EP3467383B1 - Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes - Google Patents

Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes Download PDF

Info

Publication number
EP3467383B1
EP3467383B1 EP17195326.8A EP17195326A EP3467383B1 EP 3467383 B1 EP3467383 B1 EP 3467383B1 EP 17195326 A EP17195326 A EP 17195326A EP 3467383 B1 EP3467383 B1 EP 3467383B1
Authority
EP
European Patent Office
Prior art keywords
cooling
burner
boiler plant
pipes
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17195326.8A
Other languages
English (en)
French (fr)
Other versions
EP3467383A1 (de
Inventor
Michael Beyer
Thomas Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erk Eckrohrkessel GmbH
Original Assignee
Erk Eckrohrkessel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erk Eckrohrkessel GmbH filed Critical Erk Eckrohrkessel GmbH
Priority to EP17195326.8A priority Critical patent/EP3467383B1/de
Priority to PL17195326T priority patent/PL3467383T3/pl
Publication of EP3467383A1 publication Critical patent/EP3467383A1/de
Application granted granted Critical
Publication of EP3467383B1 publication Critical patent/EP3467383B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes
    • F22B37/147Tube arrangements for cooling orifices, doors and burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M7/00Doors
    • F23M7/04Cooling doors or door frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/104Connection of tubes one with the other or with collectors, drums or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/12Forms of water tubes, e.g. of varying cross-section

