame sections 25a via two connecting sections 25c.
- the same also applies to an outer frame section 25a, which is connected at its ends to two inner frame sections 25b via two connecting sections 25c.
- the shape of the dielectric 19 is adapted to the shape of the respective partial peripheral frames 15a, 15b in plan view of the dipole-shaped radiator arrangement 1.
- the dielectric 19 also comprises sections which are arranged closer to the longitudinal axis 8 than other sections which are further spaced from it. Both sections alternate.
- Figure 6B shows, however, that the dielectric 19 is arranged congruently together with the at least two partial circumferential frames 15a, 15b, 15a, 15b.
- the dielectric 19 is rotated further in relation to the at least two peripheral frames 15a, 15b than in FIG Figure 6A .
- an outer section of the dielectric 19 lies below or above an inner frame section 25b of the at least two partial peripheral frames 15a, 15b.
- Figure 2 shows an additional reflector 6 on which the base 10 of the dipole-shaped radiator arrangement 1 is arranged.
- the reflector 6 has a trough shape.
- the reflector 6 comprises a reflector base body 6a, to which at least two reflector walls 6b are connected.
- An angle between the reflector walls 6b and the reflector base body 6a is preferably greater than 90 °.
- the reflector 6 could also lie exclusively in one plane.
- the Figures 7A to 7C show the antenna arrangement 20, which has at least two dipole-shaped radiator arrangements 1, the dipole-shaped radiator arrangements 1 are preferably constructed identically to one another and aligned in the same way.
- the distance between the two dipole-shaped radiator arrangements 1 is preferably set such that MIMO operation (multiple input multiple output) is possible. It could also be selected in such a way that different frequency bands can be served with the different dipole-shaped radiator arrangements 1.
- the two dipole-shaped radiator arrangements 1 are arranged on a common circuit board 21 in this case.
- This circuit board 21 can be screwed onto the reflector 6, as shown in FIG Figure 2 is shown.
- Each dipole-shaped radiator arrangement 1 comprises at least two partial peripheral frames 15a, 15b. These partial circumferential frames 15a, 15b are held by at least one holding and spacer element 35. This at least one holding and spacer element 15a, 15b comprises at least one holding bracket 36. This at least one holding bracket 36 engages around the at least two partial circumferential frames 15a, 15b. The at least one retaining clip 36 rests against the outer surfaces 36a, 36b of the two outer partial peripheral frames 15a, 15b. The at least one retaining clip 36 is preferably U-shaped.
- the retaining clip 36 may have a pretension, so that an additional force on the surfaces 36a, 36b of the two outermost Partial circumferential frame 15a, 15b acts, whereby the at least two partial circumferential frames 15a, 15b are additionally pressed together. This could be particularly desirable when a dielectric 19 made of plastic is arranged between the respective partial peripheral frames 15a, 15b.
- the at least one holding and spacer element 35 is preferably produced in one piece together with the at least one holding clip 36 in a plastic injection molding process.
- the retaining clip 36 does not necessarily have to be formed on the retaining and spacer element 35.
- the holding and spacer element 35 could be supported with one end, for example, on the reflector 6 or the circuit board 21 and with the other end hold or encompass the partial circumferential frame 15a, 15b.
- the at least one retaining clip 36 also includes a support section 37.
- the support section 37 is arranged within an interruption 16 of the partial circumferential frame 15a, 15b, or dips into it.
- the end faces of the two ends 18, which are formed by the interruption 16 on the partial circumferential frame 15a, 15b, can be supported on the support section 37.
- the retaining clip 36 together with the support section 37 does not protrude beyond the circumference of the at least two partial circumferential frames 15a, 15b.
- the at least one holding and spacer element 35 preferably comprises a support profile 38.
- the support profile 38 is adapted with its outer side to the contour of at least one partial peripheral frame (preferably of all partial peripheral frames) 15a, 15b and has a length that corresponds to at least a partial length of the partial peripheral frame 15a, 15b.
- the at least one partial circumferential frame 15a, 15b is supported with its inside on the at least one support profile 38. In this case, all of the partial circumferential frames 15a, 15b, 15c can preferably be supported on the support profile 38.
- the holding and spacer element 35, together with the at least one holding clip 36, as well as the support section 37 and the support profile 38, is preferably formed in one piece, that is, in one piece.
- the at least one holding and spacer element 35 which holds the at least two partial circumferential frames 15a, 15b, is preferably attached to the dipole-shaped radiator arrangement 1 and / or to the base body 6, 21.
- the at least one holding and spacer element 1 comprises a force and / or form-fit connection 39.
- This force-fit and / or form-fit connection 39 is in particular in shape a clip or snap connection.
- the at least one holding and spacing element 35 can be held on one or on all radiator halves 2a, 2b, 3a, 3b or on the carrier arrangement 7 via this force and / or form-fit connection 39.
- a dielectric 19 is introduced between the two partial circumferential frames 15a, 15b. With such a dielectric it can also be a spacer. As a result, the individual partial circumferential frames 15a, 15b are galvanically isolated from one another.
- This dielectric 19 or this dielectric spacer can be formed in one piece together with the holding and spacer element 35, to which, as already mentioned, the at least one holding clip 36 with the holding section 37 and the support profile 38 belongs.
- This also includes the force-fit and / or form-fit connection 37, which is preferably arranged at the opposite end of the holding and spacer element 35 on which the holding clip 36 is formed.
- the outer diameter of the individual partial circumferential frames 15a, 15b is less than 150% of the wavelength of the center frequency, preferably less than 120%, more preferably less than 100%, more preferably less than 80% of the wavelength of the center frequency and is more than 10% of the wavelength of the Center frequency, preferably more than 40%, or more than 80%, or more than 120%, or more than 140% of the wavelength of the center frequency.
- the outer diameter of the individual partial circumferential frames is 20% to 80% the wavelength of the center frequency. It is preferably 30% to 70%, more preferably 40% to 60% and more preferably 50% of the wavelength of the center frequency.
- the inner diameter of the individual partial peripheral frames 15a, 15b can be of a similar order of magnitude. However, it preferably only has a length that corresponds to less than 99% of the length of the outer diameter of the individual partial circumferential frames 15a, 15b. More preferably, the length is less than 95%, more preferably less than 90%, more preferably less than 80%, more preferably less than 70%, more preferably less than 60% and more preferably less than 50% of the length of the outer diameter of the individual Partial circumferential frames 15a, 15b. However, it is preferably greater than 10%, or 20%, or 30%, or 50% or 60% or 70% or 80 of the length of the outer diameter.
- the dipole-shaped radiator arrangement 1 Due to the construction of the dipole-shaped radiator arrangement 1 according to the invention, it operates in a very broadband manner and is suitable for use in a frequency range from 500 MHz to 5000 MHz.
- Frequency ranges whose upper limit frequency is less than 4500 MHz, or less than 4000 MHz, or less than 3500 MHz, or less than 3000 MHz, or less than 2700 MHz can be served, with the lower limit frequency preferably being higher than 500 MHz, or greater than 600 MHz, or greater than 800 MHz, or greater than 900 MHz, or greater than 1200 MHz, or greater than 1500 MHz, or greater than 1800 MHz, or greater than 2000 MHz, or greater than 2500 MHz, or greater than 3000 MHz.
- the distance between the individual partial circumferential frames 15a, 15b is between 0.1 and 0.5 mm. However, it can also be larger or smaller.
- FIGS 8A to 8C also show an antenna arrangement 20 with at least two dipole-shaped radiator arrangements 1. These are constructed essentially in accordance with the antenna arrangement 20, as they are with regard to FIG Figures 7A to 7C has been described, which is hereby incorporated by reference.
- each dipole-shaped radiator arrangement 1 also comprises a director 30, which is likewise aligned parallel to the radiator plane 5.
- the director 30 has a round cross-section in plan view. Other cross-sectional shapes are also conceivable.
- the radiator halves 2a, 2b, 3a, 3b are arranged closer to the base 10 than the director 30. This means that the director 30 together with the radiator halves 2a, 2b, 3a, 3b and the partial surrounding frames 15a, 15b, 15c on the same side of the reflector 6 or, in general, of the base body 6, 21 are arranged at a distance from this.
- the director 30, compared to the radiator halves 2a, 2b, 3a, 3b and the partial perimeter frames 15a, 15b, 15c, is arranged at the furthest distance from the point of the reflector 6 or the base body 6, 21 at which the second end 7b , so the base 10 of the carrier assembly 7 is attached.
- the director 30 preferably has a smaller diameter than the partial circumferential frames 15a, 15b.
- the partial circumferential frames 15a, 15b, 15c are preferably each made in one piece by a stamping process.
- the same also applies to the two pairs 2, 3 of radiator halves 2a, 2b and 3a, 3b, which are produced in one piece together with the carrier arrangement 7 in a stamping process. These can also be shaped by an additional bending process.
- the dipole-shaped radiator arrangement 1 is designed in particular in the form of a vector dipole, cross dipole or a dipole square.
- the longitudinal axis 8 is also a central axis 8 which penetrates the dipole-shaped radiator arrangement 1 in the middle, namely perpendicular to the reflector or radiator plane 5.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
- Die Erfindung betrifft eine Antennenanordnung mit zumindest einer dipolförmigen Strahleranordnung.
- Dipolstrahler sind beispielsweise aus den Vorveröffentlichungen
DE 197 22 742 A sowieDE 196 27 015 A bekannt geworden. Derartige Dipolstrahler können dabei eine übliche Dipolstruktur aufweisen oder beispielsweise aus einem Kreuzdipol oder einem Dipolquadrat etc. bestehen. - Ein sogenannter Vektor-Dipol ist z.B. aus der Vorveröffentlichung
WO 00/39894 A1 - Aus der
WO 2004/100315 A1 ist eine weitere Ausgestaltung des vorstehend genannten Vektordipols bekannt geworden, bei welcher die Flächen jeweils einer Strahlerhälfte einer Polarisation zu einem großen Teil vollflächig geschlossen sein können. - Derartige Dipolstrahler werden üblicherweise so gespeist, dass eine Dipol- oder Strahlerhälfte mit einem Außenleiter gleichstrommäßig (also galvanisch) verbunden wird, wohingegen der Innenleiter eines koaxialen Anschlusskabels mit der zweiten Dipol- oder Strahlerhälfte gleichstrommäßig (also wiederum galvanisch) verbunden wird. Die Einspeisung erfolgt dabei jeweils an den aufeinander zu weisenden Endbereichen der Dipol- oder Strahlerhälften.
- Aus der
WO 2005/060049 A1 ist dabei bekannt, eine Außenleiterspeisung mittels einer kapazitiven Außenleiterkopplung durchzuführen. Die jeweils zugehörige Hälfte der Trageinrichtung der Strahleranordnung kann dazu an dem Fußbereich oder an der Basis der Trageinrichtung galvanisch auf Masse gelegt sein oder kapazitiv mit Masse gekoppelt sein. - Aus der
CN 203386887 U ist eine dipolförmige Strahleranordnung bekannt, die zwei Paare von Strahlerhälften umfasst, die um 90° verdreht zueinander angeordnet sind, wodurch die dipolförmige Strahleranordnung in zwei senkrecht zueinander stehenden Polarisationsebenen sendet. - Weiterhin wird ein passiver Strahlformungsrahmen gezeigt, der in Richtung Reflektor parallel zu den Strahlerhälften beabstandet angeordnet ist. Außerdem wird ein Direktor gezeigt, der parallel zu den Strahlerhälften angeordnet ist, wobei die Strahlerhälften näher in Richtung des Reflektors angeordnet sind als der Direktor.
