WO2023241399A1 - 天线装置及移动终端 - Google Patents

天线装置及移动终端 Download PDF

Info

Publication number
WO2023241399A1
WO2023241399A1 PCT/CN2023/098505 CN2023098505W WO2023241399A1 WO 2023241399 A1 WO2023241399 A1 WO 2023241399A1 CN 2023098505 W CN2023098505 W CN 2023098505W WO 2023241399 A1 WO2023241399 A1 WO 2023241399A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
conductor
piece
feed
sheet
Prior art date
Application number
PCT/CN2023/098505
Other languages
English (en)
French (fr)
Inventor
夏晓岳
洪伟
吴凡
余超
蒋之浩
姚羽
Original Assignee
华为技术有限公司
南京锐码毫米波太赫兹技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 南京锐码毫米波太赫兹技术研究院有限公司 filed Critical 华为技术有限公司
Publication of WO2023241399A1 publication Critical patent/WO2023241399A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details

Definitions

  • the present application relates to the field of antenna technology, and in particular, to an antenna device and a mobile terminal.
  • Millimeter wave (mmw) technology is one of the core technologies of the fifth generation mobile communication technology (5G).
  • Mobile terminals such as mobile phones are increasingly integrating millimeter wave antenna radio frequency systems.
  • metal frames severely block the internal millimeter wave antennas.
  • some have slits in the metal frame so that they serve as slot antennas to radiate outward.
  • this technical method requires a separate reflective plate to achieve one-way transmission, and the integration of the entire system is low.
  • This application provides an antenna device and a mobile terminal to improve the integration of the antenna radio frequency system.
  • the present application provides an antenna device, which may include a first radiation piece and a feed module.
  • the first radiation piece and the feed module may be spaced apart in a first direction, and the first direction is perpendicular to the first The extension direction of the radiation sheet.
  • the first radiation sheet may be provided with a plurality of slot structures arranged along a second direction, and the second direction is the extension direction of the first radiation sheet.
  • There may be a plurality of feed modules, and the plurality of feed modules and the plurality of slot structures may be arranged in one-to-one correspondence in the second direction.
  • the feed module may include a ground component and a feed component; the ground component may include a first conductor piece, a second conductor piece and a conductor post, and the first conductor piece and the second conductor piece may be spaced apart in the first direction.
  • the conductor piece may be located between the second conductor piece and the first radiation piece. Both ends of the conductor post may be connected to the first conductor piece and the second conductor piece respectively.
  • the first conductor piece may have a first through hole, and the second conductor piece may have a first through hole.
  • the feed assembly may include a second radiation sheet and a first feed member, the second radiation sheet and the second conductor sheet may be spaced apart in the first direction, and the second radiation sheet is on the first conductor sheet
  • the projection of may be located in the first through hole, and the first feed member may pass through the second through hole and be connected to the second radiation sheet.
  • a slot structure is provided on the first radiating plate.
  • the spaced-apart first radiating plate and the feed module can form a slot antenna.
  • the slot antenna can be used as a millimeter wave antenna, and the feed module can respond to the slot structure.
  • the ground component can be used as the ground of the slot antenna, and the ground component can play a reflection role, thereby realizing one-way transmission of radio frequency signals.
  • the ground component is integrated in the feed module. Compared with the existing technology, it can There is no need to set up additional reflectors separately, which can improve the integration of the antenna radio frequency system.
  • the first end of the first radiation plate in the second direction may be connected to a grounding member and a second power feeding member respectively, and the grounding member and the second power feeding member may be spaced apart.
  • the first radiating piece, the ground piece and the second feeding piece can form an inverted F antenna.
  • the first radiating piece can be used as the radiator of the low-frequency antenna.
  • the first radiating piece can have a low-frequency radiation function.
  • the antenna device can have both millimeter wave and Low frequency radiation function.
  • the gap structure may be cross-shaped. In this way, the gap structure can generate a resonance under the excitation of the feed module.
  • the first radiation sheet may be provided with a protruding structure.
  • millimeter wave antennas with different matching can be obtained by arranging raised structures of different heights.
  • the second radiation plate may have a third through hole. In this way, the second radiating plate can effectively excite the gap structure to generate a resonance.
  • the feed module can be fed in a differential form, and the millimeter wave antenna can provide two resonances.
  • the second radiation piece and the first conductor piece may be located in the same plane in the first direction. This facilitates the arrangement of the second radiation plate and the first conductor plate.
  • a support member may be provided between the first radiation sheet and the feed module, and both ends of the support member may be connected to the first radiation sheet and the first conductor sheet respectively. This can make the relative position of the first radiation plate and the feed module relatively stable.
  • the present application provides a mobile terminal, which may include a housing and an antenna device as in any of the possible implementations of the first aspect.
  • the housing may have an opening, the first radiation sheet may be disposed in the opening, and there may be a gap between the first radiation sheet and the housing.
  • the feed module can be arranged in the housing.
  • the system integration level of the antenna device is high, which is conducive to the miniaturization of mobile terminals.
  • the first end of the first radiation sheet in the second direction may be connected to the housing.
  • the first radiation piece can be used as the radiator of the low-frequency antenna, and the antenna device can have both millimeter wave and low-frequency radiation functions, which can improve the signal sending and receiving capabilities of the mobile terminal.
  • Figure 1 is a schematic three-dimensional structural diagram of an antenna device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the corresponding relationship between the first radiation plate and the feed module of the antenna device provided by the embodiment of the present application;
  • Figure 3 is a schematic three-dimensional structural diagram of the feed module of the antenna device provided by the embodiment of the present application.
  • FIG. 4 is a schematic top structural view of the feed module of the antenna device provided by the embodiment of the present application.
  • Figure 5 is a partial three-dimensional structural perspective view of the first radiation plate of the antenna device provided by the embodiment of the present application.
  • Figure 6 is a partial top view structural diagram of the first radiation plate of the antenna device provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of S parameters of the antenna device provided by the embodiment of the present application as a millimeter wave antenna
  • Figure 8 is a half-side scanning pattern of the antenna device provided by the embodiment of the present application as a millimeter wave antenna
  • Figure 9 is a schematic top view of the structure of the antenna device provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • the antenna device provided by the embodiment of the present application can be adapted to a mobile terminal, such as a mobile phone, and serves as an antenna of the mobile terminal for transmitting and receiving radio frequency signals.
