EP3478748B1 - Composition thiol-ene curable dual comprenant un polythiol, un composé insaturé, un photoinitiateur et un hydroperoxide organique, ainsi q'un produit d'étanchéité a base d'un polymer réticulé préparé a partir de cette composition pour usage aérospatiale - Google Patents
Composition thiol-ene curable dual comprenant un polythiol, un composé insaturé, un photoinitiateur et un hydroperoxide organique, ainsi q'un produit d'étanchéité a base d'un polymer réticulé préparé a partir de cette composition pour usage aérospatiale Download PDFInfo
- Publication number
- EP3478748B1 EP3478748B1 EP17737153.1A EP17737153A EP3478748B1 EP 3478748 B1 EP3478748 B1 EP 3478748B1 EP 17737153 A EP17737153 A EP 17737153A EP 3478748 B1 EP3478748 B1 EP 3478748B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon
- composition
- sealant composition
- curable sealant
- polythiol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 201
- 239000000565 sealant Substances 0.000 title claims description 105
- 229920006295 polythiol Polymers 0.000 title claims description 62
- 150000001875 compounds Chemical class 0.000 title claims description 42
- 150000002432 hydroperoxides Chemical class 0.000 title claims description 29
- 229920006037 cross link polymer Polymers 0.000 title description 4
- OXBLVCZKDOZZOJ-UHFFFAOYSA-N 2,3-Dihydrothiophene Chemical compound C1CC=CS1 OXBLVCZKDOZZOJ-UHFFFAOYSA-N 0.000 title description 2
- 230000009977 dual effect Effects 0.000 title 1
- -1 nitrogen-containing cyclic compound Chemical class 0.000 claims description 51
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 49
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 29
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 28
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 23
- 125000003118 aryl group Chemical group 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 15
- 229920001021 polysulfide Polymers 0.000 claims description 12
- 239000005077 polysulfide Substances 0.000 claims description 12
- 150000008117 polysulfides Polymers 0.000 claims description 12
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 7
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 5
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 claims description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 3
- XRXANEMIFVRKLN-UHFFFAOYSA-N 2-hydroperoxy-2-methylbutane Chemical compound CCC(C)(C)OO XRXANEMIFVRKLN-UHFFFAOYSA-N 0.000 claims description 3
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 3
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 3
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 claims description 3
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 3
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 150000003536 tetrazoles Chemical class 0.000 claims description 3
- 125000000101 thioether group Chemical group 0.000 claims description 3
- 150000003852 triazoles Chemical class 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- 102100025848 Acyl-coenzyme A thioesterase 8 Human genes 0.000 description 13
- 101710175468 Acyl-coenzyme A thioesterase 8 Proteins 0.000 description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 13
- 239000003999 initiator Substances 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 12
- 125000002947 alkylene group Chemical group 0.000 description 11
- 150000004662 dithiols Chemical class 0.000 description 11
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 10
- DFPOZTRSOAQFIK-UHFFFAOYSA-N S,S-dimethyl-beta-propiothetin Chemical compound C[S+](C)CCC([O-])=O DFPOZTRSOAQFIK-UHFFFAOYSA-N 0.000 description 10
- 230000005484 gravity Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 150000002978 peroxides Chemical class 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000004342 Benzoyl peroxide Substances 0.000 description 9
- 235000019400 benzoyl peroxide Nutrition 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical group SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 8
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 8
- 150000001993 dienes Chemical class 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 229940052303 ethers for general anesthesia Drugs 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 125000003545 alkoxy group Chemical group 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 125000000623 heterocyclic group Chemical group 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000049 pigment Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 239000011256 inorganic filler Substances 0.000 description 6
- 229910003475 inorganic filler Inorganic materials 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 150000003568 thioethers Chemical class 0.000 description 6
- 125000000732 arylene group Chemical group 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 239000012973 diazabicyclooctane Substances 0.000 description 4
- FFHWGQQFANVOHV-UHFFFAOYSA-N dimethyldioxirane Chemical compound CC1(C)OO1 FFHWGQQFANVOHV-UHFFFAOYSA-N 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 229910021485 fumed silica Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- 229960000834 vinyl ether Drugs 0.000 description 4
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 3
- ILBBNQMSDGAAPF-UHFFFAOYSA-N 1-(6-hydroxy-6-methylcyclohexa-2,4-dien-1-yl)propan-1-one Chemical compound CCC(=O)C1C=CC=CC1(C)O ILBBNQMSDGAAPF-UHFFFAOYSA-N 0.000 description 3
- KKKDZZRICRFGSD-UHFFFAOYSA-N 1-benzylimidazole Chemical compound C1=CN=CN1CC1=CC=CC=C1 KKKDZZRICRFGSD-UHFFFAOYSA-N 0.000 description 3
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 3
- 150000008062 acetophenones Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 235000012241 calcium silicate Nutrition 0.000 description 3
- QEBJRRFIWCWPMA-UHFFFAOYSA-N diethyl-bis(sulfanyl)-$l^{4}-sulfane Chemical compound CCS(S)(S)CC QEBJRRFIWCWPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004438 haloalkoxy group Chemical group 0.000 description 3
- 125000001188 haloalkyl group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000004291 polyenes Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 2
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 2
- XSZYESUNPWGWFQ-UHFFFAOYSA-N 1-(2-hydroperoxypropan-2-yl)-4-methylcyclohexane Chemical compound CC1CCC(C(C)(C)OO)CC1 XSZYESUNPWGWFQ-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Chemical class 0.000 description 2
- FGYADSCZTQOAFK-UHFFFAOYSA-N 1-methylbenzimidazole Chemical compound C1=CC=C2N(C)C=NC2=C1 FGYADSCZTQOAFK-UHFFFAOYSA-N 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- LLNQWPTUJJYTTE-UHFFFAOYSA-N 4-iodopyrazole Chemical compound IC=1C=NNC=1 LLNQWPTUJJYTTE-UHFFFAOYSA-N 0.000 description 2
- XKVUYEYANWFIJX-UHFFFAOYSA-N 5-methyl-1h-pyrazole Chemical compound CC1=CC=NN1 XKVUYEYANWFIJX-UHFFFAOYSA-N 0.000 description 2
- XHLKOHSAWQPOFO-UHFFFAOYSA-N 5-phenyl-1h-imidazole Chemical compound N1C=NC=C1C1=CC=CC=C1 XHLKOHSAWQPOFO-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Natural products CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UQFQONCQIQEYPJ-UHFFFAOYSA-N N-methylpyrazole Chemical compound CN1C=CC=N1 UQFQONCQIQEYPJ-UHFFFAOYSA-N 0.000 description 2
- 235000008098 Oxalis acetosella Nutrition 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 244000126309 Trifolium dubium Species 0.000 description 2
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 150000004056 anthraquinones Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000005532 aryl alkyleneoxy group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical class C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 239000012949 free radical photoinitiator Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 150000002357 guanidines Chemical class 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-M hydroperoxide group Chemical group [O-]O MHAJPDPJQMAIIY-UHFFFAOYSA-M 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 125000002346 iodo group Chemical group I* 0.000 description 2
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical compound C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000007970 thio esters Chemical class 0.000 description 2
- 239000013008 thixotropic agent Substances 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- ORMDVQRBTFCOGC-UHFFFAOYSA-N (2-hydroperoxy-4-methylpentan-2-yl)benzene Chemical compound CC(C)CC(C)(OO)C1=CC=CC=C1 ORMDVQRBTFCOGC-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- AVGQTJUPLKNPQP-UHFFFAOYSA-N 1,1,1-trichloropropane Chemical compound CCC(Cl)(Cl)Cl AVGQTJUPLKNPQP-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- GPHWXFINOWXMDN-UHFFFAOYSA-N 1,1-bis(ethenoxy)hexane Chemical compound CCCCCC(OC=C)OC=C GPHWXFINOWXMDN-UHFFFAOYSA-N 0.000 description 1
- HIYIGPVBMDKPCR-UHFFFAOYSA-N 1,1-bis(ethenoxymethyl)cyclohexane Chemical compound C=COCC1(COC=C)CCCCC1 HIYIGPVBMDKPCR-UHFFFAOYSA-N 0.000 description 1
- KTRQRAQRHBLCSQ-UHFFFAOYSA-N 1,2,4-tris(ethenyl)cyclohexane Chemical compound C=CC1CCC(C=C)C(C=C)C1 KTRQRAQRHBLCSQ-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 1
- YGKHJWTVMIMEPQ-UHFFFAOYSA-N 1,2-propanedithiol Chemical compound CC(S)CS YGKHJWTVMIMEPQ-UHFFFAOYSA-N 0.000 description 1
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical compound S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 1
- XMEPRJBZFCWFKN-UHFFFAOYSA-N 1,3-Butanedithiol Chemical compound CC(S)CCS XMEPRJBZFCWFKN-UHFFFAOYSA-N 0.000 description 1
- XDWRKTULOHXYGN-UHFFFAOYSA-N 1,3-bis(ethenoxy)-2,2-bis(ethenoxymethyl)propane Chemical compound C=COCC(COC=C)(COC=C)COC=C XDWRKTULOHXYGN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 1
- SRZXCOWFGPICGA-UHFFFAOYSA-N 1,6-Hexanedithiol Chemical compound SCCCCCCS SRZXCOWFGPICGA-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- UEIPWOFSKAZYJO-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-[2-(2-ethenoxyethoxy)ethoxy]ethane Chemical compound C=COCCOCCOCCOCCOC=C UEIPWOFSKAZYJO-UHFFFAOYSA-N 0.000 description 1
- DMYOHQBLOZMDLP-UHFFFAOYSA-N 1-[2-(2-hydroxy-3-piperidin-1-ylpropoxy)phenyl]-3-phenylpropan-1-one Chemical compound C1CCCCN1CC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 DMYOHQBLOZMDLP-UHFFFAOYSA-N 0.000 description 1
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 description 1
