WO2021046665A1 - 一种高增益小型化天线振子及天线 - Google Patents

一种高增益小型化天线振子及天线 Download PDF

Info

Publication number
WO2021046665A1
WO2021046665A1 PCT/CN2019/104822 CN2019104822W WO2021046665A1 WO 2021046665 A1 WO2021046665 A1 WO 2021046665A1 CN 2019104822 W CN2019104822 W CN 2019104822W WO 2021046665 A1 WO2021046665 A1 WO 2021046665A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna element
antenna
radiating
feeding support
Prior art date
Application number
PCT/CN2019/104822
Other languages
English (en)
French (fr)
Inventor
姜涛
刘鹏
王德乐
孙静
Original Assignee
罗森伯格亚太电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格亚太电子有限公司 filed Critical 罗森伯格亚太电子有限公司
Priority to EP19944735.0A priority Critical patent/EP3979413A4/en
Priority to PCT/CN2019/104822 priority patent/WO2021046665A1/zh
Publication of WO2021046665A1 publication Critical patent/WO2021046665A1/zh
Priority to US17/497,419 priority patent/US11437715B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of 5G communication, in particular to a high-gain miniaturized antenna vibrator and antenna.
  • the network speed, network capacity, number of terminal connections, and air interface delay of the 4G mobile communication system can no longer meet the needs of the market and technological evolution. In the future, wider bandwidth, higher speed, and power consumption will be required. Lower, shorter latency, denser and more secure 5G technology.
  • the application scenarios of 5G base stations are diversified. In many occasions, the structural size of the antenna elements of 5G base stations is getting higher and higher. Therefore, how to design high-gain and miniaturized antenna elements is a challenge in the design of 5G base station antenna systems.
  • the Chinese patent application number CN201910297576.1 discloses a broadband multi-resonant 5G antenna system and base station.
  • the antenna system includes a ground plate and an antenna element.
  • the vibrator includes a substrate, a radiating component, and a feeding component.
  • the radiating component is arranged on one side of the substrate close to the ground plate.
  • the radiating component includes two antenna radiation groups, one of which has a symmetry axis relative to the other antenna The symmetry axis of the radiation group is set at an included angle of 90°.
  • the feed assembly includes a cross-shaped first feed structure and a cross-shaped second feed structure.
  • the antenna element can cover all frequency bands from 2.5 to 5 GHz, and has a planar, It has the characteristics of wide frequency and stable gain, and its structure is simple, and the production cost is low.
  • the above-mentioned antenna element is a dipole antenna, which is a radiating surface set on a circuit board.
  • a 5G element unit based on a sheet structure has a higher cost and a heavier weight.
  • the above-mentioned 5G antenna element occupies a large space, which is not conducive to the miniaturization of the base station antenna, and the loss of the antenna element is also large.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a high-gain miniaturized antenna element and antenna that are light in weight, low in cost, and more compact.
  • a high-gain miniaturized antenna element the antenna element is integrally formed, and includes a radiating structure and a feeding support structure, and the radiating structure includes a first radiator and a second radiator.
  • a radiator the first radiator is arranged horizontally, and the second radiator is formed by bending the outer edge of the first radiator downwards.
  • the feeding support structure includes a plurality of feeding support parts arranged vertically. The power feeding support portion is formed to extend downward from the first radiator.
  • the antenna element is a sheet metal structure.
  • a plurality of slits are provided on the radiating structure, and each slit extends from the outer edge of the second radiator to the center of the first radiator, and penetrates the outer edge of the second radiator.
  • the plurality of slits divide the radiating structure into a plurality of radiating units, and the outer edge of each radiating unit includes a plurality of first and second sides arranged at intervals.
  • the first side is a circular arc side
  • the second side is a circular arc side that is curved opposite to the first side
  • the feeding support portion is torn or punched from the radiating structure and then formed by bending, and a slot is formed in the radiating structure after bending.
  • the slot hole includes a first slot hole formed on the first radiator and a second slot hole formed on the second radiator, the first slot hole is a rectangular slot hole, and the second slot The hole is or is approximately a sector-shaped slot hole.
  • the feeding support portion is connected to an end of the first slot away from the outer edge of the first radiator.
  • the antenna element further includes a guiding piece, and the guiding piece is fixed above the radiating structure.
  • At least one slot hole is provided on each radiation unit.
