EP3472441B1 - Partikelfilter für eine verbrennungskraftmaschine - Google Patents
Partikelfilter für eine verbrennungskraftmaschine Download PDFInfo
- Publication number
- EP3472441B1 EP3472441B1 EP17729016.0A EP17729016A EP3472441B1 EP 3472441 B1 EP3472441 B1 EP 3472441B1 EP 17729016 A EP17729016 A EP 17729016A EP 3472441 B1 EP3472441 B1 EP 3472441B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- duct
- particle filter
- heating element
- flow
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 125
- 238000002485 combustion reaction Methods 0.000 title claims description 54
- 238000010438 heat treatment Methods 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 29
- 239000004071 soot Substances 0.000 claims description 22
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000004048 modification Effects 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 229910052703 rhodium Inorganic materials 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 15
- 230000008859 change Effects 0.000 description 13
- 239000000446 fuel Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0864—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/11—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
Definitions
- the invention relates to a particle filter for an internal combustion engine according to the preamble of patent claim 1.
- Particle filters for internal combustion engines in particular for compression-ignition internal combustion engines, are known.
- the particle filter is distinguished in particular by the fact that several channels are arranged next to one another, in particular parallel to one another, the channels being alternately closed.
- the exhaust gas flowing in via a filter inlet flows through the particle filter in its extension direction in that it passes from a channel opened at the filter inlet into a channel opened at the filter outlet via a porous wall arranged between these two channels. Solid particles of the exhaust gas are deposited in and / or on the wall.
- these particles reduce a free flow cross-section of the particle filter and because the potential for excessive temperature increases in the particle filter as a result of exothermic soot burn-off increases with increasing load, these particles must be removed from the particle filter by a so-called regeneration, in other words by converting the soot particles.
- EP 1 250 952 A1 shows a particle filter for an internal combustion engine designed as a diesel engine, which has a coating for soot oxidation, the reaction temperature of which is below 500 ° C. This is done with the help of preferred materials of the particle filter, in the form of Alkaline earth metal compounds, an oxygen-storing substance and platinum, palladium or rhodium achieved.
- the patent specification US 7,691,339 B2 discloses a particle filter for an internal combustion engine which uses microwave energy to reduce the soot particles accumulating in the particle filter.
- a microwave generator is provided, which heats up the microwave-absorbing material received in the soot filter.
- a particle filter with a functional material coating can be removed.
- the channels of the particle filter through which flow is to be carried out are coated on their wall surfaces with the functional material, the functional material transitioning from a first modification to a second modification in an exothermic reaction and leading to an increase in the temperature in the particle filter.
- the disclosure document DE 101 35 341 A1 discloses a particulate filter coated with a noble metal catalyst and with an oxygen occluding and releasing agent. By changing the oxygen content in the exhaust gas flowing through the particle filter, the temperature of the particle filter can be influenced.
- the disclosure document EP 1 857 947 A1 a method for increasing the temperature of exhaust gas cleaning systems, in particular a particle filter and a nitrogen oxide trap, can be found.
- the particle filter is provided with an oxygen-storing layer; a variation in the oxygen content of the exhaust gas flowing through the filter leads to an exothermic reaction and thus to an increase in the temperature of the filter.
- the object of the present invention is to provide an improved particle filter for an internal combustion engine.
- a particle filter according to the invention for an internal combustion engine has a filter body, the filter body having a filter inlet through which a flow can flow and a filter outlet which can flow through it.
- the filter body comprises at least one through-flowable first channel, with a first end formed facing the filter inlet and a second end formed facing the filter outlet, and a through-flow second channel, with one facing the filter inlet formed third end and a trained fourth end facing the filter outlet.
- the second end and the third end are impermeable or difficult to flow in a certain way, whereby the channels can be divided into a flow-through channel section and a non-flow-through or in a certain way difficult-to-flow channel section.
- first channels with a blocked or hindered flow inlet at the filter inlet and second channels with a blocked or hindered flow outlet at the filter outlet are formed.
- a flow of exhaust gas flowing through the particle filter, starting from the first channel into the second channel, takes place via a common channel wall formed between the first channel and the second channel.
- the channel wall is designed to be separable soot particles from the exhaust gas.
- an impermeable channel section is not necessarily to be understood as a completely sealed channel section closed against any permeability, but rather a channel section that is in a certain way difficult to flow through - z.
- a so-called diffusion-open channel section in particular oxygen molecules can penetrate this difficult-to-flow channel section.
- the first channel and / or the second channel has a heating element, the heating element being arranged in the channel section of the channel through which there is no flow.
- the arrangement of the heating element in the non-flowable channel section has several advantages. For example, a flow through the particle filter is not impaired due to the heating element, which has a flow resistance. Another advantage is to be seen in the use of the unused areas of the particle filter with regard to the flow: an increase in the reaction temperature for burning off the soot particles can be achieved while maintaining the original Size of the particle filter. In other words, that means that an intended installation space for the particle filter is retained and no constructive change measures need to be taken with regard to the installation space. If, for example, the channels of the particle filter are coated, this can have the consequence that, compared to uncoated channels, a channel cross section of the channel is reduced due to the coating. However, so that through-flow conditions of the particle filter having the coating corresponding to the uncoated particle filter can be achieved, the channel cross section of the particle filter must be enlarged, whereby the required installation space of the particle filter having the coating is also increased.
- the heating element is formed from a functional material which reacts exothermically when oxygen is stored.
- this means that the heating element is designed to be quasi self-igniting.
- an auxiliary means in the form of an ignition device such as, for example, the microwave generator. It is only necessary to adapt the operation of the internal combustion engine so that the exothermic reaction of the functional material is initiated based on a corresponding temperature of the exhaust gas and / or a corresponding composition of the exhaust gas.
- the heating element is arranged in a cross section of the first channel and / or the second channel which is orthogonal to a longitudinal axis along which the channels are designed to extend and wherein the heating element is directly acted upon by the exhaust gas.
- the heating element can preferably be excited to give off heat with the aid of a change in a combustion air ratio of the exhaust gas.
- the combustion air ratio of the exhaust gas can be changed by adding or reducing fuel or air.
- a so-called sub-stoichiometric composition which corresponds to a combustion air ratio with a value less than 1
- an over-stoichiometric composition which corresponds to a combustion air ratio with a value greater than 1
- Internal combustion engine or a lean operation of the internal combustion engine can be achieved.
- the heating element can preferably be excited to give off heat by changing the combustion air ratio of the exhaust gas from a combustion air ratio with a value less than 1 to a combustion air ratio with a value greater than 1.
- This change in the combustion air ratio can be achieved, for example, starting from a load operation of the internal combustion engine with only slightly substoichiometric operation, e.g. with a value of the combustion air ratio of approx. 0.98 and a subsequent overrun operation of the internal combustion engine, in particular with an overrun cutoff.
- Such an operation of the internal combustion engine can already be achieved, for example, by driving downhill or by decelerating a motor vehicle with the internal combustion engine.
- This is already with a short-term, z. B. due to the downhill drive or a delay realizable overrun operation, in particular with an overrun cut-off, a temperature increase due to the heat emission of the heating element in the particle filter can be brought about.
- the heating element can react to brief lean operation of the internal combustion engine, for example due to overrun fuel cutoff, with a sharp rise in temperature.
- the advantage is that an engine control for operating the internal combustion engine does not have to be adapted or has to be adapted only slightly.
- the heating element has an element cross-section which corresponds to a cross-section of the channel. In addition to its temperature-increasing function, the heating element can thus be used to seal the duct on one side.
- the heating element is preferably designed at least on the basis of cerium oxide and / or cerium-zirconium mixed oxides. With the appropriate composition and concentration, these oxides have a pronounced oxygen storage capacity, which enables a high temperature increase to be achieved due to the exothermic reaction.
- the heating element has noble metals such as palladium and / or rhodium, they also have a direct oxygen storage capacity, at least in a certain temperature range.
- the heating element of the first channel is made of a first material and the heating element of the second channel is made of a second material that differs from the first material.
- the particle filters of the prior art have, in principle, a comparatively low reaction speed of the burning off of the soot particles. This can have the consequence that, for example, due to a burning off almost simultaneously in all filter areas of the same soot load at all points of the particle filter, very high temperatures are present in areas of the particle filter which, starting from a filter inlet, are in the direction of a filter outlet of the particle filter that can lead to damage to the particle filter and / or a possibly existing coating. In such a case, the temperature near the filter outlet of the particle filter can be highest. It can be assumed that also with z. B. 800 ° C the burn is relatively slow and so the heat released in the filter inlet area is in the downstream areas, thus also in the area before the filter outlet, accumulates with the heat released there.