- NLXGURFLBLRZRO-UHFFFAOYSA-N 1-chloro-2-(2-chloroethoxymethoxy)ethane Chemical compound ClCCOCOCCCl NLXGURFLBLRZRO-UHFFFAOYSA-N 0.000 description 1
- ILVIYRLLZTXZQL-UHFFFAOYSA-N 1-dimethoxyphosphoryl-2,2-dimethylpropan-1-one Chemical compound COP(=O)(OC)C(=O)C(C)(C)C ILVIYRLLZTXZQL-UHFFFAOYSA-N 0.000 description 1
- CZAVRNDQSIORTH-UHFFFAOYSA-N 1-ethenoxy-2,2-bis(ethenoxymethyl)butane Chemical compound C=COCC(CC)(COC=C)COC=C CZAVRNDQSIORTH-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical group C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- TWWSEEHCVDRRRI-UHFFFAOYSA-N 2,3-Butanedithiol Chemical compound CC(S)C(C)S TWWSEEHCVDRRRI-UHFFFAOYSA-N 0.000 description 1
- CEUQYYYUSUCFKP-UHFFFAOYSA-N 2,3-bis(2-sulfanylethylsulfanyl)propane-1-thiol Chemical compound SCCSCC(CS)SCCS CEUQYYYUSUCFKP-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- CNDCQWGRLNGNNO-UHFFFAOYSA-N 2-(2-sulfanylethoxy)ethanethiol Chemical class SCCOCCS CNDCQWGRLNGNNO-UHFFFAOYSA-N 0.000 description 1
- VDMLVOIDGSOUTA-UHFFFAOYSA-N 2-(4-methylanilino)ethane-1,1-diol Chemical compound CC1=CC=C(NCC(O)O)C=C1 VDMLVOIDGSOUTA-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- FUIQBJHUESBZNU-UHFFFAOYSA-N 2-[(dimethylazaniumyl)methyl]phenolate Chemical compound CN(C)CC1=CC=CC=C1O FUIQBJHUESBZNU-UHFFFAOYSA-N 0.000 description 1
- HCZMHWVFVZAHCR-UHFFFAOYSA-N 2-[2-(2-sulfanylethoxy)ethoxy]ethanethiol Chemical compound SCCOCCOCCS HCZMHWVFVZAHCR-UHFFFAOYSA-N 0.000 description 1
- BVCUZDCVGAJLGS-UHFFFAOYSA-N 2-[2-[3-[2-(2-sulfanylethylsulfanyl)ethylsulfanyl]-2,2-bis[2-(2-sulfanylethylsulfanyl)ethylsulfanylmethyl]propyl]sulfanylethylsulfanyl]ethanethiol Chemical compound SCCSCCSCC(CSCCSCCS)(CSCCSCCS)CSCCSCCS BVCUZDCVGAJLGS-UHFFFAOYSA-N 0.000 description 1
- JUVSRZCUMWZBFK-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)-4-methylanilino]ethanol Chemical compound CC1=CC=C(N(CCO)CCO)C=C1 JUVSRZCUMWZBFK-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- JVNKYYGQNQJOEN-UHFFFAOYSA-N 2-diazo-1h-naphthalen-1-ol Chemical compound C1=CC=C2C(O)C(=[N+]=[N-])C=CC2=C1 JVNKYYGQNQJOEN-UHFFFAOYSA-N 0.000 description 1
- MIRQGKQPLPBZQM-UHFFFAOYSA-N 2-hydroperoxy-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)OO MIRQGKQPLPBZQM-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical compound OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- SUNXFMPZAFGPFW-UHFFFAOYSA-N 2-methyl-5-(1-sulfanylpropan-2-yl)cyclohexane-1-thiol Chemical compound SCC(C)C1CCC(C)C(S)C1 SUNXFMPZAFGPFW-UHFFFAOYSA-N 0.000 description 1
- OHXAOPZTJOUYKM-UHFFFAOYSA-N 3-Chloro-2-methylpropene Chemical compound CC(=C)CCl OHXAOPZTJOUYKM-UHFFFAOYSA-N 0.000 description 1
- VWTLYICOOPRVHY-UHFFFAOYSA-N 3-cyclohexyl-4-ethyl-3h-dithiole Chemical compound CCC1=CSSC1C1CCCCC1 VWTLYICOOPRVHY-UHFFFAOYSA-N 0.000 description 1
- PZUUQOXIIQTQEJ-UHFFFAOYSA-N 3-methylbutane-1,3-dithiol Chemical compound CC(C)(S)CCS PZUUQOXIIQTQEJ-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 1
- MBSOHMUBMHZCGE-UHFFFAOYSA-N 9h-carbazole;dioxazine Chemical compound O1ON=CC=C1.C1=CC=C2C3=CC=CC=C3NC2=C1 MBSOHMUBMHZCGE-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000579895 Chlorostilbon Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920002266 Pluriol® Polymers 0.000 description 1
- MOWJPXLTZMVEHR-UHFFFAOYSA-N SC(OO)(CCCCC)S Chemical class SC(OO)(CCCCC)S MOWJPXLTZMVEHR-UHFFFAOYSA-N 0.000 description 1
- 229920001079 Thiokol (polymer) Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- QSZJAPUVYYDAPU-UHFFFAOYSA-N [phenyl(propan-2-yloxy)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound C=1C=CC=CC=1P(=O)(OC(C)C)C(=O)C1=C(C)C=C(C)C=C1C QSZJAPUVYYDAPU-UHFFFAOYSA-N 0.000 description 1
- 239000000011 acetone peroxide Substances 0.000 description 1
- 235000019401 acetone peroxide Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- PGEHNUUBUQTUJB-UHFFFAOYSA-N anthanthrone Chemical compound C1=CC=C2C(=O)C3=CC=C4C=CC=C5C(=O)C6=CC=C1C2=C6C3=C54 PGEHNUUBUQTUJB-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- MYONAGGJKCJOBT-UHFFFAOYSA-N benzimidazol-2-one Chemical compound C1=CC=CC2=NC(=O)N=C21 MYONAGGJKCJOBT-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- SMTOKHQOVJRXLK-UHFFFAOYSA-N butane-1,4-dithiol Chemical compound SCCCCS SMTOKHQOVJRXLK-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000011222 crystalline ceramic Substances 0.000 description 1
- 229910002106 crystalline ceramic Inorganic materials 0.000 description 1
- 239000006092 crystalline glass-ceramic Substances 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical group C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 229910000267 dualite Inorganic materials 0.000 description 1
- 229910052876 emerald Inorganic materials 0.000 description 1
- 239000010976 emerald Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- RSPZSDWVQWRAEF-UHFFFAOYSA-N hepta-1,6-diyne Chemical compound C#CCCCC#C RSPZSDWVQWRAEF-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910002011 hydrophilic fumed silica Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- JDEJGVSZUIJWBM-UHFFFAOYSA-N n,n,2-trimethylaniline Chemical compound CN(C)C1=CC=CC=C1C JDEJGVSZUIJWBM-UHFFFAOYSA-N 0.000 description 1
- MXHTZQSKTCCMFG-UHFFFAOYSA-N n,n-dibenzyl-1-phenylmethanamine Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)CC1=CC=CC=C1 MXHTZQSKTCCMFG-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- OBJNZHVOCNPSCS-UHFFFAOYSA-N naphtho[2,3-f]quinazoline Chemical compound C1=NC=C2C3=CC4=CC=CC=C4C=C3C=CC2=N1 OBJNZHVOCNPSCS-UHFFFAOYSA-N 0.000 description 1
- DSOJWVLXZNRKCS-UHFFFAOYSA-N octa-1,7-diyne Chemical compound C#CCCCCC#C DSOJWVLXZNRKCS-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- UTQKOCMICXQWQW-UHFFFAOYSA-N pentane-1,3-dithiol Chemical compound CCC(S)CCS UTQKOCMICXQWQW-UHFFFAOYSA-N 0.000 description 1
- KMTUBAIXCBHPIZ-UHFFFAOYSA-N pentane-1,5-dithiol Chemical compound SCCCCCS KMTUBAIXCBHPIZ-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- UWHMFGKZAYHMDJ-UHFFFAOYSA-N propane-1,2,3-trithiol Chemical compound SCC(S)CS UWHMFGKZAYHMDJ-UHFFFAOYSA-N 0.000 description 1
- ZJLMKPKYJBQJNH-UHFFFAOYSA-N propane-1,3-dithiol Chemical compound SCCCS ZJLMKPKYJBQJNH-UHFFFAOYSA-N 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- LLBIOIRWAYBCKK-UHFFFAOYSA-N pyranthrene-8,16-dione Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C=C4C5=CC=CC=C5C(=O)C5=C4C4=C3C2=C1C=C4C=C5 LLBIOIRWAYBCKK-UHFFFAOYSA-N 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-N sodium polysulfide Chemical compound [Na+].S HYHCSLBZRBJJCH-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 239000012970 tertiary amine catalyst Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005627 triarylcarbonium group Chemical group 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- QZQIWEZRSIPYCU-UHFFFAOYSA-N trithiole Chemical compound S1SC=CS1 QZQIWEZRSIPYCU-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/04—Polythioethers from mercapto compounds or metallic derivatives thereof
- C08G75/045—Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/82—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/12—Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/32—Polythiazoles; Polythiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J181/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
- C09J181/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
- C09K3/1012—Sulfur-containing polymers, e.g. polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/06—Frames; Stringers; Longerons ; Fuselage sections
- B64C1/12—Construction or attachment of skin panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/14—Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/34—Tanks constructed integrally with wings, e.g. for fuel or water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2190/00—Compositions for sealing or packing joints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2003/1034—Materials or components characterised by specific properties
- C09K2003/1062—UV-curable materials
Definitions
- Sulfur-containing polymers are known to be well-suited for use in aerospace sealants due to their fuel resistant nature upon crosslinking.
- a desirable combination of properties for aerospace sealants, which is difficult to obtain, is the combination of long application time (i.e., the time during which the sealant remains usable) and short curing time (the time required to reach a predetermined strength).
- JP 2007/002108 discloses resin compositions comprising a urethane oligomer, a polyene, a polythiol, a photopolymerization initiator, a reducing agent, a polyfunctional polymerizable vinyl monomer, and an oxidizing agent.
- US 4,808,638 discloses a curable thiol-ene formulation comprising a polythiol, a free-radical initiator, and a compound of the formula where Q is CH 2 , CHCH 3 , C(CH 3 ) 2 , O, S, NR 1 or SO 2 , R 1 is H or alkyl, and m is 0-10.
- WO 88/002879 discloses a visible light polymerisable composition
- a free radically polymerisable material such as one or more monomers and/or prepolymers containing acrylate or methacrylate groups or a copolymerisable monomer combination based on a polythiol and a polyene; a p-arene metal complex; and a free radical rate accelerator such as a peroxide or hydroperoxide compound.
- WO 2015/102967 A1 discloses a curable composition having a polythiol; at least one unsaturated compound comprising two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof; and a dye compound.
- WO 2016/106352 A1 discloses curable compositions comprising a dithiol monomer; a diene monomer; a radical cleaved photo initiator; a peroxide; and an amine.
- Curable sealant compositions and methods according to the present disclosure include a polythiol, at least one unsaturated compound having more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof; and two polymerization initiators.
- One initiator is a photoinitiator suitable for photochemically curing the composition by generating free radicals.
- the second initiator is a hydroperoxide suitable for curing the composition, for example, under ambient conditions.
- the photoinitiator provides a cure-on-demand feature to the composition according the present disclosure when the composition is exposed to a light trigger, for example, to provide at least a non-tacky surface or, in some cases, to fully cure the composition.