  • the present invention also discloses another technical solution: an antenna including a substrate and at least one antenna element arranged on the substrate.
  • the integrated structure design of the antenna oscillator can effectively enhance the strength of the oscillator, and the sheet metal structure is used, which is easy to produce and can reduce the overall weight of the antenna.
  • the radiating part of the antenna is provided with a skirt structure that is bent outwards, which can reduce the aperture size of the antenna element while ensuring the resonant frequency, which is conducive to miniaturization, and the multiple slots in the radiating part can not only effectively reduce the array It is also beneficial to the miniaturization, matching, and welding of the antenna element, so that the base station antenna can achieve high gain and miniaturization, and at the same time, it can reduce the loss of the antenna unit, which is conducive to the assembly and use of the antenna in the 5G communication frequency band.
  • the multiple power feeding support parts arranged vertically not only play the role of feeding power, but also play the role of supporting and fixing the array unit.
  • the multiple slit structure of the radiation part can effectively adjust the resonant frequency of the array, reduce the size of the array, and effectively reduce the weight of the array.
  • Fig. 1 is a schematic diagram of the three-dimensional structure of the antenna element of the present invention.
  • Fig. 2 is a schematic diagram of the three-dimensional structure on the reverse side of Fig. 1;
  • FIG. 3 is a schematic diagram of the three-dimensional structure of the antenna of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the antenna element and the substrate separated in FIG. 3;
  • the high-gain miniaturized antenna element and antenna disclosed in the present invention reduces the weight and cost of the antenna element, and at the same time makes the space occupied by the antenna element smaller, the base station antenna is more miniaturized, and the loss of the antenna element is reduced , Which is conducive to the assembly and use of antennas in the 5G communication frequency band.
  • a high-gain miniaturized antenna element 100 disclosed in the present invention includes a radiating structure 10 and a feeding support structure 20, wherein the radiating structure 10 includes a first radiator 11 and a second radiator.
  • the body 12, the first radiator 11 is the main radiating part generated by the antenna pattern.
  • the first radiator 11 is arranged horizontally, and the whole is a disc shape. The implementation may not be limited to the disc shape.
  • the second radiator 12 and the first radiator 11 constitute the radiation part of the antenna.
  • the second radiator 12 is formed by bending the outer edge of the first radiator 11 downward, which is approximately the skirt structure of the first radiator 11.
  • a plurality of slots 13 are further provided on the radiating structure 10, wherein the arrangement of the slots 13 can effectively adjust the resonant frequency of the antenna element 100 and play a role in reducing the size of the antenna element 100.
  • Each slit 13 extends from the outer edge of the second radiator 12 to the center of the first radiator 11 and penetrates the outer edge of the second radiator 12.
  • the slit 13 extends to the first radiator 11 That is, each slit 13 is formed on the second radiator 12 and the first radiator 11.
  • the radiating structure 10 in this embodiment is provided with four slits 13 which are evenly distributed in the circumferential direction on the radiating structure 10 and all face the center of the first radiator 11 (in this embodiment, the first radiator 11). The center of the circle), that is, the four slits 13 are rotationally symmetrical on the radiating structure 10.
  • the multiple slits 13 divide the radiating structure 10 into multiple radiating elements 15.
  • the four slits 13 divide the radiating structure 10 into four corresponding radiating elements 15, that is, between the two adjacent slits 13 of the radiating structure 10
  • a radiation unit 15 is formed between four radiation units 15 and two radiation unit groups are formed.
  • the symmetry axis of one radiation unit group is perpendicular to the symmetry axis of the other radiation unit group.
  • Each radiation unit group includes two oppositely arranged radiation unit groups.
  • the radiating elements 15, that is, the four radiating elements 15 are distributed in a crisscross shape.
  • each radiating unit 15 specifically includes a first radiating portion 151 and a second radiating portion 152.
  • the first radiating portion 151 is arranged horizontally and is the first radiator 11
  • the second radiating portion 152 is formed by bending downward from the outer edge of the first radiating portion 151, and the second radiating portion 152 is a part of the second radiator 12.
  • the number, shape, etc. of the slits 13 on the radiating structure 10 may not be limited, and correspondingly, the number, shape, etc. of the radiating unit 15 are also not limited.