- This configuration therefore has the advantage of bringing about a temperature increase in the area of the filter inlet that differs from the temperature increase in the area of the filter outlet. It is advantageous to form the heating element in the area of the filter inlet from a first material which only releases heat at low and medium temperatures in the particle filter, e.g. palladium, and in the area of the filter outlet the heating element made from a second material that releases heat even for even higher temperatures in the particle filter, for example with a high proportion of standard storage materials of today's 3-way catalytic converters.
- a further increase in efficient regeneration can be brought about with the aid of a further heating element if this is arranged in the duct section through which a flow can flow.
- the impermeable channel section has a plug, the heating element being designed to completely or partially replace the plug.
- Particulate filters according to the prior art have plugs which only serve the purpose of sealing off the channel. You are massive formed and have a relatively large length. E.g. Plug lengths of approx. 7 mm are usual for particle filters used or planned in the gasoline engine sector. A mass fraction of the stoppers in the clogged filter inlet and filter outlet areas is approx. 60 - 70%. Therefore, a complete or partial replacement of these plugs with a heating element made of a material with a high proportion of a storage component with high heat of oxidation leads to a sharp rise in temperature when the internal combustion engine is switched from rich operation to lean operation, for example in connection with a Fuel cut-off. A particularly efficient particle filter is thus implemented.
- a sudden temperature increase in a particle filter 1 according to the invention can be brought about with an exothermic reaction of a material that has a high oxygen storage content when an internal combustion engine, not shown, is switched from load to overrun.
- the proportions of an air-fuel mixture supplied to the internal combustion engine are changed. Starting from what is known as rich operation, which has a combustion air ratio ⁇ of the air-fuel mixture with a value less than 1, it is preferable to switch to lean operation, which has a combustion air ratio ⁇ of the air-fuel mixture with a value greater than 1.
- lean operation which has a combustion air ratio ⁇ of the air-fuel mixture with a value greater than 1.
- exhaust gas from the internal combustion engine, which flows through the particle filter 1 has an increased proportion of oxygen, which triggers the exothermic reaction.
- a simultaneous overrun fuel cutoff increases the oxygen content significantly, which also makes it possible to achieve a significant increase in the temperature in the particle filter 1.
- Fig. 1 shows in the lower section in a t- ⁇ diagram a curve L1 of a combustion air ratio ⁇ over time t in front of a known particle filter.
- a sudden change in the combustion air ratio ⁇ from a value of approx. 0.95 here to a value of well over 1 characterizes a point in time when the internal combustion engine is switched from load to overrun with fuel cut-off.
- temperature curves Tl, T2, and T3 calculated as a function of the operating changeover are shown for different positions along a flow axis of the particle filter.
- the temperature profile T0 corresponds to a so-called inlet temperature, i.e. the gas temperature upstream of the OPF.
- the particle filter 1 according to the invention which is shown schematically according to FIG Fig. 3 has throughflow channel sections 13 and impermeable channel sections 14.
- the temperature curves T1 and T3 show a thermal behavior of the particle filter 1 in a plane near a filter inlet 3 or near a filter outlet 4 of the particle filter 1, i.e. in planes that also impermeable channel sections 14 cut through.
- the temperature profile T2 shows the thermal behavior of the particle filter 1 near a central plane of the particle filter 1, which is formed centrally between the planes of the filter inlet 3 and the filter outlet 4.
- the temperatures T1, T2, T3 in the particle filter 1 according to the prior art follow the cooling inlet temperature T0 with a time delay due to the heat capacity of the particle filter 1 itself.
- the temperatures T1, T2, T3 in the particle filter 1 according to the invention show different curves.
- the temperatures T1, T3 of the levels with impermeable channel sections 14 rise immediately after the change from the (slightly) rich to the lean mixture, only slightly delayed, violently, in this example by about 75 ° C.
- these temperatures T1, T3 also follow the inflow temperature T0, which is getting colder and colder, with a time delay.
- Fig. 2 shows in an xT diagram temperature profiles at different times t0, t1, t2, t3, t4 before and after a change from a (slightly) rich load operation of the internal combustion engine to overrun operation with fuel cut-off in the direction of the flow axis of the particle filter 1.
- Fig. 2 shows in an xT diagram temperature profiles at different times t0, t1, t2, t3, t4 before and after a change from a (slightly) rich load operation of the internal combustion engine to overrun operation with fuel cut-off in the direction of the flow axis of the particle filter 1.
- the temperature profiles t0, t1, t2, t3, t4 in the particle filter 1 according to the prior art in the lower section of FIG Fig. 2 the temperature curves t0, t1, t2, t3, t4 are shown in the particle filter 1 according to the invention.
- the temperature curve t0 corresponds to a curve before the changeover.
- the temperature curves t1, t2, t3, t4 are temperature curves after the change in operation, the temperature curve t1 20.2 seconds, the temperature curve t2 21.2 seconds, the temperature curve t3 22.2 seconds and the temperature curve t4 23.2 seconds Corresponds to the temperature curve over the flow axis after the change of operation.
- the particle filter 1 according to the invention for the internal combustion engine is shown in a schematic illustration according to FIG Fig. 3 educated.
- exhaust gas containing soot particles is produced due to combustion of the air-fuel mixture.
- the particle filter 1 has a filter body 2 with a filter inlet 3 and a filter outlet 4 that can be flowed through.
- a multiplicity of passages 5, 6 through which a flow can flow is formed in the filter body 2.
- the channels 5, 6 extend along a longitudinal axis L and are designed to be adjacent to one another, with a flow occurring along the longitudinal axis L.
- the channels 5, 6 alternately have an end that is closed at the filter inlet 3 and one at the filter outlet 4.
- a first channel 5 and a second channel 6 the plurality of channels and the mode of operation of the particle filter 1 described.
- the first channel 5 has a first end 7 facing the filter inlet 3 and a second end 8 facing the filter outlet 4.
- the second channel 6 has a third end 9 facing the filter inlet 3 and a fourth end 10 facing the filter outlet 4 .
- the second end 8 and the third end 9 are designed such that there is no flow.
- the exhaust gas flows from the first channel 5 to the second channel 6 via a common channel wall 11 formed between the first channel 5 and the second channel 6.
- the duct wall 11 is porous and permeable to flow, with the soot particles of the exhaust gas flowing through the duct wall 11 being deposited or deposited on the duct wall 11.
- the exhaust gas flows through the particle filter 1 in the direction of the arrows shown.
- the channels 5, 6 are closed at their ends 8, 9 through which there is no flow with the aid of a plug 12.
- the channels 5, 6 each have a channel section 13 through which there is free flow and a channel section 14 through which there is no flow.
- the plug 12 has an element cross-section QE which corresponds to a cross-section Q of the channel 5; 6 corresponds. Since the channels 5, 6 have an identical cross section in the illustrated embodiment, the element cross section QE also corresponds to a cross section Q of the second channel 6. In an embodiment not shown in detail, the channels 5, 6 have different cross sections Q. This means that the plug 12 has an element cross-section QE adapted to the cross-section Q of the corresponding channel 5, 6.
- the element cross section QE of the plug 12 is constant over a length L of the plug 12 in the illustrated embodiment.
- the element cross-section QE could also change over its length L.
- the plug 12 has a frustoconical shape with an element cross section QE that changes over the length LE, provided that the channel 5; 6 has a conical shape.
- the soot particles collect in the particle filter 1, an effective flow cross section of the particle filter 1 being reduced over time.
- the reduction in the effective flow cross-section leads to an increase in exhaust gas back pressure in the internal combustion engine, which can lead to an increase in gas exchange losses. With constant power, this in turn would result in an increase in the fuel consumption of the internal combustion engine or, with the same fuel consumption, a reduction in the output of the internal combustion engine.
- a regeneration of the particle filter 1 is thus carried out as a function of a so-called loading of the particle filter 1.
- the heating element 15 consists of a functional material which reacts exothermically in the event of an excess of air, in other words emits heat and thus leads to a temperature increase in the particle filter 1.
- the heating element 15 is designed in the form of the plug 12 and replaces it.
- the heating element 15 could also be designed as part of the plug 12. It is made of a material which is designed to trigger an exothermic reaction when oxygen is stored. In other words, this means that the heating element 15 independently releases heat due to its molecular structure, provided that oxygen storage is formed. This means that the heat of the reaction is released.
- the material is a solid which can be present in at least two modifications. In rich operation of the internal combustion engine, it is at least partially in a reduced modification, the first modification, and in a lean operation of the internal combustion engine it changes over to an oxidized modification, the second modification.