- the presence of the hydroperoxide in the composition provides several advantages.
- the hydroperoxide provides the composition with a backup curing mechanism and ensures curing in cases in which photochemical irradiation is not an option, does not reach the entire composition (e.g., in unexposed areas) or is inadvertently omitted. As shown in the Examples, below, the hydroperoxide does not interfere with the photochemical cure using the photoinitiator, and the presence of the photoinitiator does not interfere with the redox cure provided by the hydroperoxide.
- the composition can be useful, for example, as a one-part or two-part sealant composition with an optional cure-on-demand feature.
- the present disclosure provides a curable sealant composition including a polythiol, at least one unsaturated compound having more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof, a photoinitiator, and an organic hydroperoxide other than methyl ethyl ketone peroxide.
- the present disclosure provides a curable sealant composition including a polythiol, at least one unsaturated compound comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof, a photoinitiator, an organic hydroperoxide, and a substituted or unsubstituted nitrogen-containing cyclic compound.
- the present disclosure provides a cured sealant prepared from the curable sealant composition described above, wherein at least some of the thiol groups in the polythiol and carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof have reacted to form thioether groups.
- the present disclosure provides a method of making a cured sealant.
- the method includes providing the curable sealant composition described above and at least one of exposing the composition to light to at least partially cure the composition or allowing the composition to at least partially cure at ambient temperature.
- phrases “comprises at least one of” followed by a list refers to comprising any one of the items in the list and any combination of two or more items in the list.
- the phrase “at least one of” followed by a list refers to any one of the items in the list or any combination of two or more items in the list.
- curable refers to joining polymer chains together by covalent chemical bonds, usually via crosslinking molecules or groups, to form a network polymer. Therefore, in this disclosure the terms “cured” and “crosslinked” may be used interchangeably.
- a cured or crosslinked polymer is generally characterized by insolubility, but may be swellable in the presence of an appropriate solvent.
- polymer or polymeric will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers or monomers that can form polymers, and combinations thereof, as well as polymers, oligomers, monomers, or copolymers that can be blended.
- alkyl group and the prefix “alk-” are inclusive of both straight chain and branched chain groups. In some embodiments, alkyl groups have up to 30 carbons (in some embodiments, up to 20, 15, 12, 10, 8, 7, 6, or 5 carbons) unless otherwise specified. Terminal “alkenyl” groups have at least 3 carbon atoms.
- Alkylene is the multivalent (e.g., divalent or trivalent) form of the “alkyl” groups defined above.
- Arylalkylene refers to an “alkylene” moiety to which an aryl group is attached.
- Alkylarylene refers to an "arylene” moiety to which an alkyl group is attached.
- aryl and arylene as used herein include carbocyclic aromatic rings or ring systems, for example, having 1, 2, or 3 rings.
- heterocyclyl includes non-aromatic rings or ring systems that contain at least one ring heteroatom (e.g., O, S, N).
- the heterocyclyl group may include 1, 2, or 3 rings and includes all of the fully saturated and partially unsaturated derivatives of the above mentioned aryl groups having at least one heteroatom.
- open time is used interchangeably with the term “application time” and is measured as described in the Examples.
- FIG. 1 is a diagram representing the use of a composition according to the present disclosure as a sealant between two substrates.
- the composition 10 is applied between opaque substrates 20.
- Light 40 from actinic light source 30 is used to initiate cure of at least a portion of composition 10 exposed to light 40 in exposed zone 100.
- composition 10 in dark zones 110 and 120 is not exposed to light 40.
- the hydroperoxide and in some embodiments the amine in the curable sealant composition of the present disclosure allows the composition to cure in adjacent dark zones 110 and 120.
- polythiols and unsaturated compounds comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof may be useful in the curable sealant compositions according to the present disclosure.
- the polythiol is monomeric.
- the polythiol may be an alkylene, arylene, alkylarylene, arylalkylene, or alkylenearylalkylene having more than one mercaptan group, wherein any of the alkylene, alkylarylene, arylalkylene, or alkylenearylalkylene are optionally interrupted by one or more ether (i.e., -O-), thioether (i.e., -S-), or amine (i.e., -NR 1 -) groups and optionally substituted by alkoxy or hydroxyl.
- ether i.e., -O-
- thioether i.e., -S-
- amine i.e., -NR 1 -
- Useful monomeric polythiols may be dithiols or polythiols with more than 2 (in some embodiments, 3 or 4) mercaptan groups.
- the polythiol is an alkylene dithiol in which the alkylene is optionally interrupted by one or more ether (i.e., -O-) or thioether (i.e., -S-) groups.
- Examples of useful dithiols include 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,3-pentanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,3-dimercapto-3-methylbutane, dipentenedimercaptan, ethylcyclohexyldithiol (ECHDT), dimercaptodiethylsulfide, methyl-substituted dimercaptodiethylsulfide, dimethyl-substituted dimercaptodiethylsulfide, dimercaptodioxaoctane, 1,5-dimercapto-3-oxapentane and mixtures thereof.
- EHDT ethyl
- Polythiols having more than two mercaptan groups include propane-1,2,3-trithiol; 1,2-bis[(2-mercaptoethyl)thio]-3-mercaptopropane; tetrakis(7-mercapto-2,5-dithiaheptyl)methane; and trithiocyanuric acid. Combinations of any of these or with any of the dithiols mentioned above may be useful.
- the unsaturated compound having carbon-carbon double bonds and/or carbon-carbon triple bonds are reactive and generally not part of an aromatic ring.
- the carbon-carbon double and triple bonds are terminal groups in a linear aliphatic compound.
- styryl groups and allyl-substituted aromatic rings may be useful.
- the unsaturated compound may also include one or more ether (i.e., -O-), thioether (i.e., -S-), amine (i.e., -NR 1 -), or ester (e.g., so that the compound is an acrylate or methacrylate) groups and one or more alkoxy or hydroxyl substituents.
- the unsaturated compound does not include ester groups or carbonate groups. That is, the unsaturated compound is not an acrylate, methacrylate, vinyl ester, or vinyl carbonate. Unsaturated compounds without ester and carbonate groups may be more chemically stable than unsaturated compounds that contain these groups. Suitable unsaturated compounds include dienes, diynes, divinyl ethers, diallyl ethers, ene-ynes, and trifunctional versions of any of these. Combinations of any of these groups may also be useful.
- Suitable vinyl ethers having two or more vinyl ether groups include divinyl ether, ethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, polytetrahydrofuryl divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, and combinations of any of these.
- Examples of compounds of this type include compounds in which R 2 is an alkyl-substituted methylene group such as -CH(CH 3 )- (e.g., those obtained from BASF, Florham Park, N.J, under the trade designation "PLURIOL", for which R 2 is ethylene and m is 3.8) or an alkyl-substituted ethylene (e.g., -CH 2 CH(CH 3 )- such as those obtained from International Specialty Products of Wayne, N.J., under the trade designation "DPE” (e.g., "DPE-2" and "DPE-3").
- R 2 is an alkyl-substituted methylene group such as -CH(CH 3 )- (e.g., those obtained from BASF, Florham Park, N.J, under the trade designation "PLURIOL", for which R 2 is ethylene and m is 3.8) or an alkyl-substituted ethylene (e.g., -CH 2 CH(CH
- unsaturated compounds having more than one carbon-carbon double bond or carbon-carbon triple bond include triallyl-1,3,5-triazine-2,4,6-trione, 2,4,6-triallyloxy-1,3,5-triazine, 4-vinyl-1-cyclohexene, 1,5-cyclooctadiene, 1,6-heptadiyne, 1,7-octadiyne, and diallyl phthalate.
- polythiols having two thiol groups a mixture of unsaturated compounds may be useful in which at least one unsaturated compound has two carbon-carbon double or triple bonds, and at least one unsaturated compound has at least three carbon-carbon double or triple bonds. Mixtures of unsaturated compounds having at least 5 percent functional equivalents of carbon-carbon double or triple bonds contributed by polyenes having at least three carbon-carbon double or triple bonds may be useful.
- the amounts of the polythiol(s) and unsaturated compound(s) are selected for the curable composition so that there is a stoichiometric equivalence of mercaptan groups and carbon-carbon double and triple bonds.
- the polythiol in the curable composition according to the present disclosure is oligomeric or polymeric.
- useful oligomeric or polymeric polythiols include polythioethers and polysulfides.
- Polythioethers include thioether linkages (i.e., -S-) in their backbone structures.
- Polysulfides include disulfides linkages (i.e., -S-S-) in their backbone structures.
- Polythioethers can be prepared, for example, by reacting dithiols with dienes, diynes, divinyl ethers, diallyl ethers, ene-ynes, or combinations of these under free-radical conditions.
- Useful reagents for making polythioethers include any of the dithiols, dienes, diynes, divinyl ethers, diallyl ethers, and ene-ynes listed above. Examples of useful polythioethers are described, for example, in U.S. Pat. Nos. 4,366,307 (Singh et al. ), 4,609,762 (Morris et al. ), 5,225,472 (Cameron et al.
- the polythioether is represented by formula HS-R 3 -[S-(CH 2 ) 2 -O-[-R 4 -O-] m -(CH 2 ) 2 -S-R 3 -]n-SH, wherein each R 3 and R 4 is independently a C 2 - 6 alkylene, which may be straight-chain or branched, C 6-8 cycloalkylene, C 6-10 alkylcycloalkylene, -[(CH 2 -) p -X-] q -(-CH 2 -) r , in which at least one -CH 2 - is optionally substituted with a methyl group, X is one selected from the group consisting of O, S and -NR 5 -, R 5 denotes hydrogen or methyl, m is a number from 0 to 10, n is a number from 1 to 60, p is a number from 2 to 6, q is a number from 1 to 5, and r is a number
- Polythioethers with more than two mercaptan groups may also be useful. Any of the free-radical initiators and methods described below in connection with at least partially curing the compositions disclosed herein may also be useful for preparing the polythioethers. In some embodiments, a thermal free-radical initiator described below is combined with the dithiols and dienes, diynes, divinyl ethers, diallyl ethers, ene-ynes, or combinations of these, and the resulting mixture is heated to provide the polythioethers.
- Polythioethers can also be prepared, for example, by reacting dithiols with diepoxides, which may be carried out by stirring at room temperature, optionally in the presence of a tertiary amine catalyst (e.g., 1,4-diazabicyclo[2.2.2]octane (DABCO)).
- a tertiary amine catalyst e.g., 1,4-diazabicyclo[2.2.2]octane (DABCO)
- DABCO 1,4-diazabicyclo[2.2.2]octane
- Useful dithiols include any of those described above.
- Useful epoxides can be any of those having two epoxide groups.