  • a slit is usually made in the metal frame of the mobile terminal so that the metal frame acts as a slit antenna to radiate outward.
  • this technical method requires a separate reflective plate. To achieve one-way transmission, the integration of the entire system is low.
  • embodiments of the present application provide an antenna device to improve the integration of the antenna radio frequency system.
  • the antenna device provided by the embodiment of the present application may include a first radiating plate 100 and a feeding module 200.
  • the first radiating plate 100 and the feeding module 200 may be spaced apart in the first direction, whereby A slot antenna can be formed, and the slot antenna can be used as a high-frequency antenna, specifically as a millimeter-wave antenna.
  • the space between the first radiation plate 100 and the feed module 200 may be called a clear space, and the clear space may be filled with dielectric material, or may not be filled with only air.
  • a plurality of slot structures 101 arranged along the second direction may be provided on the first radiation sheet 100 .
  • the first direction is perpendicular to the extension direction of the first radiation sheet 100
  • the second direction is the extension direction of the first radiation sheet 100
  • the extension direction of the first radiation sheet 100 may be the length direction of the first radiation sheet 100 .
  • the first direction is perpendicular to the length direction of the first radiation sheet 100
  • the second direction is the length direction of the first radiation sheet 100 .
  • FIG. 2 shows a schematic diagram of the corresponding relationship between the first radiation plate and the feed module of the antenna device provided by the embodiment of the present application.
  • there may be a plurality of feed modules 200 and the plurality of feed modules 200 and the plurality of slot structures 101 may be arranged in one-to-one correspondence in the second direction.
  • a slot structure 101 corresponding to a feed module 200 and the first radiation plate around the slot structure 101 can be regarded as a slot structure unit. Therefore, multiple feed modules 200 and multiple slot structure units are One-to-one corresponding settings in the second direction.
  • a support member 300 may be disposed between the first radiation plate 100 and the feed module 200. Specifically, the support member 300 may be disposed along the first direction. There may be multiple support members 300 , and at least one support member 300 may be provided between adjacent feed modules 200 , that is, at least one support member 300 may be provided between adjacent slot structures 101 . For example, two supports 300 may be provided between two adjacent feed modules 200 .
  • FIG. 3 shows a schematic three-dimensional structural diagram of the feed module of the antenna device provided by the embodiment of the present application
  • FIG. 4 shows a schematic top structural view of the feed module of the antenna device provided by the embodiment of the present application.
  • the power feeding module 200 may include a ground component and a power feeding component.
  • the grounding component may include a first conductor piece 201, a second conductor piece 202 and a conductor post 203.
  • the first conductor piece 201 and the second conductor piece 202 may be spaced apart in the first direction.
  • a conductor piece 201 may be located between the second conductor piece 202 and the first radiation piece 100, that is, the first radiation piece 100, the first conductor piece 201 and the second conductor piece 202 are arranged in sequence in the first direction. Both ends of the conductor post 203 can be connected to the first conductor piece 201 and the second conductor piece 202 respectively.
  • the conductor post 203 can not only realize the fixed connection of the first conductor piece 201 and the second conductor piece 202, but also can realize the first conductor piece 201. electrically connected to the second conductor piece 202.
  • the first conductor piece 201 may have a first through hole 204, and the second conductor piece 202 may have a second through hole 205.
  • the ground component can use a printed circuit board (PCB)
  • PCB printed circuit board
  • the first conductor piece and the second conductor piece can be fixed on the front and back of the PCB substrate respectively. Both the first conductor piece and the second conductor piece can be square, and their sizes can be the same.
  • the first through hole may be in a square shape, whereby the first conductor piece may be in a square frame-like structure.
  • Conductor posts can be placed within via holes on the PCB. There may be a plurality of conductor posts, and the plurality of conductor posts may be arranged along the circumferential direction of the first conductor piece.
  • both ends of the support member may be connected to the first radiation sheet and the first conductor sheet 201 respectively.
  • the first end of the support member in the first direction can be fixedly connected to the side of the first conductor sheet 201 facing the first radiation sheet, and the side of the first radiation sheet facing the first conductor sheet 201 can be connected to the side of the support member in the first direction.
  • the second end is fixedly connected, thereby fixing the relative position of the first radiating plate and the first conductor plate 201 , that is, fixing the relative position of the first radiating plate and the feed module 200 .
  • the two supporting members may be fixedly provided on the first conductor pieces 201 of the two feeding modules 200 respectively.
  • the support member can be made of insulating material.
  • the fixed connection between the support member and the first radiating plate and the first conductor plate 201 can be achieved by bonding.
  • the height of the support member in the first direction can be 0.1 ⁇ 0.2 ⁇ , that is to say, the height of the clearance in the first direction can be 0.1 ⁇ 0.2 ⁇ ; where ⁇ is the working frequency band of the millimeter wave antenna in the free The wavelength of space, ⁇ , is approximately 11.1mm.
  • the power feeding component may include a second radiation plate 206 and a first power feeding member 207, and the second radiation plate 206 and the second conductor plate 202 may be spaced apart in the first direction.
  • the projection of the second radiation sheet 206 on the first conductor sheet 201 may be located within the first through hole 204 .
  • the second radiation plate 206 can be fixed on the front side of the PCB, and the first end of the first feeder 207 can pass through the second through hole 205 and the via hole of the PCB. It is electrically connected to the second radiation plate 206 .
  • the second end of the first feeder 207 may be electrically connected to the millimeter wave transceiver and radio frequency chip of the millimeter wave antenna radio frequency system.
  • the second radiation plate 206 may have a third through hole 208 .
  • the third through hole 208 may be in a square shape, and thus the second radiation sheet 206 may be in a square frame-like structure. In this way, the second radiation plate 206 can effectively excite the gap structure to generate a resonance.
  • the second radiation sheet 206 and the first conductor sheet 201 may be located in the same plane in the first direction, that is, the second radiation sheet 206 and the first conductor sheet 201 may be at the same height in the first direction.
  • the second radiation plate 206 is located in the first through hole 204.
  • first power feeding members 207 there may be multiple first power feeding members 207 , and the plurality of first power feeding members 207 may be arranged along the circumferential direction of the second radiation plate 206 .
  • first feed members 207 there may be four first feed members 207, which may form two pairs of differential feeds, thereby enabling the feed module 200 to feed in a differential form, and the millimeter wave antenna may provide two resonances.