- This solid also called functional material, is preferably a mixed oxide of cerium and zirconium oxides with possibly other substances, such as metals and / or earth metals, lanthanum, presodymium, ytterium, and aluminum oxide.
- the "less noble" noble metals palladium and rhodium which also have a direct oxygen storage capacity, are also suitable. At higher temperatures, for example approx. 900 ° C, they do not oxidize and therefore do not store, and retain their noble metallic state. It is irrelevant here whether it is an exhaust gas with a rich composition corresponding to the rich operation or an exhaust gas with a lean composition corresponding to the lean operation of the internal combustion engine. Rhodium would acc. Fig. 4 Rhodium oxide can form up to approx. 880 ° C and can therefore behave ignoble up to this temperature.
- the functional material can be designed for exothermic reaction in different temperature ranges.
- a first material has a composition with a reduction / oxidation ability in a low and medium temperature range up to approx. 700 ° C., for example palladium.
- a second material has a composition with an additional exothermic reaction in a high temperature range, such as, for example, TWC (Three-way-Catalyst) standard storage materials.
- TWC Three-way-Catalyst
- stoppers 12 can be replaced by one heating element 15 each, which improves regeneration.
- a particle filter 1 with a plurality of heating elements 15 which are formed from a single material and / or a material mix is also expedient.
- the positioning of the heating element (s) 15, on the inlet side or on the outlet side, can also be selected as a function of an installation situation of the particle filter 1, close to or remote from the engine.
- all of the plugs 12 of the particle filter 1 are replaced by a heating element 15 in each case.
- Another exemplary embodiment of the particle filter 1 according to the invention not shown in detail, has the heating element 15 formed from the first material at the second end 8 and the heating element 15 formed from the second material at the third end 9.
- Another exemplary embodiment, not shown in detail, of the particle filter according to the invention has heating elements made of a first material at second ends and third ends, which are more distant from the central longitudinal axis. At the second ends and third ends, which are closer to the central longitudinal axis, it has heating elements made of a second material or no heating elements at all.
- a further heating element 15 could also be arranged in the flow-through channel section 13. This could be formed from a further material that differs from the first material and the second material. I.e. in other words, it consists of a further material with an oxygen storage capacity that is different from the first material and the second material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas After Treatment (AREA)
Description
- Die Erfindung betrifft einen Partikelfilter für eine Verbrennungskraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.
- Partikelfilter für Verbrennungskraftmaschinen, insbesondere für selbstzündende Verbrennungskraftmaschinen, sind bekannt. Der Partikelfilter zeichnet sich insbesondere dadurch aus, dass mehrere Kanäle nebeneinander, insbesondere parallel zueinander angeordnet sind, wobei die Kanäle wechselseitig verschlossen sind. Das über einen Filtereintritt einströmende Abgas durchströmt den Partikelfilter in seiner Erstreckungsrichtung dadurch, dass es von einem am Filtereintritt geöffneten Kanal in einen am Filteraustritt geöffneten Kanal über eine zwischen diesen beiden Kanälen angeordnete poröse Wand tritt. Feste Partikel des Abgases lagern sich in und/oder auf der Wand ab. Da diese Partikel einen freien Strömungsquerschnitt des Partikelfilters reduzieren und weil das Potential für übermäßige Temperaturanstiege im Partikelfilter in Folge exothermen Rußabbrandes mit zunehmender Beladung ansteigt, sind diese Partikel aus dem Partikelfilter durch eine so genannte Regeneration, mit anderen Worten durch eine Konvertierung der Rußpartikel zu entfernen.
- Der Patentschrift
EP 2 161 420 B1 ist ein Partikelfilter für eine Verbrennungskraftmaschine entnehmbar, welcher in Bereichen der Kanäle, in denen sich überwiegend feste Partikel anlagern, unbeschichtet ist. Somit sind in den Kanälen jeweils ein beschichteter Abschnitt und ein unbeschichteter Abschnitt ausgebildet, wobei der unbeschichtete Abschnitt eines Kanals dem beschichteten Abschnitt eines weiteren Kanals benachbart ausgebildet ist. - Aus der Offenlegungsschrift
EP 1 250 952 A1 geht ein Partikelfilter für eine als Dieselmotor ausgebildete Verbrennungskraftmaschine hervor, welcher zur Rußoxidation eine Beschichtung aufweist, deren Reaktionstemperatur unterhalb von 500°C liegt. Dies wird mit Hilfe bevorzugter Materialien des Partikelfilters, in Form von Erdalkalimetallverbindungen, einer Sauerstoff speichernden Substanz und Platin, Paladium oder Rhodium erreicht. - Die Patentschrift
US 7,691,339 B2 offenbart einen Partikelfilter für eine Verbrennungskraftmaschine, welcher zur Reduzierung der sich im Partikelfilter anlagernden Rußpartikel Mikrowellenenergie nutzt. Dabei ist ein Mikrowellengenerator vorgesehen, welcher im Rußfilter aufgenommenes Mikrowellen-absorbierendes Material aufwärmt. - Der Offenlegungsschrift
DE 10 2006 032 886 A1 ist ein Partikelfilter entnehmbar, der eine Funktionsmaterial-Beschichtung aufweist. Die zu durchströmenden Kanäle des Partikelfilters sind an ihren Wandoberflächen mit dem Funktionsmaterial beschichtet, wobei das Funktionsmaterial in einer exothermen Reaktion ausgehend von einer ersten Modifikation in eine zweite Modifikation übergeht und zu einer Erhöhung einer im Partikelfilter vorliegenden Temperatur führt. - Die Offenlegungsschrift
DE 101 35 341 A1 offenbart einen Partikelfilter der mit einem Edelmetallkatalysator und mit einem Sauerstoff okkludierenden und abgebenden Mittel beschichtet ist. Durch den Wechsel des Sauerstoffgehalts im den Partikelfilter durchströmenden Abgas kann die Temperatur des Partikelfilters beeinflusst werden. - Der Offenlegungsschrift
EP 1 857 947 A1 kann ein Verfahren zur Temperaturerhöhung von Abgasreinigungssystemen, insbesondere einem Partikelfilter und einer Stickoxidfalle, entnommen werden. Der Partikelfilter ist mit einer sauerstoffspeichernden Schicht versehen, eine Variation des Sauerstoffgehalts des den Filter durchströmenden Abgases führt zu einer exothermen Reaktion und damit zu einer Temperaturerhöhung des Filters. - Die Aufgabe der vorliegenden Erfindung ist es, einen verbesserten Partikelfilter für eine Verbrennungskraftmaschine bereitzustellen.
- Diese Aufgabe wird erfindungsgemäß durch einen Partikelfilter für eine Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben.
- Ein erfindungsgemäßer Partikelfilter für eine Verbrennungskraftmaschine weist einen Filterkörper auf, wobei der Filterkörper einen durchströmbaren Filtereintritt und einen durchströmbaren Filteraustritt besitzt. Der Filterkörper umfasst zumindest einen durchströmbaren ersten Kanal, mit einem dem Filtereintritt zugewandt ausgebildeten ersten Ende und einem dem Filteraustritt zugewandt ausgebildeten zweiten Ende, und einen durchströmbaren zweiten Kanal, mit einem dem Filtereintritt zugewandt ausgebildeten dritten Ende und einem dem Filteraustritt zugewandt ausgebildeten vierten Ende. Das zweite Ende und das dritte Ende sind undurchströmbar oder in gewisser Weise schwer durchströmbar ausgebildet, wodurch die Kanäle in einen durchströmbaren Kanalabschnitt und einen undurchströmbaren oder in gewisser Weise schwer durchströmbaren Kanalabschnitt gliederbar sind.
- Hierdurch sind erste Kanäle mit versperrtem oder behindertem Strömungseintritt am Filtereintritt und zweite Kanäle mit versperrtem oder behindertem Strömungsaustritt am Filteraustritt ausgebildet. Ein Strömungsübertritt von den Partikelfilter durchströmendem Abgas, ausgehend vom ersten Kanal in den zweiten Kanal, erfolgt über eine zwischen dem ersten Kanal und dem zweiten Kanal ausgebildete gemeinsame Kanalwand. Die Kanalwand ist Rußpartikel des Abgases abscheidbar ausgebildet.
- Nachfolgend ist unter einem undurchströmbaren Kanalabschnitt nicht notwendiger Weise ein vollständig abgedichteter und gegen jegliche Durchströmbarkeit verschlossener Kanalabschnitt zu verstehen, sondern es ist darunter auch ein in gewisser Weise schwer durchströmbarer Kanalabschnitt zu verstehen - z. B. ein so genannter diffusionsoffener Kanalabschnitt, wobei insbesondere Sauerstoffmoleküle diesen schwer durchströmbaren Kanalabschnitt durchdringen können.