- Aus der
US 2008/0111757 A1 ist eine dualpolarisierte Antenne bekannt. Diese umfasst teilkreisförmige Strahlerelemente, die von einem gemeinsamen kreisförmigen Strahlerelement umgebenen sind. Alle Strahlerelemente sind unterbrechungsfrei ausgeführt und in einer gemeinsamen Ebene angeordnet. - Aus der
US 2011/0043425 A1 ist ein Antennensystem bekannt. Das Antennensystem umfasst "high band"-Elemente und "low-band"-Elemente, wobei letztere ringförmig ausgestaltet sind. Zwei ringförmige "low-band"-Elemente sind in unterschiedlichen Ebenen angeordnet und umgeben dabei ein "high band"-Element. Die "low-band"-Elemente sind unterbrechungsfrei ausgestaltet. - Aus der
US 2006/0232490 A1 ist ein Antennensystem mit einem Kreuzdipol und einem Microstrip-Ring bekannt. Das Kreuzdipol ist dabei von dem Microstrip-Ring umgeben, der aus mehreren unterbrechungsfreien Ringen bestehen kann, die in verschiedenen Ebenen angeordnet sind. Der unterste Ring wird dabei über vier T-förmige Speisestrukturen gespeist, wobei eine Kopplung von dem unteren zu dem oberen Ring stattfindet. - Aus der
CN 101 505 007 A ist eine Strahleranordnung bekannt, die auf einer Leiterplatte aufgebaut ist. Sie umfasst zwei Paare von Strahlerhälften, die auf einer Oberseite der Leiterplatte angeordnet sind. Die Leiterplatte ist dabei über eine Trägerstruktur von einer Basis beabstandet angeordnet. Die Unterseite der Leiterplattenanordnung umfasst parasitäre Strukturen aus einem elektrisch leitenden Material. Diese liegen in einer gemeinsamen Ebene. - Die
EP 2 950 385 A1 beschreibt eine Multibandantenne. Diese umfasst eine Dipolantennenstruktur, die mit einer Massefläche gekoppelt und dazu ausgebildet ist, um elektromagnetische Wellen in einem ersten Frequenzband abzustrahlen. Die Multibandantenne umfasst ebenfalls eine Invertierte-F-Antennenstruktur, die mit der Massefläche gekoppelt und dazu ausgebildet ist, um elektromagnetische Wellen in einem zweiten Frequenzband abzustrahlen. - Aus der
US 2006/114168 A1 ist eine Antennenstruktur bekannt, die zwei Paare von Strahlerhälften aufweist, die über eine Trägerstruktur beabstandet zur Basis angeordnet sind. An der Trägerstruktur sind Flügel ausgebildet, die sich in Richtung der Strahlhälften erstrecken. Ein weiteres Antennensystem erstreckt sich von der Basis weg in Richtung der Strahlerhälfte und endet beabstandet davon. - Die
WO 2005/122331 A1 beschreibt eine dual-polarisierte Antenne mit variabler Strahlneigung. Die Antenne kann Dipolstrahlungselemente einschließlich Direktoren aufweisen und kann auf einer Vielzahl von geneigten Bauteilen angeordnet sein, um den Downtilt einstellen zu können. Die Direktoren sind über den jeweiligen Dipolstrahlern angeordnet. - Aus der
US 2004/183739 A1 ist eine dual-polarisierte gefaltete Dipolantenne bekannt. Diese umfasst eine erste Einheit, die zum Senden und/oder Empfangen von Signalen in einer ersten Polarisationsrichtung ausgebildet ist. Weiterhin gibt es eine zweite Einheit, die zum Senden und/oder Empfangen von Signalen in einer zweiten Polarisationsrichtung ausgebildet ist. Jede Einheit beinhaltet einen integral ausgebildeten Zuführabschnitt, einen Eingangsabschnitt und einen Strahlungsabschnitt. Der Zuführabschnitt ist in Mikrostreifenleitertechnik gebildet. Der Eingangsabschnitt umfasst einen Balun-Transformator. - Nachteilig an den Strahleranordnungen aus dem Stand der Technik ist, dass die Strahleranordnungen für manche Anwendung eine zu geringe Bandbreite aufweisen.
- Es ist daher die Aufgabe der hier vorliegenden Erfindung eine dipolförmige Strahleranordnung zu schaffen, die in Mobilfunkantennen eingesetzt werden kann, die eine Bandbreite aufweist, die höher ist als bei den aus dem Stand der Technik bekannten Strahleranordnungen.
- Die Aufgabe wird durch die Antennenanordnung mit zumindest einer dipolförmigen Strahleranordnung gemäß dem Anspruch 1 gelöst. In den Unteransprüchen sind erfindungsgemäße Weiterbildungen der Antennenanordnung mit zumindest einer oder zumindest zwei dipolförmigen Strahleranordnung angegeben.
- Die dipolförmige Strahleranordnung umfasst zwei Paare von Strahlerhälften, die um 90° verdreht zueinander angeordnet sind, so dass die dipolförmige Strahleranordnung in zwei senkrecht zueinander stehenden Polarisationsebenen sendet und/oder empfängt. Zwei Strahlerhälften, die dabei ein Paar bilden, sind diagonal zueinander angeordnet. Die Strahlerhälften sind in einer Strahlerebene im Abstand vor einem Reflektor parallel zu diesem anordenbar oder angeordnet. Eine Symmetrier- und/ oder Trägeranordnung mit einem ersten Ende und einer Basis an einem zweiten Ende, das dem ersten Ende gegenüberliegt, dient dazu, die beiden Strahlerhälften zu halten, wobei diese an dem ersten Ende der Trägeranordnung angeordnet sind. Die Basis der Trägeranordnung ist an einem Grundkörper befestigt oder befestigbar. Bei diesem handelt es sich beispielsweise um eine Platine oder einen Reflektor, wobei über die Platine vorzugsweise zumindest eine mittelbare Befestigung an dem Reflektor erfolgt. Um die Bandbreite zusätzlich zu erhöhen sind zumindest zwei elektrisch leitfähige Teilumfangsrahmen vorgesehen, die zwischen der Strahlerebene und der Basis in Höhenrichtung (d.h. entlang) der Trägeranordnung zueinander beabstandet angeordnet sind, wobei die zumindest beiden elektrisch leitfähigen Teilumfangsrahmen jeweils eine Öffnung definieren bzw. eine solche umgrenzen. Die zumindest beiden Teilumfangsrahmen sind dabei in etwa parallel zu der Strahlerebene ausgerichtet. Jeder der beiden Teilumfangsrahmen umfasst zumindest eine Unterbrechung, die sich durch die gesamte Breite des Teilumfangsrahmens erstreckt, sodass der jeweilige Teilumfangsrahmen zumindest zwei Enden aufweist. Dadurch wird eine bis dato nicht erreichte Bandbreite erzielt. Frequenzbereiche, die bisher von mindestens zwei verschiedenen Strahlern und/oder Spalten bzw. Reihen von Antennen abgedeckt wurden, können jetzt von einem einzigen System abgestrahlt werden. Dies bedeutet, dass jetzt zumindest eine Antenne eingespart werden kann, was zu einer großen Kosteneinsparung führt. Dieser Vorteil wird auch nicht mit einem Antennensystem gemäß der
EP 1 496 569 A1 erreicht, bei welchem unterhalb der Strahlerebene entweder mehrere passive Strahler in Form von geschlossenen Ringen oder zumindest ein aktiv gespeister Strahler, ebenfalls in Form eines geschlossenen Ringes angeordnet ist. - Gemäß einer bevorzugten Ausführungsform der Antennenanordnung sind die durch die zumindest eine Unterbrechung gebildeten zumindest beiden Enden jedes Teilumfangsrahmens aufeinander zu gerichtet. Dies bedeutet, dass die Unterbrechung sich jeweils nur über eine kleinere Länge des entsprechenden Teilumfangsrahmens erstreckt (aber dennoch über die gesamte Breite). Die Unterbrechung hat dabei eine Länge die weniger als 1 cm, vorzugsweise weniger als 5 mm betragen kann. Anstelle einer Unterbrechung kann daher auch von einem Schlitz gesprochen werden.
- Vorzugsweise sind die zumindest beiden Teilumfangsrahmen in etwa parallel zueinander angeordnet, aber dennoch galvanisch voneinander getrennt. Insbesondere überdecken sich die zumindest beiden Teilumfangsrahmen in Draufsicht mit Ausnahme der Unterbrechung zumindest völlig oder zumindest teilweise. Dadurch kann eine Kopplung zwischen den zumindest beiden Teilumfangsrahmen erhöht werden, wodurch die Bandbreite weiter ansteigt.
- Gemäß einem weiteren Ausführungsbeispiel erstreckt sich in Draufsicht auf den jeweiligen Teilumfangsrahmen die zumindest eine Unterbrechung auf weniger als 30%, vorzugsweise auf weniger als 20%, weiter vorzugsweise auf weniger als 10%, weiter vorzugsweise auf weniger als 5% der Länge des Teilumfangsrahmens. Grundsätzlich wäre es dabei auch möglich, dass die beiden Teilumfangsrahmen zueinander verdreht angeordnet sind. Gute Ergebnisse werden dann erzielt, wenn die Unterbrechungen der zumindest beiden Teilumfangsrahmen sich nur teilweise überlappen bzw. vollständig überlappungsfrei zueinander angeordnet sind. Letzteres bedeutet, dass in Draufsicht auf die Teilumfangsrahmen, die Unterbrechungen nicht direkt übereinander, also in einer Geraden angeordnet sind, die senkrecht zur Strahlerebene verläuft.
- Gemäß eines anderen Ausführungsbeispiels der Erfindung weist jeder Teilumfangsrahmen mehrere Unterbrechungen auf, wodurch mehrere Teilumfangsrahmensegmente gebildet sind. Dies bedeutet, dass der Teilumfangsrahmen in mehrere Teilumfangsrahmensegmente gegliedert ist. Diese Teilumfangsrahmensegmente können alle gleich lang sein. In einem speziellen Ausführungsbeispiel ist es allerdings auch möglich, dass eines dieser Teilumfangsrahmensegmente länger ist als andere oder als alle anderen Teilumfangsrahmensegmente.
- Vorzugsweise sind die Teilumfangsrahmen mit ihrer jeweiligen Unterbrechung bzw. ihren jeweiligen Unterbrechungen symmetrisch zueinander angeordnet. Dies bedeutet, dass die Unterbrechungen der zumindest beiden Teilumfangsrahmen um α = 360°/n gegeneinander verdreht angeordnet sind, wobei n die gesamte Anzahl aller Unterbrechungen in den zumindest beiden Teilumfangsrahmen ist. Für den Fall, dass es zwei Teilumfangsrahmen gibt und jeder Teilumfangsrahmen genau eine Unterbrechung aufweist, wird n der Wert 2 zugewiesen. In diesem Fall sollten die Unterbrechungen um α = 360°/2 (= 180°) zueinander verdreht angeordnet sein. Auch für den Fall, dass es drei, vier, fünf Teilumfangsrahmen gibt, ist eine entsprechende Anordnung gemäß der obigen Formel wünschenswert.