  • each radiating unit 15 is a polygon, that is, the outer edge of the second radiating portion 152 is a polygon, and specifically includes a plurality of first sides 121 and second sides 122 arranged at intervals.
  • each radiating unit 15 There is one first side 121 and two second sides 122.
  • the outer edge of the entire second radiator 12 has a total of 4 first sides 121 and 8 second sides 122, wherein the first side 121 is OR
  • the second side 122 is an arc side that is curved in the opposite direction to the first side, that is, the bending directions of the first side 121 and the second side 122 are opposite, for example, the first side 121 is curved outwards
  • the second side 122 is an inwardly curved arc side.
  • the skirt structure of the second radiator 12 can reduce the aperture size of the antenna element while ensuring the resonance frequency, which is conducive to miniaturization.
  • the number of sides of each radiating unit 15 can be set according to actual needs, and the shapes of the first side 121 and the second side 122 are not limited to those defined here.
  • each slot hole 14 includes a first slot hole 141 formed on the first radiator 11 and a second slot hole 142 formed on the second radiator 12.
  • each radiator unit 15 is A slot 14 is provided, that is, four slots 14 are formed on the radiating structure 10, and each slot 14 is arranged coaxially with the corresponding radiating unit 15, that is, the four slots 14 are also distributed in a cross shape.
  • the first slot 141 is a rectangular slot
  • the second slot 142 is or approximately a fan-shaped slot.
  • the rectangular slot is conducive to the miniaturization of the element, and the fan-shaped slot can effectively reduce the antenna element.
  • the weight of 100 and is conducive to the matching and welding of the antenna element 100.
  • the number and shape of the slots 14 on the radiating structure 10 may also not be limited.
  • the feeding support structure 20 is formed extending downward from the first radiator 11, on the one hand, it plays a role of feeding power, and on the other hand, it plays a role of supporting and fixing the antenna element 100.
  • the feeding support structure 20 includes a plurality of vertically arranged feeding support parts 21, each of the feeding support parts 21 is formed by tearing or punching the radiating structure and then bending, and forming on the radiating structure after bending.
  • the feeding support structure 20 includes four vertically arranged feeding support portions 21, and each feeding support portion 21 is connected to the first radiator 11 and is arranged close to the center of the first radiator 11. .
  • Each radiating unit 15 corresponds to a feeding support portion 21, and one end (the upper end in this embodiment) of each feeding support portion 21 is connected to the end of the first slot 141 away from the outer edge of the first radiator 14.
  • the four feeding support parts 21 are also distributed in a crisscross pattern. During specific implementation, the number and location of the feeding support portion 21 may also not be limited.
  • the antenna element 100 of the present invention is integrally formed as a whole, which can effectively enhance the strength of the antenna, and preferably adopts a sheet metal structure, which is easy to produce and can reduce the overall weight of the antenna.
  • the antenna element 100 is also provided with a guide piece (not shown).
  • the guide piece is fixed above the radiating structure 10, specifically above the end surface of the radiating structure 10 away from the feeding support.
  • the setting of the guide piece on the one hand, can make the vibrator be well matched when the height is lower than that of the traditional vibrator, and on the other hand, it can also improve the cross polarization of the antenna.
  • an antenna 200 disclosed in the present invention includes a substrate 30 and at least one element unit disposed on the substrate 30, and each element element includes at least one antenna element 100 as described above.
  • the other end (the lower end in this embodiment) of the power feeding support portion 21 of the vibrator 100 is connected to the substrate 30, and is specifically welded to the substrate 30.
  • a feeder network 31 is provided on the substrate 30, and a plurality of signal input/output terminals 311 are provided on the feeder network 31.
  • the other end of each feeder support portion 21 corresponds to a signal input/output terminal.
  • the output terminal 311 is electrically connected.
  • the substrate 30 may be a PCB board.
  • an isolation plate 40 is further provided between adjacent array subunits, which can not only improve the isolation between the array subunits, but also reduce the side lobes of the antenna radiation pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明揭示了一种高增益小型化天线振子及天线,所述天线振子一体成型,其包括辐射结构和馈电支撑结构,辐射结构包括第一辐射体和第二辐射体,第一辐射体水平设置,第二辐射体由第一辐射体的外边沿向下折弯形成,馈电支撑结构包括多个竖直设置的馈电支撑部,馈电支撑部自第一辐射体向下延伸形成。本发明能够减轻振子的重量,有效提高振子的强度,使基站天线实现高增益小型化,同时能够减小天线振子的损耗,利于5G通信频段的天线的装配及使用。