- Zur Steigerung einer im Partikelfilter vorliegenden Reaktionstemperatur zur Abbrennung der Rußpartikel weist der erste Kanal und/oder der zweite Kanal ein Heizelement auf, wobei das Heizelement im undurchströmbaren Kanalabschnitt des Kanals angeordnet ist.
- Die Anordnung des Heizelements im undurchströmbaren Kanalabschnitt weist mehrere Vorteile auf. So wird bspw. eine Durchströmung des Partikelfilters aufgrund des Heizelementes, welches einen Strömungswiderstand aufweist, nicht beeinträchtigt. Ein weiterer Vorteil ist in einer Nutzung der, hinsichtlich der Durchströmung, ungenutzten Bereiche des Partikelfilters zu sehen: eine Steigerung der Reaktionstemperatur zur Abbrennung der Rußpartikel kann erreicht werden unter Beibehaltung der ursprünglichen Größe des Partikelfilters. Das heißt mit anderen Worten, dass ein vorgesehener Bauraum des Partikelfilters erhalten bleibt und bzgl. des Bauraumes keine konstruktiven Änderungsmaßnahmen vorzunehmen sind. Sofern bspw. die Kanäle des Partikelfilters beschichtet sind, kann dies zur Folgen haben, dass im Vergleich zu unbeschichteten Kanälen, ein Kanalquerschnitt des Kanals aufgrund der Beschichtung verkleinert wird. Damit jedoch dem unbeschichteten Partikelfilter entsprechende Durchströmbedingungen des die Beschichtung aufweisenden Partikelfilters erreicht werden können, ist der Kanalquerschnitt des Partikelfilters zu vergrößern, wodurch sich der benötigte Bauraum des die Beschichtung aufweisenden Partikelfilters ebenfalls vergrößert.
- In einer Ausgestaltung des erfindungsgemäßen Partikelfilters ist das Heizelement aus einem Funktionsmaterial ausgebildet, welches bei einer Sauerstoffeinspeicherung exotherm reagiert. Das bedeutet mit anderen Worten, dass das Heizelement quasi selbstzündend ausgebildet ist. Der Vorteil ist darin zu sehen, dass es lediglich des Heizelementes selbst bedarf, ohne bspw. wie aus dem Stand der Technik bekannt, ein Hilfsmittel in Form einer Zündvorrichtung, wie bspw. dem Mikrowellengenerator, vorzusehen. Es ist lediglich der Betrieb der Verbrennungskraftmaschine so anzupassen, dass aufgrund einer entsprechenden Temperatur des Abgases und/oder einer entsprechenden Zusammensetzung des Abgases die exotherme Reaktion des Funktionsmaterials initiiert wird. Das Heizelement ist in einem Querschnitt des ersten Kanals und/oder des zweiten Kanals angeordnet, welcher orthogonal zu einer Längsachse ist entlang derer die Kanäle sich erstreckend ausgebildet sind und wobei das Heizelement unmittelbar vom Abgas beaufschlagt ist.
- Bevorzugt ist das Heizelement mit Hilfe einer Änderung eines Verbrennungsluftverhältnisses des Abgases zur Wärmeabgabe anregbar. Dazu kann durch Hinzufügen oder durch Reduzierung von Kraftstoff oder Luft das Verbrennungsluftverhältnis des Abgases verändert werden. Insbesondere ist eine so genannte unterstöchiometrische Zusammensetzung, die einem Verbrennungsluftverhältnis mit einem Wert kleiner als 1 entspricht oder eine überstöchiometrische Zusammensetzung, die einem Verbrennungsluftverhältnisses mit einem Wert größer als 1 entspricht, durch einen so genannten fetten Betrieb der Verbrennungskraftmaschine oder einen mageren Betrieb der Verbrennungskraftmaschine erzielbar.
- Bevorzugt ist das Heizelement mit Hilfe einer Änderung des Verbrennungsluftverhältnisses des Abgases von einem Verbrennungsluftverhältnis mit einem Wert kleiner als 1, zu einem Verbrennungsluftverhältnis mit einem Wert größer als 1 zur Wärmeabgabe anregbar. Diese Änderung des Verbrennungsluftverhältnisses lässt sich bspw. ausgehend von einem Lastbetrieb der Verbrennungskraftmaschine bei einem auch nur gering unterstöchiometrischen Betrieb, bspw. bei einem Wert des Verbrennungsluftverhältnisses von ca. 0,98 und einem sich daran anschließenden Schubbetrieb der Verbrennungskraftmaschine, insbesondere mit einer Schubabschaltung erreichen.
- Ein derartiger Betrieb der Verbrennungskraftmaschine kann bspw. bereits durch eine Bergabfahrt oder eine Verzögerung eines Kraftfahrzeugs mit der Verbrennungskraftmaschine erlangt werden. Dadurch ist bereits bei einem kurzzeitigen, z. B. aufgrund der Bergabfahrt oder einer Verzögerung realisierbaren Schubbetrieb, insbesondere mit einer Schubabschaltung, eine Temperatursteigerung aufgrund der Wärmeabgabe des Heizelementes im Partikelfilter herbeiführbar. Mit anderen Worten kann das Heizelement auf einen kurzzeitigen Magerbetrieb der Verbrennungskraftmaschine, bspw. durch Schubabschaltung, mit einem heftigen Temperaturanstieg reagieren. Der Vorteil ist, dass eine Motorsteuerung zum Betrieb der Verbrennungskraftmaschine nicht oder nur gering angepasst werden muss.
- In einer weiteren Ausgestaltung des erfindungsgemäßen Partikelfilters weist das Heizelement einen Elementquerschnitt auf, welcher einem Querschnitt des Kanals entspricht. Damit kann das Heizelement, neben seiner Temperatur erhöhenden Funktion, zur einseitigen Abdichtung des Kanals genutzt werden.
- Bevorzugt ist das Heizelement zumindest auf Basis von Ceroxid und/oder Cer-Zirkon-Mischoxiden ausgebildet. Diese Oxide weisen, bei entsprechender Beschaffenheit und Konzentration, eine ausgeprägte Sauerstoffspeicherfähigkeit auf, die eine hohe Temperatursteigerung aufgrund der exothermen Reaktion realisieren lässt.
- Sofern das Heizelement Edelmetalle wie bspw. Palladium und/oder Rhodium aufweist, ist auch durch diese, zumindest in einem bestimmten Temperaturbereich, eine direkte Sauerstoffspeicherfähigkeit gegeben.
- In einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Partikelfilters ist das Heizelement des ersten Kanals aus einem ersten Material ausgebildet und das Heizelement des zweiten Kanals aus einem, sich vom ersten Material unterscheidenden, zweiten Material ausgebildet. Der Vorteil ist die Ausbildung unterschiedlich hoher Temperatursteigerungen im Partikelfilter.
- Die Partikelfilter des Standes der Technik weisen prinzipiell eine vergleichsweise niedrige Reaktionsgeschwindigkeit des Abbrennens der Rußpartikel auf. Dies kann zur Folge haben, dass, bspw. aufgrund einer in allen Filterbereichen nahezu gleichzeitig einsetzenden Abbrennung einer an allen Stellen des Partikelfilters gleichen Rußbeladung, in Bereichen des Partikelfilters, welche ausgehend von einem Filtereintritt in Richtung eines Filteraustritts des Partikelfilters liegen, sehr hohe Temperatur vorliegen können, die unter Umständen zu einer Schädigung des Partikelfilters und/oder einer ggf. vorhandenen Beschichtung führen können. Am höchsten kann in so einem Fall die Temperatur in der Nähe des Filteraustritts des Partikelfilters sein. Es ist anzunehmen, dass auch bei z. B. 800 °C der Abbrand relativ langsam ist und sich so die im Bereich des Filtereintritts freigewordene Wärme des Abbrandes sich in den stromabwärts befindenden Bereichen, somit ebenfalls im Bereich vor Filteraustritts, mit der dort frei werdenden Wärme akkumuliert.