- In einer bevorzugten Ausführungsform sind die zumindest beiden Teilumfangsrahmen in Draufsicht etwa kreisförmig oder beschreiben im Mittel in etwa einen Kreis. Prinzipiell ist es allerdings möglich, dass die Teilumfangsrahmen auch eine andere Form, wie beispielsweise eine quadratische und/oder eine Rechteckform aufweisen. Sie können auch ovalförmig sein. Generell ist daher eine n-polygonale Form möglich. Vorzugsweise haben allerdings alle Teilumfangsrahmen in Draufsicht die gleiche Form, wobei diese gegeneinander verdreht sein können. Innerhalb dieser Anmeldung wird unter gegenseitigem Verdrehen verstanden, dass die Mittelpunkte bzw. die Schwerpunkte der zumindest beiden Teilumfangsrahmen nach dem Verdrehen nach wie vor in Draufsicht übereinander angeordnet sind. Eine Gerade, die durch diese Punkte verläuft, würde vorzugsweise senkrecht zur Strahlerebene stehen. Vorzugsweise weisen die zumindest beiden Teilumfangsrahmen einen gleichen Innen- und einen gleichen Außendurchmesser auf. Es wäre allerdings auch möglich, dass nur der Innendurchmesser oder nur der Außendurchmesser gleich ist. Im Weiteren wäre es auch denkbar, dass weder der Innendurchmesser noch der Außendurchmesser der zumindest beiden Rahmen gleich ist. Demnach wäre es denkbar, dass alle Teilumfangsrahmen unterschiedliche Geometrien aufweisen. Es wäre auch möglich, dass die zumindest beiden Teilumfangsrahmen um eine gewisse Länge gegeneinander versetzt angeordnet sind, wobei sie sich nach wie vor in Draufsicht zumindest Teilweise überlappen. Die Überlappung erfolgt vorzugsweise über die gesamte Länge der Teilumfangsrahmen, mit Ausnahme der jeweiligen Unterbrechungen, nicht jedoch zwingend über die gesamte Breite. Die Überlappung kann auch nur über eine Teilbreite erfolgen. Die zumindest beiden Teilumfangsrahmen sind mit Ausnahme der Unterbrechung vorzugsweise symmetrisch, insbesondere radialsymmetrisch aufgebaut. Die zumindest beiden Teilumfangsrahmen sind vorzugsweise in Draufsicht in etwa gleich breit. Es könnte auch möglich sein, dass ein Rahmen breiter ist als der andere Rahmen. Dies bezieht sich nicht nur auf den Durchmesser, sondern auch auf die Breite des eigentlichen Rahmenstegs des Teilumfangsrahmens.
- In einer anderen Weiterbildung weisen die zumindest beiden Teilumfangsrahmen mehrere Rahmenabschnitte auf, die zusammenhängend ausgebildet sind, wobei sich die Abstände zwischen den einzelnen Rahmenabschnitten hin zu einer Längsachse, die die dipolförmige Strahleranordnung mittig durchsetzt, alternierend von einem größeren Abstand hin zu einem kleineren Abstand und umgekehrt verändert. Die einzelnen Rahmenabschnitte sind dabei vorzugsweise über einen in etwa radial verlaufenden Verbindungsabschnitt miteinander verbunden. Dadurch können die Teilumfangsrahmen in Draufsicht eine mäanderförmige oder zahnradartige Grundstruktur aufweisen. Die so geschaffenen zumindest beiden Teilumfangsrahmen sind zusammen mit ihren alternierenden Rahmenabschnitten (mit Ausnahme der Unterbrechung) in Draufsicht deckungsgleich oder verdreht zueinander angeordnet. Je nachdem wie stark sie sich überlappen, kann eine unterschiedliche Höhe der Kopplung eingestellt werden.
- Zwischen den zumindest beiden Teilumfangsrahmen ist zumindest ein Dielektrikum eingebracht. Die Form des Dielektrikums ist in Draufsicht auf die dipolförmige Strahleranordnung an die Form der jeweiligen Teilumfangsrahmen angepasst. Das zumindest eine Dielektrikum ist in Draufsicht auf die dipolförmige Strahleranordnung deckungsgleich oder verdreht zu einer oder beiden Teilumfangsrahmen angeordnet. Auch hierüber kann wiederum die Höhe der Kopplung eingestellt werden. Das Dielektrikum kann auch dadurch geschaffen werden, dass einer oder alle Teilumfangsrahmen harteloxiert werden, wodurch sich eine isolierende Harteloxalschicht bildet.
- Die dipolförmige Strahleranordnung weist in einem anderen Ausführungsbeispiel zusätzlich einen Direktor auf, wobei der Direktor parallel zur Strahlerebene ausgerichtet ist. Die Strahlerhälften sind dabei zur Basis näher liegend angeordnet als der Direktor. Der Direktor kann in Draufsicht eine runde, rechteckförmige, ovale oder allgemein n-polygonale Grundstruktur aufweisen. Diese Grundstruktur ist vorzugsweise überwiegend frei von Öffnungen.
- Um eine einfache, vorzugsweise werkzeugfreie Montage zu erreichen, umfasst die dipolförmige Strahleranordnung zumindest ein Halte- und Abstandselement. Dieses umgreift und/oder hält dabei die zumindest beiden Teilumfangsrahmen. Ergänzend oder alternativ liegt das Halte- und Abstandselement dabei an den äußeren Oberflächen der beiden äußersten Teilumfangsrahmen auf. Die Teilumfangsrahmen sind dabei beispielsweise zusammen mit einem zwischen diesem befindlichen Dielektrikum sandwichartig in dem Halte- und Abstandselement angeordnet. Das Halte- und Abstandselement kann dabei noch eine Halteklammer aufweisen oder die Form einer Halteklammer besitzen, wobei diese dazu ausgebildet ist, die Anordnung aus Teilumfangsrahmen und Dielektrikum noch mit einer zusätzlichen Haltekraft beaufschlagen. Dies ist allerdings nicht notwendig. Die Halteklammer weist vorzugsweise eine U-Form oder eine zu dieser Form ähnliche Form auf.
- Damit die Montage einfacherer und reproduzierbarer möglich ist, umfasst die zumindest eine Halteklammer einen Abstützabschnitt. Der Abstützabschnitt ist innerhalb der Unterbrechung eines Teilumfangsrahmens angeordnet, wodurch sich zwei Stirnseiten der beiden Enden, die durch die Unterbrechung am Teilumfangsrahmen gebildet sind, an dem Abstützabschnitt abstützen. Auf diese Art und Weise können die einzelnen Teilumfangsrahmen symmetrisch zueinander ausgerichtet werden, weil vorzugsweise in jede Unterbrechung zumindest ein Abstützabschnitt einer Halteklammer eingreift. Dadurch wird auch gewährleistet, dass die Teilumfangsrahmen nach der Montage unverdrehbar an der dipolförmigen Strahleranordnung angeordnet sind. Generell wäre es auch möglich, dass die zumindest beiden Teilumfangsrahmen mittels einer Clips- oder Schnappverbindung mit dem zumindest einen Halte- und Abstandselement lösbar verbunden ist.
- Um die Stabilität der dipolförmigen Strahleranordnung weiter zu verbessern, umfasst das Halte- und Abstandselement in einem anderen Ausführungsbeispiel ein Abstützprofil. Das Abstützprofil ist dabei an die Kontur von zumindest einem Teilumfangsrahmen angepasst und weist eine Länge auf, die zumindest einer Teillänge des Teilumfangsrahmens entspricht. Der zumindest eine Teilumfangsrahmen stützt sich mit seiner Innenseite an dem zumindest einen Abstützprofil, bzw. an dessen Außenseite ab. Dadurch wird die Stabilität der gesamten Anordnung erhöht und gleichzeitig ist sichergestellt, dass die Teilumfangsrahmen nach erfolgter Montage ortsfest ausgerichtet sind und ortsfest ausgerichtet bleiben.
- Um die Montage weiter zu vereinfachen, ist das zumindest eine Halte- und Abstandselement über eine vorzugsweise lösbare Kraft- und/oder Formschlussverbindung, bei welcher es sich vorzugsweise um eine Clips- oder Schnappverbindung handelt, an einer oder an allen Strahlerhälften bzw. direkt an der Trägeranordnung gehalten. Dadurch kann auf etwaige Schraubverbindungen verzichtet werden. Andere Arten der Kraft- und/oder Formschlussverbindung sind ebenfalls denkbar. Hierzu gehört beispielsweise die Bajonettverbindung. Das zumindest eine Halte- und Abstandselement kann auch einen Abstandshalter, beispielsweise in Form des Dielektrikums umfassen. Dieser ist dann zwischen den einzelnen Teilumfangsrahmen eingebracht und sorgt für die galvanische Isolierung. Das Halte- und Abstandselement ist zusammen mit dem Abstandshalter bzw. dem Dielektrikum vorzugsweise einteilig hergestellt. Die Herstellung erfolgt vorzugsweise in einem Kunststoffspritzverfahren.
- Verschiedene Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnungen beispielhaft beschrieben. Gleiche Gegenstände weisen dieselben Bezugszeichen auf. Die entsprechenden Figuren der Zeichnungen zeigen im Einzelnen:
- Figuren 1 und 2:
- verschiedene räumliche Darstellungen einer erfindungsgemäßen Antennenanordnung mit einer dipolförmigen Strahleranordnung;
- Figuren 3A und 3B:
- verschiedene räumliche Darstellungen von zwei parallel zueinander angeordneten Teilumfangsrahmen;
- Figur 4:
- eine weitere Darstellung der dipolförmigen Strahleranordnung gemäß einem weiteren erfindungsgemäßen Ausführungsbeispiel;
- Figur 5:
- eine weitere Darstellung von drei parallel zueinander angeordneten Teilumfangsrahmen;
- Figuren 6A bis 6C:
- verschiedene räumliche Darstellungen von zwei parallel zueinander angeordneten Teilumfangsrahmen, deren Grundform von einer reinen Kreisform abweicht;
- Figuren 7A bis 7C:
- verschiedene räumliche Darstellungen der erfindungsgemäßen Antennenanordnung mit zwei dipolförmigen Strahleranordnungen; und
- Figuren 8A bis 8C:
- verschiedene räumliche Darstellungen der erfindungsgemäßen Antennenanordnung mit zwei dipolförmigen Strahleranordnungen, die zusätzlich einen Direktor aufweisen.