  • first power feeding members 207 there are also multiple second through holes 205 , and the plurality of second through holes 205 are provided in one-to-one correspondence with the plurality of first power feeding members 207 , that is, each first power feeding member 207 They are arranged in each second through hole 205 in one-to-one correspondence.
  • FIG. 5 shows a partial three-dimensional structural perspective view of the first radiation plate of the antenna device provided by the embodiment of the present application.
  • the slot structure 101 on the first radiation plate may be in a cross shape.
  • the area of the slot structure 101 may be smaller than the area of the second conductor piece.
  • the first radiation plate may be provided with a protruding structure 102.
  • the protruding structure 102 has the function of adjusting the matching of the millimeter wave antenna. By providing protruding structures 102 of different heights, the millimeter wave antenna can have different matching.
  • the protruding structure 102 may be provided on a side of the first radiation plate facing away from the power feeding module.
  • FIG. 6 shows a partial top view structural diagram of the first radiation plate of the antenna device provided by the embodiment of the present application.
  • the height of the first radiating plate in the first direction h2 0.11 ⁇
  • the raised structure 102 in The height h3 in the first direction 0 ⁇ 0.06 ⁇
  • the length of the gap structure unit in the second direction d 0.6 ⁇
  • the length of a single side of the cross-shaped gap structure 101 e 0.45 ⁇ 0.7 ⁇
  • a slot structure 101 is provided on the first radiating plate 100.
  • the spaced-apart first radiating plate 100 and the feed module 200 form a slot antenna.
  • the slot antenna can be used as a millimeter wave antenna to feed power.
  • the module 200 couples and feeds the slot structure 101 through the clearance.
  • the ground component serves as the ground of the slot antenna.
  • the ground component can play a reflection role, thereby realizing one-way transmission of radio frequency signals.
  • the ground component is integrated in the feed module 200. Compared with the existing technology, there is no need to set up additional reflectors separately, which can improve the integration of the antenna radio frequency system and facilitate the miniaturization of antenna products.
  • the first feeder 207 can directly pass through the second conductor piece 202 through the second through hole 205 and be connected to the second radiation piece 206.
  • the length of the first feeder 207 can be shorter, which can further improve the system integration.
  • the first power feeding member 207 may adopt a metal columnar structure.
  • the antenna device provided by the embodiment of the present application can provide two resonances.
  • the slot structure 101 can provide a resonance under the excitation of the feed module 200.
  • the second radiation plate 206 of the feed module 200 excites the slot structure 101 to generate a resonance.
  • the second radiation plate 206 of the feed module 200 directly provides another resonance.
  • the antenna device provided by the embodiment of the present application can be applied to 5G millimeter wave systems, IEEE 802.11.ad (60GHz WiGig) systems, IEEE 802.11.aj (45GHz Q-Link-Pan) systems, and other high-frequency wireless communication systems.
  • Figure 7 shows a schematic diagram of the S parameters of the antenna device provided by the embodiment of the present application as a millimeter wave antenna.
  • the left figure in Figure 7 specifically illustrates the return loss of the millimeter wave antenna.
  • the right figure in Figure 7 specifically illustrates the millimeter wave antenna.
  • Figure 8 shows the half-side scanning pattern of the antenna device provided by the embodiment of the present application as a millimeter wave antenna.
  • the left and right figures in Figure 8 respectively illustrate two different polarizations. It can be seen from Figure 8 that the millimeter The pattern of the wave antenna is ideal.
  • FIG. 9 shows a schematic top structural view of an antenna device provided by an embodiment of the present application.
  • the first end of the first radiation plate 100 in the second direction may be electrically connected to a ground member 103 .
  • the first end of the first radiation plate 100 in the second direction may also be electrically connected to a second feeder 104 .
  • Both the grounding member 103 and the second power feeding member 104 may be disposed close to the first end of the first radiation plate 100 in the second direction to avoid the power feeding module.
  • the first end of the first radiation sheet 100 in the second direction may be the right end of the first radiation sheet 100 as shown in FIG. 9 .
  • the first end of the first radiation sheet 100 in the second direction may also be the third A radiation plate 100 is based on the left end shown in FIG. 9 .
  • one end of the second feeder 104 can be electrically connected to the first radiation plate 100, and the other end of the second feeder 104 can be electrically connected to a low-frequency transceiver and radio chip of the low-frequency antenna radio frequency system.
  • the grounding member 103 is spaced apart from the second power feeding member 104 . Therefore, the first radiating plate 100, the grounding element 103 and the second feeding element 104 can form an inverted F-shaped antenna (IFA).
  • the first radiation sheet 100 may have a low-frequency radiation function.
  • the antenna device provided by the embodiment of the present application can have both millimeter wave and low frequency radiation functions. It can be understood that, in addition to being the radiator of the inverted F antenna, the first radiation piece 100 can also be used as the radiator of other forms of low-frequency antennas, which is not limited in this application.
  • FIG 10 shows a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • the antenna device provided by the embodiment of the present application can be adapted to a mobile terminal and used as an antenna of the mobile terminal.
  • the mobile terminal can include a housing 400 and the antenna device of the above embodiment.
  • the housing 400 may have an opening. Specifically, the opening may be located at one end of the housing 400 in the length direction or at other positions on the housing 400.
  • the first radiation sheet 100 may be disposed in the opening. There may be a gap between the first radiation sheet 100 and the housing 400, and the gap may be filled with dielectric material to seal the housing.
  • the first radiation sheet 100 and the housing 400 are relatively fixed and may be insulated from each other.
  • the power feeding module may be disposed in the housing 400 .
  • the first end of the first radiation plate 100 in the second direction may be electrically connected to the housing 400 or a reference ground within the housing 400, thereby realizing the grounding of the first radiation plate 100.
  • the first end of the first radiation plate 100 in the second direction and the housing 400 can be electrically connected through a grounding piece, and the first end of the first radiation piece 100 in the second direction is electrically connected to the grounding piece. That is the ground point of the first radiation plate 100 .
  • the first end of the first radiation sheet 100 in the second direction is directly electrically connected to the housing 400 , and the electrical connection between the first radiation sheet 100 and the housing 400 is the grounding point of the first radiation sheet 100 .
  • the first end of the first radiation plate 100 in the second direction may also be electrically connected to a second feed element.
  • the electrical connection between the second feed element and the first radiation plate 100 is the feed point of the first radiation plate 100 , the feed point of the first radiation plate 100 is spaced apart from the ground point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Aerials (AREA)