- Somit ist mit dieser Ausgestaltung der Vorteil gegeben, im Bereich des Filtereintritts einen Temperaturanstieg herbeizuführen, der sich von dem Temperaturanstieg im Bereich des Filteraustritts unterscheidet. Vorteilhaft ist es, das Heizelement im Bereich des Filtereintritts aus einem ersten Material auszubilden, welches nur bei im Partikelfilter vorliegenden tiefen und mittleren Temperaturen, bis bspw. ca. 800°C, Wärme freigesetzt, zum Beispiel Palladium, und im Bereich des Filteraustritts das Heizelement aus einem zweiten Material auszubilden, welches auch für noch höhere im Partikelfilter vorliegenden Temperaturen Wärme freisetzt, zum Beispiel mit hohem Anteil an Standardspeichermaterialien heutiger 3-Wege- Katalysatoren.
- So wären bspw. insbesondere hoch beladene Partikelfilter, d.h. Partikelfilter, welche eine große Menge an Rußpartikeln aufweisen, diese ausgehend vom Filteraustritt zu erhitzen. Würde der Abbrand bzw. die Regeneration am Filteraustritt initiiert werden, würde die dort freigesetzte Wärme wirklich freigesetzt und nicht in den vorgelagerten Bereichen als "thermische Bürde" auferlegt. Unter gewissen Randbedingungen, insbesondere sofern Strömungsgeschwindigkeiten nicht zu hoch sind, würde dann die so genannte Rußabbrandfront entgegen der Strömungsgeschwindigkeit in Richtung des Filtereintritts und in die dort ausgebildeten Bereiche des Partikelfilters hinein laufen. Daher kann es von Vorteil sein, wenn das erste Material zur Reaktion in einem mittleren Temperaturbereich ausgebildet ist, und das zweite Material zur Reaktion über einem weiteren Temperaturbereich ausgebildet ist.
- Eine weitere Steigerung einer effizienten Regenerierung kann mit Hilfe eines weiteren Heizelementes herbeigeführt werden, wenn dieses im durchströmbaren Kanalabschnitt angeordnet ist.
- Der undurchströmbare Kanalabschnitt weist einen Stopfen auf, wobei das Heizelement den Stopfen vollständig oder teilweise ersetzend ausgebildet ist. Partikelfiltern gemäß dem Stand der Technik besitzen Stopfen, die lediglich dem Zweck dienen den Kanal dichtend abzuschließen. Sie sind massiv ausgebildet und weisen eine relativ große Länge auf. Bspw. sind für im Ottomotoren-Bereich eingesetzte bzw. vorgesehene Partikelfilter Längen der Stopfen von ca. 7 mm üblich. Ein Massenanteil der Stopfen liegt in den verstopften Filtereintritts- bzw. Filteraustrittsbereichen bei ca. 60 - 70 %. Daher führt ein vollständiger oder teilweiser Ersatz dieser Stopfen durch ein Heizelement, hergestellt aus einem Material mit einem hohen Anteil einer Speicherkomponente mit hoher Oxidationswärme, zu einem heftigen Temperaturanstieg bei einer Betriebsumstellung der Verbrennungskraftmaschine von dem fetten Betrieb auf den mageren Betrieb, beispielsweise in Verbindung mit einer Schubabschaltung. Ein besonders effizienter Partikelfilter ist somit realisiert.
- Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Gleichen oder funktionsgleichen Elementen sind identische Bezugszeichen zugeordnet. Es zeigen:
-
Fig. 1 in einem t-λ-Diagramm einen Verlauf des Verbrennungsluftverhältnisses λ von Abgas und in einem korrespondierenden t-T-Diagramm Temperaturen in einem Partikelfilter gemäß dem Stand der Technik und in einem erfindungsgemäßen Partikelfilter Temperaturverläufe an unterschiedlichen Positionen des Partikelfilters, ermittelt mit Hilfe einer Simulationsrechnung, -
Fig. 2 in einem x-T-Diagramm Temperaturverläufe zu verschiedenen Zeitpunkten im Partikelfilter gemäß dem Stand der Technik und dem erfindungsgemäßen Partikelfilter, -
Fig. 3 in einer schematischen Darstellung einen erfindungsgemäßen Partikelfilter, undFig. 4 ein Ellingham-Diagramm der Elemente Palladium und Rhodium und deren Oxide. - Eine schlagartige Temperaturerhöhung in einem erfindungsgemäßen Partikelfilter 1 ist mit einer exothermen Reaktion eines Materials, das einen hohen Sauerstoffspeicheranteil aufweist, bei einer Betriebsumstellung einer nicht näher dargestellten Verbrennungskraftmaschine von einem Last- auf einen Schubbetrieb herbeiführbar. Dabei wird eine der Verbrennungskraftmaschine zugeführte Luft-Kraftstoffmischung in ihren Anteilen verändert. Bevorzugt ist ausgehend von einem so genannten fetten Betrieb, welcher ein Verbrennungsluftverhältnis λ der Luft-Kraftstoffmischung mit einem Wert kleiner 1 aufweist, in einen mageren Betrieb, welcher ein Verbrennungsluftverhältnis λ der Luft-Kraftstoffmischung mit einem Wert größer 1 aufweist, zu wechseln. Dadurch weist Abgas der Verbrennungsmaschine, welche den Partikelfilter 1 durchströmt, einen erhöhten Sauerstoffanteil auf, welcher die exotherme Reaktion auslöst. Eine gleichzeitige Schubabschaltung erhöht den Sauerstoffanteil wesentlich, wodurch ebenfalls eine deutliche Steigerung der Temperatur im Partikelfilter 1 erzielbar ist.
-
Fig. 1 zeigt im unteren Abschnitt in einem t-λ-Diagramm einen Verlauf L1 eines Verbrennungsluftverhältnis λ über der Zeit t vor einem bekannten Partikelfilter. Ein sprunghafter Wechsel des Verbrennungsluftverhältnisses λ von einem Wert von hier ca. 0,95 auf einen Wert von deutlich über 1 kennzeichnet einen Zeitpunkt der Betriebsumstellung der Verbrennungskraftmaschine von Last- auf Schubbetrieb mit Kraftstoffabschaltung. - Im oberen und mittleren Abschnitt der
Fig. 1 sind in Abhängigkeit der Betriebsumstellung berechnete Temperaturverläufe Tl, T2, und T3 für verschiedene Positionen entlang einer Strömungsachse der Partikelfilter dargestellt. Im oberen Abschnitt sind die Temperaturverläufe eines Partikelfilters 1 gemäß dem Stand der Technik und im mittleren Abschnitt derFig. 1 sind Temperaturverläufe eines erfindungsgemäßen Partikelfilters 1 dargestellt. Der Temperaturverlauf T0 entspricht einer so genannten Zulauftemperatur, also der Gastemperatur vor OPF. - Der erfindungsgemäße Partikelfilter 1, welcher schematisch gemäß
Fig. 3 ausgebildet ist, besitzt durchströmbare Kanalabschnitte 13 und undurchströmbare Kanalabschnitte 14. Die Temperaturverläufe T1 und T3 zeigen ein thermisches Verhalten des Partikelfilters 1 in einer Ebene nahe eines Filtereintritts 3 bzw. nahe eines Filteraustritts 4 des Partikelfilters 1, also in Ebenen, die auch undurchströmbare Kanalabschnitte 14 durchschneiden. Der Temperaturverlauf T2 zeigt das thermische Verhalten des Partikelfilters 1 nahe einer Mittelebene des Partikelfilters 1, welche mittig zwischen den Ebenen des Filtereintritts 3 und des Filteraustritts 4 ausgebildet ist. - Die Temperaturen Tl, T2, T3 im Partikelfilter 1 gemäß dem Stand der Technik folgen zeitverzögert, aufgrund der Wärmekapazität des Partikelfilters 1 selbst, der abkühlenden Zulauftemperatur T0. Die Temperaturen Tl, T2, T3 im erfindungsgemäßen Partikelfilter 1 zeigen andere Verläufe. Die Temperaturen Tl, T3 der Ebenen mit undurchströmbaren Kanalabschnitten 14 steigen unmittelbar auf den Wechsel vom (leicht) fetten zum mageren Gemisch nur unmerklich verzögert heftig an, in diesem Beispiel um ca. 75°C. Sobald eine exotherme Befüllung eines Sauerstoffspeichers in den undurchströmbaren Kanalabschnitten 14 abgeschlossen ist, folgen auch diese Temperaturen Tl, T3 zeitlich verzögert der stets kälter werdenden Zulauftemperatur T0.