Description

一种高增益小型化天线振子及天线 技术领域
本发明涉及一种5G通信技术领域,尤其是涉及一种高增益小型化天线振子及天线。
背景技术
伴随着移动互联网和物联网的发展,4G移动通讯系统的网络速率、网络容量、终端连接数量及空口时延已不能满足市场与技术演进的需求,未来需要带宽更宽、速率更高、功耗更低、时延更短及连接更密集更安全的5G技术。而5G基站应用场景多样化,许多场合对5G基站天线振子的结构尺寸要求越来越高,因此如何设计出高增益小型化的振子天线是5G基站天线系统设计中要面临的一个挑战。
到目前为止,已经存在很多5G基站振子天线的设计,如中国申请号为CN201910297576.1的专利中公开了一种宽频多谐振5G天线系统及基站,其中,天线系统包括接地板和天线振子,天线振子包括基板、辐射组件和馈电组件,辐射组件设置于所述基板靠近接地板的一侧面上,辐射组件包括两个天线辐射组,其中一个所述天线辐射组的对称轴相对于另一个天线辐射组的对称轴呈90°夹角设置,馈电组件包括十字形的第一馈电结构和十字形的第二馈电结构,该天线振子可以覆盖2.5~5GHz的所有频段,具有平面化、宽频和增益稳定的特点,且其结构简单,制作成本低。
但是上述天线振子是偶极子天线,是在电路板上设置的辐射面,这种基于板材结构的5G阵子单元,成本较高,重量较重。且上述5G天线振子占用空间较大,不利于基站天线小型化,天线振子的损耗也较大。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种重量轻、成本低且更小型化的高增益小型化天线振子及天线。
为实现上述目的,本发明提出如下技术方案:一种高增益小型化天线振子,所述天线振子一体成型,其包括辐射结构和馈电支撑结构,所述辐射结构包括第一辐射体和第二辐射体,所述第一辐射体水平设置,第二辐射体由第一辐射体的外边沿向下折弯形成,所述馈电支撑结构包括多个竖直设置的馈电支撑部,所述馈电支撑部自第一辐射体向下延伸形成。
优选地,所述天线振子为钣金结构。
优选地,所述辐射结构上设置多个缝隙,每个缝隙自第二辐射体的外边沿向第一辐射体的中心方向延伸形成,且贯穿所述第二辐射体的外边沿。
优选地,所述多个缝隙将辐射结构分为多个辐射单元,每个所述辐射单元的外边沿包括多个间隔设置的第一边和第二边。
优选地,所述第一边为圆弧边,所述第二边为与第一边反向弯曲的圆弧边。
优选地,所述馈电支撑部自辐射结构撕裂或冲压后再折弯形成,且折弯后在所述辐射结构上形成一个槽孔。
优选地,所述槽孔包括形成于第一辐射体上的第一槽孔和形成于第二辐射体上的第二槽孔,所述第一槽孔为长方形槽孔,所述第二槽孔为或近似为扇形槽孔。
优选地,所述馈电支撑部与第一槽孔远离第一辐射体的外边沿的一端相连。
优选地,天线振子还包括引向片,所述引向片固定于辐射结构的上方。
优选地,每个所述辐射单元上至少设置一所述槽孔。
本发明还揭示了另外一种技术方案:一种天线,包括基板及设置于所述基板上的至少一天线振子。
本发明的有益效果是:
1、天线振子的一体化结构设计,能有效增强振子的强度,且采用钣金结构,易于生产并且可以降低天线整体重量。
2、天线的辐射部分设置向外折弯的裙摆结构,在保证谐振频率的同时,可以缩小天线振子的口径尺寸,利于小型化,且辐射部分的多个槽孔,不仅能够有效减小阵子的重量,并且也有可利于天线振子的小型化及匹配、焊接,使基站天线实现高增益小型化,同时能够减小天线单元的损耗,利于5G通信频段的天线的装配及使用。
3、竖直设置的多个馈电支撑部,既起到了馈电的作用,又起到了支撑和固定阵子单元的作用。
4、辐射部分的多个缝隙结构可以有效地调节阵子的谐振频率,起到缩减阵子尺寸的作用,也可有效减轻阵子的重量。
附图说明
图1是本发明天线振子的立体结构示意图;
图2是图1反面的立体结构示意图;
图3是本发明天线的立体结构示意图;
图4是图3中天线振子与基板分体的结构示意图;
附图标记:
100、天线振子,10、辐射结构,11、第一辐射体,12、第二辐射体,121、第一边,122、第二边,13、缝隙,14、槽孔,141、第一槽孔,142、第二槽孔,15、辐射单元,151、第一辐射部,152、第二辐射部,20、馈电支撑结构,21、馈电支撑部,200、天线,30、基板,31、馈电网络,311、信号输入/输出端,40、隔离板。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种高增益小型化天线振子及天线,减轻了天线振子的重量及减少成本,同时使天线振子占用的空间更小,基站天线更加小型化,且减小了天线振子的损耗,利于5G通信频段的天线的装配及使用。