Abstract

提供了一种天线装置及移动终端。天线装置包括间隔设置的第一辐射片和馈电模组。第一辐射片上设置有多个缝隙结构。馈电模组为多个,多个馈电模组和多个缝隙结构一一对应设置。馈电模组包括接地组件和馈电组件;接地组件包括第一导体片、第二导体片和导体柱,第一导体片和第二导体片间隔设置,第一导体片位于第二导体片与第一辐射片之间,导体柱的两端分别与第一导体片和第二导体片连接,第一导体片具有第一通孔,第二导体片具有第二通孔;馈电组件包括第二辐射片和第一馈电件,第二辐射片和第二导体片间隔设置,第二辐射片位于第一通孔内,第一馈电件穿过第二通孔且与第二辐射片连接。在采用上述结构时,可以提高天线射频系统集成度。

Description

天线装置及移动终端
相关申请的交叉引用
本申请要求在2022年06月13日提交中国专利局、申请号为202221475669.2、申请名称为“天线装置及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种天线装置及移动终端。
背景技术
毫米波(millimeter wave,mmw)技术是第五代移动通信技术(5th generation mobile communication technology,5G)的核心技术之一。手机这种移动终端也愈发普遍地集成毫米波天线射频系统。金属边框作为手机中流行的外观设计,对内部的毫米波天线产生了严重的遮挡。在现有技术中,有一些是在金属边框上开缝,使其作为缝隙天线向外辐射。但这种技术手段需要单独设立反射板来实现单向传输,整个系统的集成度较低。
发明内容
本申请提供了一种天线装置及移动终端,以提高天线射频系统集成度。
第一方面,本申请提供了一种天线装置,可以包括第一辐射片和馈电模组,第一辐射片和馈电模组可以在第一方向上间隔设置,第一方向垂直于第一辐射片的延伸方向。第一辐射片上可以设置有沿第二方向排列的多个缝隙结构,第二方向为第一辐射片的延伸方向。馈电模组可以为多个,多个馈电模组和多个缝隙结构可以在第二方向上一一对应设置。馈电模组可以包括接地组件和馈电组件;接地组件可以包括第一导体片、第二导体片和导体柱,第一导体片和第二导体片可以在第一方向上间隔设置,第一导体片可以位于第二导体片与第一辐射片之间,导体柱的两端可以分别与第一导体片和第二导体片连接,第一导体片可以具有第一通孔,第二导体片可以具有第二通孔;馈电组件可以包括第二辐射片和第一馈电件,第二辐射片和第二导体片可以在第一方向上间隔设置,第二辐射片在第一导体片上的投影可以位于第一通孔内,第一馈电件可以穿过第二通孔且与第二辐射片连接。
本申请提供的技术方案,第一辐射片上设置有缝隙结构,间隔设置的第一辐射片与馈电模组可以构成缝隙天线,该缝隙天线可以作为毫米波天线,馈电模组可以对缝隙结构进行耦合馈电,接地组件可以作为缝隙天线的地,接地组件可以起到反射作用,由此可以实现射频信号单向传输,接地组件集成在馈电模组中,相较于现有技术,可以不必单独设立额外的反射板,可以提高天线射频系统集成度。
在一个具体的可实施方案中,第一辐射片可以在第二方向上的第一端分别连接有接地件和第二馈电件,接地件与第二馈电件可以间隔设置。这样第一辐射片与接地件及第二馈电件可以构成倒F天线,第一辐射片可以作为低频天线的辐射体,第一辐射片可以具有低频辐射功能,天线装置可以兼具毫米波和低频的辐射功能。
在一个具体的可实施方案中,缝隙结构可以为十字型。这样缝隙结构可以在馈电模组的激励下产生一个谐振。
在一个具体的可实施方案中,第一辐射片上可以设置有凸起结构。这样可以通过设置不同高度的凸起结构,获得具有不同匹配的毫米波天线。
在一个具体的可实施方案中,导体柱为可以多个,多个导体柱可以沿第一导体片的周向排布。这样第一导体片与第二导体片的相对位置比较稳定。
在一个具体的可实施方案中,第二辐射片可以具有第三通孔。这样第二辐射片可以有效地激励起缝隙结构以产生一个谐振。
在一个具体的可实施方案中,第一馈电件可以为多个,多个第一馈电件可以沿第二辐射片的周向排布。这样可以实现馈电模组利用差分的形式馈电,毫米波天线可以提供两个谐振。
在一个具体的可实施方案中,第二通孔可以为多个,多个第二通孔与多个第一馈电件可以一一对应设置。这样便于第一馈电件的设置。
在一个具体的可实施方案中,第二辐射片和第一导体片在第一方向上可以位于同一平面内。这样便于第二辐射片和第一导体片的设置。
在一个具体的可实施方案中,第一辐射片与馈电模组之间可以设置有支撑件,支撑件的两端可以分别与第一辐射片和第一导体片连接。这样可以使第一辐射片与馈电模组的相对位置比较稳定。
在一个具体的可实施方案中,支撑件可以为多个,相邻馈电模组之间可以设置有至少一个支撑件。这样可以提高第一辐射片与馈电模组的相对位置的稳定性。
第二方面,本申请提供了一种移动终端,可以包括壳体,以及如前述第一方面中任一可实施方案中的天线装置。壳体可以具有开口,第一辐射片可以设置在开口内,第一辐射片与壳体之间可以具有间隙。馈电模组可以设置在壳体内。天线装置的系统集成度较高,有利于移动终端小型化。
在一个具体的可实施方案中,第一辐射片在第二方向上的第一端可以与壳体连接。这样第一辐射片可以作为低频天线的辐射体,天线装置可以兼具毫米波和低频的辐射功能,可以提高移动终端的信号收发能力。
附图说明
图1为本申请实施例提供的天线装置的立体结构示意图;
图2为本申请实施例提供的天线装置的第一辐射片和馈电模组的对应关系示意图;
图3为本申请实施例提供的天线装置的馈电模组的立体结构示意图;
图4为本申请实施例提供的天线装置的馈电模组的俯视结构示意图;
图5为本申请实施例提供的天线装置的第一辐射片的局部立体结构立体图;
图6为本申请实施例提供的天线装置的第一辐射片的局部俯视结构示意图;
图7为本申请实施例提供的天线装置作为毫米波天线的S参数示意图;
图8为本申请实施例提供的天线装置作为毫米波天线的半边扫描方向图;
图9为本申请实施例提供的天线装置的俯视结构示意图;