- Die Berechnungen erfolgten ohne Berücksichtigung eines Rußabbrandes. Nicht näher dargestellte Messungen zeigen, dass bei ca. 700°C des Partikelfilters 1 der Rußabbrand nur schleppend verläuft. Bei ca. 850°C ist eine Regeneration von eingelagertem Ruß deutlich erkennbar. Für den hier dargestellten Lastfall hat der Partikelfilter 1 ohne Ruß kaum regeneriert. Der erfindungsgemäße Partikelfilter 1, aufweisend die undurchströmbaren Kanalabschnitte 14, zündet den Rußabbrand jedoch so, dass dieser dann sich selbst beschleunigend bzw. erhaltend bis zur weitgehenden Regeneration abläuft.
-
Fig. 2 zeigt in einem x-T-Diagramm Temperaturverläufe zu verschiedenen Zeitpunkten t0, t1, t2, t3, t4 vor und nach einem Wechsel von einem (leicht) fetten Lastbetrieb der Verbrennungskraftmaschine in den Schubbetrieb mit Kraftstoffabschaltung in Richtung der Strömungsachse des Partikelfilters 1. Im oberen Abschnitt vonFig. 2 sind die Temperaturverläufe t0, t1, t2, t3, t4 im Partikelfilter 1 gemäß dem Stand der Technik und im unteren Abschnitt vonFig. 2 die Temperaturverläufe t0, t1, t2, t3, t4 im erfindungsgemäßen Partikelfilter 1 dargestellt. - Der Temperaturverlauf t0 entspricht einem Verlauf vor der Betriebsumstellung. Die Temperaturverläufe t1, t2, t3, t4 sind Temperaturverläufe nach Betriebsumstellung, wobei der Temperaturverlauf t1 20,2 sec., der Temperaturverlauf t2 21,2 sec., der Temperaturverlauf t3 22,2 sec und der Temperaturverlauf t4 23,2 sec. einem Temperaturverlauf über die Strömungsachse nach Betriebsumstellung entspricht.
- Der erfindungsgemäße Partikelfilter 1 für die nicht näher dargestellte Verbrennungskraftmaschine ist in einer schematischen Darstellung gemäß
Fig. 3 ausgebildet. Im Betrieb der Verbrennungskraftmaschine, welche in Form eines direkteinspritzenden Ottomotors ausgeführt ist, entsteht aufgrund einer Verbrennung des Luft-Kraftstoffgemisches Rußpartikel enthaltendes Abgas. - Der Partikelfilter 1 weist einen Filterkörper 2 mit einem durchströmbaren Filtereintritt 3 und einem durchströmbaren Filteraustritt 4 auf. Im Filterkörper 2 ist eine Vielzahl von durchströmbaren Kanälen 5, 6 ausgebildet. Die Kanäle 5, 6 sind sich entlang einer Längsachse L erstreckend, nebeneinander liegend ausgebildet, wobei eine Durchströmung entlang der Längsachse L erfolgt.
- Die Kanäle 5, 6 weisen abwechselnd ein am Filtereintritt 3 bzw. ein am Filteraustritt 4 verschlossenes Ende auf. Im Weiteren wird mittels eines ersten Kanals 5 und eines zweiten Kanals 6 die Vielzahl der Kanäle und die Funktionsweise des Partikelfilters 1 beschrieben.
- Der erste Kanal 5 besitzt ein dem Filtereintritt 3 zugewandt ausgebildetes erstes Ende 7 und ein dem Filteraustritt 4 zugewandt ausgebildetes zweites Ende 8. Der zweite Kanal 6 weist ein dem Filtereintritt 3 zugewandt ausgebildetes drittes Ende 9 und ein dem Filteraustritt 4 zugewandt ausgebildetes viertes Ende 10 auf. Das zweite Ende 8 und das dritte Ende 9 sind undurchströmbar ausgebildet. Ein Strömungsübertritt des Abgases vom ersten Kanal 5 in den zweiten Kanal 6 erfolgt über eine zwischen dem ersten Kanal 5 und dem zweiten Kanal 6 ausgebildete gemeinsame Kanalwand 11.
- Die Kanalwand 11 ist strömungsdurchlässig porös ausgebildet, wobei sich die Rußpartikel des die Kanalwand 11 durchströmenden Abgases an der Kanalwand 11 an- bzw. - ablagern. Das Abgas durchströmt den Partikelfilter 1 in Richtung der eingezeichneten Pfeile.
- Die Kanäle 5, 6 sind an ihren undurchströmbaren Enden 8, 9 mit Hilfe eines Stopfens 12 verschlossen. Das heißt mit anderen Worten, dass die Kanäle 5, 6 jeweils einen frei durchströmbaren Kanalabschnitt 13 und einen undurchströmbaren Kanalabschnitt 14 aufweisen.
- Der Stopfen 12 weist einen Elementquerschnitt QE auf, welcher einem Querschnitt Q des Kanals 5; 6 entspricht. Da in dem dargestellten Ausführungsbeispiel die Kanäle 5, 6 einen identischen Querschnitt aufweisen, entspricht der Elementquerschnitt QE ebenfalls einem Querschnitt Q des zweiten Kanals 6. In einem nicht näher dargestellten Ausführungsbeispiel weisen die Kanäle 5, 6 unterschiedliche Querschnitte Q auf. Das bedeutet, dass der Stopfen 12 einen dem Querschnitt Q des entsprechenden Kanals 5, 6 angepasst ausgebildeten Elementquerschnitt QE besitzt.
- Der Elementquerschnitt QE des Stopfens 12 ist im dargestellten Ausführungsbeispiel über eine Länge L des Stopfens 12 konstant. Ebenso könnte sich der Elementquerschnitt QE über seine Länge L verändern. So weist zum Beispiel in einem nicht näher dargestellten Ausführungsbeispiel der Stopfen 12 eine kegelstumpfförmige Form mit einem sich über die Länge LE verändernden Elementquerschnitt QE auf, sofern der Kanal 5;6 eine konische Form besitzt.
- Im Betrieb der Verbrennungskraftmaschine sammeln sich die Rußpartikel im Partikelfilter 1, wobei ein effektiver Strömungsquerschnitt des Partikelfilters 1 über die Zeit reduziert wird. Die Reduzierung des effektiven Strömungsquerschnitts führt zu einer Erhöhung eines Abgasgegendruckes der Verbrennungskraftmaschine, der zu einer Steigerung von Ladungswechselverlusten führen kann. Dies wiederum hätte bei konstanter Leistung eine Erhöhung eines Kraftstoffverbrauches der Verbrennungskraftmaschine oder bei gleichem Kraftstoffverbrauch eine Reduzierung der Leistung der Verbrennungskraftmaschine zur Folge. Somit wird in Abhängigkeit einer so genannten Beladung des Partikelfilters 1 eine Regeneration des Partikelfilters 1 durchgeführt.
- Zur Regeneration des Partikelfilters 1 weist dieser zumindest ein Heizelement 15 auf, welches in dem undurchströmbaren Kanalabschnitt 14 angeordnet ist. Das Heizelement 15 besteht aus einem Funktionsmaterial, welches bei einem Luftüberschuss exotherm reagiert, mit anderen Worten Wärme abgibt und somit zu einer Temperaturerhöhung im Partikelfilter 1 führt.
- Das Heizelement 15 ist in Form des Stopfens 12 ausgebildet und ersetzt diesen. Ebenso könnte das Heizelement 15 auch als Teil des Stopfens 12 ausgebildet sein. Es ist aus einem Material ausgebildet, welches bei einer Sauerstoffeinspeicherung eine exotherme Reaktion auslösend ausgebildet ist. Mit anderen Worten bedeutet dies, dass das Heizelement 15 aufgrund seines Molekülaufbaus selbständig Wärme freisetzt, sofern eine Sauerstoffeinspeicherung ausgebildet ist. Das bedeutet, es erfolgt eine Reaktionswärmefreisetzung.
- Das Material ist ein Feststoff, welcher in wenigstens zwei Modifikationen vorliegen kann. Im fetten Betrieb der Verbrennungskraftmaschine liegt er zumindest teilweise in einer reduzierten Modifikation, der ersten Modifikation vor und geht in einem mageren Betrieb der Verbrennungskraftmaschine in eine oxidierte Modifikation, der zweiten Modifikation über. Dieser Feststoff, auch Funktionsmaterial genannt, ist bevorzugt ein Mischoxid aus Cer- und Zirkonoxiden mit ggf. weiteren Stoffen, wie bspw. Metalle und/oder Erdmetalle, Lanthan, Präsodymium, Ytterium, sowie Aluminiumoxid.