结合图1和图2所示,本发明所揭示的一种高增益小型化天线振子100,包括辐射结构10和馈电支撑结构20,其中,辐射结构10包括第一辐射体11和第二辐射体12,第一辐射体11是天线方向图产生的主辐射部分,本实施例中,第一辐射体11水平设置,且其整体呈圆盘状,实施时可以不限于是圆盘状。
第二辐射体12与第一辐射体11构成天线的辐射部分。本实施例中,第二辐射体12由第一辐射体11的外边沿向下折弯形成,近似呈第一辐射体11的裙摆结构。
优选地,辐射结构10上还设置有多个缝隙13,其中,缝隙13的设置可以有效地调节天线振子100的谐振频率,起到缩减天线振子100尺寸的作用。每个缝隙13自第二辐射体12的外边沿向第一辐射体11的中心方向延伸形成且贯穿第二辐射体12的外边沿,本实施例中,缝隙13延伸至第一辐射体11上,即每个缝隙13形成于第二辐射体12和第一辐射体11上。且本实施例中的辐射结构10上设置4个缝隙13,这4个缝隙13在辐射结构10上周向均匀分布,均朝向第一辐射体11的中心(本实施例中即第一辐射体的圆心),即4个缝隙13在辐射结构10上是旋转对称的。
多个缝隙13将辐射结构10分为多个辐射单元15,本实施例中,4个缝隙13将辐射结构10对应分为4个辐射单元15,即辐射结构10的相邻两个缝隙13之间形成一辐射单元15,4个辐射单元15形成两个辐射单元组,其中一个辐射单元组的对称轴与另一个辐射单元组的对称轴相垂直, 每个辐射单元组包括两个相对设置的辐射单元15,即4个辐射单元15呈十字交叉状分布。
本实施例中,4个辐射单元15的结构均相同,每个辐射单元15具体包括第一辐射部151和第二辐射部152,其中,第一辐射部151水平设置,为第一辐射体11的一部分,第二辐射部152自第一辐射部151的外边沿向下折弯形成,第二辐射部152为第二辐射体12的一部分。具体实施时,辐射结构10上缝隙13的设置数量、形状等可不限定,对应地,辐射单元15的数量、形状等也不限定。
每个辐射单元15的外边沿为多边形,即第二辐射部152的外边沿为多边形,具体包括多个间隔设置的第一边121和第二边122,本实施例中,每个辐射单元15具有1个第一边121和2个第二边122,这样,整个第二辐射体12的外边沿共具有4个第一边121和8个第二边122,其中,第一边121呈或近似呈圆弧状,第二边122则为与第一边反向弯曲的圆弧边,即第一边121和第二边122的弯曲方向是相反的,如第一边121为向外弯曲的圆弧边,第二边122则是向内弯曲的圆弧边,第二辐射体12的这种裙摆结构在保证谐振频率的同时可以缩小天线阵子的口径尺寸,利于小型化。实施时,每个辐射单元15的边数可根据实际需要设置,且第一边121和第二边122的形状也不限于这里所限定的。
优选地,辐射结构10上还设置有多个槽孔14,辐射结构10上槽孔14的设置,不仅能够有效减小天线振子100的重量,并且也有可利于天线振子100的小型化及匹配、焊接。具体地,每个槽孔14包括形成于第一辐射体11上的第一槽孔141和形成于第二辐射体12上的第二槽孔142,本实施例中,每个辐射单元15上设置一槽孔14,即辐射结构10上形成4个槽孔14,每个槽孔14与对应的辐射单元15同轴设置,即4个槽孔14也呈十字交叉状分布。
另外,本实施例中,第一槽孔141为长方形槽孔,第二槽孔142为或近似为扇形槽孔,其中,长方形槽孔利于阵子的小型化,扇形槽孔能有效减小天线振子100的重量,并且有利于天线振子100匹配,及焊接。具体实施时,辐射结构10上槽孔14的设置数量、形状等也可不作限定。
馈电支撑结构20自第一辐射体11向下延伸形成,一方面起馈电的作用,另一方面起支撑和固定天线振子100的作用。具体地,馈电支撑结构20包括多个竖直设置的馈电支撑部21,每个馈电支撑部21由辐射结构撕裂或冲压后再折弯形成,且折弯后在辐射结构上形成一个上述槽孔。本实施例中,馈电支撑结构20包括4个竖直设置的馈电支撑部21,每个馈电支撑部21与第一辐射体11连接,且靠近第一辐射体11的中心位置处设置。每个辐射单元15对应一馈电支撑部21,每个馈电支撑部21的一端(本实施例中为上端)与第一槽孔141远离第一辐射体14的外边沿的一端相连接。4个馈电支撑部21同样呈十字交叉分布。具体实施时,馈电支撑部21的设置数量及设置位置也可不作限定。