图10为本申请实施例提供的移动终端的结构示意图。
附图标记:
100-第一辐射片;200-馈电模组;300-支撑件;400-壳体;101-缝隙结构;102-凸起结
构;
103-接地件;104-第二馈电件;201-第一导体片;202-第二导体片;203-导体柱;
204-第一通孔;205-第二通孔;206-第二辐射片;207-第一馈电件;208-第三通孔。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
为了方便理解,首先说明本申请涉及的天线装置的应用场景。本申请实施例提供的天线装置可以适配于移动终端,如应用于手机,作为移动终端的天线,用于发射及接收射频信号。
在现有技术中,在移动终端上集成毫米波天线射频系统时,通常是在移动终端的金属边框上开缝,使金属边框作为缝隙天线向外辐射,但这种技术手段需要单独设立反射板来实现单向传输,整个系统的集成度较低。
基于此,本申请实施例提供了一种天线装置,以提高天线射频系统集成度。
首先参考图1,图1示出了本申请实施例提供的天线装置的立体结构示意图。如图1所示,本申请实施例提供的天线装置可以包括第一辐射片100和馈电模组200,第一辐射片100和馈电模组200可以在第一方向上间隔设置,由此可以构成缝隙天线,该缝隙天线可以作为高频天线,具体可以作为毫米波天线。第一辐射片100与馈电模组200之间的空间可以称为净空,净空内可以填充有介质材料,也可以不填充而只有空气。第一辐射片100上可以设置有沿第二方向排列的多个缝隙结构101。其中,第一方向垂直于第一辐射片100的延伸方向,第二方向为第一辐射片100的延伸方向,具体地,第一辐射片100的延伸方向可以为第一辐射片100的长度方向,即第一方向垂直于第一辐射片100的长度方向,第二方向为第一辐射片100的长度方向。
图2示出了本申请实施例提供的天线装置的第一辐射片和馈电模组的对应关系示意图。如图2所示,馈电模组200可以为多个,多个馈电模组200和多个缝隙结构101可以在第二方向上一一对应设置。与一个馈电模组200对应的一个缝隙结构101及该缝隙结构101周边的第一辐射片可以看作是一个缝隙结构单元,由此,多个馈电模组200和多个缝隙结构单元在第二方向上一一对应设置。
在具体实施中,第一辐射片100与馈电模组200之间可以设置有支撑件300,具体地,支撑件300可以沿第一方向设置。支撑件300可以为多个,相邻馈电模组200之间可以设置有至少一个支撑件300,也就是相邻缝隙结构101之间可以设置有至少一个支撑件300。示例性地,相邻的两个馈电模组200之间可以设置有两个支撑件300。
图3示出了本申请实施例提供的天线装置的馈电模组的立体结构示意图,图4示出了本申请实施例提供的天线装置的馈电模组的俯视结构示意图。如图3及图4所示,馈电模组200可以包括接地组件和馈电组件。在一种可能的实施例中,接地组件可以包括第一导体片201、第二导体片202和导体柱203,第一导体片201和第二导体片202可以在第一方向上间隔设置,第一导体片201可以位于第二导体片202与第一辐射片100之间,即第一辐射片100、第一导体片201和第二导体片202在第一方向上依次排布。导体柱203的两端可以分别与第一导体片201和第二导体片202连接,导体柱203既可以实现第一导体片201和第二导体片202固定连接,也可以实现第一导体片201和第二导体片202电连接。第一导体片201可以具有第一通孔204,第二导体片202可以具有第二通孔205。
作为一种可能的实施方式,接地组件可以采用印制电路板(printed circuit board,PCB) 的结构形式,第一导体片和第二导体片可以分别固定在PCB的基板的正面和背面。第一导体片和第二导体片均可以为方形,二者的尺寸可以相同。第一通孔可以为方形,由此,第一导体片可以为方形框状结构。导体柱可以设置在PCB的过孔内。导体柱可以为多个,多个导体柱可以沿第一导体片的周向排布。
在具体实施中,支撑件的两端可以分别与第一辐射片和第一导体片201连接。支撑件在第一方向上的第一端可以固定连接在第一导体片201面向第一辐射片的一面,第一辐射片面向第一导体片201的一面可以与支撑件在第一方向上的第二端固定连接,由此实现第一辐射片与第一导体片201相对位置的固定,也就是实现第一辐射片与馈电模组200相对位置的固定。当相邻的两个馈电模组200之间设置有两个支撑件时,两个支撑件可以分别固定设置在两个馈电模组200的第一导体片201上。具体实施时,支撑件可以采用绝缘材质制成。支撑件与第一辐射片及第一导体片201的固定连接可以采用粘接的方式实现。供参考地,支撑件在第一方向上的高度可以为0.1~0.2λ,也就是说,净空在第一方向上的高度可以为0.1~0.2λ;其中,λ为毫米波天线工作频段在自由空间的波长,λ约为11.1mm。
在一种可能的实施例中,馈电组件可以包括第二辐射片206和第一馈电件207,第二辐射片206和第二导体片202可以在第一方向上间隔设置。第二辐射片206可以在第一导体片201上的投影位于第一通孔204内。具体实施时,当接地组件采用PCB的结构形式时,第二辐射片206可以固定在PCB的正面,第一馈电件207的第一端可以穿过第二通孔205及PCB的过孔以与第二辐射片206电连接。第一馈电件207的第二端可以与毫米波天线射频系统的毫米波收发射频芯片电连接。
在具体实施中,第二辐射片206可以具有第三通孔208。具体实施时,第三通孔208可以为方形,由此,第二辐射片206可以为方形框状结构。这样第二辐射片206可以有效地激励起缝隙结构以产生一个谐振。实际设置时,第二辐射片206和第一导体片201在第一方向上可以位于同一平面内,即第二辐射片206和第一导体片201在第一方向上可以处于相同的高度,此时第二辐射片206位于第一通孔204内。