- the diepoxide is a bisphenol diglycidyl ether, wherein the bisphenol (i.e., -O-C 6 H 5 -CH 2 -C 6 H 5 -O-) may be unsubstituted (e.g., bisphenol F), or either of the phenyl rings or the methylene group may be substituted by halogen (e.g., fluoro, chloro, bromo, iodo), methyl, trifluoromethyl, or hydroxymethyl.
- the bisphenol i.e., -O-C 6 H 5 -CH 2 -C 6 H 5 -O-
- halogen e.g., fluoro, chloro, bromo, iodo
- Polythioethers prepared from dithiols and diepoxides have pendent hydroxyl groups and can have structural repeating units represented by formula -S-R 3 -S-CH 2 -CH(OH)-CH 2 -O-C 6 H 5 -CH 2 -C 6 H 5 -O-CH 2 -CH(OH)-CH 2 -S-R 3 -S-, wherein R 3 is as defined above, and the bisphenol unit (i.e., -O-C 6 H 5 -CH 2 -C 6 H 5 -O-) may be unsubstituted (e.g., bisphenol F), or either of the phenyl rings or the methylene group may be substituted by halogen (e.g., fluoro, chloro, bromo, iodo), methyl, trifluoromethyl, or hydroxymethyl.
- halogen e.g., fluoro, chloro, bromo, iodo
- Mercaptan terminated polythioethers of this type can then optionally be reacted with any of the dienes, diynes, divinyl ethers, diallyl ethers, and ene-ynes listed above under free radical conditions.
- Any of the free-radical initiators and methods described below in connection with at least partially curing the composition disclosed herein may also be useful for preparing the polythioethers.
- a thermal initiator described below is used, and the resulting mixture is heated to provide the polythioether.
- the polythioethers may also be terminated with carbon-carbon double bonds, depending on the stoichiometry of the reaction.
- the polythioethers can serve as the unsaturated compound having at least two carbon-carbon double bonds.
- Polysulfides are typically prepared by the condensation of sodium polysulfide with bis-(2-chloroethyl) formal, which provides linear polysulfides having two terminal mercaptan groups. Branched polysulfides having three or more mercaptan groups can be prepared using trichloropropane in the reaction mixture. Examples of useful polysulfides are described, for example, in U.S. Pat. Nos. 2,466,963 (Patrick et al ); 2,789,958 (Fettes et al ); 4,165,425(Bertozzi ); and 5,610,243 (Vietti et al. ).
- Polysulfides are commercially available under the trademarks "THIOKOL” and "LP” from Toray Fine Chemicals Co., Ltd., Urayasu, Japan and are exemplified by grades “LP-2”, “LP-2C” (branched), “LP-3”, “LP-33”, and "LP-541".
- Polythioethers and polysulfides can have a variety of useful molecular weights.
- the polythioethers and polysulfides have number average molecular weights in a range from 500 grams per mole to 20,000 grams per mole, 1,000 grams per mole to 10,000 grams per mole, or 2,000 grams per mole to 5,000 grams per mole.
- polythioethers and polysulfides that are mercaptan-terminated may be combined with any of the unsaturated compounds including more than one carbon-carbon double or triple bonds described above using any of the free-radical initiators and methods described below to provide a cured composition according to the present disclosure.
- compositions according to the present disclosure can be at least partially cured using free-radical polymerization. Accordingly, compositions according to the present disclosure include a free-radical photoinitiator.
- the free radical photoinitiator is a cleavage-type photoinitiator.
- Cleavage-type photoinitiators include acetophenones, alpha-aminoalkylphenones, benzoin ethers, benzoyl oximes, acylphosphine oxides and bisacylphosphine oxides and mixtures thereof.
- useful photoinitiators include benzoin ethers (e.g., benzoin methyl ether or benzoin butyl ether); substituted acetophenone (e.g., 2,2-dimethoxy-2-phenylacetophenone or 2,2-diethoxyacetophenone); 1-hydroxycyclohexyl phenyl ketone; and acylphosphonate derivatives (e.g., bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, diphenyl-2,4,6-trimethylbenzoylphosphine oxide, isopropoxyphenyl-2,4,6-trimethylbenzoylphosphine oxide, or dimethyl pivaloylphosphonate).
- benzoin ethers e.g., benzoin methyl ether or benzoin butyl ether
- substituted acetophenone e.g., 2,2-dimethoxy-2-phenylacetophenone or 2,2-diethoxyacetophenone
- photoinitiators are available, for example, from BASF under the trade designation "IRGACURE".
- the photoinitiator may be selected, for example, based on the desired wavelength for curing and compatibility with the curable composition.
- the composition is typically curable using an actinic light source. Two or more of any of these photoinitiators may also be used together in any combination.
- Photoinitiators can be added in any amount suitable to initiate curing.
- the photoinitiator is present in an amount in a range from 0.05 weight percent to about 5 weight percent (in some embodiments, 0.1 weight percent to 2.5 weight percent, or 0.1 weight percent to 2 weight percent).
- the curable sealant compositions according to the present disclosure also include an organic hydroperoxide.
- Organic hydroperoxides have the general structure R-OOH, wherein R is an alkyl group, aryl group, arylalkylene group, alkylarylene group, alkylarylenealkylene group, or a combination thereof.
- Examples of useful organic hydroperoxides include cumene hydroperoxide, tert -butyl hydroperoxide, tert -amyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, isopropylcumyl hydroperoxide, p-menthane hydroperoxide (i.e., 1-methyl-1-(4-methylcyclohexyl)ethyl hydroperoxide), diisopropylbenzene hydroperoxide (e.g., 3,5-diisopropylhydroperoxide).
- the organic hydroperoxide includes a ketone peroxide (e.g., methyl ethyl ketone peroxide, acetone peroxide, and cyclohexanone peroxide). In some embodiments, the organic hydroperoxide is other than methyl ethyl ketone peroxide. In some embodiments, the organic hydroperoxide is other than a ketone peroxide. Two or more of any of these organic hydroperoxides may also be used together in any combination.
- a ketone peroxide e.g., methyl ethyl ketone peroxide, acetone peroxide, and cyclohexanone peroxide.
- the organic hydroperoxide is other than methyl ethyl ketone peroxide.
- the organic hydroperoxide is other than a ketone peroxide. Two or more of any of these organic hydroperoxides may also be used together in any combination.
- organic hydroperoxides tend to be some of the more stable peroxides and require some of the highest temperatures for thermal initiation, in the presence of a polythiol and unsaturated compound in the composition of the present disclosure, the organic hydroperoxide can initiate curing at room temperature. This is shown in Examples 48 to 53 in the Examples, below. It is believed that polythiols can reduce organic hydroperoxides to generate radicals through a redox curing mechanism.
- Organic hydroperoxides can be added in any amount suitable to initiate curing.
- the organic hydroperoxide is present in an amount in a range from 0.05 weight percent to about 10 weight percent (in some embodiments, 0.1 weight percent to 5 weight percent, or 0.5 weight percent to 5 weight percent).
- the organic hydroperoxide can be present in an amount in a range from 1 weight percent to about 5 weight percent or about 2 weight percent to about 5 weight percent.
- the organic hydroperoxide and its amount may be selected to provide the composition with a desirable amount of open time (that is, the length of time it takes for the composition to become at least partially gelled) after it is mixed or thawed.
- the composition has an open time of at least 10 minutes, at least 30 minutes, at least one hour, or at least two hours.
- curable sealant compositions according to the present disclosure further comprise a nitrogen-containing base.
- a combination of a nitrogen-containing base and an organic hydroperoxide can be considered a redox initiator.
- the nitrogen atom(s) in the nitrogen-containing base can be bonded to alkyl groups, aryl groups, arylalkylene groups, alkylarylene, alkylarylenealkylene groups, or a combination thereof.
- the nitrogen-containing base can also be a cyclic compound, which can include one or more rings and can be aromatic or non-aromatic (e.g., saturated or unsaturated).
- Cyclic nitrogen-containing bases can include a nitrogen as at least one of the atoms in a 5- or 6-membered ring.
- the nitrogen-containing base includes only carbon-nitrogen, nitrogen-hydrogen, carbon-carbon, and carbon-hydrogen bonds.
- the nitrogen-containing base can be substituted with at least one of alkoxy, aryl, arylalkylenyl, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, aryloxy, arylalkyleneoxy, heterocyclyl, or hydroxyalkyleneoxyalkylenyl.
- the nitrogen-containing base is a tertiary amine.
- useful tertiary amines include triethylamine, dimethylethanolamine, benzyldimethylamine, dimethylaniline, tribenzylamine, triphenylamine, N,N-dimethyl-para-toluidine, N,N-dimethyl-ortho-toluidine, tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), quinuclidine, dimethylaminomethyl phenol, tris(dimethylaminomethyl)phenol, N,N-dihydroxyethyl-p-toluidine, N,N-diisopropylethylamine, and N, N, N, N, N
- the nitrogen-containing base is other than dihydroxyethyl-p-toluidine, N,N-diisopropylethylamine, and N, N, N', N", N"-pentamethyl-diethylenetriamine.
- Useful nitrogen-containing bases also include guanidines such as diphenylguanidine (DPG).
- the nitrogen-containing base is a tertiary amines (including amidines) or guanidines.
- the nitrogen-containing base comprises a substituted or unsubstituted nitrogen-containing ring.
- the substituted or unsubstituted nitrogen-containing ring has 5 or 6 atoms in the ring.
- the substituted or unsubstituted nitrogen-containing ring can be aromatic or nonaromatic and can have up to 4 nitrogen atoms in the ring.
- the ring can optionally include other heteroatoms (e.g., S and O).
- Substituted aromatic or nonaromatic rings can be substituted by one or more substituents independently selected from the group consisting of alkyl, aryl, arylalkylenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, aryloxy, arylalkyleneoxy, heterocyclyl, hydroxyalkyleneoxyalkylenyl, amino, alkylamino, dialkylamino, (dialkylamino)alkyleneoxy, and oxo.
- substituents independently selected from the group consisting of alkyl, aryl, arylalkylenyl, alkoxy, haloalkyl, haloalkoxy, halogen, nitro, hydroxy, hydroxyalkyl, mercapto, cyano, aryloxy, arylalkyleneoxy, heterocyclyl, hydroxyalkyleneoxyal
- the alkyl substituent can be unsubstituted or substituted by at least one of alkoxy having up to 4 carbon atoms, halo, hydroxy, or nitro.
- the aryl or arylalkylenyl is unsubstituted or substituted by at least one of alkyl having up to 4 carbon atoms, alkoxy having up to 4 carbon atoms, halo, hydroxy, or nitro.