优选地,本发明天线振子100整体为一体成型化设计,能有效增强天线的强度,且优选采用钣金结构,易于生产且可以降低天线整体重量。
另外,天线振子100上还设置有引向片(图未示),本实施例中,引向片固定于辐射结构10的上方,具体为辐射结构10远离馈电支撑部的那一端面的上方,引向片的设置,一方面它能够使得振子在高度低于传统振子高度的情况下得以良好的匹配,另一方面也能改善天线的交叉极化。
结合图3和图4所示,本发明所揭示的一种天线200,包括一基板30及设置于所述基板30上的至少一阵子单元,每个阵子单元包括至少一上述天线振子100,天线振子100的馈电支撑部21的另一端(本实施例中为下端)与基板30相连,具体与基板30相焊接。具体地,本实施例中,基板30上设置有馈电网络31,馈电网络31上设置有多个信号输入/输出端311, 每个馈电支撑部21的另一端对应与一信号输入/输出端311相电连。实施时,基板30可采用PCB板。
优选地,相邻阵子单元之间还设置有隔离板40,不仅可以提高阵子单元之间的隔离度还可以降低天线辐射方向图的旁瓣。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种高增益小型化天线振子,其特征在于,所述天线振子一体成型,其包括辐射结构和馈电支撑结构,所述辐射结构包括第一辐射体和第二辐射体,所述第一辐射体水平设置,第二辐射体由第一辐射体的外边沿向下折弯形成,所述馈电支撑结构包括多个竖直设置的馈电支撑部,所述馈电支撑部自第一辐射体向下延伸形成。
  2. 根据权利要求1所述的天线振子,其特征在于,所述天线振子为钣金结构。
  3. 根据权利要求1所述的天线振子,其特征在于,所述辐射结构上设置多个缝隙,每个缝隙自第二辐射体的外边沿向第一辐射体的中心方向延伸形成,且贯穿所述第二辐射体的外边沿。
  4. 根据权利要求3所述的天线振子,其特征在于,所述多个缝隙将辐射结构分为多个辐射单元,每个所述辐射单元的外边沿包括多个间隔设置的第一边和第二边。
  5. 根据权利要求4所述的天线振子,其特征在于,所述第一边为圆弧边,所述第二边为与第一边反向弯曲的圆弧边。
  6. 根据权利要求4所述的天线振子,其特征在于,所述馈电支撑部自辐射结构撕裂或冲压后再折弯形成,且折弯后在所述辐射结构上形成一个槽孔。
  7. 根据权利要求6所述的天线振子,其特征在于,所述槽孔包括形成于第一辐射体上的第一槽孔和形成于第二辐射体上的第二槽孔,所述第一槽孔为长方形槽孔,所述第二槽孔为或近似为扇形槽孔。
  8. 根据权利要求7所述的天线振子,其特征在于,所述馈电支撑部与第一槽孔远离第一辐射体的外边沿的一端相连。
  9. 根据权利要求1所述的天线振子,其特征在于,所述天线振子还包括 引向片,所述引向片固定于辐射结构的上方。
  10. 一种天线,其特征在于,所述天线包括一基板及设置于所述基板上的至少一权利要求1~9任意一项所述的天线振子。
PCT/CN2019/104822 2019-09-09 2019-09-09 一种高增益小型化天线振子及天线 WO2021046665A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19944735.0A EP3979413A4 (en) 2019-09-09 2019-09-09 MINIATURIZED HIGH GAIN ANTENNA ELEMENT AND ANTENNA
PCT/CN2019/104822 WO2021046665A1 (zh) 2019-09-09 2019-09-09 一种高增益小型化天线振子及天线
US17/497,419 US11437715B2 (en) 2019-09-09 2021-10-08 High-gain miniaturized antenna element and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104822 WO2021046665A1 (zh) 2019-09-09 2019-09-09 一种高增益小型化天线振子及天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/497,419 Continuation US11437715B2 (en) 2019-09-09 2021-10-08 High-gain miniaturized antenna element and antenna