在具体实施中,第一馈电件207可以为多个,多个第一馈电件207可以沿第二辐射片206的周向排布。示例性地,第一馈电件207可以为四个,可以形成两对差分馈电,由此可以实现馈电模组200利用差分的形式馈电,毫米波天线可以提供两个谐振。与第一馈电件207相对应地,第二通孔205也为多个,多个第二通孔205与多个第一馈电件207一一对应设置,即各个第一馈电件207一一对应设置在各个第二通孔205内。
图5示出了本申请实施例提供的天线装置的第一辐射片的局部立体结构立体图。如图5所示,在具体实施中,第一辐射片上的缝隙结构101可以为十字型。缝隙结构101的面积可以小于第二导体片的面积,例如,当缝隙结构101为十字型时,该十字型的面积可以小于第二导体片的面积。在具体实施中,第一辐射片上可以设置有凸起结构102,凸起结构102具有调节毫米波天线的匹配的作用,通过设置不同高度的凸起结构102,毫米波天线可以具有不同的匹配。具体地,凸起结构102可以设置在第一辐射片背向馈电模组的一面。
图6示出了本申请实施例提供的天线装置的第一辐射片的局部俯视结构示意图。结合图3至图6所示,供参考地,馈电模组200在第一方向上的高度h1=0.1λ;方形的第一导体片201的边长a=0.57λ;方形框状的第二辐射片206的边长b=0.2~0.35λ,第二辐射片206的边长的宽度c=0.02~0.04λ;第一辐射片在第一方向上的高度h2=0.11λ;凸起结构102在 第一方向上的高度h3=0~0.06λ;缝隙结构单元在第二方向上的长度d=0.6λ;十字型的缝隙结构101的单个边的边长e=0.45~0.7λ,缝隙结构101的单个边的宽度f=0.1~0.2λ。
本申请实施例提供的天线装置,第一辐射片100上设置有缝隙结构101,间隔设置的第一辐射片100与馈电模组200构成缝隙天线,该缝隙天线可以作为毫米波天线,馈电模组200通过净空对缝隙结构101进行耦合馈电,接地组件作为缝隙天线的地,接地组件可以起到反射作用,由此实现射频信号单向传输,接地组件集成在馈电模组200中,相较于现有技术,不必单独设立额外的反射板,可以提高天线射频系统集成度,有利于天线产品小型化。
并且,第一馈电件207可以由第二通孔205直接穿过第二导体片202而与第二辐射片206连接,第一馈电件207的长度可以较短,可以进一步提高系统集成度。具体实施时,第一馈电件207可以采用金属柱状结构。
在实际应用时,本申请实施例提供的天线装置可以提供两个谐振。缝隙结构101在馈电模组200的激励下可以提供一个谐振,具体地,馈电模组200的第二辐射片206激励缝隙结构101产生一个谐振。馈电模组200的第二辐射片206直接提供另一个谐振。本申请实施例提供的天线装置可以应用于5G毫米波系统,IEEE 802.11.ad(60GHz WiGig)系统,IEEE 802.11.aj(45GHz Q-Link-Pan)系统,以及其他高频无线通信系统。
图7示出了本申请实施例提供的天线装置作为毫米波天线的S参数示意图,图7中的左图具体示意了毫米波天线的回波损耗,图7中的右图具体示意了毫米波天线的隔离度,由图7可以看出,毫米波天线的回波损耗及隔离度比较理想。图8示出了本申请实施例提供的天线装置作为毫米波天线的半边扫描方向图,图8中的左图和右图分别示意了两个不同的极化,由图8可以看出,毫米波天线的方向图比较理想。
图9示出了本申请实施例提供的天线装置的俯视结构示意图。如图9所示,作为一种可能的实施例,第一辐射片100在第二方向上的第一端可以电连接有接地件103。同时,第一辐射片100在第二方向上的第一端还可以电连接有第二馈电件104。接地件103和第二馈电件104均可以靠近第一辐射片100在第二方向上的第一端设置,以避开馈电模组。第一辐射片100在第二方向上的第一端可以为第一辐射片100的基于图9所示的右端,当然,第一辐射片100在第二方向上的第一端也可以为第一辐射片100的基于图9所示的左端。具体地,第二馈电件104的一端可以与第一辐射片100电连接,第二馈电件104的另一端可以与低频天线射频系统的低频收发射频芯片电连接。接地件103与第二馈电件104间隔设置。由此,第一辐射片100与接地件103及第二馈电件104可以构成倒F天线(inverted F-shaped antenna,IFA)。第一辐射片100可以具有低频辐射功能。这样,本申请实施例提供的天线装置可以兼具毫米波和低频的辐射功能。可以理解,第一辐射片100除了作为倒F天线的辐射体以外,还可以作为其他形式的低频天线的辐射体,本申请对此不作限制。
图10示出了本申请实施例提供的移动终端的结构示意图。如图10所示,本申请实施例提供的天线装置可以适配于移动终端,作为移动终端的天线,作为一种可能的实施例,移动终端可以包括壳体400及上述实施例的天线装置。在具体实施中,壳体400可以具有开口,具体地,开口可以位于壳体400长度方向上的一端,也可以位于壳体400上的其他位置,第一辐射片100可以设置在开口内。第一辐射片100与壳体400之间可以具有间隙,间隙内可以填充有介电材料以密封壳体,第一辐射片100与壳体400之间相对固定,且可以相互绝缘。馈电模组可以设置在壳体400内。
在另一种可能的实施例中,第一辐射片100在第二方向上的第一端可以与壳体400或壳体400内的参考地电连接,由此实现第一辐射片100接地。具体实施时,第一辐射片100在第二方向上的第一端与壳体400可以通过接地件电连接,第一辐射片100在第二方向上的第一端与接地件的电连接处即为第一辐射片100的接地点。或者,第一辐射片100在第二方向上的第一端与壳体400直接电连接,第一辐射片100与壳体400的电连接处即为第一辐射片100的接地点。第一辐射片100在第二方向上的第一端还可以电连接有第二馈电件,第二馈电件与第一辐射片100的电连接处即为第一辐射片100的馈点,第一辐射片100的馈点与接地点间隔设置。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (11)

  1. 一种天线装置,其特征在于,包括第一辐射片和馈电模组,所述第一辐射片和所述馈电模组在第一方向上间隔设置,所述第一方向垂直于所述第一辐射片的延伸方向;
    所述第一辐射片上设置有沿第二方向排列的多个缝隙结构,所述第二方向为所述第一辐射片的延伸方向;
    所述馈电模组为多个,多个所述馈电模组和多个所述缝隙结构在所述第二方向上一一对应设置;
    所述馈电模组包括接地组件和馈电组件;所述接地组件包括第一导体片、第二导体片和导体柱,所述第一导体片和所述第二导体片在所述第一方向上间隔设置,所述第一导体片位于所述第二导体片与所述第一辐射片之间,所述导体柱的两端分别与所述第一导体片和所述第二导体片连接,所述第一导体片具有第一通孔,所述第二导体片具有第二通孔;所述馈电组件包括第二辐射片和第一馈电件,所述第二辐射片在所述第一导体片上的投影位于所述第一通孔内,所述第一馈电件穿过所述第二通孔且与所述第二辐射片连接。
  2. 如权利要求1所述的天线装置,其特征在于,所述第一辐射片在所述第二方向上的第一端分别连接有接地件和第二馈电件,所述接地件与所述第二馈电件间隔设置。
  3. 如权利要求1或2所述的天线装置,其特征在于,所述缝隙结构为十字型。
  4. 如权利要求1~3任一项所述的天线装置,其特征在于,所述第一辐射片上设置有凸起结构。
  5. 如权利要求1~4任一项所述的天线装置,其特征在于,所述导体柱为多个,多个所述导体柱沿所述第一导体片的周向排布。
  6. 如权利要求1~5任一项所述的天线装置,其特征在于,所述第二辐射片具有第三通孔。
  7. 如权利要求1~6任一项所述的天线装置,其特征在于,所述第一馈电件为多个,多个所述第一馈电件沿所述第二辐射片的周向排布;
    所述第二通孔为多个,多个所述第二通孔与多个所述第一馈电件一一对应设置。
  8. 如权利要求1~7任一项所述的天线装置,其特征在于,所述第二辐射片和所述第一导体片在所述第一方向上位于同一平面内。
  9. 如权利要求1~8任一项所述的天线装置,其特征在于,所述第一辐射片与所述馈电模组之间设置有支撑件,所述支撑件的两端分别与所述第一辐射片和所述第一导体片连接。
  10. 一种移动终端,其特征在于,包括壳体及如权利要求1~9任一项所述的天线装置;所述壳体具有开口;所述第一辐射片设置在所述开口内,所述第一辐射片与所述壳体之间具有间隙;所述馈电模组设置在所述壳体内。
  11. 如权利要求10所述的移动终端,其特征在于,所述第一辐射片在所述第二方向上的第一端与所述壳体连接。
PCT/CN2023/098505 2022-06-13 2023-06-06 天线装置及移动终端 WO2023241399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221475669.2 2022-06-13
CN202221475669.2U CN218182468U (zh) 2022-06-13 2022-06-13 天线装置及移动终端

Publications (1)

Publication Number Publication Date
WO2023241399A1 true WO2023241399A1 (zh) 2023-12-21

Family

ID=84609294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098505 WO2023241399A1 (zh) 2022-06-13 2023-06-06 天线装置及移动终端

Country Status (2)

Country Link
CN (1) CN218182468U (zh)
WO (1) WO2023241399A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218182468U (zh) * 2022-06-13 2022-12-30 华为技术有限公司 天线装置及移动终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980332A (zh) * 2018-08-14 2019-07-05 上海安费诺永亿通讯电子有限公司 毫米波天线系统、金属壳体、用户终端及毫米波通信设备
KR102045483B1 (ko) * 2018-05-21 2019-12-05 한양대학교 산학협력단 밀리미터 웨이브용 단말기 안테나
CN110931944A (zh) * 2019-12-24 2020-03-27 天通凯美微电子有限公司 一种集成毫米波阵列天线的电子设备
CN112864570A (zh) * 2020-12-31 2021-05-28 维沃移动通信有限公司 天线结构和可折叠电子设备
WO2021227681A1 (zh) * 2020-05-11 2021-11-18 南京锐码毫米波太赫兹技术研究院有限公司 电子设备
CN113972465A (zh) * 2020-07-23 2022-01-25 南京锐码毫米波太赫兹技术研究院有限公司 电子设备
CN218182468U (zh) * 2022-06-13 2022-12-30 华为技术有限公司 天线装置及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045483B1 (ko) * 2018-05-21 2019-12-05 한양대학교 산학협력단 밀리미터 웨이브용 단말기 안테나
CN109980332A (zh) * 2018-08-14 2019-07-05 上海安费诺永亿通讯电子有限公司 毫米波天线系统、金属壳体、用户终端及毫米波通信设备
CN110931944A (zh) * 2019-12-24 2020-03-27 天通凯美微电子有限公司 一种集成毫米波阵列天线的电子设备
WO2021227681A1 (zh) * 2020-05-11 2021-11-18 南京锐码毫米波太赫兹技术研究院有限公司 电子设备
CN113972465A (zh) * 2020-07-23 2022-01-25 南京锐码毫米波太赫兹技术研究院有限公司 电子设备
CN112864570A (zh) * 2020-12-31 2021-05-28 维沃移动通信有限公司 天线结构和可折叠电子设备
CN218182468U (zh) * 2022-06-13 2022-12-30 华为技术有限公司 天线装置及移动终端

Also Published As

Publication number Publication date
CN218182468U (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
AU2021215154B2 (en) Communication device
WO2022021824A1 (zh) 低频辐射单元及基站天线
KR100980774B1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
US20210328363A1 (en) Waveguide Antenna Element-Based Beam Forming Phased Array Antenna System for Millimeter Wave Communication
US20080266181A1 (en) Antenna Arrangement
KR102554581B1 (ko) 안테나 구조 및 고주파 다중 대역 무선 통신 단말
WO2020135171A1 (zh) 天线结构及终端
US20230223709A1 (en) Antenna device, array of antenna devices, and base station with antenna device
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
CN109462028B (zh) 一种射频微机电微带天线
WO2023241399A1 (zh) 天线装置及移动终端
CN110911817A (zh) 具有高增益及高频陷波的双极化基站辐射阵子
US20230006364A1 (en) Electronic device comprising plurality of antennas
CN109546320B (zh) 一种手持终端全向圆极化天线
WO2020010941A1 (zh) 天线及通信设备
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
US20100164811A1 (en) Solid Antenna
JP2004260343A (ja) 小型アンテナ装置
EP4340127A1 (en) Broadside antenna, package antenna, and communication device
TW201208197A (en) High gain loop array antenna system and electronic device
KR102529334B1 (ko) Mimo 안테나 및 이를 포함하는 mimo 안테나 장치
JP3832069B2 (ja) アンテナ装置
US20230136811A1 (en) Antenna device, array of antenna devices, and base station
US20100123637A1 (en) Antenna
CN117096577A (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822968

Country of ref document: EP

Kind code of ref document: A1