- the nitrogen-containing base is a substituted or unsubstituted pyridine, pyrazine, imidazole, pyrazole, tetrazole, triazole, oxazole, thiazole, pyrimidine, pyridazine, triazine, tetrazine, or pyrrole. Any of these may be substituted with halogen (e.g., iodo, bromo, chloro, fluoro), alkyl (e.g., having from 1 to 4, 1 to 3, or 1 to 2 carbon atoms), arylalkylenyl (e.g., benzyl), or aryl (phenyl).
- halogen e.g., iodo, bromo, chloro, fluoro
- alkyl e.g., having from 1 to 4, 1 to 3, or 1 to 2 carbon atoms
- arylalkylenyl e.g., benzyl
- the nitrogen-containing base is a substituted or unsubstituted imidazole or pyrazole.
- the imidazole or pyrazole may be substituted with halogen (e.g., iodo, bromo, chloro, fluoro), alkyl (e.g., having from 1 to 4, 1 to 3, or 1 to 2 carbon atoms), arylalkylenyl (e.g., benzyl), or aryl (phenyl).
- halogen e.g., iodo, bromo, chloro, fluoro
- alkyl e.g., having from 1 to 4, 1 to 3, or 1 to 2 carbon atoms
- arylalkylenyl e.g., benzyl
- aryl aryl
- useful nitrogen-containing rings include 1-benzylimidazole, 1,2-dimethylimidazole, 4-iodopyrazole, 1-methylbenzimidazole, 1-methylpyrazole, 3-methylpyrazole, 4-phenylimidazole, and pyrazole.
- the nitrogen-containing base and its amount may be selected to provide the curable sealant composition with a desirable amount of open time (that is, the length of time it takes for the composition to become at least partially gelled) after it is mixed or thawed.
- the composition has an open time of at least 10 minutes, at least 30 minutes, at least one hour, or at least two hours.
- the amount of the nitrogen-containing base and its conjugate acid pKa can both affect the open time.
- a composition with a smaller amount of a nitrogen-containing base having a higher pKa may have the same open time as a composition having a larger amount of a nitrogen-containing base having a lower pKa.
- the nitrogen-containing base is present in an amount in a range from 0.05 weight percent to about 10 weight percent (in some embodiments, 0.1 weight percent to 5 weight percent, or 0.5 weight percent to 5 weight percent). In some embodiments, for example, when the amount of inorganic filler present in the composition is at least 25% or at least 30% by weight, the nitrogen-containing base can be present in an amount in a range from 1 weight percent to about 5 weight percent or about 2 weight percent to about 5 weight percent.
- the curable sealant composition according to the present disclosure typically has an open time that can be useful for the production of very large structures, as is typical in the aircraft industry, and does not require heating above ambient conditions to cure.
- use of the composition as a sealant may avoid unpredictable performance that may be associated with overheating either the sealant material, the structure to be sealed, or both.
- the curable sealant compositions according to the present disclosure in any of their embodiments described above and below can be at least one of exposed to light for a sufficient time to at least partially cure the composition allowed to at least partially cure by the redox reaction of the organic hydroperoxide and the nitrogen-containing base.
- the method of making an at least partially crosslinked network according to the present disclosure includes providing a curable composition comprising a polythiol, at least one unsaturated compound comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof, a photoinitiator, and an organic hydroperoxide. The method further includes subsequently at least one of exposing the composition to light or allowing the composition to at least partially cure without exposure to light under ambient conditions.
- the method of making a polymer network includes exposing the composition disclosed herein in any of its embodiments to light.
- the light source and exposure time can be selected, for example, based on the nature and amount of the composition.
- Sources of ultraviolet and/or visible light can be useful (for example, wavelengths ranging from about 200 nm to about 650 nm, from about 315 nm to 550 nm, or from about 315 nm to 500 nm can be useful).
- Suitable light includes sunlight and light from artificial sources, including both point sources and flat radiators.
- the composition is curable using a blue light source.
- the composition is curable using a UV light source.
- Examples of useful light sources include carbon arc lamps; xenon arc lamps; medium-pressure, high-pressure, and low-pressure mercury lamps, doped if desired with metal halides (metal halogen lamps); microwave-stimulated metal vapor lamps; excimer lamps; superactinic fluorescent tubes; fluorescent lamps; incandescent argon lamps; electronic flashlights; xenon flashlights; photographic flood lamps; light-emitting diodes; laser light sources (for example, excimer lasers); and combinations thereof.
- the distance between the light source and the curable composition can vary widely, depending upon the particular application and the type and/or power of the light source. For example, distances up to about 150 cm, distances from about 0.01 cm to 150 cm, or a distance as close as possible without touching the composition can be useful.
- exposing the composition to light at least partially cures the composition.
- the phrase "at least partially cured or crosslinked” includes the state where the molecular weight of the polymer network has increased via the formation of covalent bonds but before the overall system reaches the gelation point.
- Partially crosslinked polymers may have a measurable intrinsic viscosity in an appropriate solvent, as determined, for example, in accordance with ASTM Methods D1243, D1795, D2857, D4243 or D4603. Fully cured or crosslinked polymers will have an intrinsic viscosity too high to measure.
- the phrase "at least partially cured” encompasses partially crosslinked or cured polymer networks, polymer networks that have reached the gelation point, and fully cured compositions.
- exposing the composition to light at least partially cures the composition.
- at least the surface of the composition is cured to an extent that the surface becomes non-tacky.
- a non-tacky surface may be one in which the surface no longer tightly adheres to L-LP-690 standard low density polyethylene film.
- Such a non-tacky surface may be achieved after exposure of the composition disclosed herein to a light source for up to 10 minutes, up to 5 minutes, up to 3 minutes, up to 2 minutes, or, in some cases, up to 1 minute, up to 30 seconds, up to 15 seconds, up to 5 seconds, or up to 1 second.
- the composition according to the present disclosure exhibits at least one of a non-tacky surface or a 30 Shore "A" hardness in less than 24 hours, in some embodiments, less than 12 hours or 10 hours under ambient conditions.
- the compositions according to the present disclosure can achieve a 45 to 50 Shore "A" hardness in up to 2 weeks, up to 1 week, up to 5 days, up to 3 days, or up to 1 day.
- compositions according to the present disclosure may be useful in these applications, for example, because of their fuel resistance and low glass transition temperatures.
- the polymer network according to the present disclosure has a low glass transition temperature, in some embodiments less than -20 °C, in some embodiments less than -30 °C, in some embodiments less than -40 °C, and in some embodiments less than -50 °C.
- the polymer network according to the present disclosure has high jet fuel resistance, characterized by a volume swell of less than 30% and a weight gain of less than 20% when measured according to Society of Automotive Engineers (SAE) International Standard AS5127/1.
- SAE Society of Automotive Engineers
- Crosslinked networks prepared with polythiols and compounds having two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof as described above in any of their embodiments are useful for a variety of applications.
- such crosslinked networks can be useful as sealants, for example, aviation fuel resistant sealants.
- Aviation fuel resistant sealants are widely used by the aircraft industry for many purposes.
- Commercial and military aircraft are typically built by connecting a number of structural members, such as longitudinal stringers and circular frames. The aircraft skin, whether metal or composite, is attached to the outside of the stringers using a variety of fasteners and adhesives. These structures often include gaps along the seams, joints between the rigidly interconnected components, and overlapping portions of the exterior aircraft skin.
- the composition according to the present disclosure can be useful, for example, for sealing such seams, joints, and overlapping portions of the aircraft skin.
- the composition may be applied, for example, to aircraft fasteners, windows, access panels, and fuselage protrusions.
- the composition disclosed herein may prevent the ingress of weather and may provide a smooth transition between the outer surfaces to achieve desired aerodynamic properties.
- the composition according to the present disclosure may likewise be applied to interior assembles to prevent corrosion, to contain the various fluids and fuels necessary to the operation of an aircraft, and to allow the interior of the aircraft (e.g., the passenger cabin) to maintain pressurization at higher altitudes.
- these uses are the sealing of integral fuel tanks and cavities.
- Aircraft exterior and interior surfaces, to which sealants may be applied may include metals such as titanium, stainless steel, and aluminum, any of which may be anodized, primed, organic-coated or chromate-coated.
- metals such as titanium, stainless steel, and aluminum, any of which may be anodized, primed, organic-coated or chromate-coated.
- a dilute solution of one or more phenolic resins, organo-functional silanes, titanates or zirconantes, and a surfactant or wetting agent dissolved in organic solvent or water may be applied to an exterior or interior surface and dried.
- Sealants may optionally be used in combination with a seal cap, for example, over rivets, bolts, or other types of fasteners.
- a seal cap may be made using a seal cap mold, filled with a curable sealant, and placed over a fastener. The curable sealant may then be cured.
- the seal cap and the curable sealant may be made from the same material.
- the seal cap may be made from a curable composition disclosed herein. For more details regarding seal caps, see, for example, Int. Pat. Appl. Pub. No. WO2014/172305 (Zook et al. ).
- compositions according to the present disclosure can also contain fillers, in some embodiments, inorganic fillers.
- inorganic fillers such as silica (e.g., fumed silica), calcium carbonate, aluminum silicate, and carbon black may be useful as well as low density fillers.
- the composition according to the present disclosure includes at least one of silica, hollow ceramic elements, hollow polymeric elements, calcium silicates, calcium carbonate, or carbon black. Calcium carbonate may be coated, for example, with a stearate coating.
- Silica for example, can be of any desired size, including particles having an average size above 1 micrometer, between 100 nanometers and 1 micrometer, and below 100 nanometers.
- Silica can include nanosilica and amorphous fumed silica, for example.
- Suitable low density fillers may have a specific gravity ranging from about 1.0 to about 2.2 and are exemplified by calcium silicates, fumed silica, precipitated silica, and polyethylene. Examples include calcium silicate having a specific gravity of from 2.1 to 2.2 and a particle size of from 3 to 4 microns ("HUBERSORB HS-600", J. M.
- Ceramic refers to glasses, crystalline ceramics, glass-ceramics, and combinations thereof. Hollow ceramic elements can include hollow spheres and spheroids among other shapes.
- the hollow ceramic elements and hollow polymeric elements may have one of a variety of useful sizes but typically have a maximum dimension of less than 1 millimeter (mm).
- the specific gravities of the microspheres range from about 0.1 to 0.7 and are exemplified by polystyrene foam, microspheres of polyacrylates and polyolefins, and silica microspheres having particle sizes ranging from 5 to 100 microns and a specific gravity of 0.25 ("ECCOSPHERES", W. R. Grace & Co.).
- Other examples include elastomeric particles available, for example, from Akzo Nobel, Amsterdam, The Netherlands, under the trade designation "EXPANCEL”.