- Die
Figuren 1 ,2 und4 zeigen eine räumliche Darstellung einer erfindungsgemäßen Antennenanordnung 20, die zumindest eine dipolförmige Strahleranordnung 1 aufweist. Die dipolförmige Strahleranordnung 1 umfasst zwei Paare 2, 3 von Strahlerhälften 2a, 2b, 3a, 3b. Diese beiden Paare 2, 3 von Strahlerhälften 2a, 2b bzw. 3a, 3b sind insbesondere in der Draufsicht ausFigur 7C gut zu erkennen, die eine Antennenanordnung 20 mit zumindest zwei dipolförmigen Strahleranordnungen 1 zeigt. Diese zwei Paare 2, 3 von Strahlerhälften 2a, 2b bzw. 3a, 3b sind um 90° verdreht zueinander so angeordnet, dass die dipolförmige Strahleranordnung 1 in zwei senkrecht zueinander stehenden Polarisationsebenen 4a, 4b (sieheFigur 7C ) sendet und/oder empfängt. Die Strahlerhälften 2a, 2b, bzw. 3a, 3b sind dabei in einer Strahlerebene 5 ausgerichtet. Diese Strahlerebene 5 ist beispielsweise inFigur 7B dargestellt, die eine Seitenansicht der Antennenanordnung 20 mit zumindest zwei dipolförmigen Strahleranordnungen 1 zeigt. Die Strahlerhälften 2a, 2b bzw. 3a, 3b sind im Abstand vor einem Reflektor 6 parallel zu diesem anordenbar oder angeordnet. Der Reflektor 6 ist inFigur 2 dargestellt. - Die dipolförmige Strahleranordnung 1 umfasst außerdem eine Symmetrier- und/oder Trägeranordnung 7, die nachfolgend als Trägeranordnung 7 bezeichnet wird, die ein erstes Ende 7a und ein zweites Ende 7b aufweist. Das zweite Ende 7b liegt dem ersten Ende 7a gegenüber. Die Strahlerhälften 2a, 2b bzw. 3a, 3b sind am ersten Ende 7a der Trägeranordnung 7 angeordnet. Das zweite Ende 7b der Trägeranordnung 7 ist zumindest mittelbar an dem Reflektor 6 befestigbar oder befestigt. Eine mittelbare Befestigung kann beispielsweise dann vorliegen, wenn das zweite Ende 7b der Trägeranordnung 7 an einer Leiterplatte 21 befestigt ist, wobei eine Metalllage dieser Leiterplatte 21 gleichzeitig den Reflektor 6 bilden könnte. Eine solche Leiterplatte 21 ist beispielsweise in den
Figuren 7A bis 8C dargestellt. Ein separater Reflektor 6 unterhalb der Leiterplatte 21 könnte ebenfalls vorliegen. Eine unmittelbare Befestigung an dem Reflektor 6 würde dann vorliegen, wenn die Trägeranordnung 7 direkt mit dem zweiten Ende 7b an dem Reflektor 6 befestigt ist. Dieser Sachverhalt ist inFigur 2 gezeigt. Der Reflektor 6 bzw. die Leiterplatte 21 kann auch als Grundkörper bezeichnet werden. Das zweite Ende 7b der Trägeranordnung 7 kann auch als Basis 10 bezeichnet werden. - Die Trägeranordnung 7 besteht und/ oder umfasst einen Träger 7c. Insbesondere umfasst die Trägeranordnung jeweils einen Träger 7c für jede Strahlerhälfte 2a, 2b bzw. 3a, 3b. Im Hinblick auf
Figur 1 gibt es daher vier Träger 7c. Jeder dieser Träger 7c erstreckt sich im Wesentlichen bzw. ausschließlich parallel entlang einer Längsachse 8 (sieheFigur 7B ,8B ), die die dipolförmige Strahleranordnung 1 mittig durchsetzt. Die Träger 7c sind an dem ersten Ende 7a, also an dem ersten Ende 7a der Trägeranordnung 7 galvanisch mit den Strahlerhälften 2a, 2b bzw. 3a, 3b verbunden. Eine kapazitive Kopplung der Träger 7c mit dem ersten Ende 7a der Trägeranordnung 7 wäre ebenfalls möglich. Zwischen zwei Trägern 7c ist jeweils ein Spalt 9 ausgebildet, der sich vorzugsweise vom ersten Ende 7a bis zum zweiten Ende 7b erstreckt und zur Symmetrierung dient. Die Träger 7 sind an dem zweiten Ende 7b der Trägeranordnung 7, also an ihrer Basis 10 vorzugsweise galvanisch miteinander verbunden. - Eine Speisung der dipolförmigen Strahleranordnung 1 erfolgt vorzugsweise derart, dass zwei Kabel mit je einem Innen- und einem Außenleiter mit je einem Paar 2, 3 der Strahlerhälften 2a, 2b bzw. 3a, 3b verbunden werden. Der Außenleiter des ersten Kabels wird mit einer ersten Strahlerhälfte 2a des ersten Paars 2 verbunden. Der Innenleiter des ersten Kabels wird dagegen mit der zweiten Strahlerhälfte 2b des ersten Paars 2 verbunden. Der Außenleiter des zweiten Kabels wird dagegen mit der ersten Strahlerhälfte 3a des zweiten Paars 3 verbunden. Der Innenleiter des zweiten Kabels wird entsprechend mit der zweiten Strahlerhälfte 3b des zweiten Paars 3 verbunden. Die Innenleiter überkreuzen sich daher. Die Verbindung erfolgt vorzugsweise am ersten Ende 7a der Trägeranordnung 7. Es wäre prinzipiell auch möglich, dass sich die Außenleiter überkreuzen.
- Bezüglich der Einspeisung und der Symmetrierung wird auf die in der Beschreibungseinleitung genannten Druckschriften verwiesen.
- Mit Blick auf die
Figuren 1 ,2 ,4 ,7C und8C ist zu erkennen, dass die Strahlerhälften 2a, 2b bzw. 3a, 3b einen im Wesentlichen quadratischen Strahlerrahmen 11 aufweisen. Die Strahlerrahmen 11 der Strahlerhälften 2a, 2b bzw. 3a, 3b weisen jeweils eine Ausnehmung 12 auf, die eine Öffnung umgrenzen. Jeder Strahlerrahmen 11 besteht aus vier Seiten, wobei jeweils zwei Seiten eines Strahlerrahmens 11 parallel zu zwei anderen Seiten eines anderen Strahlerrahmens 11 angeordnet sind. Zwischen zwei Strahlerrahmen 11 befindet sich ein Spalt 13. Dieser Spalt 13 geht in den Spalt 9 der Trägeranordnung 7 über. Genauer gesagt wird der Spalt 13 zwischen zwei Innenseiten der Strahlerhälften 2a, 2b bzw. 3a, 3b gebildet, die parallel zueinander verlaufen. Die Speisung der Strahlerhälften 2a, 2b bzw. 3a, 3b erfolgt an dem Punkt, an welchem zwei Innenseiten 11b einer Strahlerhälfte 2a, 2b bzw. 3a, 3b aufeinander treffen. Jede Innenseite 11b ist mit je einer Außenseite 11a verbunden. An dem Punkt, an welchem zwei Außenseiten 11a aufeinander treffen ist die außen liegende Ecke vorzugsweise abgeschrägt (nicht dargestellt) . - Die Strahlerhälften 2a, 2b bzw. 3a, 3b können auch ohne eine Ausnehmung 12 ausgeführt sein. In den
Figuren 7C ,8C sind die Seiten der Ausnehmung 12 parallel zu den Seiten der Strahlerrahmen 11 angeordnet. Die Seiten der Ausnehmung 12 können auch in einem Winkel, insbesondere von 45°, gegenüber den Seiten der Strahlerrahmen 11 gedreht sein. Die Ausnehmungen 12 der Strahlerrahmen 11 besitzen in diesem Fall in Draufsicht die Form eines Quadrats. Sie können allerdings allgemein rechteckförmig sein bzw. einen anderen Querschnitt aufweisen. Dies bedeutet, dass die Ausnehmungen 12 in Bezug auf ihre Größe und Formgebung in weiten Bereichen unterschiedlich gewählt werden können. - Die Strahlerrahmen 11 der Strahlerhälften 2a, 2b bzw. 3a, 3b sind an ihren ersten Ecken mit dem ersten Ende 7a der einzelnen Träger 7c der Trägeranordnung 7 verbunden.
- Eine weitere Ecke der Strahlerrahmen 11 der Strahlerhälften 2a, 2b bzw. 3a, 3b, die der jeweiligen ersten Ecke gegenüberliegt, vorzugsweise diagonal gegenüberliegt, ist optional abgeschrägt. Die anderen Ecken sind vorzugsweise weniger stark oder nicht abgeschrägt. Bei den abgeschrägten Ecken handelt es sich um diejenigen Ecken der Strahlerrahmen 11, die von der Längsachse 8 am weitesten beabstandet sind.
- Im Hinblick auf die
Figuren 1 ,2 und4 sind zusätzlich zumindest zwei elektrisch leitfähige Teilumfangsrahmen 15a, 15b vorgesehen, die zwischen der Strahlerebene 5 und der Basis 10 in Höhenrichtung der Trägeranordnung 7 zueinander beabstandet angeordnet sind. Die zumindest beiden elektrisch leitfähigen Teilumfangsrahmen 15a, 15b definieren bzw. umgrenzen jeweils eine Öffnung 17. Die zumindest beiden Teilumfangsrahmen 15a, 15b sind parallel zu der Strahlerebene 5 ausgerichtet. Vorzugsweise sind sie ebenfalls in etwa parallel zueinander ausgerichtet. Unter dem Wortlaut "in etwa" ist zu verstehen, dass die zumindest beiden Teilumfangsrahmen 15a, 15b auch um wenige Grad, vorzugsweise um weniger als 5°, weiter vorzugsweise um weniger als 3°, weiter vorzugsweise um weniger als 1° geneigt zueinander angeordnet sein können. - Jeder der zumindest beiden Teilumfangsrahmen 15a, 15b umfasst zumindest eine Unterbrechung 16. Die Unterbrechung 16 durchsetzt dabei die gesamte Breite des jeweiligen Teilumfangsrahmens 15a, 15b an zumindest einer Stelle, so dass der jeweilige Teilumfangsrahmen 15a, 15b zumindest zwei Enden 18 aufweist.
- Die durch die zumindest eine Unterbrechung 16 gebildeten zumindest beiden Enden 18 der Teilumfangsrahmen 15a, 15b sind aufeinander zu gerichtet. Die Unterbrechungen 16 erstrecken sich vorzugsweise nur über eine bestimmte Länge des jeweiligen Teilumfangsrahmens 15a, 15b, so dass die Unterbrechungen 16 auch als Schlitz bezeichnet werden können.
- Die Teilumfangsrahmen 15a, 15b bestehen aus einem elektrisch leitfähigen Material oder sind mit einem elektrisch leitfähigen Material beschichtet.
- Vorzugsweise werden die Teilumfangsrahmen 15a, 15b in einem Stanzprozess hergestellt, wobei in diesem Prozess beispielsweise auch gleich die jeweiligen Unterbrechungen 16 eingebracht werden.
- Nicht dargestellt ist in den
Figuren 1 ,2 und4 , dass zwischen den Teilumfangsrahmen 15a, 15b ein Dielektrikum 19 eingebracht ist, welches auch gleichzeitig als Abstandshalter fungiert, so dass die zumindest beiden Teilumfangsrahmen 15a, 15b galvanisch getrennt zueinander angeordnet sind. Grundsätzlich könnte der Abstand zwischen den einzelnen Teilumfangsrahmen 15a, 15b auch über die Aufhängung der einzelnen Teilumfangsrahmen 15a, 15b erfolgen. In diesem Fall würde Luft als Dielektrikum fungieren. - Die zumindest beiden Teilumfangsrahmen 15a, 15b sind insbesondere auch galvanisch von der Trägeranordnung 7 und den Strahlerhälften 2a, 2b, 3a, 3b getrennt und weiter insbesondere von allen anderen Gebilden galvanisch getrennt.