Definitions

  • the present invention relates to a boiler system and a method for generating heat by burning at least one fuel.
  • burner openings are made in the walls by bending tubes. These protruding tubes are also known as burner cages.
  • the pipes are bent outwards and sealed and covered with refractory material.
  • a burner box is welded gas-tight around the burner basket on the outside of the boiler wall, which covers and insulates the bent tubes.
  • the burner is mounted on the burner box, the burner mouth of which leads into the furnace of the boiler.
  • the sum of the stretched tube length of all tubes in a burner basket depends on the required internal diameter of the burner.
  • this installation diameter is larger than in the case of standard burners without staging.
  • the burners are typically on the front wall or front wall of the flame tube mounted. It is customary to provide the side of this front wall facing the combustion chamber with refractory material as insulation or, more rarely, as a smooth steel wall with water cooling.
  • the efficiency of the flue gas recirculation inside the combustion chamber is influenced by several factors, such as the size of the propulsive impulse flow of the air flow emerging from the burner, the fuel flow or air-fuel mixture flow, possibly mixed with externally recirculated exhaust gas; the nozzle design of the burner and the intensity of the mixing of the propulsion jet and the internally drawn in exhaust gas flow.
  • the cross section of the nozzle it is particularly important whether the cross section of the nozzle has a cylindrical outlet, a conical widening or a conical taper.
  • the WO 2008/119753 A1 discloses a gasification reactor comprising a pressure jacket and a reaction zone which is partially delimited by a vertically oriented, tubular membrane wall.
  • the gasification system also includes a burner basket for generating a flame and is set up to return exhaust gas to the flame by recirculating it. The exhaust gas passes through a cooling device.
  • the invention is based on the object of providing a boiler system and a method for generating thermal energy by burning at least one fuel by means of the boiler system according to the invention, with which a reduction in pollutant emissions, in particular NOx emissions, can be realized in an efficient and energy-saving manner .
  • This object is achieved by the boiler system according to the invention according to claim 1 and by the method for generating thermal energy with combustion of at least one fuel by means of the boiler system according to the invention according to claim 13.
  • Advantageous embodiments of the boiler system are specified in subclaims 2-12.
  • Advantageous embodiments of the method according to the invention for generating thermal energy are specified in subclaims 14 and 15.
  • the boiler system according to the invention is used to generate heat by burning at least one fuel and comprises a burner basket for receiving a burner with which a flame can be generated, the boiler system being set up to implement internal recirculation of exhaust gas generated during combustion into the flame , namely by returning exhaust gases recirculated in the combustion chamber directly to the burner outlet in the combustion process.
  • a cooling device is arranged in the region of the exhaust gas recirculation, with which heat from recirculated exhaust gas can be absorbed and dissipated, and that the cooling device has at least one cooling element in which a cooling medium can be absorbed or received, wherein the cooling element carrying the cooling medium protrudes so far into the combustion chamber or is positioned at such a distance from a boiler wall on which the burner is arranged that recirculated flue gas can flow around the cooling element.
  • the cooling device is arranged where exhaust gases recirculated in the combustion chamber are returned, preferably directly to the burner outlet, into the combustion process, with a cooling element carrying coolant projecting so far into the combustion chamber or at such a distance from a boiler wall during operation of the boiler system, on which the burner is arranged, it is positioned that the cooling element can be flowed around by recirculated flue gas.
  • This can be implemented in such a way that an intermediate space is formed between the cooling element and the relevant boiler wall, through which recirculating flue gas can flow and in this way can transfer heat to the cooling element, which is completely surrounded by flow. With the cooling device, heat can be transported away from the point of heat absorption.
  • the cooling device is not formed by the boiler wall itself, but in addition to the boiler wall there is an arrangement with which heat can be absorbed and dissipated from the recirculated exhaust gas.
  • the orientation and shape of the burner mouth defines the orientation and position of the burner to be used, which generates the flame.
  • the boiler system can also include the burner itself.
  • the burner works preferably as an injector and draws in an internally recirculated volume flow.
  • the recirculated mass flow is directly dependent on the temperature of the recirculate.
  • Lower temperatures of the recirculate achieved by the cooling device lead to a higher mass of exhaust gas recirculated inside the combustion chamber.
  • the lower temperature of the recirculated exhaust gas - especially if it is sufficiently mixed with the combustion air - favors a lowering of the O2 partial pressure in the oxidizing agent with a reduction in the reaction rate.
  • thermal ballast namely inert components in the recirculate, which are heated to combustion temperature in the flame; as well as an equalization of the temperature profile and thus a reduction or elimination of temperature gradients in the combustion zone and corresponding avoidance of so-called "hot spots" in the flame.
  • the supply of cooled recirculate can also make a contribution to mixing.
  • the cooling device is preferably arranged so close to an intake point that the recirculated exhaust gas is cooled in the region of the intake point at a burner mouth of the burner.
  • the burner outlet in the direction of the combustion chamber is arranged flush with the wall or preferably with a protrusion into the combustion chamber - referred to here as the immersion depth T.
  • the burner has a characteristic diameter C in which the combustion air or the mixture of combustion air and externally recirculated exhaust gas and the fuel are introduced into the combustion chamber. It is irrelevant whether there is one or more air or fuel nozzles per burner.
  • the burner diameter C encloses all the air and fuel outlets belonging to the burner.
  • the characteristic diameter C of the burner determines the necessary bending of the tubes in the wall of the heat generator.
  • the ratio of the immersion depth T to the characteristic burner diameter C is T / C 0.2 ... 1.0.
  • a ratio T / C of 0.55 ... 0.75 is particularly advantageous.
  • the cooling element should be formed by at least one tube in which a cooling medium can be received or received. This cooling medium can be conducted away from the burner mouth through the pipe and can give off heat absorbed in the cooling medium at a certain distance from the burner mouth.
  • the boiler system has a combustion chamber wall which comprises at least one line element in which a cooling medium can be received or received, the pipe of the cooling device being fluidically connected to the line element.
  • line elements in particular also designed as tubes, are provided in a boiler wall, such as the end wall, on which several fluidically in the area of the Burner mouth extending pipes are each connected. In this way, heat is effectively dissipated from the area of the burner mouth into the medium in the boiler wall, from where the heat can be dissipated.
  • the invention is not limited to this embodiment, but it can also be provided that the cooling medium is not provided from the medium present in the boiler wall, but is supplied to and removed from the cooling device separately.
  • the tube protrudes into a combustion chamber formed by the boiler system.
  • This can be implemented in particular in that the pipe or several pipes that form the cooling device are turned into the furnace from a boiler wall.
  • the tube bend in the boiler walls can thus be used to insert a burner or several burners for active cooling of the flue gas recirculation inside the combustion chamber.
  • the cooling device extends into the furnace up to dimension X, with the dimension of the projection X in relation to the characteristic diameter of the burner C in the following ratio: X / C. > 0.7 ... 1.4.
  • the length of the cooling device, which is arranged around the burner outlet can extend from dimension X to the boiler wall.
  • the boiler system can also be designed in such a way that the burner mouth essentially terminates with a combustion chamber wall and the cooling device is arranged around the burner mouth for the purpose of cooling the recirculate.
  • the cooling device preferably comprises a plurality of pipes as cooling elements in which a cooling medium can be or is received, the distance between adjacent pipes being at least large enough that the exhaust gas mass flow of the recirculated exhaust gas caused by the cooling effect of the pipes forming the cooling device, which is between the Pipes flowing through or around the circumference of the pipes is greater than in an embodiment of the boiler system that is identical except for the cooling device according to the invention.
  • the tubes have a minimum distance of 30 mm from one another. These several tubes together form the cooling device in which the burner is to be inserted or inserted.
  • the cooling surface of the walls of the heat generator is increased by the sum of all pipe surfaces of a burner basket, which in conventional embodiments could not take part in the heat exchange due to covering with insulating material.
  • no additional use of material is necessary, since only the conventionally outwardly designed protrusions of the tubes are now arranged according to the invention on the inside of the furnace so that the entire circumference of these tubes can absorb heat from the furnace.
  • the entire circumference of the tubes is now available for heat absorption in the area of the protuberance.
  • the pipe or pipes through which the medium flows are arranged rotatably about an axis, the pipe or pipes being connected to a corresponding rotary leadthrough for supplying and discharging the cooling medium into the pipe or pipes Reservoir or is connected to tubes in the combustion chamber wall or are.
  • This axis is preferably the longitudinal axis of the flame generated by the burner.
  • the cooling device is designed with a plurality of tubes, the plurality of tubes are accordingly also arranged to be rotatable about the longitudinal axis of the flame.
  • the tube or tubes can be connected to a reservoir or tubes in the combustion chamber wall with corresponding rotary feedthroughs. This configuration brings about an additional increase in efficiency in the cooling effect of the recirculated exhaust gas.
  • the boiler system can have an injection device with which a fluid (eg feed water) can be injected into the area of the recirculation of exhaust gas into the combustion chamber.
  • a fluid eg feed water
  • the spray device is designed in such a way that fluid discharged by it reaches the cooling device, so that, if necessary, that does not evaporate during the injection Fluid causes an additional cooling effect on the cooling device.
  • a reservoir for the fluid to be injected can be fluidically coupled to the pipe or pipes of the cooling device.
  • the boiler system furthermore has at least one burner accommodated in a respective burner cage for generating a flame directed into the furnace of the boiler system along a longitudinal axis.
  • the cooling device is preferably arranged such that it radially surrounds the longitudinal axis at least in sections.