Publications (1)

Publication Number Publication Date
WO2021046665A1 true WO2021046665A1 (zh) 2021-03-18

Family

ID=74867334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104822 WO2021046665A1 (zh) 2019-09-09 2019-09-09 一种高增益小型化天线振子及天线

Country Status (3)

Country Link
US (1) US11437715B2 (zh)
EP (1) EP3979413A4 (zh)
WO (1) WO2021046665A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117650371B (zh) * 2024-01-30 2024-04-30 北京宏动科技股份有限公司 一种超宽带定向高增益天线及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321251A1 (en) * 2006-09-28 2010-12-23 Jan Hesselbarth Antenna elements, arrays and base stations including mast-mounted antenna arrays
CN102176536A (zh) * 2011-01-28 2011-09-07 京信通信技术(广州)有限公司 一种双极化辐射单元及宽频基站天线
CN202585746U (zh) * 2012-03-26 2012-12-05 京信通信系统(中国)有限公司 宽带双极化天线及其辐射单元
CN202695707U (zh) * 2012-03-29 2013-01-23 京信通信系统(中国)有限公司 双极化天线及其宽波束辐射单元
CN104900987A (zh) * 2015-05-13 2015-09-09 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线阵列
CN107508036A (zh) * 2017-08-25 2017-12-22 苏州市吴通天线有限公司 一种5g一体化弹片天线
WO2018072827A1 (en) * 2016-10-20 2018-04-26 Huawei Technologies Co., Ltd. Integrated filtering for band rejection in an antenna element
CN209183717U (zh) * 2018-12-24 2019-07-30 广东通宇通讯股份有限公司 一种钣金振子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966102A (en) * 1995-12-14 1999-10-12 Ems Technologies, Inc. Dual polarized array antenna with central polarization control
US6034649A (en) * 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
US7173572B2 (en) * 2002-02-28 2007-02-06 Andrew Corporation Dual band, dual pole, 90 degree azimuth BW, variable downtilt antenna
DE102004032175A1 (de) * 2004-07-02 2006-01-19 Robert Bosch Gmbh Vorrichtung und Verfahren zum Senden/Empfangen elektromagnetischer HF-Signale
US7688271B2 (en) * 2006-04-18 2010-03-30 Andrew Llc Dipole antenna
US20110012788A1 (en) * 2009-07-14 2011-01-20 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Miniature Circularly Polarized Folded Patch Antenna
US10333228B2 (en) * 2015-12-21 2019-06-25 Huawei Technologies Co., Ltd. Low coupling 2×2 MIMO array
DE102016112257A1 (de) * 2016-07-05 2018-01-11 Kathrein-Werke Kg Antennenanordnung mit zumindest einer dipolförmigen Strahleranordnung
CA3063197C (en) * 2017-05-04 2022-02-15 Huawei Technologies Co., Ltd. Dual-polarized radiating element and antenna