- Die zumindest beiden Teilumfangsrahmen 15a, 15b sind insbesondere näher an dem Reflektor 6 bzw. dem gemeinsamen Grundköper 6, 21 angeordnet, an dem die Basis 10 der Trägeranordnung 7 angeordnet ist, als alle (direkt) gespeisten Strahlerhälften 2a, 2b, 3a, 3b bzw. alle (direkt) gespeisten Strahler.
- In
Figur 3A sind die beiden Teilumfangsrahmen 15a, 15b aus denFiguren 1 und2 in Alleinstellung gezeigt. In Draufsicht auf den jeweiligen Teilumfangsrahmen 15a, 15b erstreckt sich die zumindest eine Unterbrechung 16 auf weniger als 30%, vorzugsweise auf weniger als 20%, weiter vorzugsweise auf weniger als 10%, weiter vorzugsweise auf weniger als 5% der Länge des Teilumfangsrahmens 15a, 15b. - Die zumindest beiden Teilumfangsrahmen 15a, 15b sind zueinander verdreht angeordnet. Dies bedeutet, dass die Unterbrechungen 16 der zumindest beiden Teilumfangsrahmen 15a, 15b vollständig überlappungsfrei zueinander angeordnet sind. Dadurch wird eine sehr hohe Bandbreite erzielt. Grundsätzlich wäre es auch möglich, dass sich die Unterbrechungen 16 teilweise überlappen. Eine vollständige Überlappung, also eine deckungsgleiche Anordnung der Unterbrechungen 16 ist nicht erwünscht.
- Die Unterbrechungen 16 der zumindest beiden Teilumfangsrahmen 15a, 15b sind vorzugsweise um α = 360°/n gegeneinander verdreht, wobei n die Summe der gemeinsamen Anzahl der Unterbrechungen 16 in den zumindest beiden Teilumfangsrahmen 15a, 15b ist. In diesem Fall weist n den Wert zwei auf, weil es insgesamt zwei Unterbrechungen 16 in den Teilumfangsrahmen 15a, 15b gibt. Folglich sind die beiden Unterbrechungen 16 um α = 180° gegeneinander verdreht angeordnet.
- Im Hinblick auf
Figur 2B weisen die Teilumfangsrahmen 15a, 15b mehrere Unterbrechungen 16 auf, wodurch jeder Teilumfangsrahmen 15a, 15b in mehrere Teilumfangsrahmensegmente 15a1, 15a2, 15a3, 15a4; 15b1, 15b2, 15b3, 15b4 gegliedert sind. Dabei ist es möglich, dass eines der Teilumfangsrahmensegmente 15a1, 15b1, eines Teilumfangsrahmens 15a, 15b länger ist als das andere oder die anderen Teilumfangsrahmensegmente 15a2, 15a3, 15a4; 15b2, 15b3, 15b4 des jeweiligen Teilumfangsrahmens 15a, 15b. Sie könnten alternativ auch alle gleich lang sein. - Die Unterbrechungen 16 weisen in diesem Fall vorzugsweise jeweils die gleiche Größe auf. Sie könnten sich in ihrer Größe, wie auch in ihrer Form, allerdings auch unterscheiden.
- Die zumindest beiden Teilumfangsrahmen 15a, 15b sind in Draufsicht in etwa kreisförmig. In diesem Ausführungsbeispiel überdecken sich die zumindest beiden Teilumfangsrahmen 15a, 15b in Draufsicht mit Ausnahme der jeweiligen Unterbrechung 16 völlig, also vollständig. Es wäre auch möglich, dass sich die zumindest beiden Teilumfangsrahmen 15a, 15b in Draufsicht mit Ausnahme der jeweiligen Unterbrechung 16 nur teilweise überdecken. Dies wäre dann der Fall, wenn ein Teilumfangsrahmen 15a gegenüber einem anderen Teilumfangsrahmen 15b versetzt angeordnet ist, wobei der Versatz quer zur Längsachse 8 erfolgt. Weiterhin könnte eine lediglich teilweise Überdeckung auch dadurch erfolgen, dass der (Innen-/Außen-) Durchmesser eines Teilumfangsrahmens 15a kleiner oder größer ist als der Durchmesser des zumindest einen anderen Teilumfangsrahmens 15b. Auch über eine sich verändernde Breite b des jeweiligen Rahmenstegs eines Teilumfangsrahmens 15a, 15b könnte eine lediglich teilweise Überdeckung realisiert werden.
- Die Breite b der Teilumfangsrahmen 15a, 15b muss nicht konstant sein. Sie kann sich innerhalb eines Teilumfangsrahmens 15a, 15b auch über seine Länge hinweg verändern.
- Andere Formen für die zumindest beiden Teilumfangsrahmen 15a, 15b wären ebenfalls möglich. So könnten diese in Draufsicht beispielsweise die Form eines Ovals, eines Rechtecks (insbesondere eines Quadrats) bzw. ganz allgemein die Form eines n-Polygons aufweisen.
- In
Figur 4 ist eine dipolförmige Strahleranordnung 1 dargestellt, die drei parallel zueinander angeordnete Teilumfangsrahmen 15a, 15b, 15c aufweist. Jeder dieser zumindest drei Teilumfangsrahmen 15a, 15b, 15c besitzt zumindest eine Unterbrechung 16. InFigur 5 sind die zumindest drei Teilumfangsrahmen 15a, 15b, 15c nochmals gesondert dargestellt. Alle drei Teilumfangsrahmen 15a, 15b, 15c umgrenzen eine Öffnung 17, durch die die Trägeranordnung 7 geführt ist. Die jeweiligen Unterbrechungen 16 sind nicht überlappend dargestellt. Unter "überlappend" ist zu verstehen, dass die Unterbrechungen 16 von drei benachbarten Teilumfangsrahmen 15a, 15b, 15c in Draufsicht nicht deckungsgleich angeordnet sind. Die Unterbrechung 16 des ersten Teilumfangsrahmens 15a könnte in Draufsicht an der gleichen Stelle angeordnet sein wie die Unterbrechung 16 des dritten Teilumfangsrahmens 15c, wenn der zweite Teilumfangsrahmen 15b seine Unterbrechung 16 in Draufsicht an einer anderen Stelle aufweist. - Vorzugsweise sind die Unterbrechungen 16 allerdings in Draufsicht stets gegeneinander verdreht.
- Die
Figuren 6A bis 6C zeigen ein weiteres Ausführungsbeispiel der zumindest beiden Teilumfangsrahmen 15a, 15b. Zwischen beiden Teilumfangsrahmen 15a, 15b befindet sich ein Dielektrikum 19d, das vorzugsweise aus Kunststoff besteht. Die beiden Teilumfangsrahmen 15a, 15b weisen jeweils mehrere Rahmenabschnitte 25a, 25b auf, wobei sich die Abstände zwischen den einzelnen Rahmenabschnitten 25a, 25b hin zu einer Längsachse 8, die die dipolförmige Strahleranordnung 1 mittig durchsetzt, alternierend von einem größeren Abstand hin zu einem kleineren Abstand und umgekehrt abwechselt. Die beiden Teilumfangsrahmen 15a, 15b haben in denFiguren 6A bis 6C die Form eines Zahnrads, bzw. die einzelnen Rahmenabschnitte 25a, 25b verlaufen in etwa mäanderförmig. - Die einzelnen Rahmenabschnitte 25a, 25b sind über einen Verbindungsabschnitt 25c miteinander verbunden. Dieser Verbindungsabschnitt 25c verläuft vorzugsweise radial. Die zumindest beiden Teilumfangsrahmen 15a, 15b weisen jeweils vorzugsweise mehr als drei, weiter vorzugsweise jeweils mehr als fünf Rahmenabschnitte 25a, 25b auf. Vorzugsweise gibt es lediglich zwei verschiedene Arten von Rahmenabschnitten 25a, 25b. Es könnte auch noch weitere Rahmenabschnitte 25a, 25b und/oder weitere Arten von Rahmenabschnitte 25a, 25b geben. Letztere würden sich dadurch auszeichnen, dass sie weiter von der Längsachse entfernt oder näher zu der Längsachse hin beabstandet (im Vergleich zu den anderen Rahmenabschnitten 25a, 25b) angeordnet sind.
- Im Mittel verlaufen allerdings die beiden Teilumfangsrahmen 15a, 15b mit den jeweiligen Rahmenabschnitten 25a, 25b dennoch kreisförmig.
- Die zumindest eine Unterbrechung 16 ist in jedem Teilumfangsrahmen 15a, 15b in einem der Rahmenabschnitte eingebracht.
- Der Rahmenabschnitt 25a, welcher weiter von der Längsachse 8 beabstandet ist, kann auch als äußerer Rahmenabschnitt 25a bezeichnet werden. Dagegen wird derjenige Rahmenabschnitt 25b, welcher näher zur Längsachse 8 angeordnet ist, auch als innerer Rahmenabschnitt 25b bezeichnet. Ein innerer Rahmenabschnitt 25b ist dabei über zwei Verbindungsabschnitte 25c an seinen Enden mit zwei äußeren Rahmenabschnitten 25a verbunden. Gleiches gilt auch für einen äußeren Rahmenabschnitt 25a, der über zwei Verbindungsabschnitte 25c an seinen Enden mit zwei inneren Rahmenabschnitten 25b verbunden ist.