  • the cooling device can be arranged in different, axial positions in relation to the burner or the burner mouth. For example, starting from the boiler wall in or on which the burner is arranged, the cooling device can end in front of the burner mouth in the axial direction along the longitudinal axis of a flame generated by the burner, or it can only begin behind the burner mouth or there can be an axial overlapping arrangement of cooling device and burner mouth can be realized.
  • the cooling device comprises a plurality of tubes as cooling elements, in which a cooling medium can be received or received, the boiler system having a combustion chamber wall from which the tubes extend into the interior of the furnace, and at least some of these tubes are two essentially parallel have mutually extending first sections which are arranged essentially parallel to the longitudinal axis and at an angle, in particular perpendicular to the combustion chamber wall. Adjacent to this are two essentially angled, in particular perpendicular to the longitudinal axis and essentially parallel to the combustion chamber wall, second sections, and in turn at least one third section, which runs essentially parallel to the burner wall and at an angle, in particular perpendicular to the longitudinal axis and the second section .
  • the distance between the pipes in the second and third section should be 30 ... 90 mm. A distance between the pipes of 45 ... 70 mm is particularly advantageous.
  • the distance between the pipes to be selected depends, among other things, on the temperature of the recirculated exhaust gas in the outer recirculation zone before it passes through the cooling device.
  • the cooling device comprises a plurality of tubes as cooling elements in which a cooling medium can be received or received, the boiler system having a combustion chamber wall from which the tubes extend into the interior of the combustion chamber, and at least some these tubes each have a first section which is arranged essentially parallel to the longitudinal axis and at an angle, in particular perpendicular to the combustion chamber wall.
  • the first sections of the tubes are fluidically connected to an annular distributor which is arranged essentially parallel to the combustion chamber wall at an angle, in particular perpendicular, to the longitudinal axis.
  • the annular distributor can have a circular shape and be arranged coaxially to the longitudinal axis.
  • the cooling device comprises at least one tube as a cooling element which is arranged in a helical manner around the longitudinal axis. This helical tube can be fluidically coupled to line elements in the combustion chamber wall.
  • the helical tube can comprise a first winding region and a second winding region, the first winding region being arranged coaxially in relation to the second winding region and at least in sections radially inside the second winding region.
  • the two winding areas are preferably formed by just one tube, so that this one tube merges in an axially end-side area from the first winding area into the second winding area.
  • the cooling device can have a rotationally symmetrical, in particular a conical design, with an essentially parallel, in particular coaxial, alignment to the longitudinal axis.
  • the cooling device can in particular be designed such that the cone shape extends in the direction of the Firebox opens, that is, the smaller diameter is formed on the side of the arrangement of the burner on the boiler wall, and the larger diameter is formed on the opposite side.
  • This embodiment has the advantage of partially shielding the boiler wall from radiant heat, so that it has a lower temperature in some areas and does not heat up exhaust gases that are recirculated close to it as much.
  • the tubes extending into the combustion chamber have a different distance from the diameter C of the burner.
  • the tubes that are placed closest to the combustion chamber wall should have the smallest distance from the burner outer diameter and the other tubes that extend deeper into the combustion chamber should be arranged with increasing distance from the burner diameter C.
  • This results in a conical expansion of the cooling device which has the smallest diameter at the beginning the cooling device near the combustion chamber wall and at the end of the cooling device in the direction of the combustion chamber - at dimension X - has the largest diameter.
  • the resulting angle of the conical expansion should be between 10 and 30 °. 15 ... 20 ° are particularly advantageous.
  • the boiler system can have a fluid supply device with which a fluid, such as fuel, air and / or recirculated exhaust gas, directed radially in the direction of the longitudinal axis, can be discharged through the cooling device.
  • a fluid such as fuel, air and / or recirculated exhaust gas
  • the fluid supply device it is achieved that by entrainment of flue gas by the discharged or flowing fluid, more flue gas is fed to the cooling device and consequently more flue gas can be cooled per unit of time. It is provided that the flue gas or recirculated exhaust gas flows through between cooling elements or sections of a cooling element of the cooling device.
  • the cooling system is preferably arranged on an end face of the flame tube on which the burner or burner mouth is also located.
  • the end face can be lined with refractory material except for the cooling device, the tubes of the cooling device leading through the refractory material.
  • Such a flame tube boiler can be supplemented by additional convective heating surfaces, preferably in tubes, around the burner head or the cooling device, which further increases the cooling effect of the exhaust gas recirculation.
  • the tubes of the cooling device can be fed from this water-cooled front and the heated fluid can be fed back to the water-cooled front.
  • a method for generating thermal energy by burning at least one fuel by means of the boiler system according to the invention in which a flame is generated in a furnace of the boiler system and the exhaust gas that is produced is returned to the flame, the cooling device being used for the Boiler system heat from the recirculated exhaust gas is absorbed and dissipated.
  • the exhaust gas is preferably fed to the combustion process in the area of the burner mouth and cooled.
  • the cooling device of the boiler system can rotate when the recirculated exhaust gas is cooled, the pipe or pipes being connected to a reservoir or pipes in the combustion chamber wall with corresponding rotary feedthroughs for supplying and discharging the cooling medium into the pipe or pipes . are.
  • fluid can be injected into the area of the recirculation of exhaust gas into the combustion chamber by means of an injection device.
  • the boiler system according to the invention comprises a combustion chamber wall 10, which is designed here as an end wall and consequently also as a boiler wall. It defines the end face 11 of the furnace of the boiler system.
  • the combustion chamber wall 10 comprises several parallel Line elements 12 running towards one another, preferably in the form of a tube, which here form what is known as a fin wall. These line elements 12 are connected to individual tubes 70 of a burner cage 20 via fluidic connections 13.
  • This burner basket 20 forms a cooling device 60, namely by virtue of the fact that a cooling medium 61 can flow or flow through the tubes 70.
  • a burner 30 is arranged radially inside the burner cage 20 to form a flame in the combustion chamber.
  • the tubes 70 of the cooling device 60 are shaped in a special way. They comprise 2 first sections 71 which run essentially parallel to one another and extend out of the plane of the combustion chamber wall 10. This is followed in each case by a second section which runs essentially perpendicular to the first section and is consequently arranged essentially parallel to the combustion chamber wall. A third section 73 connects the two second sections 72 with one another, so that the FIGS Figure 2 visible U-shape is realized.
  • a burner 30 is located inside the burner cage 20.
  • the flame 40 emerges from the burner mouth 31 or burner outlet along its longitudinal axis 41, which extends into the combustion chamber 1 of the boiler system.
  • the boiler system is designed in such a way that the resulting exhaust gas 50 is returned to the combustion process or the flame in an exhaust gas recirculation 51 in a suction point 52, for example through a boiler wall (not shown here) opposite the burner 30, on which the flue gases deflected and directed back in the direction of the burner 30, as indicated by the flow arrows of the exhaust gas recirculation 51.
  • the flue gas passes at least partially between the pipes 70 of the cooling device 60 and / or flows around them.
  • the exhaust gas 50 is thus also fed into the cooling region of the cooling device 60 via the exhaust gas recirculation 51.
  • the temperature of the exhaust gas 50 is reduced so that the exhaust gas mass flow can be increased and consequently more exhaust gas 50 can be recirculated into the combustion process per unit of time than with conventional devices.
  • the Lowered the temperature of the combustion process As already described, these effects can significantly reduce NOx emissions.
  • a further reduction in the temperature can be brought about by using the injection device 80 shown, with which the injected fluid 81 can be discharged into the combustion process or in its vicinity.
  • the tubes 70 should have such a distance A, as in Figure 1 indicated, which enables sufficient heat transfer from exhaust gas 50 to cooling device 60.
  • Out Figure 4 it can also be seen that the maximum distance D of the cooling device 60 in relation to the burner mouth 31 is very small compared to the length L of the entire flow path of the exhaust gas 50 to be measured along the longitudinal axis 41 of the flame 40. It can be seen from this that the effect of the cooling device is generated essentially in the area in which the flame 40 also emerges from the burner 30 and in which the exhaust gas 50 is also fed back into the combustion process.
  • the cooling device 60 protrudes into the furnace 1 by a dimension X. This essentially distinguishes the design of the boiler system according to the invention from that of conventional boiler systems, where a protuberance or projection of tubes arranged around the burner is usually led to the outside of the boiler system.
  • the cooling device 60 is also formed by a burner basket 20, which is implemented by a plurality of first sections 71 of tubes 70 running parallel to one another.
  • these tubes 70 are fluidically connected to line elements 12 of the combustion chamber wall 10.
  • These first sections 71 of the tubes 70 are all fluidically connected to an annular distributor 74, which makes it possible for the cooling medium 61 guided by the tubes to be distributed and passed on in the tubes 70.
  • the cooling device 60 is also formed by a burner basket 20, which here, however, comprises a first winding area 75 of a tube 70 and a second winding area 76 of the tube 70, the first winding area 75 being arranged radially inside the second winding area 76.
  • This embodiment could also be implemented with just one turn area.
  • the two winding regions 75, 76 are technically connected to one another by means of a transition 77 flow. Furthermore, they are connected to the line elements 12 of the combustion chamber wall 10 via fluidic connections 13.
  • Figure 11 shows in a diagram the relationship between the temperature of the combustion process and the NOx concentration of the exhaust gas. It can be seen that when the temperature is reduced, a correspondingly significant reduction in the NOx concentration in the exhaust gas is recorded, which can be achieved with the cooling device according to the invention.
  • Figure 12 shows in section 2 different embodiments of the cooling device 60. Both variants are designed in such a way that the individual tubes 60 or sections of the tube 60 are arranged radially outside the burner 30 and axially overlap its burner mouth 31.
  • the tubes 60 are arranged essentially in such a way that together they form a cylindrical shape.
  • the tubes 60 are arranged such that they define a conical shape, the region of the cooling device 60 facing the end face 11 having a smaller diameter than the side of the cooling device 60 facing away from it and is therefore arranged on the side of the burner mouth 31.
  • the exhaust gas recirculation 51 runs between the tubes 60, so that heat can be transferred from the exhaust gas into the cooling medium in the tubes 60.
  • the conical design of the cooling device 60 has the particular advantage that it at least partially protects the frontal combustion chamber wall 10 from radiant heat, so that this area has a lower temperature and the cooling effect is thereby increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Kesselanlage sowie ein Verfahren zur Erzeugung von Wärme durch Verbrennung wenigstens eines Brennstoffes.
  • An Wärmeerzeugern wie zum Beispiel Kesseln bzw. Kesselanlagen mit Rohr-Steg-RohrWänden bzw. Flossenwänden als Umfassungsflächen des Feuerraumes, allgemein als Wasserrohrkessel bezeichnet, werden Brenner-Öffnungen in den Wänden durch Ausbiegung von Rohren realisiert. Diese auskragenden Rohre werden auch als Brennerkorb bezeichnet. Dabei sind die Rohre nach außen gebogen und mit Feuerfestmaterial abgedichtet und überdeckt. Um den Brennerkorb herum wird auf der Außenseite der Kesselwandung gasdicht ein Brennerkasten aufgeschweißt, welcher die ausgebogenen Rohre überdeckt und isoliert. An dem Brennerkasten wird der Brenner montiert, dessen Brennermund in den Feuerraum des Kessels führt.
    Die Summe der gestreckten Rohrlänge aller Rohre eines Brennerkorbes hängt vom erforderlichen lichten Einbaudurchmesser des Brenners ab. Bei Low-NOx-Brennern mit Luft- und/ oder Brennstoffstufung ist dieser Einbaudurchmesser größer als bei Standardbrennern ohne Stufung.
    Bei Flammrohrkesseln werden die Brenner typischerweise an der Stirnwand
    bzw. Frontwand des Flammrohres montiert. Üblich ist die Zustellung der dem Feuerraum zugewandten Seite dieser Frontwand mit Feuerfestmaterial als Isolierung oder seltener auch als glatte Stahlwand mit Wasserkühlung.
  • Es ist bekannt, dass die NOx-Bildung auf thermischen Bildungsweg bei der Verbrennung von gasförmigen, flüssigen und festen Brennstoffen durch Abgasrezirkulation wirksam reduziert werden kann. Es wird dabei zwischen externer und feuerrauminterner Abgasrezirkulation unterschieden.
    Bei der externen Abgasrezirkulation wird dem Abgasstrom nach
    Verlassen des Feuerraumes ein Teilstrom entnommen und zum Brenner bzw. in den Feuerraum zurückgeführt. Häufig wird dieser Teilstrom der Verbrennungsluft beigemischt, um den Sauerstoffpartialdruck des Oxidationsmittels zu senken.
    Bei der feuerrauminternen Abgasrezirkulation dagegen wirkt der Brenner als Injektor, welcher direkt am Strahlrand des Luftaustritts Abgas aus der äußeren Rezirkulationszone ansaugt. Bei Brennern mit überkritischem Drall wird Abgas auch auf der Flammenachse bzw. im Unterdruckgebiet im Kern der Flammenwurzel rezirkuliert.
  • Die Effizienz der feuerrauminternen Abgasrezirkulation wird von mehreren Faktoren beeinflusst, wie zum Beispiel der Größe des Treibimpulsstroms der aus dem Brenner austretenden Luftströmung, der Brennstoffströmung bzw. Luftbrennstoffgemisch-Strömung, gegebenenfalls in Mischung mit extern rezirkuliertem Abgas; der Düsenbauform des Brenners und der Intensität der Vermischung von Treibstrahl und intern angesaugtem Abgasstrom. Bei der Düsenbauform spielt insbesondere eine Rolle, ob der Querschnitt der Düse einen zylindrischen Austritt, eine konische Erweiterung oder eine konische Verjüngung aufweist.
  • Die WO 2008/ 119753 A1 offenbart einen Vergasungsreaktor, der einen Druckmantel und eine Reaktionszone umfasst, die teilweise durch eine vertikal ausgerichtete, röhrenförmige Membranwand begrenzt ist. Die Vergasungsanlage umfasst des weiteren einen Brennerkorb zur Erzeugung einer Flamme und ist dazu eingerichtet, durch Rezirkulation von Abgas dieses der Flamme wieder zuzuführen. Das Abgas passiert dabei eine Kühleinrichtung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Kesselanlage und ein Verfahren zur Erzeugung von Wärmeenergie unter Verbrennung wenigstens eines Brennstoffes mittels der erfindungsgemäßen Kesselanlage zur Verfügung zu stellen, mit denen in effizienter und energiesparender Weise eine Minderung des Schadstoffausstoßes, insbesondere von NOx-Emissionen, realisierbar ist.
    Diese Aufgabe wird durch die erfindungsgemäße Kesselanlage nach Anspruch 1 sowie durch das Verfahren zur Erzeugung von Wärmeenergie unter Verbrennung wenigstens eines Brennstoffes mittels der erfindungsgemäßen Kesselanlage nach Anspruch 13 gelöst. Vorteilhafte Ausgestaltungsformen der Kesselanlage sind in den Unteransprüchen 2-12 angegeben. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zur Erzeugung von Wärmeenergie sind in den Unteransprüchen 14 und 15 angegeben.
  • Die erfindungsgemäße Kesselanlage dient zur Erzeugung von Wärme durch Verbrennung wenigstens eines Brennstoffes und umfasst einen Brennerkorb zur Aufnahme eines Brenners, mit dem eine Flamme erzeugbar ist, wobei die Kesselanlage dazu eingerichtet ist, eine interne Rückführung von bei der Verbrennung erzeugten Abgases in die Flamme zu realisieren, nämlich durch Rückführung von im Feuerraum rezirkulierten Abgasen direkt zum Brenneraustritt in den Verbrennungsprozess.
    Es ist erfindungsgemäß vorgesehen, dass im Bereich der Abgas-Rückführung eine Kühleinrichtung angeordnet ist, mit der Wärme von rückgeführtem Abgas aufnehmbar und ableitbar ist, und dass die Kühleinrichtung wenigstens ein Kühlelement aufweist, in welchem ein Kühlmedium aufnehmbar oder aufgenommen ist, wobei das kühlmediumführende Kühlelement derart weit in den Brennraum hineinragt bzw. in einem derartigen Abstand von einer Kesselwand, an der der Brenner angeordnet ist, positioniert ist, dass das Kühlelement von rückgeführtem Rauchgas umströmbar ist.
    Das bedeutet, dass die Kühleinrichtung dort angeordnet ist, wo Rückführung von im Feuerraum rezirkulierten Abgasen vorzugsweise direkt zum Brenneraustritt in den Verbrennungsprozess stattfindet, wobei im Betrieb der Kesselanlage ein kühlmediumführendes Kühlelement derart weit in den Brennraum hineinragt bzw. in einem derartigen Abstand von einer Kesselwand, an der der Brenner angeordnet ist, positioniert ist, dass das Kühlelement von rückgeführtem Rauchgas umströmbar ist. Dies kann derart realisiert sein, dass zwischen dem Kühlelement und der betreffenden Kesselwand ein Zwischenraum ausgebildet ist, durch den rezirkulierendes Rauchgas strömen kann und derart Wärme auf das vollständig umströmte Kühlelement übertragen kann.
    Mit der Kühleinrichtung ist Wärme von der Stelle der Wärme-Aufnahme weg transportierbar. Dabei ist die Kühleinrichtung nicht durch die Kesselwand selbst ausgebildet, sondern zusätzlich zur Kesselwand ist eine Anordnung vorhanden, mit der Wärme aus dem rückgeführten Abgas aufnehmbar und ableitbar ist. Die Ausrichtung und Form des Brennermunds definiert dabei die Ausrichtung und Position des einzusetzenden Brenners, der die Flamme erzeugt. Die Kesselanlage kann dabei auch den Brenner selbst umfassen. Durch die Abkühlung des rückgeführten Abgases lässt sich eine Erhöhung des intern rezirkulierten Abgasmassenstromes zum jeweiligen Brenner erreichen.
  • Dies beruht im Wesentlichen darauf, dass die Temperatur des angesaugten Abgasstromes aus dem Feuerraum am Einsaugort am Brenneraustritt gemindert wird. Der Brenner arbeitet vorzugsweise als Injektor und saugt einen intern rezirkulierten Volumenstrom an. Der rezirkulierte Massenstrom ist direkt von der Temperatur des Rezirkulats abhängig.
    Durch die Kühleinrichtung realisierte niedrigere Temperaturen des Rezirkulats führen zu einer höheren feuerraumintern rezirkulierten Abgasmasse.
    Zudem begünstigt die niedrigere Temperatur des rückgeführten Abgases - insbesondere bei ausreichender Durchmischung mit der Verbrennungsluft - eine Senkung des O2-Partialdruckes im Oxidationsmittel mit Verringerung der Reaktionsgeschwindigkeit. Weitere positive Folgen der Temperatur-Minderung sind eine Senkung der Verbrennungstemperatur durch sogenannten thermischen Ballast, nämlich Inertbestandteile im Rezirkulat, welche in der Flamme mit auf Verbrennungstemperatur erhitzt werden; sowie eine Vergleichmäßigung des Temperaturprofils und somit eine Verminderung bzw. Eliminierung von Temperaturgradienten in der Verbrennungszone und dementsprechende Vermeidung von sogenannten "Hot Spots" in der Flamme.
  • Dabei kann die Zuführung von gekühltem Rezirkulat auch einen Beitrag zur Durchmischung liefern.
    Vorzugsweise ist die Kühleinrichtung derart dicht an einer Einsaugstelle angeordnet, dass Abkühlung des rückgeführten Abgases im Bereich der Einsaugstelle an einem Brennermund des Brenners realisiert ist. Der Brenneraustritt in Richtung Feuerraum wird wandbündig oder vorzugsweise mit einem Überstand in den Feuerraum - hier als Eintauchtiefe T bezeichnet, hinein angeordnet. Der Brenner besitzt einen charakteristischen Durchmesser C, in welchem die Verbrennungsluft bzw. das Gemisch aus Verbrennungsluft und extern rezirkuliertem Abgas sowie der Brennstoff in den Feuerraum eingebracht werden. Dabei ist es unerheblich, ob es sich um eine oder mehrere Luft- bzw. Brennstoffdüsen pro Brenner handelt. Der Brennerdurchmesser C umschließt alle zum Brenner gehörenden Luft- und Brennstoffauslässe. Der charakteristische Durchmesser C des Brenners bestimmt die notwendige Ausbiegung der Rohre in der Wand des Wärmeerzeugers. Das Verhältnis aus Eintauchtiefe T zum charakteristischen Brennerdurchmesser C beträgt T/C 0,2 ... 1,0. Besonders vorteilhaft ist ein Verhältnis T/C von 0,55 ...0,75.
    Die Einbautiefe der Kühleinrichtung bzw. das Maß der Auskragung " in den Feuerraum hinein kann ebenfalls ins Verhältnis zum charakteristischen Brennerdurchmesser C gestellt werden und beträgt X/C = 0,7 ... 1,4. Besonders vorteilhaft ist ein Verhältnis von X/C = 1,1 ... 1,2.
    Das Kühlelement sollte dabei durch wenigstens ein Rohr ausgebildet sein, in welchem ein Kühlmedium aufnehmbar oder aufgenommen ist. Dieses Kühlmedium kann durch das Rohr vom Brennermund weg geleitet werden und in einer gewissen Entfernung von Brennermund im Kühlmedium aufgenommene Wärme abgeben. Zur Verbesserung des konvektiven Wärmeüberganges des Abgases an die Oberfläche der Rohre der Kühleinrichtung können diese mit zusätzlichen Kühlrippen oder Pins auf der Außenseite, die mit dem Abgas in Kontakt steht, ausgerüstet sein.
    Insbesondere ist vorgesehen, dass die Kesselanlage eine Brennkammerwand aufweist, die wenigstens ein Leitungselement umfasst, in welchem ein Kühlmedium aufnehmbar oder aufgenommen ist, wobei das Rohr der Kühleinrichtung strömungstechnisch mit dem Leitungselement verbunden ist. Vorzugsweise sind mehrere Leitungselemente, insbesondere ebenfalls als Rohre ausgestaltet, in einer Kesselwand, wie zu Beispiel der Stirnwand vorgesehen, an denen strömungstechnisch mehrere im Bereich des Brennermundes verlaufende Rohre jeweils angeschlossen sind. Dadurch wird eine effektive Ableitung von Wärme aus dem Bereich des Brennermundes in das Medium in der Kesselwand realisiert, von wo die Wärme abgeleitet werden kann. Dabei ist die Erfindung nicht auf diese Ausführungsform eingeschränkt, sondern es kann auch vorgesehen sein, dass das Kühlmedium nicht aus dem in der Kesselwandung vorhandenen Medium bereitgestellt wird, sondern der Kühleinrichtung extra zu- und abgeleitet wird.
  • In bevorzugter Ausgestaltung ist vorgesehen, dass das Rohr in einen von der Kesselanlage ausgebildeten Feuerraum hineinragt. Dies kann insbesondere dadurch ausgeführt sein, dass das Rohr bzw. mehrere Rohre, die die Kühleinrichtung ausbilden, von einer Kesselwand in den Feuerraum eingestülpt sind. Es lässt sich somit die Rohrausbiegung in Kesselwänden für die Einbringung eines Brenners oder mehrerer Brenner für die aktive Kühlung der feuerrauminternen Abgasrezirkulation verwenden. Dabei erstreckt sich die Kühleinrichtung bis zum Maß X in den Feuerraum hinein, wobei das Maß der Auskragung X in Bezug zum charakteristischen Durchmesser des Brenners C in folgendem Verhältnis steht: X / C > 0,7 1,4.
    Figure imgb0001
    Die Länge der Kühleinrichtung, welche um den Brenneraustritt angeordnet ist, kann sich vom Maß X bis zur Kesselwand erstrecken. In alternativer Ausgestaltung kann die Kesselanlage auch derart ausgebildet sein, dass der Brennermund im Wesentlichen mit einer Brennkammer-Wand abschließt und um den Brennermund herum die Kühleinrichtung zwecks Abkühlung des Rezirkulats angeordnet ist.
  • Vorzugsweise umfasst die Kühleinrichtung als Kühlelemente mehrere Rohre, in welchen ein Kühlmedium aufnehmbar oder aufgenommen ist, wobei der Abstand zwischen benachbarten Rohren mindestens so groß ist, dass der durch die Abkühlungswirkung der die Kühleinrichtung ausbildenden Rohre bewirkte Abgas-Massestrom des rückgeführten Abgases, welcher zwischen den Rohren hindurch bzw. um den Umfang der Rohre herum strömt, größer ist als bei einer bis auf die erfindungsgemäße Kühleinrichtung identischen Ausführungsform der Kesselanlage. Das bedeutet, dass die Rohre wenigstens so weit voneinander beabstandet sein müssen, dass sie einen Abkühlungseffekt auf das rückgeführte Abgas bewirken, sodass der Abgas-Massestrom des rückgeführten Abgases größer ist als bei herkömmlichen Ausführungsformen, die keine erfindungsgemäße Kühleinrichtung am Brennermund aufweisen.
    Vorzugsweise sollte durch die Rohre, die die Kühleinrichtung ausbilden, sowie das darin befindliche Kühlmedium eine Temperaturminderung des rückgeführten und eingesaugten Abgases um wenigstens 50 K realisierbar sein.
  • In besonderer Ausgestaltung haben die Rohre einen minimalen Abstand von 30 mm zueinander.
    Diese mehreren Rohre bilden zusammen die Kühleinrichtung aus, in die der Brenner einzusetzen oder eingesetzt ist.
    Die Kühlfläche der Wände des Wärmeerzeugers wird dabei um die Summe
    aller Rohroberflächen eines Brennerkorbes vergrößert, welcher in herkömmlichen Ausführungsformen durch Abdeckung mit Isoliermaterial nicht am Wärmeaustausch teilnehmen konnte. Gegenüber den herkömmlichen Ausführungsformen ist somit kein zusätzlicher Materialeinsatz notwendig, da lediglich die in herkömmlicher Weise nach außen ausgeführten Ausstülpungen der Rohre erfindungsgemäß nun auf der Innenseite des Feuerraums so angeordnet werden, daß der gesamte Umfang dieser Rohre Wärme aus dem Feuerraum aufnehmen kann. Im Gegensatz zu den herkömmlichen Ausführungsformen steht hierbei nunmehr im Bereich der Ausstülpung der gesamte Umfang der Rohre zur Wärmeaufnahme zur Verfügung. Je nach Brenneranzahl und Einbaudurchmesser sowie vorhandener Wandoberfläche ist eine Zunahme der zur Verfügung stehenden Kühlfläche um 5-9 % gegenüber herkömmlichen Ausführungsformen zu erwarten. Dies führt unter anderem auch zu dem positiven Effekt der insgesamten Verringerung der Feuerraumtemperatur, was sich ebenfalls mindernd auf die NOx-Emissionen auswirkt.
  • In besonderer Ausführungsform der erfindungsgemäßen Kesselanlage ist vorgesehen, dass das mediumdurchströmte Rohr bzw. mediumdurchströmbare Rohre um eine Achse rotierbar angeordnet ist, wobei zur Zu- und Ableitung des Kühlmediums in das Rohr bzw. die Rohre das Rohr bzw. die Rohre mit entsprechenden Drehdurchführungen an ein Reservoir bzw. an Rohre in der Brennkammerwand angeschlossen ist bzw. sind. Vorzugsweise ist diese Achse die Längsachse der vom Brenner erzeugten Flamme. Bei Ausgestaltung der Kühleinrichtung mit mehreren Rohren sind demzufolge auch die mehreren Rohre um die Längsachse der Flamme rotierbar angeordnet. Zur Zu- und Ableitung des Kühlmediums in das Rohr bzw. die Rohre kann das Rohr bzw. die Rohre mit entsprechenden Drehdurchführungen an ein Reservoir bzw. an Rohre in der Brennkammerwand angeschlossen sein. Diese Ausgestaltung bewirkt eine zusätzliche Effizienz-Erhöhung in der Kühlwirkung des rückgeführten Abgases.
  • Weiterhin kann die Kesselanlage eine Eindüseeinrichtung aufweisen, mit der ein Fluid (z.B. Speisewasser) in den Bereich der Rückführung von Abgas in den Feuerraum einspritzbar ist. Dadurch kann ein weiterer Abkühlungseffekt des Rezirkulats bewirkt werden. In vorteilhafter Ausgestaltung ist die Spritzeinrichtung derart ausgestaltet, dass von ihr ausgebrachtes Fluid auf die Kühleinrichtung gelangt, sodass gegebenenfalls beim Einspritzen nicht verdampftes Fluid einen zusätzlichen Kühlungseffekt auf der Kühleinrichtung bewirkt. Ein Reservoir für das einzuspritzende Fluid kann dabei strömungstechnisch mit dem Rohr bzw. den Rohren der Kühleinrichtung gekoppelt sein.
  • Die Kesselanlage weist weiterhin wenigstens einen in jeweils einem Brennerkorb aufgenommenen Brenner auf, zur Erzeugung einer in den Feuerraum der Kesselanlage gerichteten Flamme entlang einer Längsachse. Die Kühlungseinrichtung ist dabei vorzugsweise derart angeordnet, dass sie zumindest abschnittsweise die Längsachse radial umgibt.
    Dabei kann die Kühlungseinrichtung in unterschiedlichen, axialen Positionen in Bezug zum Brenner bzw. den Brennermund angeordnet sein. Zum Beispiel kann ausgehend von der Kesselwand, in oder an der der Brenner angeordnet ist, in axialer Richtung demzufolge entlang der Längsachse einer vom Brenner erzeugten Flamme die Kühleinrichtung vor der Brennermündung enden, oder aber sie kann erst hinter der Brennermündung beginnen oder es kann eine axial überlappende Anordnung von Kühleinrichtung und Brennermündung realisiert sein.
    In einer ersten Ausführungsform umfasst die Kühleinrichtung als Kühlelemente mehrere Rohre, in welchen ein Kühlmedium aufnehmbar oder aufgenommen ist, wobei die Kesselanlage eine Brennkammerwand aufweist, von der ausgehend die Rohre sich ins Innere des Feuerraums erstrecken, und wobei zumindest einige dieser Rohre zwei im Wesentlichen parallel zueinander verlaufende erste Abschnitte aufweisen, die im Wesentlichen parallel zur Längsachse und winklig, insbesondere senkrecht zur Brennkammerwand angeordnet sind.
    Daran anschließend sind zwei im Wesentlichen winklig, insbesondere senkrecht zur Längsachse und im Wesentlichen parallel zur Brennkammerwand verlaufende zweite Abschnitte angeordnet, und wiederum daran wenigstens ein dritter Abschnitt angeordnet, der im Wesentlichen parallel zur Brennerwand und winklig, insbesondere senkrecht zur Längsachse sowie dem zweiten Abschnitten verläuft. Dadurch ergibt sich jeweils ein U-förmiger Verlauf eines derartigen Rohres, wobei das U aus dem zweidimensionalen Bereich in Richtung der dritten Raumkoordinate umgebogen ist. Der Abstand der Rohre des zweiten und dritten Abschnittes zueinander soll 30 ... 90 mm betragen. Besonders vorteilhaft ist ein Abstand der Rohre zueinander von 45 ... 70 mm. Der zu wählende Abstand der Rohre hängt unter anderem von der Temperatur des rezirkulierten Abgases in der äußeren Rezirkulationszone vor Durchtritt durch die Kühleinrichtung ab.
  • In einer zweiten Ausgestaltung der Kühleinrichtung ist vorgesehen, dass die Kühleinrichtung als Kühlelemente mehrere Rohre umfasst, in welchen ein Kühlmedium aufnehmbar oder aufgenommen ist, wobei die Kesselanlage eine Brennkammerwand aufweist, von der ausgehend die Rohre sich ins Innere des Feuerraums erstrecken, und wobei zumindest einige dieser Rohre jeweils einen ersten Abschnitt aufweisen, die im Wesentlichen parallel zur Längsachse und winklig, insbesondere senkrecht zur Brennkammerwand angeordnet ist. Die ersten Abschnitte der Rohre sind strömungstechnisch mit einem ringförmigen Verteiler verbunden, der im Wesentlichen parallel zur Brennkammerwand winklig, insbesondere senkrecht, zur Längsachse angeordnet ist. Insbesondere kann der ringförmige Verteiler eine Kreisform aufweisen und koaxial zur Längsachse angeordnet sein. Dadurch kann Kühlmedium aus einem jeweiligen Rohr in den Verteiler gelangen und von diesem verteilt bzw. anderen Rohren zugeleitet werden. In einer weiteren vorteilhaften Ausführung ist der erste Abschnitt der Rohre nicht parallel zur Brennerachse ausgeführt, sondern weist auf einem größeren Teilkreis Rohre, welche aus der Brennkammerwand ausgebogen sind, im Vergleich zum ringförmigen Verteiler auf.
    In einer dritten Ausführungsform der Kühleinrichtung ist vorgesehen, dass die Kühleinrichtung als Kühlelement wenigstens ein Rohr umfasst, welches schraubengangförmig um die Längsachse angeordnet ist. Dieses schraubengangförmige Rohr kann strömungstechnisch mit Leitungselementen in der Brennkammerwand gekoppelt sein.
    Des Weiteren kann das schraubengangförmige Rohr einen ersten Windungsbereich und einen zweiten Windungsbereich umfassen, wobei der erste Windungsbereich koaxial in Bezug zum zweiten Windungsbereich und zumindest abschnittsweise radial innerhalb des zweiten Windungsbereiches angeordnet ist. Die beiden Windungsbereiche sind dabei vorzugsweise durch lediglich ein Rohr ausgebildet, so dass dieses eine Rohr in einem axial endseitigen Bereich vom ersten Windungsbereich in den zweiten Windungsbereich übergeht. Dafür bietet es sich an, dass der erste Windungsbereich und der zweite Windungsbereich entgegengesetzte Steigungen aufweisen, sodass in einfacher Weise der Übergang zwischen dem ersten Windungsbereich und dem zweiten Windungsbereich realisierbar ist.
  • Die Kühleinrichtung kann eine rotationssymmetrische, insbesondere eine konische Ausgestaltung aufweisen, mit einer im Wesentlichen parallelen, insbesondere koaxialen Ausrichtung zur Längsachse. Das bedeutet, dass das Kühlelement bzw. mehrere Kühlelemente der Kühleinrichtung derart angeordnet sind, dass sie die Mantelfläche eines rotationssymmetrischen Körpers ausbilden. Insbesondere kann die Kühleinrichtung insbesondere derart ausgeführt sein, dass sich die Konus-Form in Richtung auf den Feuerraum öffnet, d.h., dass der geringere Durchmesser an der Seite der Anordnung des Brenners an der Kesselwand ausgebildet ist, und der größere Durchmesser an der gegenüberliegenden Seite ausgebildet ist. Diese Ausgestaltung hat den Vorteil der teilweisen Abschirmung der Kesselwand vor Strahlungswärme, so dass diese bereichsweise eine geringere Temperatur aufweist und dicht an ihr rückgeführte Abgase weniger stark aufheizt. Dabei sollen jedoch auch eine umgekehrte Ausrichtung des Konus bzw. eine Zylinderform der Kühleinrichtung nicht ausgeschlossen sein.
    Das bedeutet, dass in einer vorteilhaften Ausgestaltung der Kühleinrichtung die sich in den Feuerraum hinein erstreckenden Rohre einen unterschiedlichen Abstand zum Durchmesser C des Brenners aufweisen. Dabei sollen die Rohre, welche am nächsten zur Brennkammerwand platziert sind, den kleinsten Abstand zum Brenneraußendurchmesser aufweisen und die weiteren Rohre, welche tiefer in den Feuerraum hinein reichen mit zunehmendem Abstand zum Brennerdurchmesser C angeordnet werden. Damit ergibt sich konische Erweiterung der Kühleinrichtung, welche den kleinsten Durchmesser am Beginn
    der Kühleinrichtung nahe der Brennkammerwand ausbildet und am Ende der Kühleinrichtung in Richtung Feuerraum - am Maß X - den größten Durchmesser besitzt. Der sich ergebende Winkel der konischen Erweiterung soll zwischen 10 und 30 ° betragen. Besonders vorteilhaft sind 15 ...20 °.
    Weiterhin kann die Kesselanlage eine Fluid-Zuführungseinrichtung aufweisen, mit der radial in Richtung auf die Längsachse gerichtet ein Fluid, wie z.B. Brennstoff, Luft und/ oder rückgeführtes Abgas, durch die Kühleinrichtung hindurch ausgebbar ist. Vorzugsweise handelt es sich dabei um eine ringförmige Fluid-Zuführungseinrichtung. Mit der Fluid-Zuführungseinrichtung wird erreicht, dass durch Mitnahme von Rauchgas durch das ausgegebene bzw. ausströmende Fluid mehr Rauchgas an die Kühleinrichtung herangeführt wird und demzufolge je Zeiteinheit mehr Rauchgas abkühlbar ist.
    Dabei ist vorgesehen, dass das Rauchgas bzw. rückgeführte Abgas zwischen Kühlelementen bzw. Abschnitten eines Kühlelements der Kühleinrichtung hindurch strömt.
  • Bei der Kesselanlage als Flammrohrkessel ist die Kühlanlage vorzugsweise an einer Stirnseite des Flammenrohrs angeordnet, an der sich auch der Brenner bzw. Brennermund befindet. Dabei kann die Stirnfläche bis auf die Kühleinrichtung mit Feuerfestmaterial ausgekleidet sein, wobei die Rohre der Kühleinrichtung durch das Feuerfestmaterial hindurch führen. Durch den Einsatz der erfindungsgemäßen Kühleinrichtung ist bei gleichen Brennstoffeigenschaften und Einsatz identischer Brenner eine Senkung der NOx-Emissionen um etwa 10-15 % zu erwarten.
  • Ein solcher Flammenrohrkessel kann durch zusätzliche konvektive Heizflächen, vorzugsweise in Rohren, um den Brennerkopf bzw. die Kühleinrichtung herum ergänzt werden, wodurch sich die Wirkung der Kühlung der Abgasrezirkulation weiter erhöht. Bei Flammrohrkesseln mit wassergekühlter Front können die Rohre der Kühleinrichtung aus dieser wassergekühlten Front gespeist werden und das erwärmte Fluid kann der wassergekühlten Front wieder zugeführt werden.
  • Zur Lösung der Aufgabe wird weiterhin ein Verfahren zur Erzeugung von Wärmeenergie unter Verbrennung wenigstens eines Brennstoffes mittels der erfindungsgemäßen Kesselanlage zur Verfügung gestellt, bei dem in einem Feuerraum der Kesselanlage eine Flamme erzeugt wird und dabei entstehendes Abgas zur Flamme zurückgeführt wird, wobei mittels der Kühleinrichtung der Kesselanlage Wärme vom rückgeführten Abgas aufgenommen und abgeleitet wird. Dadurch ergeben sich in beschriebener Weise die Möglichkeit der Intensivierung der feuerrauminternen Abgasrezirkulation und eine Minderung der NOx-Emissionen.
    Zudem wird durch die Temperaturminderung des rückgeführten Abgasen eine Mitnahme dieses Abgases begünstigt, da Dichte und Viskosität von im Verbrennungsprozess im selben Zeitfenster entstehenden Abgases und in diesem Zeitfenster zurückgeführten Rezirkulats aneinander angeglichen werden.
    Vorzugsweise wird dabei das Abgas im Bereich des Brennermundes dem Verbrennungsprozess zugeführt und abgekühlt.
    Dabei kann die Kühleinrichtung der Kesselanlage bei Kühlung des rückgeführten Abgases rotieren, wobei zur Zu- und Ableitung des Kühlmediums in das Rohr bzw. die Rohre das Rohr bzw. die Rohre mit entsprechenden Drehdurchführungen an ein Reservoir bzw. an Rohre in der Brennkammerwand angeschlossen ist bzw. sind.
    Zusätzlich zur mit der Kühlungseinrichtung bewirkten Kühlung kann mittels einer Eindüseeinrichtung Fluid in den Bereich der Rückführung von Abgas in den Feuerraum eingespritzt werden.
  • Die Erfindung wird im Folgenden anhand der in den beiliegenden Zeichnungen dargestellten Ausführungsbeispiele erläutert.
    Es zeigen
    • Figur 1: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer ersten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 2 angedeuteten Schnittes C-C,
    • Figur 2: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer ersten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 1 angedeuteten Schnittes A-A,
    • Figur 3: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer ersten Ausführungsformim Bereich der Brenneraufnahme entlang des in Figur 1 angedeuteten Schnittes B-B,
    • Figur 4: die in Figur 2 dargestellte Schnittansicht mit aufgenommenem Brenner und Flamme sowie Abgas-Rückführung,
    • Figur 5: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer zweiten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 6 angedeuteten Schnittes C-C,
    • Figur 6: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer zweiten Ausführungsformim Bereich der Brenneraufnahme entlang des in Figur 5 angedeuteten Schnittes A-A,
    • Figur 7: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer zweiten Ausführungsformim Bereich der Brenneraufnahme entlang des in Figur 5 angedeuteten Schnittes B-B,
    • Figur 8: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer dritten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 9 angedeuteten Schnittes C-C,
    • Figur 9: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer dritten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 8 angedeuteten Schnittes A-A,
    • Figur 10: eine Schnittansicht einer erfindungsgemäßen Kesselanlage einer dritten Ausführungsform im Bereich der Brenneraufnahme entlang des in Figur 8 angedeuteten Schnittes B-B,
    • Figur 11: ein den Zusammenhang zwischen der Temperatur und der NOx- Konzentration darstellendes Diagramm, und
    • Fig. 12: eine Prinzip-Darstellung zwei unterschiedlicher Alternativen der Ausgestaltung der Kühleinrichtung im Schnitt.
  • Zunächst wird die erfindungsgemäße Kesselanlage anhand der in den Figuren 1-3 dargestellten ersten Ausführungsform erläutert.
    Die erfindungsgemäße Kesselanlage umfasst eine Brennkammerwand 10, die hier als Stirnwand und demzufolge auch als Kesselwand ausgeführt ist. Sie definiert die Stirnseite 11 des Feuerraums der Kesselanlage. Die Brennkammerwand 10 umfasst mehrere parallel zueinander verlaufende Leitungselemente 12, vorzugsweise in Rohrform, die hier eine sogenannte Flossenwand ausbilden.
    Über strömungstechnische Verbindungen 13 sind diese Leitungselemente 12 mit einzelnen Rohren 70 eines Brennerkorbs 20 verbunden. Dieser Brennerkorb 20 bildet eine Kühleinrichtung 60 aus, nämlich dadurch, dass die Rohre 70 von einem Kühlmedium 61 durchströmbar bzw. durchströmt sind.
    Radial innerhalb des Brennerkorbs 20 ist ein Brenner 30 angeordnet, zur Ausbildung einer Flamme im Feuerraum.
    Wie aus den Figuren 2 und 3 ersichtlich ist, sind die Rohre 70 der Kühleinrichtung 60 in besonderer Weise geformt. Sie umfassen 2 im Wesentlichen parallel zueinander verlaufende erste Abschnitte 71, die sich aus der Ebene der Brennkammerwand 10 heraus erstrecken. Daran schließt sich jeweils ein zweiter Abschnitt an, der Wesentlichen senkrecht zum ersten Abschnitt verläuft demzufolge im Wesentlichen parallel zur Brennkammerwand angeordnet ist. Ein dritter Abschnitt 73 verbindet die beiden zweiten Abschnitte 72 miteinander, sodass die in Figur 2 ersichtlich U-Form realisiert ist.
  • Zur Erläuterung der Funktionsweise der erfindungsgemäßen Kesselanlage in dieser Ausgestaltung wird Bezug genommen auf Figur 4. Hier ist dargestellt, dass sich ein Brenner 30 im Inneren des Brennerkorbs 20 befindet. Aus dem Brennermund 31 bzw. Brenneraustritt tritt die Flamme 40 entlang ihrer Längsachse 41 aus, die sich in den Feuerraum 1 der Kesselanlage erstreckt. Die Kesselanlage ist dabei derart konzipiert, dass entstehendes Abgas 50 in einer Abgas-Rückführung 51 in einer Einsaugstelle 52 wieder dem Verbrennungsprozess bzw. der Flamme zugeführt wird, wie zum Beispiel durch eine hier nicht dargestellte, dem Brenner 30 gegenüberliegende Kesselwand, an der die Rauchgase umgelenkt und derart zurück in Richtung auf den Brenner 30 gelenkt werden, wie es durch die Strömungspfeile der Abgas-Rückführung 51 angedeutet ist. Dabei tritt das Rauchgas zumindest teilweise zwischen den Rohren 70 der Kühleinrichtung 60 hindurch und/oder um strömt diese.
  • Durch den kurzen Abstand zwischen der Kühleinrichtung 60 und dem Brenner 30 bzw. der Einsaugstelle 52 erfolgt die Zuführung von Abgas 50 über die Abgas-Rückführung 51 somit auch in den Kühlbereich der Kühleinrichtung 60.
  • Durch die Abkühlung des rückgeführten Abgases 50 mittels der Kühleinrichtung 60 wird eine Minderung der Temperatur des Abgases 50 bewirkt, sodass der Abgas-Massestrom erhöht werden kann und demzufolge je Zeiteinheit mehr Abgas 50 in den Verbrennungsprozess rezirkuliert werden kann als bei herkömmlichen Einrichtungen. Gleichzeitig wird dadurch die Temperatur des Verbrennungsprozesses gesenkt. Wie bereits beschrieben lassen sich durch diese Auswirkungen die NOx- Emissionen deutlich verringern.
  • Eine weitere Minderung der Temperatur lässt sich durch den Einsatz der dargestellten Eindüseeinrichtung 80 bewirken, mit der gespritztes Fluid 81 in den Verbrennungsprozess bzw. in dessen Nähe ausbringbar ist.
    Die Rohre 70 sollten dabei einen derartigen Abstand A, wie in Figur 1 angedeutet, aufweisen, der eine ausreichende Wärmeabgabe vom Abgas 50 auf die Kühleinrichtung 60 ermöglicht.
    Aus Figur 4 ist weiterhin ersichtlich, dass der maximale Abstand D der Kühleinrichtung 60 in Bezug auf den Brennermund 31 im Vergleich zur entlang der Längsachse 41 der Flamme 40 zu messenden Länge L des gesamten Strömungspfades des Abgases 50 sehr gering ist. Daraus ist ersichtlich, dass die Wirkung der Kühleinrichtung im Wesentlichen in dem Bereich erzeugt wird, in dem auch die Flamme 40 aus dem Brenner 30 austritt und in dem auch das Abgas 50 wieder dem Verbrennungsprozess zugeführt wird.
    Des Weiteren ist erkennbar, dass die Kühleinrichtung 60 mit einem Maß X in den Feuerraum 1 auskragt. Dies unterscheidet die erfindungsgemäße Ausgestaltung der Kesselanlage wesentlich von der herkömmlicher Kesselanlagen, wo eine Ausstülpung bzw. Auskragung von um den Brenner herum angeordneten Rohren üblicherweise auf die Außenseite der Kesselanlage geführt ist.
  • Weitere Ausführungsformen der erfindungsgemäßen Kesselanlage sind in den Figuren 5-7 und 8-10 ersichtlich.
    In der in den Figuren 5-7 dargestellten Ausführungsform ist die Kühleinrichtung 60 ebenfalls durch einen Brennerkorb 20 gebildet, der durch mehrere, parallel zueinander verlaufende ersten Abschnitte 71 von Rohren 70 realisiert ist. Diese Rohre 70 sind auch hier strömungstechnisch mit Leitungselementen 12 der Brennkammerwand 10 verbunden.
    Diese ersten Abschnitte 71 der Rohre 70 sind alle mit einem ringförmigen Verteiler 74 strömungstechnisch verbunden, der es ermöglicht, dass von den Rohren sich geführte Kühlmedium 61 in den Rohren 70 zu verteilen und weiterzuleiten.
  • In der in den Figuren 8-10 dargestellten Ausführungsform ist die Kühleinrichtung 60 ebenfalls durch einen Brennerkorb 20 gebildet, der hier jedoch einen ersten Windungsbereich 75 eines Rohres 70 sowie einen zweiten Windungsbereich 76 des Rohres 70 umfasst, wobei der erste Windungsbereich 75 radial innerhalb des zweiten Windungsbereiches 76 angeordnet ist.
    Diese Ausführungsform ließe sich auch mit lediglich einem Windungsbereich realisieren.
  • Die beiden Windungsbereiche 75, 76 sind mittels eines Übergangs 77 Strömung technisch miteinander verbunden. Des Weiteren sind sie über strömungstechnische Verbindungen 13 mit den Leitungselementen 12 der Brennkammerwand 10 verbunden.
  • Figur 11 zeigt in einem Diagramm den Zusammenhang zwischen der Temperatur des Verbrennungsprozesses und der NOx- Konzentration des Abgases. Es ist ersichtlich, dass bei Senkung der Temperatur eine entsprechend deutliche Verringerung der NOx-Konzentration im Abgas zu verzeichnen ist, welche mit der erfindungsgemäßen Kühleinrichtung realisierbar ist.
  • Figur 12 zeigt im Schnitt 2 unterschiedliche Ausgestaltungsformen der Kühleinrichtung 60. Beide Varianten sind dabei derart ausgestaltet, dass die einzelnen Rohre 60 bzw. Abschnitte des Rohres 60 radial außerhalb des Brenners 30 angeordnet sind und dessen Brennermund 31 axial überlagern. In der oberhalb der Längsachse 41 dargestellten Ausführungsvariante sind die Rohre 60 im Wesentlichen derart angeordnet, dass sie zusammen eine Zylinderform ausbilden.
    In der unterhalb der Längsachse 41 dargestellten Ausführungsvariante sind die Rohre 60 derart angeordnet, dass sie eine konische Form definieren, wobei der Bereich der Kühleinrichtung 60, der der Stirnseite 11 zugewandt ist, einen geringeren Durchmesser aufweist als die Seite der Kühleinrichtung 60, die davon abgewandt ist und demzufolge an der Seite des Brennermundes 31 angeordnet ist.
    In dieser Ausführungsform ist auch gezeigt, dass die Abgas-Rückführung 51 zwischen den Rohren 60 hindurch verläuft, sodass Wärme vom Abgas in das Kühlmedium in den Rohren 60 übertragen werden kann.
    Die konische Ausgestaltung der Kühleinrichtung 60 hat insbesondere den Vorteil, dass dadurch zumindest teilweise die stirnseitige Brennkammerwand 10 vor Strahlungswärme geschützt ist, so dass dieser Bereich eine geringere Temperatur hat und dadurch der Kühlungseffekt verstärkt wird.
  • Bezugszeichenliste
  • 1
    Feuerraum
    10
    Brennkammerwand
    11
    Stirnseite
    12
    Leitungselement
    13
    Strömungstechnische Verbindung
    20
    Brennerkorb
    30
    Brenner
    31
    Brennermund
    40
    Flamme
    41
    Längsachse
    50
    Abgas
    51
    Abgas-Rückführung
    52
    Einsaugstelle
    60
    Kühleinrichtung
    61
    Kühlmedium
    70
    Rohr, Kühlelement
    71
    erster Abschnitt
    72
    zweiter Abschnitt
    73
    dritter Abschnitt
    74
    ringförmiger Verteiler
    75
    erster Windungsbereich
    76
    zweiter Windungsbereich
    77
    Übergang zwischen dem ersten Windungsbereich und dem zweiten Windungsbereich
    80
    Eindüseeinrichtung
    81
    Gespritztes Fluid
    X
    Maß der Auskragung
    D
    maximaler Abstand
    L
    Länge des gesamten Strömungspfades
    A
    Abstand
    T
    Eintauchtiefe
    C
    Durchmesser

Claims (15)

  1. Kesselanlage zur Erzeugung von Wärme durch Verbrennung wenigstens eines Brennstoffes, umfassend einen Brennerkorb (20) zur Aufnahme eines Brenners (30), mit dem eine Flamme (40) erzeugbar ist, wobei die Kesselanlage dazu eingerichtet ist, eine interne Rückführung von bei der Verbrennung erzeugten Abgases (50) in die Flamme (40) zu realisieren,
    nämlich durch Rückführung von im Feuerraum rezirkulierten Abgasen direkt zum Brenneraustritt in den Verbrennungsprozess,
    wobei
    im Bereich der Abgas-Rückführung (51) eine Kühleinrichtung (60) angeordnet ist, mit der Wärme von rückgeführtem Abgas (50) aufnehmbar und ableitbar ist, wobei die Kühleinrichtung (60) wenigstens ein Kühlelement aufweist, in welchem ein Kühlmedium (61) aufnehmbar oder aufgenommen ist, und wobei das kühlmediumführende Kühlelement derart weit in den Brennraum hineinragt bzw. in einem derartigen Abstand von einer Kesselwand, an der der Brenner angeordnet ist, positioniert ist, dass das Kühlelement von rückgeführtem Abgas (50) umströmbar ist.
  2. Kesselanlage nach Anspruch 1, wobei die Kühleinrichtung (60) derart dicht an einer Einsaugstelle (52) angeordnet ist, dass Abkühlung des rückgeführten Abgases (50) im Bereich der Einsaugstelle (52) an einem Brennermund (31) des Brenners (30) realisiert ist.
  3. Kesselanlage nach einem der Ansprüche 1 und 2, wobei das Kühlelement durch wenigstens ein Rohr (70) ausgebildet ist.
  4. Kesselanlage nach Anspruch 3, wobei die Kesselanlage eine Brennkammerwand (10) aufweist, die wenigstens ein Leitungselement (12) umfasst, in welchem ein Kühlmedium (61) aufnehmbar oder aufgenommen ist, wobei das Rohr (70) der Kühleinrichtung (60) strömungstechnisch mit dem Leitungselement (12) verbunden ist.
  5. Kesselanlage nach einem der Ansprüche 3 und 4, wobei das mediumdurchströmte Rohr (70) bzw. mediumdurchströmbare Rohr (70) um eine Achse rotierbar angeordnet ist, wobei zur Zu- und Ableitung des Kühlmediums in das Rohr bzw. die Rohre das Rohr bzw. die Rohre mit entsprechenden Drehdurchführungen an ein Reservoir bzw. an Rohre in der Brennkammerwand angeschlossen ist bzw. sind.
  6. Kesselanlage nach einem der vorhergehenden Ansprüche, wobei die Kesselanlage weiterhin eine Eindüseeinrichtung (80) aufweist, mit der ein Fluid (81) in den Bereich der Abgas-Rückführung (51) in den Feuerraum (1) einspritzbar ist, zur Bewirkung eines Abkühlungseffekts des Rezirkulats.
  7. Kesselanlage nach einem der vorhergehenden Ansprüche, wobei die Kesselanlage wenigstens einen in jeweils einem Brennerkorb (20) aufgenommenen Brenner (30) aufweist, zur Erzeugung einer in den Feuerraum (1) der Kesselanlage gerichteten Flamme (40) entlang einer Längsachse (41).
  8. Kesselanlage nach Anspruch 7, wobei die Kühleinrichtung (60) als Kühlelemente mehrere Rohre (70) umfasst, in welchen ein Kühlmedium (61) aufnehmbar oder aufgenommen ist, wobei die Kesselanlage eine Brennkammerwand (10) aufweist, von der ausgehend die Rohre (70) sich ins Innere des Feuerraums (1) erstrecken, und wobei zumindest einige dieser Rohre (70) zwei im Wesentlichen parallel zueinander verlaufende erste Abschnitte (71) aufweisen, die im Wesentlichen parallel zur Längsachse (41) und winklig zur Brennkammerwand (10) angeordnet sind, daran anschließend zwei im Wesentlichen winklig zur Längsachse (41) und im Wesentlichen parallel zur Brennkammerwand (10) verlaufende zweite Abschnitte (72) aufweisen, und daran angeordnet wenigstens einen dritten Abschnitt (73) aufweisen, der im Wesentlichen parallel zur Brennerwand (10) und winklig zur Längsachse (41) sowie den zweiten Abschnitten (72) verläuft.
  9. Kesselanlage nach Anspruch 7, wobei die Kühleinrichtung (60) als Kühlelemente mehrere Rohre (70) umfasst, in welchen ein Kühlmedium (61) aufnehmbar oder aufgenommen ist, wobei die Kesselanlage eine Brennkammerwand (10) aufweist, von der ausgehend die Rohre (70) sich ins Innere des Feuerraums (1) erstrecken, und wobei zumindest einige dieser Rohre (70) jeweils einen ersten Abschnitt (71) aufweisen, die im Wesentlichen parallel zur Längsachse (41) und winklig zur Brennkammerwand (10) angeordnet sind, und die ersten Abschnitte (71) der Rohre (70) strömungstechnisch mit einem ringförmigen Verteiler (74) verbunden sind, der im Wesentlichen parallel zur Brennkammerwand (10) und winkligzur Längsachse (41) angeordnet ist.
  10. Kesselanlage nach Anspruch 7, wobei die Kühleinrichtung als Kühlelement wenigstens ein Rohr (70) umfasst, welches schraubengangförmig um die Längsachse (41) angeordnet ist.
  11. Kesselanlage nach einem der Ansprüche 7-10, wobei die Kühleinrichtung (60) eine rotationssymmetrische Ausgestaltung aufweist, mit einer im Wesentlichen parallelen Ausrichtung zur Längsachse (41).
  12. Kesselanlage nach einem der Ansprüche 7 bis 11, wobei sie eine Fluid-Zuführungseinrichtung aufweist, mit der radial in Richtung auf die Längsachse gerichtet ein Fluid, wie z.B. Brennstoff, Luft und/ oder rückgeführtes Abgas (50), durch die Kühleinrichtung hindurch ausgebbar ist.
  13. Verfahren zur Erzeugung von Wärmeenergie unter Verbrennung wenigstens eines Brennstoffes mittels der Kesselanlage nach einem der Ansprüche 1-12, bei dem in einem Feuerraum (1) der Kesselanlage eine Flamme (40) erzeugt wird und dabei entstehendes Abgas (50) zur Flamme (40) zurückgeführt wird, wobei mittels der Kühleinrichtung (60) der Kesselanlage Wärme vom rückgeführten Abgas (50) aufgenommen und abgeleitet wird.
  14. Verfahren zur Erzeugung von Wärmeenergie nach Anspruch 13, wobei die Kühleinrichtung (60) der Kesselanlage bei Kühlung des rückgeführten Abgases (50) rotiert; wobei zur Zu- und Ableitung des Kühlmediums in das Rohr bzw. die Rohre das Rohr bzw. die Rohre mit entsprechenden Drehdurchführungen an ein Reservoir bzw. an Rohre in der Brennkammerwand angeschlossen ist bzw. sind.
  15. Verfahren zur Erzeugung von Wärmeenergie nach einem der Ansprüche 13 und 14, wobei zusätzlich zur mit der Kühlungseinrichtung (60) bewirkten Kühlung mittels einer Eindüseeinrichtung (80) Fluid (81) in den Bereich der Abgas-Rückführung (51) in den Feuerraum (1) eingespritzt wird.
EP17195326.8A 2017-10-06 2017-10-06 Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes Active EP3467383B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17195326.8A EP3467383B1 (de) 2017-10-06 2017-10-06 Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes
PL17195326T PL3467383T3 (pl) 2017-10-06 2017-10-06 Układ kotła i sposób wytwarzania ciepła przez spalanie co najmniej jednego paliwa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17195326.8A EP3467383B1 (de) 2017-10-06 2017-10-06 Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes

Publications (2)

Publication Number Publication Date
EP3467383A1 EP3467383A1 (de) 2019-04-10
EP3467383B1 true EP3467383B1 (de) 2021-02-17

Family

ID=60037524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17195326.8A Active EP3467383B1 (de) 2017-10-06 2017-10-06 Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes

Country Status (2)

Country Link
EP (1) EP3467383B1 (de)
PL (1) PL3467383T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103800B4 (de) 2021-02-18 2024-10-17 Viessmann Climate Solutions Se Verfahren zum Betrieb eines Gasbrenners
CN112944387A (zh) * 2021-03-17 2021-06-11 中国华电科工集团有限公司 一种水冷壁装置及锅炉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007458A (en) * 1956-11-08 1961-11-07 Babcock & Wilcox Ltd Vapor generator
DE1231716B (de) * 1962-11-17 1967-01-05 Walther & Cie Ag Kuehlrohranordnung fuer eine Wandoeffnung von Dampferzeugern
CN201205497Y (zh) * 2007-03-30 2009-03-11 国际壳牌研究有限公司 气化反应器
CN205245134U (zh) * 2015-11-27 2016-05-18 苏州海陆重工股份有限公司 检修门密封结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3467383T3 (pl) 2021-09-27
EP3467383A1 (de) 2019-04-10

Similar Documents

Publication Publication Date Title
EP0028025B1 (de) Verfahren und Vorrichtung zur Erzeugung von Mikroflüssigkeitströpfchen
EP3087323B1 (de) Brennstoffdüse, brenner mit einer solchen brennstoffdüse, und gasturbine mit einem solchen brenner
DE2318658A1 (de) Gasbrenner
EP3467383B1 (de) Kesselanlage und verfahren zur erzeugung von wärme durch verbrennung wenigstens eines brennstoffes
DE4405894A1 (de) Brenneinrichtung innerhalb eines Rohrbündelkessels sowie Brennverfahren zu dessen Betrieb
DE1802196A1 (de) Brennereinheit fuer Heizkoerper
DE102008020424B4 (de) Ölvormischbrenner
EP1984673B1 (de) Vorrichtung zum verbrennen organischer stoffe
EP0635676B1 (de) Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen
DE19507088B4 (de) Vormischbrenner
DE60016106T2 (de) Brenner mit Abgasrückführung
DE2550035A1 (de) Halterung fuer waermetauscherrohre
DE4244400C2 (de) Brenner zur Heißgaserzeugung
EP0347797B1 (de) Verfahren zum Reduzieren von NOx in Rauchgasen von Heizkesseln und Heizkessel mit Mitteln zum Reduzieren des NOx-Anteils in den Rauchgasen
EP2622276B1 (de) Ölvormischbrenner
EP2679897B1 (de) Ölvormischbrenner mit Drallerzeugungsvorrichtung
DE102007060090A1 (de) Brenner
DE1915047A1 (de) Einspritzkuehler fuer Dampfkraftanlagen
WO2011151134A1 (de) Vorrichtung zum stoffschlüssigen verbinden eines einbaukörpers in ein dampferzeugerrohr mit einer excentrisch bezüglich der mittelachse des brennerrohrs angeordneten schweissdrahtdüse
AT404399B (de) Verfahren und brenner zum verbrennen insbesondere flüssiger brennstoffe
EP1447622B1 (de) Staubgefeuerter Flammrohrkessel
DE4012431C1 (de)
DE102022100480A1 (de) Brennervorrichtung für die indirekte Erwärmung eines Ofenraums
DE4426357A1 (de) Feuerungsanordnung für feste Brennstoffe wie Müll und Verbrennungsverfahren
EP2577159B1 (de) Vorrichtung zum herstellen von einbaukörpern für dampferzeugerrohre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191010

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200124

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERK ECKROHRKESSEL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 37/14 20060101ALI20200708BHEP

Ipc: F22B 21/02 20060101ALI20200708BHEP

Ipc: F22B 37/10 20060101ALI20200708BHEP

Ipc: F23C 9/08 20060101ALI20200708BHEP

Ipc: F23C 9/00 20060101ALI20200708BHEP

Ipc: F23M 5/08 20060101AFI20200708BHEP

Ipc: F22B 21/22 20060101ALI20200708BHEP

Ipc: F22B 37/12 20060101ALI20200708BHEP

Ipc: F23M 7/04 20060101ALI20200708BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009321

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1361953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009321

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230927

Year of fee payment: 7

Ref country code: NL

Payment date: 20231023

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231025

Year of fee payment: 7

Ref country code: FR

Payment date: 20231023

Year of fee payment: 7

Ref country code: DE

Payment date: 20231018

Year of fee payment: 7

Ref country code: CH

Payment date: 20231102

Year of fee payment: 7

Ref country code: AT

Payment date: 20231019

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017009321

Country of ref document: DE

Owner name: ERK ECKROHRKESSEL HOLDING GMBH, DE

Free format text: FORMER OWNER: ERK ECKROHRKESSEL GMBH, 12435 BERLIN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217