- Yet other examples include alumina/silica microspheres having particle sizes in the range of 5 to 300 microns and a specific gravity of 0.7 (“FILLITE”, Pluess-Stauffer International), aluminum silicate microspheres having a specific gravity of from about 0.45 to about 0.7 (“Z-LIGHT”), and calcium carbonate-coated polyvinylidene copolymer microspheres having a specific gravity of 0.13 (“DUALITE 6001AE", Pierce & Stevens Corp.).
- FILLITE Pluess-Stauffer International
- Z-LIGHT aluminum silicate microspheres having a specific gravity of from about 0.45 to about 0.7
- Z-LIGHT calcium carbonate-coated polyvinylidene copolymer microspheres having a specific gravity of 0.13
- DUALITE 6001AE Pierce & Stevens Corp.
- glass bubbles marketed by 3M Company, Saint Paul, Minnesota as "3M GLASS BUBBLES” in grades K1, K15, K20, K25, K37, K46, S15, S22, S32, S35, S38, S38HS, S38XHS, S42HS, S42XHS, S60, S60HS, iM30K, iM16K, XLD3000, XLD6000, and G-65, and any of the HGS series of "3M GLASS BUBBLES”; glass bubbles marketed by Potters Industries, Carlstadt, N.J., under the trade designations "Q-CEL HOLLOW SPHERES” (e.g., grades 30, 6014, 6019, 6028, 6036, 6042, 6048, 5019, 5023, and 5028); and hollow glass particles marketed by Silbrico Corp., Hodgkins, IL under the trade designation "SIL-CELL” (e.g.,
- compositions according to the present disclosure can also contain at least one of cure accelerators, surfactants, adhesion promoters, thixotropic agents, pigments, dyes, and solvents.
- the composition according to the present disclosure can include any suitable solvent or solvents capable of dissolving the components.
- the components may be present in the solvent at any suitable concentration, (e.g., from about 5 percent to about 90 percent by weight based on the total weight of the solution).
- suitable solvents include aliphatic and alicyclic hydrocarbons (e.g., hexane, heptane, and cyclohexane), aromatic solvents (e.g., benzene, toluene, and xylene), ethers (e.g., diethyl ether, glyme, diglyme, and diisopropyl ether), esters (e.g., ethyl acetate and butyl acetate), alcohols (e.g., ethanol and isopropyl alcohol), ketones (e.g., acetone, methyl ethyl ketone, and methyl isobutyl ketone), sulfoxides (e.g., dimethyl sulfoxide), amides (e.g., N,N-dimethylformamide and N,N-dimethylacetamide), halogenated solvents (e.g., methylchloroform,
- aromatic solvents
- Pigments and dyes can be added to the composition in any suitable form, such as discrete particles, dispersions, solutions, flakes, and combinations thereof.
- a single colorant (including pigments and dyes) or a mixture of two or more colorants can be used in the coatings of the present invention.
- Example pigments include carbazole dioxazine crude pigment, azo, monoazo, diazo, naphthol AS, salt type (flakes), benzimidazolone, isoindolinone, isoindoline and polycyclic phthalocyanine, quinacridone, perylene, perinone, diketopyrrolo pyrrole, thioindigo, anthraquinone, indanthrone, anthrapyrimidine, flavanthrone, pyranthrone, anthanthrone, dioxazine, triarylcarbonium, quinophthalone pigments, diketo pyrrolo pyrrole red (“DPPBO red”), iron(III) hexacyanoferrate(II) (Prussian Blue), titanium dioxide, carbon black and mixtures thereof.
- Example dyes include those that are solvent and/or aqueous based such as phthalo green or blue, iron oxide, bismuth vanadate, anthraquinon
- composition according to the present disclosure does not include a dye represented by formula wherein
- composition according to the present disclosure does not include a dye compound represented by formula: wherein
- compositions according to the present disclosure can be useful as one-part or two-part sealants that can simultaneously have a long application time but can be cured on demand.
- the combination of an organic hydroperoxide and a nitrogen-containing base allows for a more desirable cure speed and more desirable final properties in the polymer network than when an organic peroxide is used.
- Comparative Example B which uses benzoyl peroxide, only has 30 minutes of open time while Examples 3 and 6, which use hydroperoxides and a 1-benzylimidazole, have an open time of 120 minutes.
- the present disclosure provides a curable sealant composition comprising:
- the present disclosure provides the curable sealant composition of the first embodiment, further comprising a nitrogen-containing base.
- the present disclosure provides the curable sealant composition of the second embodiments, wherein the nitrogen-containing base is a tertiary amine.
- the present disclosure provides the curable sealant composition of the second or third embodiment, wherein the nitrogen-containing base comprises a substituted or unsubstituted nitrogen-containing cyclic compound.
- the present disclosure provides a curable sealant composition comprising:
- the present disclosure provides the curable sealant composition of the fourth or fifth embodiments, wherein the nitrogen-containing cyclic compound is a pyridine, pyrazine, imidazole, pyrazole, tetrazole, triazole, oxazole, thiazole, pyrimidine, pyridazine, triazine, tetrazine, or pyrrole.
- the nitrogen-containing cyclic compound is a pyridine, pyrazine, imidazole, pyrazole, tetrazole, triazole, oxazole, thiazole, pyrimidine, pyridazine, triazine, tetrazine, or pyrrole.
- the present disclosure provides the curable sealant composition of the sixth embodiment, wherein the nitrogen-containing cyclic compound is an imidazole or pyrazole.
- the present disclosure provides the composition of any one of the fourth to seventh embodiments, wherein the nitrogen-containing cyclic compound is unsubstituted or substituted with at least one halogen, alkyl, arylalkylenyl, or aryl.
- the present disclosure provides the curable sealant composition of any one of the first to eighth embodiments, wherein the organic hydroperoxide comprises at least one of cumene hydroperoxide, tert -butyl hydroperoxide, or tert -amyl hydroperoxide.
- the present disclosure provides the curable sealant composition of any one of the first to ninth embodiments, wherein the organic hydroperoxide is reduced to generate free-radicals.
- the present disclosure provides the curable sealant composition of any one of the first to tenth embodiments, wherein the photoinitiator is a cleavage-type photoinitiator.
- the present disclosure provides the curable sealant composition of the eleventh embodiment, wherein the photoinitiator comprises at least one of a benzoin ether, a substituted acetophenone, 1-hydroxycyclohexyl phenyl ketone, a substituted acylphosphine oxide, or a substituted acylphosphonate.
- the photoinitiator comprises at least one of a benzoin ether, a substituted acetophenone, 1-hydroxycyclohexyl phenyl ketone, a substituted acylphosphine oxide, or a substituted acylphosphonate.
- the present disclosure provides the curable sealant composition of any one of the first to twelfth embodiments, wherein the polythiol is monomeric.
- the present disclosure provides the curable sealant composition of any one of the first to twelfth embodiments, wherein the polythiol is oligomeric or polymeric.
- the present disclosure provides the curable sealant composition of the fourteenth embodiment, wherein the polythiol is a polythioether oligomer or polymer or a polysulfide oligomer or polymer.
- the present disclosure provides the curable sealant composition of the fourteenth embodiment, wherein the polythiol is a polythioether oligomer or polymer prepared from components comprising a dithiol and a diene or divinyl ether and optionally a trithiol, triene, or trivinyl ether.
- the polythiol is a polythioether oligomer or polymer prepared from components comprising a dithiol and a diene or divinyl ether and optionally a trithiol, triene, or trivinyl ether.
- the present disclosure provides the curable sealant composition of any one of the first to sixteenth embodiments, wherein the at least one unsaturated compound comprises two carbon-carbon double bonds, and wherein the curable composition further comprises a second unsaturated compound comprising three carbon-carbon double bonds.
- the present disclosure provides the curable sealant composition of any one of the first to the seventeenth embodiments, wherein the at least one unsaturated compound comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof comprises at least one of a diene, a diyne, a divinyl ether, a diallyl ether, or an ene-yne.
- the present disclosure provides the curable sealant composition of any one of the first to sixteenth embodiments, wherein the unsaturated compound comprises three carbon-carbon double bonds.
- the present disclosure provides the curable sealant composition of any one of the first to nineteenth embodiments, further comprising inorganic filler.
- the present disclosure provides the curable sealant composition of the twentieth embodiment, wherein the inorganic filler comprises at least one of silica, carbon black, calcium carbonate, aluminum silicate, or lightweight particles having a density of up to 0.7 grams per cubic centimeter.
- the present disclosure provides the curable sealant composition of any one of the first to nineteenth embodiments, further comprising at least one of a surfactant, adhesion promoter, thixotropic agent, pigment, dye, or solvent.
- the present disclosure provides a method of making a cured sealant, the method comprising:
- the present disclosure provides the method of the twenty-third embodiment, wherein the light comprises at least one of ultraviolet light or blue light.
- the present disclosure provides the method of the twenty-fourth embodiment, wherein the light comprises blue light.
- the present disclosure provides the method of any one of the twenty-third to twenty-fifth embodiments, wherein exposing the composition to light to at least partially cure the curable sealant composition comprises at least partially gelling the composition.
- the present disclosure provides the method of any one of the twenty-third to twenty-fifth embodiments, wherein exposing the curable sealant composition to light to at least partially cure the curable sealant composition comprises fully curing the curable sealant composition.
- the present disclosure provides a cured sealant prepared from the curable sealant composition of any one of the first to twenty-second embodiments, wherein at least some of the thiol groups in the polythiol and carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof have reacted to form thioether groups.
- the present disclosure provides a sealant comprising the cured sealant of the twenty-eighth embodiment.
- the present disclosure provides the sealant of the twenty-ninth embodiment, wherein the sealant is cured.
- hydroperoxide in the Tables refers to hydroperoxide or peroxide.
- DVE-3 25.23 grams (0.125 mole) DVE-3 was then added drop-wise to the flask over a period of 45 - 60 minutes whilst maintaining the temperature at approximately 70°C.
- VAZO 52 was added in approximately 0.01 gram units over approximately 16 hrs, for a total of about 0.4 grams. The temperature was raised to 100°C and the material degassed for approximately 10 minutes. The resultant polythioether was approximately 5062 Mn with 2.25 functionality.
- DVE-3 31.80 grams (0.157 moles) DVE-3 was then added drop-wise to the flask over a period of 45 - 60 minutes, whilst maintaining the temperature at approximately 70°C.
- VAZO 52 was added in approximately 0.01 gram units over approximately 16 hours, for a total of about 0.4 grams. The temperature was raised to 100°C and the material degassed for approximately 10 minutes. The resultant polythioether was approximately 3200 Mn with 2.2 functionality.
- Hardness was measured using a model "DD-A” durometer, obtained from PCE America, Inc., Jupiter, Florida. Minimum sample thickness was 0.6 cm.