- Die Form des Dielektrikums 19 ist in Draufsicht auf die dipolförmige Strahleranordnung 1 an die Form der jeweiligen Teilumfangsrahmen 15a, 15b angepasst. Im Hinblick auf die
Figuren 6A bis 6C umfasst das Dielektrikum 19 ebenfalls Abschnitte die näher zu der Längsachse 8 angeordnet sind als andere Abschnitte, die von dieser weiter beabstandet sind. Beide Abschnitte wechseln sich alternierend ab. - Im Hinblick auf
Figur 6A sind die beiden Teilumfangsrahmen 15a, 15b in Draufsicht deckungsgleich angeordnet (ausgenommen die Unterbrechungen 16), wohingegen das Dielektrikum 19 um eine bestimmte Winkellage gegenüber den Teilumfangsrahmen 15a, 15b verdreht worden ist. Wenn die Summe der inneren und äußeren Rahmenabschnitte 25a, 25b eines Teilumfangsrahmens 15a, 15b m ist, dann würde das Dielektrikum 19 vorzugsweise um einen Winke β verdreht werden, der sich gemäß β = 360°/2m berechnet (hier: 11,25°). -
Figur 6B zeigt dagegen, dass das Dielektrikum 19 zusammen mit den zumindest beiden Teilumfangsrahmen 15a, 15b 15a, 15b deckungsgleich angeordnet ist. - Innerhalb von
Figur 6C ist dagegen das Dielektrikum 19 gegenüber den zumindest beiden Teilumfangsrahmen 15a, 15b weiter verdreht, als inFigur 6A . InFigur 6C liegt ein äußerer Abschnitt des Dielektrikums 19 unterhalb oder oberhalb eines inneren Rahmenabschnitt 25b der zumindest beiden Teilumfangsrahmen 15a, 15b an. Das Dielektrikum 19 ist in diesem Fall um einen Winkel γ gegenüber den beiden Teilumfangsrahmen 15a, 15b verdreht, der sich gemäß γ = 360°/m berechnet (hier: 22,5°). -
Figur 2 zeigt noch einen zusätzlichen Reflektor 6, auf welchem die Basis 10 der dipolförmigen Strahleranordnung 1 angeordnet ist. Der Reflektor 6 hat eine Wannenform. Dies bedeutet, dass der Reflektor 6 einen Reflektorgrundkörper 6a umfasst, an dem sich zumindest zwei Reflektorwände 6b anschließen. Ein Winkel zwischen den Reflektorwänden 6b und dem Reflektorgrundkörper 6a ist vorzugsweise größer als 90°. Der Reflektor 6 könnte auch ausschließlich in einer Ebene liegen. - Die
Figuren 7A bis 7C zeigen die Antennenanordnung 20, die zumindest zwei dipolförmige Strahleranordnungen 1 aufweist, die dipolförmigen Strahleranordnungen 1 sind vorzugsweise identisch zueinander aufgebaut und gleich ausgerichtet. Der Abstand zwischen den beiden dipolförmigen Strahleranordnungen 1 ist vorzugsweise derart eingestellt, dass ein MIMO Betrieb (engl. Multiple Input Multiple Output) möglich ist. Er könnte auch derart gewählt werden, dass mit den verschiedenen dipolförmigen Strahleranordnungen 1 unterschiedliche Frequenzbänder bedient werden können. - Die beiden dipolförmigen Strahleranordnungen 1 sind in diesem Fall auf einer gemeinsamen Platine 21 angeordnet. Diese Platine 21 kann auf den Reflektor 6 aufgeschraubt werden, wie dieser in
Figur 2 dargestellt ist. - Jede dipolförmige Strahleranordnung 1 umfasst zumindest zwei Teilumfangsrahmen 15a, 15b. Diese Teilumfangsrahmen 15a, 15b sind durch zumindest ein Halte- und Abstandselement 35 gehalten. Dieses zumindest eine Halte- und Abstandselement 15a ,15b umfasst zumindest eine Halteklammer 36. Diese zumindest eine Halteklammer 36 umgreift die zumindest beiden Teilumfangsrahmen 15a, 15b. Die zumindest eine Halteklammer 36 liegt dabei an den äußeren Oberflächen 36a, 36b der beiden äußeren Teilumfangsrahmen 15a, 15b an. Die zumindest eine Halteklammer 36 ist vorzugsweise U-förmig ausgebildet. Die Halteklammer 36 kann eine Vorspannung aufweisen, so dass eine zusätzliche Kraft auf die Oberflächen 36a, 36b der beiden äußersten Teilumfangsrahmen 15a, 15b wirkt, wodurch die zumindest beiden Teilumfangsrahmen 15a, 15b zusätzlich zusammengedrückt werden. Dies könnte insbesondere dann wünschenswert sein, wenn ein Dielektrikum 19 aus Kunststoff zwischen den jeweiligen Teilumfangsrahmen 15a, 15b angeordnet ist.
- Das zumindest eine Halte- und Abstandselement 35 ist zusammen mit der zumindest einen Halteklammer 36 vorzugsweise einteilig in einem Kunststoffspritzverfahren hergestellt.
- Die Halteklammer 36 muss nicht zwingend an dem Halte- und Abstandselement 35 ausgebildet sein. Das Halte- und Abstandselement 35 könnte sich mit einem Ende beispielsweise auch auf dem Reflektor 6 oder der Platine 21 abstützen und mit dem anderen Ende den Teilumfangsrahmen 15a, 15b halten oder umgreifen.
- Die zumindest eine Halteklammer 36 umfasst außerdem einen Abstützabschnitt 37. Der Abstützabschnitt 37 ist innerhalb einer Unterbrechung 16 des Teilumfangsrahmens 15a, 15b angeordnet, bzw. taucht in diese ein. Dadurch können sich die Stirnseiten der beiden Enden 18, die durch die Unterbrechung 16 am Teilumfangsrahmen 15a, 15b gebildet sind, an dem Abstützabschnitt 37 abstützen. Dadurch erhöht sich die Stabilität der gesamten Anordnung. Vorzugsweise steht die Halteklammer 36 zusammen mit dem Abstützabschnitt 37 nicht über den Umfang der zumindest beiden Teilumfangsrahmen 15a, 15b hinaus.
- Das zumindest eine Halte- und Abstandselement 35 umfasst vorzugsweise ein Abstützprofil 38. Das Abstützprofil 38 ist mit seiner Außenseite an die Kontur zumindest einem Teilumfangsrahmen (vorzugsweise von allen Teilumfangsrahmen) 15a, 15b angepasst und weist eine Länge auf, die zumindest einer Teillänge des Teilumfangsrahmens 15a, 15b entspricht. Der zumindest eine Teilumfangsrahmen 15a, 15b stützt sich mit seiner Innenseite an dem zumindest einen Abstützprofil 38 ab. Es können sich dabei vorzugsweise alle Teilumfangsrahmen 15a, 15b, 15c an dem Abstützprofil 38 abstützen.
- Das Halte- und Abstandselement 35 ist zusammen mit der zumindest einen Halteklammer 36, sowie dem Abstützabschnitt 37 und dem Abstützprofil 38 vorzugsweise einteilig, also einstückig, ausgebildet.
- Das zumindest eine Halte- und Abstandselements 35, welches die zumindest zwei Teilumfangsrahmen 15a, 15b hält, ist vorzugsweise an der dipolförmigen Strahleranordnung 1 und/oder an dem Grundkörper 6, 21 befestigt. Um eine werkzeugfreie Befestigung des zumindest einen Halte- und Abstandselements 35 an der dipolförmigen Strahleranordnung 1 zu gewährleisten, umfasst das zumindest eine Halte- und Abstandselement 1 eine Kraft- und/oder Formschlussverbindung 39. Diese Kraft- und/oder Formschlussverbindung 39 liegt insbesondere in Form einer Clips- oder Schnappverbindung vor. Über diese Kraft- und/oder Formschlussverbindung 39 kann das zumindest eine Halte- und Abstandselement 35 an einer oder an allen Strahlerhälften 2a, 2b, 3a, 3b oder an der Trägeranordnung 7 gehalten werden.
- Zwischen den beiden Teilumfangsrahmen 15a, 15b ist ein Dielektrikum 19 eingebracht. Bei einem solchen Dielektrikum kann es sich auch um einen Abstandshalter handeln. Dadurch werden die einzelnen Teilumfangsrahmen 15a, 15b galvanisch voneinander getrennt. Dieses Dielektrikum 19 bzw. dieser dielektrische Abstandshalter kann zusammen mit dem Halte- und Abstandselement 35, zu welchem, wie bereits erwähnt, die zumindest eine Halteklammer 36 mit dem Halteabschnitt 37 und dem Abstützprofil 38 gehört, einteilig ausgebildet sein. Hierzu gehört ebenfalls die Kraft- und/oder Formschlussverbindung 37, die vorzugsweise an dem gegenüberliegenden Ende des Halte- und Abstandselements 35 angeordnet ist, an dem die Halteklammer 36 ausgebildet ist.
In dem Ausführungsbeispiel aus denFiguren 7A bis 8C gibt es vier Halte- und Abstandselemente 35 in jeder dipolförmigen Strahleranordnung 1. - Im Hinblick auf die
Figuren 7B und 7C ist festzustellen, dass die einzelnen Teilumfangsrahmen 15a, 15b einen größeren Durchmesser haben als dies bei den Strahlerhälften 2a, 2b, 3a, 3b der Fall ist. - Der Außendurchmesser der einzelnen Teilumfangsrahmen 15a, 15b beträgt weniger als 150% der Wellenlänge der Mittenfrequenz, vorzugsweise weniger als 120%, weiter vorzugsweise weniger als 100%, weiter vorzugsweise weniger als 80% der Wellenlänge der Mittenfrequenz und beträgt mehr als 10% der Wellenlänge der Mittenfrequenz, vorzugsweise mehr als 40%, oder mehr als 80%, oder mehr als 120%, oder mehr als 140% der Wellenlänge der Mittenfrequenz.
- In einem anderen Ausführungsbeispiel beträgt der Außendurchmesser der einzelnen Teilumfangsrahmen 20% bis 80% der Wellenlänge der Mittenfrequenz. Vorzugsweise beträgt er 30% bis 70%, weiter vorzugsweise 40% bis 60% und weiter vorzugsweise 50% der Wellenlänge der Mittenfrequenz.
- Der Innendurchmesser der einzelnen Teilumfangsrahmen 15a, 15b kann in einer ähnlichen Größenordnung liegen. Er weist allerdings vorzugsweise lediglich eine Länge auf, die weniger als 99% der Länge des Außendurchmessers der einzelnen Teilumfangsrahmen 15a, 15b entspricht. Weiter vorzugsweise beträgt die Länge weniger als 95%, weiter vorzugsweise weniger als 90%, weiter vorzugsweise weniger als 80%, weiter vorzugsweise weniger als 70%, weiter vorzugsweise weniger als 60% und weiter vorzugsweise weniger als 50% der Länge des Außendurchmessers der einzelnen Teilumfangsrahmen 15a, 15b. Vorzugsweise ist sie allerdings größer als 10%, oder 20%, oder 30%, oder 50% oder 60% oder 70% oder 80 der Länge des Außendurchmessers.
- Durch den erfindungsgemäßen Aufbau der dipolförmigen Strahleranordnung 1 arbeitet diese sehr breitbandig und eignet sich für einen Einsatz in einem Frequenzbereich von 500 MHz bis 5000 MHz. Auch Frequenzbereiche, deren obere Grenzfrequenz kleiner ist als 4500 MHz, oder kleiner ist als 4000 MHz, oder kleiner ist als 3500 MHz, oder kleiner ist als 3000 MHz, oder kleiner ist als 2700 MHz können bedient werden, wobei die untere Grenzfrequenz vorzugsweise größer ist als 500 MHz, oder größer ist als 600 MHz, oder größer ist als 800 MHz, oder größer ist als 900 MHz, oder größer ist als 1200 MHz, oder größer ist als 1500 MHz, oder größer ist als 1800 MHz, oder größer ist als 2000 MHz, oder größer ist als 2500 MHz, oder größer ist als 3000 MHz. Insbesondere wird ein Frequenzbereich abgedeckt, der zwischen 1400 MHz bis 2690 MHz liegt.
- Der Abstand zwischen den einzelnen Teilumfangsrahmen 15a, 15b beträgt zwischen 0,1 und 0,5 mm. Er kann allerdings auch größer oder kleiner sein.