- Auch eignen sich die "unedleren" Edelmetalle Palladium und Rhodium, welche auch direkt eine Sauerstoffspeicherfähigkeit besitzen. Bei höheren Temperaturen, zum Beispiel ca. 900 °C, oxidieren sie nicht, speichern somit auch nicht, und behalten ihren edlen metallischen Zustand bei. Dabei ist es irrelevant, ob es sich um ein Abgas mit einer fetten Zusammensetzung entsprechend dem fetten Betrieb oder um ein Abgas mit einer mageren Zusammensetzung entsprechend dem mageren Betrieb der Verbrennungskraftmaschine handelt. Rhodium würde gem.
Fig. 4 Rhodiumoxid bis zu ca. 880°C bilden können und sich somit bis zu dieser Temperatur unedel verhalten können. - Gemäß seiner Zusammensetzung kann das Funktionsmaterial zur exothermen Reaktion in unterschiedlichen Temperaturbereichen ausgebildet sein. Bspw. weist ein erstes Material eine Zusammensetzung auf, mit einer Reduktions-/ Oxidationsfähigkeit in einem Tief- und Mitteltemperaturbereich bis ca. 700°C, bspw. Palladium. Ein zweites Material weist eine Zusammensetzung auf mit einer exothermen Reaktion zusätzlichen in einem hohen Temperaturbereich, wie bspw. TWC (Three-way-catalyst)-Standard-Speichermaterialien. Das heißt mit anderen Worten, dass das erste Material zur Reaktion bei im Partikelfilter 1 vorliegenden tiefen und mittleren Temperaturen ausgebildet ist, und dass das zweite Material zur Reaktion über sämtliche im Partikelfilter 1 vorliegenden Temperaturen ausgebildet ist.
- Selbstredend können sämtliche Stopfen 12 durch je ein Heizelement 15 ersetzt sein, wodurch die Regeneration verbessert wird.
- Ebenso ist auch ein Partikelfilter 1 mit mehreren Heizelementen 15, die aus einem einzigen Material und/oder einem Materialmix ausgebildet sind zielführend. Die Positionierung des bzw. der Heizelemente 15, eintrittseitig oder austrittseitig, kann auch in Abhängigkeit einer Einbausituation des Partikelfilters 1, motornah oder motorfern, gewählt werden.
- In einem nicht näher dargestellten bevorzugten Ausführungsbeispiel sind sämtliche Stopfen 12 des Partikelfilters 1 durch jeweils ein Heizelement 15 ersetzt. Ein weiteres, nicht näher dargestelltes Ausführungsbeispiel des erfindungsgemäßen Partikelfilters 1 weist am zweiten Ende 8 das Heizelement 15 ausgebildet aus dem ersten Material und am dritten Ende 9 das Heizelement 15 ausgebildet aus dem zweiten Material auf.
- Ein weiteres nicht näher dargestelltes Ausführungsbeispiel des erfindungsgemäßen Partikelfilters weist an zweiten Enden und dritten Enden, die entfernter von der zentralen Längsachse liegen, Heizelemente aus einem ersten Material auf. An den zweiten Enden und dritten Enden, die näher zur zentralen Längsachse liegen, weist es Heizelemente aus einem zweiten Material oder gar keine Heizelemente auf.
- Auch könnte im durchströmbaren Kanalabschnitt 13 ein weiteres Heizelement 15 angeordnet sein. Dieses könnte aus einem weiteren, sich vom ersten Material und vom zweiten Material unterscheidenden Material ausgebildet sein. D. h. mit anderen Worten, es besteht aus einem weiteren Material mit einer sich vom ersten Material und vom zweiten Material unterscheidenden Sauerstoffspeicherfähigkeit.
-
- 1
- Partikelfilter
- 2
- Filterkörper
- 3
- Filtereintritt
- 4
- Filteraustritt
- 5
- Erster Kanal
- 6
- Zweiter Kanal
- 7
- Erstes Ende
- 8
- Zweites Ende
- 9
- Drittes Ende
- 10
- Viertes Ende
- 11
- Kanalwand
- 12
- Stopfen
- 13
- Durchströmbarer Kanalabschnitt
- 14
- Undurchströmbarer Kanalabschnitt
- 15
- Heizelement
- L
- Längsachse
- LE
- Länge
- L1
- Verlauf
- Q
- Kanalquerschnitt
- QE
- Elementquerschnitt
- T
- Temperatur
- T0
- Zulauftemperatur
- T1
- erster Temperaturverlauf
- T2
- zweiter Temperaturverlauf
- T3
- dritter Temperaturverlauf
- t
- Zeit
- t0
- Temperaturverlauf vor Betriebsumstellung
- t1
- Temperaturverlauf nach Betriebsumstellung
- t2
- Temperaturverlauf nach Betriebsumstellung
- t3
- Temperaturverlauf nach Betriebsumstellung
- t4
- Temperaturverlauf nach Betriebsumstellung
- λ
- Verbrennungsluftverhältnis
Claims (9)
- Partikelfilter für eine Verbrennungskraftmaschine, mit einem Filterkörper (2), wobei der Filterkörper (2) einen durchströmbaren Filtereintritt (3) und einen durchströmbaren Filteraustritt (4) aufweist, und wobei der Filterkörper (2) zumindest einen durchströmbaren ersten Kanal (5) mit einem dem Filtereintritt (3) zugewandt ausgebildeten ersten Ende (7) und einem dem Filteraustritt (4) zugewandt ausgebildeten zweiten Ende (8), und einen durchströmbare n zweiten Kanal (6) mit einem dem Filtereintritt (3) zugewandt ausgebildeten dritten Ende (9) und einem dem Filteraustritt (4) zugewandt ausgebildeten vierten Ende (10) aufweist, wobei das zweite Ende (8) und das dritte Ende (9) undurchströmbar ausgebildet sind, wobei die Kanäle (5, 6) in einen durchströmbaren Kanalabschnitt (13) und einen undurchströmbaren Kanalabschnitt (14) gliederbar sind, und wobei ein Strömungsübertritt eines den Filterkörper (2) durchströmenden Abgases ausgehend vom ersten Kanal (5) in den zweiten Kanal (6) über eine zwischen dem ersten Kanal (5) und dem zweiten Kanal (6) ausgebildete gemeinsame Kanalwand (11) erfolgt, und wobei die Kanalwand (11) Rußpartikel des Abgases abscheidbar ausgebildet ist, und wobei zur Steigerung einer im Partikelfilter (1) vorliegenden Reaktionstemperatur zur Abbrennung der Rußpartikel der erste Kanal (5) und/oder der zweite Kanal (6) ein Heizelement (15) aufweist, wobei das Heizelement (15) im undurchströmbaren Kanalabschnitt (14) des Kanals (5; 6) angeordnet und aus einem Funktionsmaterial ausgebildet ist, welches bei einer Sauerstoffeinspeicherung exotherm reagiert,
wobei das Heizelement (15) in einem Querschnitt (Q) des ersten Kanals (5) und/oder des zweiten Kanals (6) angeordnet ist, welcher orthogonal zu einer Längsachse (L), entlang derer die Kanäle (5, 6) sich erstreckend ausgebildet sind, und wobei das Heizelement (15) unmittelbar vom Abgas beaufschlagt ist, und wobei der undurchströmbare Kanalabschnitt einen Stopfen (12) aufweist, dadurch gekennzeichnet, dass das Heizelement (15) den Stopfen (12) vollständig oder teilweise ersetzend ausgebildet ist. - Partikelfilter nach Anspruch 1,
dadurch gekennzeichnet, dass
das Heizelement (15) mit Hilfe einer Änderung eines Verbrennungsluftverhältnisses (λ) des Abgases zur Wärmeabgabe anregbar ist. - Partikelfilter nach Anspruch 2,
dadurch gekennzeichnet, dass
das Heizelement (15) mit Hilfe einer Änderung eines Verbrennungsluftverhältnisses (λ) des Abgases von einem Verbrennungsluftverhältnis (λ) mit einem Wert kleiner als 1 zu einem Wert größer als 1 zur Wärmeabgabe anregbar ist. - Partikelfilter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Heizelement (15) einen Elementquerschnitt (QE) aufweist, welcher einem Querschnitt (Q) des Kanals (5, 6) entspricht. - Partikelfilter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Heizelement (15) zumindest aus Cer- und Zirkonoxiden und/oder deren Mischoxide ausgebildet ist. - Partikelfilter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Heizelement (15) Palladium und/oder Rhodium aufweist. - Partikelfilter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Heizelement (15) des ersten Kanals (5) aus einem ersten Material ausgebildet ist und das Heizelement (15) des zweiten Kanals (6) aus einem sich vom ersten Material unterscheidenden zweiten Material ausgebildet ist. - Partikelfilter nach Anspruch 7,
dadurch gekennzeichnet, dass