- Open time refers to the approximate amount of time the sealant composition exhibits sufficient flow in order to completely wet out a surface when manually spread with a spatula at 21°C.
- the sealant composition was held in the sample cup for 48 hours at 21°C, after which the hardness was measured.
- the sample should have a Shore A value of greater than 30.
- the sealant composition was spread onto a mixing pad, irradiated using the Elipar S-10 lamp at a distance of approximately 1 cm for the specified amount of time, after which the hardness was measured.
- the sample should have a Shore A value of greater than 30.
- the sealant composition was spread into two 8.8 by 3.1 by 0.25 cm TeflonTM molds at 21°C.
- the first sample was allowed to cure in the dark for one week.
- the second sample was exposed to the 455 nm, CT-2000 lamp, at 50% power at a distance of approximately 1.5 cm for 1 minute, after which it was also allowed to cure in the dark for one week.
- the cured samples were then removed from the molds and 6.2 by 1.0 cm by 0.3 cm neck, dog-bone shaped specimens were die-cut from the cured sample.
- Peak tensile strength and elongation were measured at a pull rate of 1-inch (2.54 cm)/min and a 400N load cell, using a model "INSTRON 5544" Tensile Strength Tester obtained from Instron Instruments, Norwood, Massachusetts. Results reported herein represent an average of 3 cured samples per test.
- Example 2 The procedure generally described for preparing Example 1 was repeated, according to the compositions listed in Table 1. Open Times and Redox Cure results are listed in Table 2.
- a photoinitiator can be added to the compositions to make Examples 1 to 12.
- Example 1 CHP DMI 2.83 0.05 0.12 0.029
- Example 2 CHP Pyrazole 2.83 0.05 0.12 0.020
- Example 3 CHP 1-BI 2.83 0.05 0.12 0.047
- Example 4 TBHP DMI 2.85 0.03 0.12 0.029
- Example 5 TBHP Pyrazole 2.85 0.03 0.12 0.020
- Example 7 MEKP DMI 2.82 0.06 0.12 0.029
- Example 8 MEKP Pyrazole 2.82 0.06 0.12 0.020
- Example 9 MEKP 1-BI 2.82 0.06 0.12 0.047
- Example 10 CHP DMA 2.83 0.06 0.12 0.056
- Example 11 CHP DMA 2.
- Example 1 The procedure generally described for preparing Example 1 was repeated, according to the compositions listed in Table 3. Open Times and Redox Cure results are listed in Table 4.
- a photoinitiator can be added to the compositions to make Examples 13 to 18.
- Example 13 CHP 1-BI 2.84 0.04 0.12 0.047
- Example 14 CHP 1-BI 2.84 0.04 0.12 0.024
- Example 15 CHP 1-BI 2.84 0.04 0.12 0.013
- Example 14 100 Yes
- Example 1 The procedure generally described for preparing Example 1 was repeated, according to the compositions listed in Table 5, wherein, after the base was homogeneously dispersed, 0.90 grams SOCAL filler was added and the mixture again manually stirred for 1 minute. Open Times and Redox Cure results are listed in Table 6.
- a photoinitiator can be added to the compositions to make Examples 19 to 24.
- TABLE 5 Composition Composition Hydroperoxide Base Quantities (grams) PTE-1 Hydroperoxide DVE-3/TAC Base SOCAL
- Example 19 CHP Pyrazole 2.84 0.04 0.12 0.020 0.90
- Example 20 CHP 3-MP 2.84 0.04 0.12 0.025 0.90
- Example 21 CHP 1-MP 2.84 0.04 0.12 0.025 0.90
- Example 22 TBHP Pyrazole 2.85 0.03 0.12 0.020 0.90
- TABLE 6 Composition Open time (min) Redox Cure Shore A >30 @ 48 hrs.
- Example 19 >300 No Example 20 90 Yes
- Example 21 >240 No Example 22 120 Yes
- Example 23 90 Yes
- Example 19 The procedure generally described for preparing Example 19 was repeated, according to the compositions listed in Table 7. Open Times and Redox Cure results are listed in Table 8.
- a photoinitiator can be added to the compositions to make Examples 25 to 37.
- TABLE 7 Composition Composition (Hydro) peroxide Base Quantities (grams) PTE-1 (Hydro) peroxide DVE-3/TAC Base SOCAL
- Example 25 TBHP Pyrazole 3.14 0.03 0.13 0.019 0.90
- Example 26 TBHP 1-BMI 3.14 0.03 0.13 0.048 0.90
- Example 27 TBHP 4-PI 3.14 0.03 0.13 0.040 0.90
- Example 28 TBHP 1-MB 3.14 0.03 0.13 0.037 0.90
- Example 29 TBHP DMI 3.14 0.03 0.13 0.027 0.90
- Example 30 TBHP 3-MP 3.14 0.03 0.13 0.020 0.90
- Example 31 TBHP 4-IP 3.14 0.03 0.13 0.054 0.90
- Example 32 CHP DMA 3.14 0.05 0.13 0.048 1.57
- Example 33 CHP DMA 3.14 0.14 0.13 0.048 1.57
- Example 34 C
- Example 25 120 Yes Example 26 80 Yes Example 27 75 Yes Example 28 90 Yes Example 29 70 Yes Example 30 80 Yes Example 31 130 Yes Example 32 >300 No Example 33 >300 No Example 34 240 Yes Example 35 >300 No Example 36 >300 No Example 37 120 Yes Comparative D 60 No Comparative E >300 No Comparative F >300 No Comparative G >300 No Comparative H 180 No
- Example 25 The procedure generally described for preparing Example 25 was repeated, wherein the hydroperoxide TBHP was substituted with Irgacure 819, according to the compositions listed in Table 9. Each Example was evenly split into three samples and held for 1 hour, 4 hours and 48 hours in the dark at 21°C, after which each sample was irradiated for 10 seconds at 450 nm, at a distance of approximately 1 cm, by means of the Elipar S-10 lamp. In all instances, all samples were fully cured.
- a hydroperoxide can be added to the compositions to make Examples 38 to 44.
- TABLE 9 Composition Composition Initiator Base Quantities (grams) PTE-1 1-819 DVE-3/TAC Base SOCAL
- Example 38 1-819 Imidazole 2.82 0.03 0.12 0.020 0.90
- Example 39 1-819 1-BI 2.82 0.03 0.12 0.047 0.90
- Example 40 1-819 DMI 2.82 0.03 0.12 0.029 0.90
- Example 41 1-819 Pyrazole 2.82 0.03 0.12 0.020 0.90
- Example 42 1-819 3-MP 2.82 0.03 0.12 0.025 0.90
- Example 43 1-819 1-MP 2.82 0.03 0.12 0.025 0.90
- Example 44 1-819 None 2.82 0.03 0.12 0 0.90
- Part A and Part B sealant compositions were prepared as follows.
- TAC, DVE-3, CHP, A-R202 and FEB were added to a mixing cup and homogeneously dispersed at 2000 rpm for 1 minute at 21°C using the planetary vacuum mixer.
- Example 38 The procedure generally described in Example 38 was repeated, wherein the base was substituted with hydroperoxide according to the compositions listed in Table 11. Redox Cure and Photo Cure results are listed in Table 12. TABLE 11 Composition Composition Initiator Hydroperoxide Quantities (grams) PTE-1 1-819 DVE-3/TAC Peroxide SOCAL Example 48 1-819 TBHP 3.30 0.065 0.14 0.020 0.90 Example 49 1-819 TBHP 3.30 0.065 0.14 0.046 0.90 Example 50 1-819 TBHP 3.30 0.065 0.14 0.092 0.90 Example 51 1-819 CHP 3.30 0.065 0.14 0.033 0.90 Example 52 1-819 CHP 3.30 0.065 0.14 0.079 0.90 Example 53 1-819 CHP 3.30 0.065 0.14 0.159 0.90 TABLE 12 Composition Open Time (min) Redox Cure Photo Cure Shore A >30 @ 48 hrs. Shore A >30 @ 10 sec. Example 48 100 Yes Yes Example 49 80 Yes Yes Example 50 60 Yes Yes Example 51 >180
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Sealing Material Composition (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Claims (15)
- Composition de mastic durcissable comprenant :un polythiol ;au moins un composé insaturé comprenant plus d'une double liaison carbone-carbone, triple liaison carbone-carbone, ou combinaison de celles-ci ;un photoinitiateur ; etun hydroperoxyde organique autre que le peroxyde de méthyl-éthyl-cétone.
- Composition de mastic durcissable selon la revendication 1, comprenant en outre une base contenant de l'azote.
- Composition de mastic durcissable comprenant :un polythiol ;au moins un composé insaturé comprenant plus d'une double liaison carbone-carbone, triple liaison carbone-carbone, ou combinaison de celles-ci ;un photoinitiateur ;un hydroperoxyde organique ; etun composé cyclique contenant de l'azote, substitué ou non substitué.
- Composition de mastic durcissable selon la revendication 2 ou 3, dans laquelle le composé cyclique contenant de l'azote est une pyridine, une pyrazine, un imidazole, un pyrazole, un tétrazole, un triazole, un oxazole, un thiazole, une pyrimidine, une pyridazine, une triazine, une tétrazine, ou un pyrrole.
- Composition de mastic durcissable selon l'une quelconque des revendications 2 à 4, dans laquelle le composé cyclique contenant de l'azote est un imidazole ou pyrazole.
- Composition de mastic durcissable selon l'une quelconque des revendications 2 à 5, dans laquelle le composé cyclique contenant de l'azote est non substitué ou substitué par au moins un halogène, alkyle, arylalkylényle, ou aryle.
- Composition de mastic durcissable selon l'une quelconque des revendications 1 à 6, dans laquelle l'hydroperoxyde organique comprend au moins l'un parmi hydroperoxyde de cumène, hydroperoxyde de tert-butyle, ou hydroperoxyde de tert-amyle.
- Composition de mastic durcissable selon l'une quelconque des revendications 1 à 7, dans laquelle le photoinitiateur est un photoinitiateur de type à clivage.
- Composition de mastic durcissable selon l'une quelconque des revendications 1 à 8, dans laquelle le polythiol est monomère.
- Composition de mastic durcissable selon l'une quelconque des revendications 1 à 8, dans laquelle le polythiol est oligomère ou polymère.
- Composition de mastic durcissable selon la revendication 10, dans laquelle le polythiol est un oligomère ou polymère de polythioéther ou un oligomère ou polymère de polysulfure.
- Composition de mastic durcissable selon l'une quelconque des revendications 1 à 11, dans laquelle l'au moins un composé insaturé comprend deux doubles liaisons carbone-carbone, et dans laquelle la composition durcissable comprend en outre un deuxième composé insaturé comprenant trois doubles liaisons carbone-carbone.