- Die
Figuren 8A bis 8C zeigen ebenfalls eine Antennenanordnung 20 mit zumindest zwei dipolförmigen Strahleranordnungen 1. Diese sind im Wesentlichen gemäß der Antennenanordnung 20 aufgebaut, wie sie im Hinblick aufFiguren 7A bis 7C beschrieben worden ist, worauf hiermit Bezug genommen worden ist. - Im Unterschied zu dem vorherigen Ausführungsbeispiel umfasst jede dipolförmige Strahleranordnung 1 noch einen Direktor 30, der ebenfalls parallel zur Strahlerebene 5 ausgerichtet ist. Der Direktor 30 weist in Draufsicht einen runden Querschnitt auf. Andere Querschnittsformen sind ebenfalls denkbar. Die Strahlerhälften 2a, 2b, 3a, 3b sind dabei zur Basis 10 näher angeordnet als der Direktor 30. Dies bedeutet, dass der Direktor 30 zusammen mit den Strahlerhälften 2a, 2b, 3a, 3b und den Teilumgangsrahmen 15a, 15b, 15c auf derselben Seite des Reflektors 6 bzw. allgemein des Grundkörpers 6, 21 beabstandet zu diesem angeordnet sind. Der Direktor 30 ist dabei, verglichen mit den Strahlerhälften 2a, 2b, 3a, 3b und den Teilumgangsrahmen 15a, 15b, 15c, am weitesten von der Stelle des Reflektors 6 bzw. des Grundkörpers 6, 21 beabstandet angeordnet, an der das zweite Ende 7b, also die Basis 10 der Trägeranordnung 7 angebracht ist. Der Direktor 30 besitzt vorzugsweise einen kleineren Durchmesser als die Teilumfangsrahmen 15a, 15b.
- Die Teilumfangsrahmen 15a, 15b, 15c sind vorzugsweise jeweils einteilig durch einen Stanzprozess hergestellt. Gleiches gilt auch für die zwei Paare 2, 3 von Strahlerhälften 2a, 2b bzw. 3a, 3b die in einem Stanzprozess einteilig zusammen mit der Trägeranordnung 7 hergestellt sind. Diese können noch durch einen zusätzlichen Biegeprozess geformt sein.
- Es ist festzuhalten, dass bei der Bemaßung der Länge für die einzelnen Elemente alle Zwischenbereiche als offenbart gelten.
- Die dipolförmige Strahleranordnung 1 ist insbesondere in Form eines Vektordipols, Kreuzdipols oder eines Dipolquadrats ausgebildet.
- Bei der Längsachse 8 handelt es sich auch um eine Zentralachse 8, die die dipolförmige Strahleranordnung 1 mittig und zwar senkrecht zur Reflektor-, bzw. Strahlerebene 5 durchsetzt.
- Nachfolgend werden nochmals verschiedene Vorteile gesondert hervorgehoben, die durch die erfindungsgemäße Antennenanordnung 20 erzielt werden.
- Ein besonderes Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 bildet insbesondere den Anspruch 3 und einen der Ansprüche 4 bis 7 weiter und umfasst die folgenden Merkmale:
- zwischen den einzelnen Teilumfangsrahmen 15a, 15b, 15c ist zumindest ein dielektrischer Abstandshalter 19 angeordnet, wodurch die einzelnen Teilumfangsrahmen 15a, 15b, 15c galvanisch voneinander getrennt sind;
- der zumindest eine dielektrische Abstandshalter 19 und das zumindest eine Halte- und Abstandselement 35 sind zusammen einstückig ausgebildet.
- Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 umfasst zusätzlich das folgende Merkmal:
- jeder Teilumfangsrahmen 15a, 15b, 15c weist mehrere Unterbrechungen 16 auf, wodurch mehrere Teilumfangsrahmensegmente 15a1, 15a2, 15a3, 15a4; 15b1, 15b2, 15b3, 15b4 gebildet sind.
- Ein anderes Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 umfasst zusätzlich die folgenden Merkmale:
- zumindest eines der Teilumfangsrahmensegmente 15a1, 15a2, 15a3, 15a4; 15b1, 15b2, 15b3, 15b4 eines Teilumfangsrahmens 15a, 15b, 15c ist länger als das andere oder die anderen Teilumfangsrahmensegmente 15a1, 15a2, 15a3, 15a4; 15b1, 15b2, 15b3, 15b4 des Teilumfangsrahmens 15a, 15b, 15c; oder
- alle Teilumfangsrahmensegmente 15a1, 15a2, 15a3, 15a4; 15b1, 15b2, 15b3, 15b4 eines Teilumfangsrahmens 15a, 15b, 15c sind gleich lang.
- Ein zusätzliches Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 umfasst zusätzlich das folgende Merkmal:
- die Unterbrechungen 16 der zumindest beiden Teilumfangsrahmen 15a, 15b, 15c sind um α = 360°/n gegeneinander verdreht, wobei n die Summe der gemeinsamen Anzahl der Unterbrechungen 16 in den zumindest beiden Teilumfangsrahmen 15a, 15b, 15c ist.
- Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 umfasst zusätzlich das folgende Merkmal:
- die zumindest beiden Teilumfangsrahmen 15a, 15b, 15c überdecken sich in Draufsicht mit Ausnahme der Unterbrechung 16 völlig oder zumindest teilweise.
- Ein anderes Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung 20 umfasst zusätzlich das folgende Merkmal:
- die zumindest beiden Teilumfangsrahmen 15a, 15b, 15c weisen einen Außendurchmesser auf, der eine Länge aufweist, die im Bereich von 20% bis 200% oder 30% bis 150% oder 40% bis 100% der Wellenlänge der Mittenfrequenz liegt.
Claims (15)
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1), wobei die zumindest eine dipolförmige Strahleranordnung (1) die folgenden Merkmalen aufweist:- zwei Paare (2, 3) von Strahlerhälften (2a, 2b, 3a, 3b), die um 90° verdreht zueinander so angeordnet sind, dass die dipolförmige Strahleranordnung (1) in zwei senkrecht zueinander stehenden Polarisationsebenen (4a, 4b) sendet und/oder empfängt;- die Strahlerhälften (2a, 2b, 3a, 3b) sind in einer Strahlerebene (5) im Abstand vor einem Reflektor (6) parallel zu diesem anordenbar oder angeordnet;- eine Trägeranordnung (7) mit einem ersten Ende (7a) und einer Basis (10), die an einem zweiten Ende (7b) angeordnet ist, das dem ersten Ende (7a) gegenüber liegt, wobei die Strahlerhälften (2a, 2b, 3a, 3b) an dem ersten Ende (7a) der Trägeranordnung (7) an dieser angeordnet sind und wobei die Basis (10) an einem Grundkörper anordenbar ist;- es sind zumindest zwei elektrisch leitfähige Teilumfangsrahmen (15a, 15b, 15c) vorgesehen, die zwischen der Strahlerebene (5) und der Basis (10) in Höhenrichtung der Trägeranordnung (7) zueinander beabstandet angeordnet sind, wobei die zumindest zwei elektrisch leitfähigen Teilumfangsrahmen (15a, 15b, 15c) jeweils eine Öffnung (17) definieren;- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind in etwa parallel zu der Strahlerebene (5) ausgerichtet;- jeder der zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) umfasst zumindest eine Unterbrechung (16), die sich durch die gesamte Breite (b) des Teilumfangsrahmens (15a, 15b, 15c) erstreckt, sodass der jeweilige Teilumfangsrahmen (15a, 15b, 15c) zumindest zwei Enden (18) aufweist.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 1, gekennzeichnet durch das folgende Merkmal:- durch jede Unterbrechung (16) in einem Teilumfangsrahmen (15a, 15b, 15c) sind zwei Enden (18) gebildet, die benachbart zueinander angeordnet und/oder aufeinander zu gerichtet sind.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 1 oder 2, gekennzeichnet durch das folgende Merkmal:- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind parallel oder um weniger als 5° oder um weniger als 3° oder um weniger als 1° geneigt zueinander angeordnet und voneinander galvanisch getrennt.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch das folgende Merkmal:- zumindest ein Halte- und Abstandselement (35);- das zumindest eine Halte- und Abstandselement (35) hält oder umgreift die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c); und/oder zwei Teilumfangsrahmen (15a, 15b, 15c) der zumindest zwei elektrisch leitfähigen Teilumfangsrahmen (15a, 15b, 15c) bilden zwei äußerste Teilumfangsrahmen und das zumindest eine Halte- und Abstandselement (35) liegt an den äußeren Oberflächen (36a, 36b) der beiden äußersten Teilumfangsrahmen (15a, 15b, 15c) auf.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 4, gekennzeichnet durch die folgenden Merkmale:- das zumindest eine Halte- und Abstandselement (35) umfasst zumindest eine Halteklammer (36);- die zumindest eine Halteklammer (36) umfasst einen Abstützabschnitt (37);- der Abstützabschnitt (37) ist innerhalb einer Unterbrechung (16) des Teilumfangsrahmens (15a, 15b, 15c) angeordnet, wodurch sich zwei Stirnseiten der beiden Enden (18), die durch die Unterbrechung (16) am Teilumfangsrahmen (15a, 15b, 15c) gebildet sind, an dem Abstützabschnitt (37) abstützen.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 4 oder 5, gekennzeichnet durch die folgenden Merkmale:- das zumindest eine Halte- und Abstandselement (35) umfasst ein Abstützprofil (38);- das Abstützprofil (38) ist an die Kontur von zumindest einem Teilumfangsrahmen (15a, 15b, 15c) angepasst und weist eine Länge auf, die zumindest einer Teillänge des Teilumfangsrahmens (15a, 15b, 15c) entspricht;- der zumindest eine Teilumfangsrahmen (15a, 15b, 15c) stützt sich mit seiner Innenseite an dem zumindest einen Abstützprofil (38) ab.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der Ansprüche 4 bis 6, gekennzeichnet durch das folgende Merkmal:- das zumindest eine Halte- und Abstandselement (35) ist über eine Kraft- und/oder Formschlussverbindung (39), insbesondere in Form einer Clips- oder Schnappverbindung, an einem oder an allen Strahlerhälften (2a, 2b, 3a, 3b) oder an der Trägeranordnung (7) gehalten.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch das folgende Merkmal:- in Draufsicht auf den jeweiligen Teilumfangsrahmen (15a, 15b, 15c) erstreckt sich die zumindest eine Unterbrechung (16) auf weniger als 30%, oder auf weniger als 20%, oder auf weniger als 10%, oder auf weniger als 5% der Länge des Teilumfangsrahmens (15a, 15b, 15c) .
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch die folgenden Merkmale:- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind zueinander verdreht angeordnet; und- die Unterbrechungen (16) der zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) überlappen sich in Draufsicht nur teilweise oder sind vollständig überlappungsfrei zueinander angeordnet.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch die folgenden Merkmale:- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind in Draufsicht in etwa kreisförmig oder beschreiben im Mittel einen Kreis; und/oder- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind in Draufsicht gleich breit.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch die folgenden Merkmale:- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) weisen jeweils mehrere Rahmenabschnitte (25a, 25b) auf, wobei sich die Abstände zwischen den einzelnen Rahmenabschnitten (25a, 25b) hin zu einer Längsachse, die die dipolförmige Strahleranordnung (1) mittig durchsetzt, alternierend von einem größeren Abstand hin zu einem kleineren Abstand abwechselt;- die einzelnen Rahmenabschnitte (25a, 25b) sind über einen Verbindungsabschnitt (25c) miteinander verbunden.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 11, gekennzeichnet durch die folgenden Merkmale:- die zumindest zwei Teilumfangsrahmen (15a, 15b, 15c) sind zusammen mit ihren in ihrem Abstand hin zur Längsachse alternierenden Rahmenabschnitten (25a, 25b) mit Ausnahme der Unterbrechungen (16) in Draufsicht deckungsgleich oder verdreht zueinander angeordnet.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach Anspruch 11 oder 12, gekennzeichnet durch die folgenden Merkmale:- zwischen jeweils zwei Teilumfangsrahmen (15a, 15b, 15c) ist zumindest ein Dielektrikum (19) eingebracht;- die Form des Dielektrikums (19) ist in Draufsicht auf die dipolförmige Strahleranordnung (1) an die Form der jeweiligen Teilumfangsrahmen (15a, 15b, 15c) angepasst;- das zumindest eine Dielektrikum (19) ist in Draufsicht auf die dipolförmige Strahleranordnung (1) deckungsgleich oder verdreht zu den jeweiligen Teilumfangsrahmen (15a, 15b, 15c) angeordnet.