das erste Material zur Reaktion bei im Partikelfilter (1) vorliegenden tiefen und mittleren Temperaturen ausgebildet ist, und das zweite Material zur Reaktion über sämtliche im Partikelfilter (1) vorliegenden Temperaturen ausgebildet ist. - Partikelfilter nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
ein weiteres Heizelement (15) im durchströmbaren Kanalabschnitt angeordnet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016110527.9A DE102016110527A1 (de) | 2016-06-08 | 2016-06-08 | Partikelfilter für eine Verbrennungskraftmaschine |
PCT/EP2017/025162 WO2017211468A1 (de) | 2016-06-08 | 2017-06-07 | Partikelfilter für eine verbrennungskraftmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3472441A1 EP3472441A1 (de) | 2019-04-24 |
EP3472441B1 true EP3472441B1 (de) | 2020-12-30 |
Family
ID=59034714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17729016.0A Active EP3472441B1 (de) | 2016-06-08 | 2017-06-07 | Partikelfilter für eine verbrennungskraftmaschine |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190153920A1 (de) |
EP (1) | EP3472441B1 (de) |
JP (1) | JP6720351B2 (de) |
KR (1) | KR102139222B1 (de) |
CN (1) | CN109312648B (de) |
DE (1) | DE102016110527A1 (de) |
WO (1) | WO2017211468A1 (de) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10003816A1 (de) * | 2000-01-28 | 2001-08-02 | Opel Adam Ag | Regenerierbarer Partikelfilter zum Entfernen von Rußpartikeln aus Abgasen |
JP3521880B2 (ja) * | 2000-07-21 | 2004-04-26 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
EP1250952A1 (de) | 2001-04-18 | 2002-10-23 | OMG AG & Co. KG | Katalysator sowie Filter und Verfahren zur Beseitigung von Russpartikeln aus dem Abgas eines Dieselmotors |
DE10151425A1 (de) * | 2001-10-18 | 2003-04-30 | Opel Adam Ag | Partikelfilter zum Reinigen von motorischen Abgasen |
US7691339B2 (en) | 2002-11-26 | 2010-04-06 | Gm Global Technology Operations, Inc. | Catalyst temperature control via microwave-induced particle oxidation |
JP4767491B2 (ja) * | 2003-12-11 | 2011-09-07 | 日本碍子株式会社 | ハニカム構造体 |
WO2006080187A1 (ja) * | 2005-01-31 | 2006-08-03 | Isuzu Motors Limited | 排気ガス浄化装置の昇温方法及び排気ガス浄化システム |
JP3885813B2 (ja) * | 2005-01-31 | 2007-02-28 | いすゞ自動車株式会社 | 排気ガス浄化装置の昇温方法及び排気ガス浄化システム |
DE102006032886A1 (de) | 2006-07-15 | 2008-01-17 | Daimler Ag | Partikelabscheider und Verfahren zur Regeneration eines Partikelabscheiders |
US7967887B1 (en) * | 2006-11-03 | 2011-06-28 | Cummins Filtration Ip, Inc. | Exhaust aftertreatment filter with reduced maximum temperature |
US7931715B2 (en) * | 2007-02-12 | 2011-04-26 | Gm Global Technology Operations, Inc. | DPF heater attachment mechanisms |
US8118908B2 (en) * | 2008-03-17 | 2012-02-21 | GM Global Technology Operations LLC | Electrically heated particulate matter filter with recessed inlet end plugs |
KR101028548B1 (ko) | 2008-09-05 | 2011-04-11 | 기아자동차주식회사 | 배기가스 정화장치 |
US20110120090A1 (en) * | 2009-11-25 | 2011-05-26 | Sorensen Jr Charles Mitchel | Processes And Devices For Regenerating Gasoline Particulate Filters |
KR20120095747A (ko) * | 2011-02-21 | 2012-08-29 | 한국에너지기술연구원 | 다기능성 배기가스 정화필터 및 이를 이용한 배기가스 정화장치 |
JP2012219732A (ja) * | 2011-04-11 | 2012-11-12 | Toyota Motor Corp | Pmフィルタ及びpmフィルタの再生方法 |
WO2016160915A1 (en) * | 2015-03-30 | 2016-10-06 | Basf Corporation | Catalyzed filters with end coating for lean engine exhaust |
GB2546164A (en) * | 2015-09-30 | 2017-07-12 | Johnson Matthey Plc | Gasoline particulate filter |
-
2016
- 2016-06-08 DE DE102016110527.9A patent/DE102016110527A1/de active Pending
-
2017
- 2017-06-07 KR KR1020197000134A patent/KR102139222B1/ko active IP Right Grant
- 2017-06-07 US US16/308,583 patent/US20190153920A1/en not_active Abandoned
- 2017-06-07 JP JP2018564194A patent/JP6720351B2/ja active Active
- 2017-06-07 EP EP17729016.0A patent/EP3472441B1/de active Active
- 2017-06-07 CN CN201780036131.7A patent/CN109312648B/zh active Active
- 2017-06-07 WO PCT/EP2017/025162 patent/WO2017211468A1/de unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP6720351B2 (ja) | 2020-07-08 |
JP2019523842A (ja) | 2019-08-29 |
DE102016110527A1 (de) | 2017-12-14 |
EP3472441A1 (de) | 2019-04-24 |
CN109312648A (zh) | 2019-02-05 |
CN109312648B (zh) | 2021-01-29 |
KR102139222B1 (ko) | 2020-07-29 |
WO2017211468A1 (de) | 2017-12-14 |
KR20190015480A (ko) | 2019-02-13 |
US20190153920A1 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010051659B4 (de) | Verfahren zur Entfernung von Partikelmaterial aus einem Abgasstrom | |
DE60201367T2 (de) | Abgasreiniger für eine Brennkraftmaschine | |
EP2557288B1 (de) | Vorrichtung und Verfahren zur Abgasreinigung für Verbrennungskraftmaschinen | |
DE102005023518A1 (de) | Verstopfungsfreies Filteraggregat mit hohem Wirkungsgrad | |
EP1747356A1 (de) | Katalysator-trägerkörper für einen motornah einzusetzenden katalytischen konverter | |
DE102012023049A1 (de) | SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen | |
EP1834068A2 (de) | Verfahren zum entfernen von partikeln aus abgasen sowie faserlage und partikelfilter dazu | |
EP1837497B1 (de) | Abgasnachbehandlungssystem umfassend einen Speicherkatalysator und einen Partikelfilter sowie Verfahren zur Herstellung eines derartigen Systems | |
DE102009053491A1 (de) | Abgasreinigungsvorrichtung | |
DE102015212788A1 (de) | Katalytisch aktives Partikelfilter | |
DE102010033689A1 (de) | Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit NOx-Speicherfunktion vor Katalysator mit gleicher Speicherfunktion | |
EP3472441B1 (de) | Partikelfilter für eine verbrennungskraftmaschine | |
WO2008009346A1 (de) | Partikelabscheider und verfahren zur regeneration eines partikelabscheiders | |
EP2699770B1 (de) | Partikelfilter mit katalytischer beschichtung | |
WO2009016006A1 (de) | Abgasanlage einer brennkraftmaschine | |
WO2010009929A1 (de) | Abgasnachbehandlungseinrichtung für eine brennkraftmaschine mit fremdzündung | |
DE102007063100A1 (de) | Abgasnachbehandlungseinrichtung mit mindestens zwei Partikelfiltern | |
WO2009127298A1 (de) | Abgasreinigungskörper und brennkraftmaschine mit abgasreinigungskörper | |
DE10353426A1 (de) | Abgassystem für eine Brennkraftmaschine | |
DE102006061693A1 (de) | Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine | |
EP1512850A1 (de) | Partikelfilter | |
DE102014208940A1 (de) | Abgaspartikel-Filtersystem für einen Verbrennungsmotor in der beispielhaften Ausgestaltung als Dieselmotor sowie Fahrzeugantrieb nebst entsprechend ausgestattetem Fahrzeug | |
DE202014102219U1 (de) | Abgaspartikel Filtersystem für einen Verbrennungsmotor in der beispielhaften Ausgestaltung als Dieselmotor sowie Fahrzeugantrieb nebst entsprechend ausgestattetem Fahrzeug | |
DE102008022479A1 (de) | Partikelfilterkörper und Brennkraftmaschine mit Partikelfilterkörper | |
DE10323385B4 (de) | Abgasreinigungsanlage für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190304 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200406 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200914 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017008844 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350131 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017008844 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210607 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201230 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230628 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1350131 Country of ref document: AT Kind code of ref document: T Effective date: 20220607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240621 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240524 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 8 |