CN110048211B (zh) 2019-04-15 2024-03-19 深圳市信维通信股份有限公司 宽频多谐振5g天线系统及基站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321251A1 (en) * 2006-09-28 2010-12-23 Jan Hesselbarth Antenna elements, arrays and base stations including mast-mounted antenna arrays
CN102176536A (zh) * 2011-01-28 2011-09-07 京信通信技术(广州)有限公司 一种双极化辐射单元及宽频基站天线
CN202585746U (zh) * 2012-03-26 2012-12-05 京信通信系统(中国)有限公司 宽带双极化天线及其辐射单元
CN202695707U (zh) * 2012-03-29 2013-01-23 京信通信系统(中国)有限公司 双极化天线及其宽波束辐射单元
CN104900987A (zh) * 2015-05-13 2015-09-09 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线阵列
WO2018072827A1 (en) * 2016-10-20 2018-04-26 Huawei Technologies Co., Ltd. Integrated filtering for band rejection in an antenna element
CN107508036A (zh) * 2017-08-25 2017-12-22 苏州市吴通天线有限公司 一种5g一体化弹片天线
CN209183717U (zh) * 2018-12-24 2019-07-30 广东通宇通讯股份有限公司 一种钣金振子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979413A4

Also Published As

Publication number Publication date
EP3979413A4 (en) 2023-01-25
EP3979413A1 (en) 2022-04-06
US11437715B2 (en) 2022-09-06
US20220029279A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US10910700B2 (en) Omnidirectional antenna for mobile communication service
EP3367499B1 (en) Dual-polarized antenna
EP2887456A1 (en) Antenna unit, antenna assembly, multi-antenna assembly, and wireless connection device
CN202004160U (zh) 双极化组合t型匹配振子基站天线
US11197366B2 (en) Electromagnetic band gap structutre for antenna array
CN110011026B (zh) 一种天线单元、天线阵列和基站
CN109462028B (zh) 一种射频微机电微带天线
JP2011507432A (ja) セルラー基地局アンテナ用二偏波放射エレメント
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
JP2018530251A (ja) 通信装置
JP2012049864A (ja) 無指向性アンテナ
WO2021046665A1 (zh) 一种高增益小型化天线振子及天线
US11329381B2 (en) Dual-band antenna using coupled feeding and electronic device comprising the same
CN112467343B (zh) 一种高增益小型化天线振子及天线
KR20150087171A (ko) 이중편파 다이폴 안테나 시스템
WO2023241399A1 (zh) 天线装置及移动终端
JP2005217897A (ja) アンテナ装置
JP6837932B2 (ja) アンテナ
CN110943306B (zh) 一种单极化天线
US10756441B2 (en) Radar lens antenna arrays and methods
KR101686903B1 (ko) 이중편파 다이폴 안테나 시스템
CN220797083U (zh) 一种宽波束天线及通讯设备
JP4283862B2 (ja) アンテナ装置
US11949157B2 (en) Dual polarization log-periodic antenna apparatus
JP2002198731A (ja) 周波数共用無指向性アンテナおよびアレイアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019944735

Country of ref document: EP

Effective date: 20211230

NENP Non-entry into the national phase

Ref country code: DE