- Antennenanordnung (20) mit zumindest einer dipolförmigen Strahleranordnung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch die folgenden Merkmale:- einem Direktor (30), wobei der Direktor (30) parallel zu der Strahlerebene (5) ausgerichtet ist;- die Strahlerhälften (2a, 2b, 3a, 3b) sind zur Basis (10) näherliegend angeordnet als der Direktor (30).
- Antennenanordnung (20) mit zumindest zwei dipolförmigen Strahleranordnungen (1), wobei jede der zumindest beiden dipolförmigen Strahleranordnungen (1) nach einem der vorherigen Ansprüche aufgebaut ist, gekennzeichnet durch das folgende Merkmal:- die zumindest beiden dipolförmigen Strahleranordnungen (15a, 15b, 15c) sind auf einem gemeinsamen Grundkörper (6, 21) angeordnet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016112257.2A DE102016112257A1 (de) | 2016-07-05 | 2016-07-05 | Antennenanordnung mit zumindest einer dipolförmigen Strahleranordnung |
PCT/EP2017/066561 WO2018007348A1 (de) | 2016-07-05 | 2017-07-04 | Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3482450A1 EP3482450A1 (de) | 2019-05-15 |
EP3482450B1 true EP3482450B1 (de) | 2020-10-28 |
Family
ID=59276765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17735116.0A Active EP3482450B1 (de) | 2016-07-05 | 2017-07-04 | Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung |
Country Status (7)
Country | Link |
---|---|
US (1) | US10854997B2 (de) |
EP (1) | EP3482450B1 (de) |
KR (1) | KR20190027840A (de) |
CN (1) | CN109417219B (de) |
AU (1) | AU2017294435A1 (de) |
DE (1) | DE102016112257A1 (de) |
WO (1) | WO2018007348A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107819198B (zh) * | 2017-09-19 | 2020-03-20 | 上海华为技术有限公司 | 一种基站天线的馈电网络,基站天线及基站 |
CN111201669B (zh) * | 2017-10-12 | 2021-07-16 | 华为技术有限公司 | 超紧凑型辐射单元 |
CN111916888A (zh) | 2019-05-08 | 2020-11-10 | 康普技术有限责任公司 | 用于基站天线的辐射器组件 |
CN110323566B (zh) * | 2019-07-10 | 2020-11-13 | 哈尔滨工业大学 | 双极化多频超宽带基站天线 |
CN110444902B (zh) * | 2019-08-08 | 2021-03-23 | 普联技术有限公司 | 一种智能天线装置和系统 |
WO2021046665A1 (zh) * | 2019-09-09 | 2021-03-18 | 罗森伯格亚太电子有限公司 | 一种高增益小型化天线振子及天线 |
CN112467343B (zh) * | 2019-09-09 | 2023-07-04 | 普罗斯通信技术(苏州)有限公司 | 一种高增益小型化天线振子及天线 |
JP2023526582A (ja) * | 2020-04-22 | 2023-06-22 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 移動無線システムのためのアンテナ構成、積重ねアンテナシステム、およびアンテナ構成と積重ねアンテナシステムとを備える移動無線アンテナ |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4864320A (en) * | 1988-05-06 | 1989-09-05 | Ball Corporation | Monopole/L-shaped parasitic elements for circularly/elliptically polarized wave transceiving |
DE19627015C2 (de) | 1996-07-04 | 2000-07-13 | Kathrein Werke Kg | Antennenfeld |
DE19722742C2 (de) | 1997-05-30 | 2002-07-18 | Kathrein Werke Kg | Dualpolarisierte Antennenanordnung |
DE19860121A1 (de) | 1998-12-23 | 2000-07-13 | Kathrein Werke Kg | Dualpolarisierter Dipolstrahler |
WO2004055938A2 (en) * | 2002-12-13 | 2004-07-01 | Andrew Corporation | Improvements relating to dipole antennas and coaxial to microstrip transitions |
US7283101B2 (en) | 2003-06-26 | 2007-10-16 | Andrew Corporation | Antenna element, feed probe; dielectric spacer, antenna and method of communicating with a plurality of devices |
US6822618B2 (en) * | 2003-03-17 | 2004-11-23 | Andrew Corporation | Folded dipole antenna, coaxial to microstrip transition, and retaining element |
DE10320621A1 (de) | 2003-05-08 | 2004-12-09 | Kathrein-Werke Kg | Dipolstrahler, insbesondere dualpolarisierter Dipolstrahler |
DE10359622A1 (de) | 2003-12-18 | 2005-07-21 | Kathrein-Werke Kg | Antenne mit zumindest einem Dipol oder einer dipolähnlichen Strahleranordnung |
CN101080848B (zh) | 2004-06-04 | 2012-09-12 | 安德鲁公司 | 定向偶极子天线 |
WO2005122331A1 (en) | 2004-06-04 | 2005-12-22 | Andrew Corporation | Directed dipole antenna |
US7079083B2 (en) * | 2004-11-30 | 2006-07-18 | Kathrein-Werke Kg | Antenna, in particular a mobile radio antenna |
WO2010063007A2 (en) * | 2008-11-26 | 2010-06-03 | Andrew Llc | Dual band base station antenna |
CN101505007B (zh) * | 2009-03-10 | 2013-03-06 | 摩比天线技术(深圳)有限公司 | 一种宽频双极化天线辐射元结构 |
CN202839949U (zh) * | 2012-08-13 | 2013-03-27 | 佛山市健博通电讯实业有限公司 | 一种lte宽带双极化天线振子 |
US20150214629A1 (en) | 2012-08-27 | 2015-07-30 | Nihon Dengyo Kosaku Co., Ltd. | Antenna |
CN203386887U (zh) | 2013-04-25 | 2014-01-08 | 华为技术有限公司 | 天线振子及具有该天线振子的天线 |
US8988298B1 (en) * | 2013-09-27 | 2015-03-24 | Qualcomm Incorporated | Collocated omnidirectional dual-polarized antenna |
EP2950385B1 (de) * | 2014-05-28 | 2016-08-24 | Alcatel Lucent | Mehrbandantenne |
CN104103900B (zh) * | 2014-07-10 | 2016-08-17 | 电子科技大学 | 一种低剖面宽带双极化全向天线 |
CN105244633A (zh) * | 2015-10-19 | 2016-01-13 | 深圳信息职业技术学院 | 宽带异频正交偶极子天线 |
CN105720361B (zh) | 2016-01-26 | 2018-06-19 | 电子科技大学 | 一种基于人工磁导体结构的宽带低剖面双极化全向天线 |
US10148015B2 (en) * | 2016-03-14 | 2018-12-04 | Kathrein-Werke Kg | Dipole-shaped antenna element arrangement |
-
2016
- 2016-07-05 DE DE102016112257.2A patent/DE102016112257A1/de not_active Withdrawn
-
2017
- 2017-07-04 CN CN201780039684.8A patent/CN109417219B/zh active Active
- 2017-07-04 WO PCT/EP2017/066561 patent/WO2018007348A1/de unknown
- 2017-07-04 US US16/315,024 patent/US10854997B2/en active Active
- 2017-07-04 AU AU2017294435A patent/AU2017294435A1/en not_active Abandoned
- 2017-07-04 EP EP17735116.0A patent/EP3482450B1/de active Active
- 2017-07-04 KR KR1020197002607A patent/KR20190027840A/ko not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN109417219A (zh) | 2019-03-01 |
US20190312362A1 (en) | 2019-10-10 |
AU2017294435A1 (en) | 2018-12-06 |
EP3482450A1 (de) | 2019-05-15 |
DE102016112257A1 (de) | 2018-01-11 |
CN109417219B (zh) | 2020-12-22 |
US10854997B2 (en) | 2020-12-01 |
WO2018007348A1 (de) | 2018-01-11 |
KR20190027840A (ko) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3482450B1 (de) | Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung | |
EP3220480B1 (de) | Dipolförmige strahleranordnung | |
EP2929589B1 (de) | Dualpolarisierte, omnidirektionale antenne | |
EP1470615B1 (de) | Dualpolarisierte strahleranordnung | |
DE60028899T2 (de) | Interne Antenne für ein Gerät | |
DE60033275T2 (de) | Oberflächenmontierbare antenne und kommunikationsgerät mit einer derartigen antenne | |
EP1817815B1 (de) | Zweiband-mobilfunkantenne | |
EP1749331B1 (de) | Mobilfunkantenne mit strahlformungselement | |
EP3104455B1 (de) | Dipolförmige strahleranordnung | |
EP3025395B1 (de) | Breitband-antennenarray | |
DE602005002330T2 (de) | Logarithmisch periodische Mikrostreifengruppenantenne mit geerdetem halbkoplanaren Übergang von Wellenleiter auf Mikrostreifenleitung | |
DE60102574T2 (de) | Gedruckte Dipolantenne mit dualen Spiralen | |
EP3306742A1 (de) | Mobilfunk-antenne | |
EP3355409B1 (de) | Breitbandige omnidirektionale antenne | |
DE69839036T2 (de) | Zirkular polarisierte weitwinkel-antenne | |
WO2007076963A1 (de) | Dual polarisierte antenne mit länge- oder querstegen | |
WO2016050336A1 (de) | Multiband-strahlersystem | |
WO2019162345A1 (de) | Multibandantennenanordnung für mobilfunkanwendungen | |
WO2004073112A1 (de) | Breitband-monopol-antenne | |
DE102017101676B4 (de) | Breitbandige dualpolarisierte omnidirektionale Antenne | |
EP1760830B1 (de) | Antenne für ein funkbetriebenes Kommunikationsendgerät | |
DE102012101443B4 (de) | Planare Antennenanordnung | |
DE102004024800A1 (de) | Mehrbandfähige Antenne | |
DE102016104611B4 (de) | Dipolförmige Strahleranordnung | |
CH690945A5 (de) | Patch-Antenne. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ERICSSON AB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) |
|
INTG | Intention to grant announced |
Effective date: 20200602 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1329154 Country of ref document: AT Kind code of ref document: T Effective date: 20201115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017007948 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210129 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210128 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210301 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210128 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210228 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017007948 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210704 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210704 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220727 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170704 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1329154 Country of ref document: AT Kind code of ref document: T Effective date: 20220704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220704 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201028 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 8 |