- Procédé de fabrication d'un mastic durci, le procédé comprenant :la fourniture de la composition de mastic durcissable de l'une quelconque des revendications 1 à 12 ;et au moins l'un parmi :l'exposition de la composition de mastic durcissable à de la lumière pour durcir au moins partiellement la composition de mastic durcissable ; oule fait de laisser la composition de mastic durcissable durcir au moins partiellement à la température ambiante.
- Mastic durci préparé à partir de la composition de mastic durcissable de l'une quelconque des revendications 1 à 12, dans lequel au moins certains des groupes thiol dans le polythiol et des doubles liaisons carbone-carbone, triples liaisons carbone-carbone, ou combinaison de celles-ci ont réagi pour former des groupes thioéther.
- Utilisation d'un mastic durci préparé selon la revendication 14 pour étanchéifier une partie d'un aéronef.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662357128P | 2016-06-30 | 2016-06-30 | |
PCT/US2017/039383 WO2018005416A1 (fr) | 2016-06-30 | 2017-06-27 | Composition de thiol-ène à double durcissement, comprenant un polythiol, un composé insaturé, un photoinitiateur et un hydroperoxyde organique, ainsi qu'un agent d'étanchéité polymère réticulé préparé à partir de cette dernière destiné à être utilisé dans le domaine aérospatial |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3478748A1 EP3478748A1 (fr) | 2019-05-08 |
EP3478748B1 true EP3478748B1 (fr) | 2021-08-25 |
Family
ID=59297410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17737153.1A Active EP3478748B1 (fr) | 2016-06-30 | 2017-06-27 | Composition thiol-ene curable dual comprenant un polythiol, un composé insaturé, un photoinitiateur et un hydroperoxide organique, ainsi q'un produit d'étanchéité a base d'un polymer réticulé préparé a partir de cette composition pour usage aérospatiale |
Country Status (6)
Country | Link |
---|---|
US (1) | US11041049B2 (fr) |
EP (1) | EP3478748B1 (fr) |
JP (1) | JP2019521223A (fr) |
CN (1) | CN109451742A (fr) |
CA (1) | CA3029558A1 (fr) |
WO (1) | WO2018005416A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3535341A1 (fr) * | 2016-11-03 | 2019-09-11 | 3M Innovative Properties Company | Compositions d'étanchéité de type polythiol |
US10507267B2 (en) | 2017-04-25 | 2019-12-17 | International Business Machines Corporation | Highly hydrophobic antifouling coatings for implantable medical devices |
US10696849B2 (en) * | 2017-08-08 | 2020-06-30 | International Business Machines Corporation | Tailorable surface topology for antifouling coatings |
US10745586B2 (en) | 2017-08-08 | 2020-08-18 | International Business Machines Corporation | Fluorinated networks for anti-fouling surfaces |
US20210122952A1 (en) * | 2018-02-12 | 2021-04-29 | 3M Innovative Properties Company | Curable compositions, articles therefrom, and methods of making and using same |
US12116500B2 (en) | 2018-07-16 | 2024-10-15 | Wisconsin Alumni Research Foundation | Thermal barrier coatings containing aluminosilicate particles |
WO2020095153A1 (fr) * | 2018-11-09 | 2020-05-14 | 3M Innovative Properties Company | Compositions de produits de scellement durcissables, capuchon de scellement et leurs procédés de préparation et d'utilisation |
US11142596B2 (en) * | 2019-03-11 | 2021-10-12 | The University Of Akron | High molecular weight polyisobutylenes and polyisobutylene networks from liquid polyisobutylenes by thiol-ene clicking |
US11015057B2 (en) | 2019-04-03 | 2021-05-25 | Prc-Desoto International, Inc. | Dual-cure compositions |
US20220258848A1 (en) | 2019-07-25 | 2022-08-18 | 3M Innovative Properties Company | Methods of shimming an assembly |
WO2021094887A1 (fr) * | 2019-11-15 | 2021-05-20 | 3M Innovative Properties Company | Compositions durcissables et procédés pour les produire et les utiliser |
JP7356338B2 (ja) * | 2019-12-24 | 2023-10-04 | クラレノリタケデンタル株式会社 | 歯科用硬化性組成物 |
JPWO2022153397A1 (fr) * | 2021-01-13 | 2022-07-21 | ||
CN118345555B (zh) * | 2024-06-18 | 2024-08-27 | 烟台奥森制动材料有限公司 | 短纤维固态保温毡干法成型工艺 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2466963A (en) | 1945-06-16 | 1949-04-12 | Thiokol Corp | Polysulfide polymer |
US2789958A (en) | 1951-10-30 | 1957-04-23 | Thiokol Chemical Corp | Resinous reaction products of polyepoxides and polysulfide polymers and methods of making the same |
US3923748A (en) | 1973-11-12 | 1975-12-02 | Prod Res & Chem Corp | Mercaptan terminated polymers and method therefor |
US4165425A (en) | 1978-06-08 | 1979-08-21 | Thiokol Corporation | Alkyl tin oxide cured polysulfide rubbers in hot melt applications |
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
US4609762A (en) | 1984-01-30 | 1986-09-02 | Products Research & Chemical Corp. | Thioethers having a high sulfur content and method therefor |
AU8155887A (en) | 1986-10-14 | 1988-05-06 | Loctite Corporation | Visible light curable free radical compositions containing pi-arene metal complexes |
US4808638A (en) * | 1986-10-14 | 1989-02-28 | Loctite Corporation | Thiolene compositions on based bicyclic 'ene compounds |
US5225472A (en) | 1992-05-19 | 1993-07-06 | Courtaulds Aerospace, Inc. | Low viscosity polythiol and method therefor |
US5610243A (en) | 1993-12-20 | 1997-03-11 | Morton International, Inc. | Polysulfide-epoxy thermoplastic elastomers |
US6509418B1 (en) | 1997-02-19 | 2003-01-21 | Prc-Desoto International, Inc. | Sealants and potting formulations including mercapto-terminated polymers produced by the reaction of a polythiol and polyvinyl ether monomer |
US5912319A (en) | 1997-02-19 | 1999-06-15 | Courtaulds Aerospace, Inc. | Compositions and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility |
US5959071A (en) | 1998-03-31 | 1999-09-28 | Courtaulds Aerospace, Inc. | Composition and method for producing polythioethers having pendent methyl chains |
JP5191088B2 (ja) * | 2005-06-24 | 2013-04-24 | 電気化学工業株式会社 | 樹脂組成物と接着剤 |
WO2013090988A1 (fr) | 2011-12-22 | 2013-06-27 | Commonwealth Scientific And Industrial Research Organisation | Produits d'étanchéité photodurcissables sur demande |
CN104812806A (zh) * | 2012-04-02 | 2015-07-29 | 3M创新有限公司 | 聚硫醚密封剂 |
EP2970592A1 (fr) | 2013-03-13 | 2016-01-20 | 3M Innovative Properties Company | Produits d'étanchéité polythioéthers |
CA2905328A1 (fr) * | 2013-03-13 | 2014-10-09 | 3M Innovative Properties Company | Polythioethers durcissables par rayonnement a liaison a base d'alcyne |
CN107477182A (zh) | 2013-04-15 | 2017-12-15 | 3M创新有限公司 | 轻质密封顶盖 |
EP3090006B1 (fr) * | 2013-12-30 | 2017-10-04 | 3M Innovative Properties Company | Compositions comprenant un polythiol, un composé insaturé, et un colorant et procédés associés auxdites compositions |
BR112017013742A2 (pt) * | 2014-12-23 | 2018-03-13 | 3M Innovative Properties Co | politioéter de cura dupla |
-
2017
- 2017-06-27 CA CA3029558A patent/CA3029558A1/fr not_active Abandoned
- 2017-06-27 JP JP2018568359A patent/JP2019521223A/ja not_active Withdrawn
- 2017-06-27 CN CN201780041183.3A patent/CN109451742A/zh active Pending
- 2017-06-27 EP EP17737153.1A patent/EP3478748B1/fr active Active
- 2017-06-27 US US16/308,697 patent/US11041049B2/en active Active
- 2017-06-27 WO PCT/US2017/039383 patent/WO2018005416A1/fr unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2019521223A (ja) | 2019-07-25 |
CN109451742A (zh) | 2019-03-08 |
EP3478748A1 (fr) | 2019-05-08 |
US20190144610A1 (en) | 2019-05-16 |
US11041049B2 (en) | 2021-06-22 |
WO2018005416A1 (fr) | 2018-01-04 |
CA3029558A1 (fr) | 2018-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3478748B1 (fr) | Composition thiol-ene curable dual comprenant un polythiol, un composé insaturé, un photoinitiateur et un hydroperoxide organique, ainsi q'un produit d'étanchéité a base d'un polymer réticulé préparé a partir de cette composition pour usage aérospatiale | |
US10526440B2 (en) | Method of making a polymer network from a polythiol and a polyepoxide | |
CA3042678A1 (fr) | Procede d'application d'un agent d'etancheite a un composant d'aeronef | |
EP3313909B1 (fr) | Compositions comprenant un polythiol, un composé insaturé et un colorant et procédés associés à ces compositions | |
JP2020535257A (ja) | 硬化性シーラント組成物、シールキャップ、並びにその作製方法及び使用 | |
JP2017508029A (ja) | ポリチオール、不飽和化合物、及び染料を含む組成物、並びにその組成物に関する方法 | |
US11198757B2 (en) | Compositions including a photolatent amine, camphorquinone, and coumarin and related methods | |
US20210388245A1 (en) | Curable sealant compositions, seal cap, and methods of making and using the same | |
WO2020202076A1 (fr) | Procédé d'irradiation d'une composition à travers un substrat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191209 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017044714 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08G0075045000 Ipc: C07D0277820000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09K 3/10 20060101ALI20210203BHEP Ipc: C09J 11/06 20060101ALI20210203BHEP Ipc: G01N 33/44 20060101ALI20210203BHEP Ipc: C08G 75/045 20160101ALI20210203BHEP Ipc: C08K 5/47 20060101ALI20210203BHEP Ipc: C07D 277/82 20060101AFI20210203BHEP Ipc: B64D 45/02 20060101ALI20210203BHEP Ipc: C08G 75/12 20160101ALI20210203BHEP Ipc: B64C 1/12 20060101ALI20210203BHEP Ipc: C08L 81/02 20060101ALI20210203BHEP Ipc: C08G 75/32 20060101ALI20210203BHEP Ipc: C09J 181/02 20060101ALI20210203BHEP Ipc: B64C 3/34 20060101ALI20210203BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210319 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 1423666 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017044714 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1423666 Country of ref document: AT Kind code of ref document: T Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211227 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017044714 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
26N | No opposition filed |
Effective date: 20220527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220627 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220627 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220627 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |