EP3450717B1 - Roue de ventilateur - Google Patents

Roue de ventilateur Download PDF

Info

Publication number
EP3450717B1
EP3450717B1 EP18190530.8A EP18190530A EP3450717B1 EP 3450717 B1 EP3450717 B1 EP 3450717B1 EP 18190530 A EP18190530 A EP 18190530A EP 3450717 B1 EP3450717 B1 EP 3450717B1
Authority
EP
European Patent Office
Prior art keywords
blade
fan wheel
axial
depth
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18190530.8A
Other languages
German (de)
English (en)
Other versions
EP3450717A1 (fr
Inventor
Christian Froh
Michael Mauss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brose Fahrzeugteile SE and Co KG
Original Assignee
Brose Fahrzeugteile SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brose Fahrzeugteile SE and Co KG filed Critical Brose Fahrzeugteile SE and Co KG
Priority to RS20211592A priority Critical patent/RS62787B1/sr
Publication of EP3450717A1 publication Critical patent/EP3450717A1/fr
Application granted granted Critical
Publication of EP3450717B1 publication Critical patent/EP3450717B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud

Definitions

  • the present invention relates to a fan wheel, in particular with forward sickle blades, for a cooling fan module, in particular an electrically operated cooling fan module, in particular for motor vehicles.
  • the cooling system of an internal combustion engine in particular of a motor vehicle, mainly dissipates that heat which is given off to the walls of the combustion chambers and cylinders because the combustion process is not ideal. Since excessively high temperatures would damage the engine (tearing off the lubricating film, burning the valves, etc.), the combustion engine must be actively cooled.
  • Modern internal combustion engines especially four-stroke engines in motor vehicles, are, with a few exceptions, liquid-cooled, a mixture of water, antifreeze and anti-corrosion agent being used as the coolant.
  • the coolant is pumped through hoses, pipes and / or ducts through the engine (cylinder head and engine block) and, if necessary, through thermally highly stressed engine components, such as exhaust gas turbochargers, generators or exhaust gas recirculation coolers.
  • the coolant absorbs thermal energy and removes it from the above-mentioned components.
  • the heated coolant flows on to a cooler.
  • This cooler - in the past often made of brass, now mostly made of aluminum - is usually attached to the front of the vehicle, where a stream of air absorbs heat energy from the coolant and cools it down before it flows back to the engine, which closes the coolant circuit.
  • a cooling fan module is provided in front of the cooler (ie upstream) or after the cooler (ie downstream), which is mechanically via a belt drive or electrically can be driven by an electric motor.
  • the following statements refer to an electrically driven cooling fan module.
  • a cooling fan module classically consists of a fan frame, which has a fan wheel recess, and a fan wheel, which is rotatably held in the fan wheel recess.
  • the geometry of the fan wheel has a decisive influence on both the amount of air conveyed and the acoustic properties of the cooling fan module.
  • Classic fan wheels (s. Figures 1a and 1b ) have an at least substantially flat or slightly curved edge geometry on the blades. This means that the angle of incidence of the airfoil with respect to a reference plane in which the axis of rotation of the fan wheel lies and / or an axial unit depth is at least substantially constant over the entire length of the airfoil.
  • the pamphlet WO2012 / 041565 A1 discloses a fan wheel having an outer ring, in which the course of the axial unit depth has an aperiodically undulating shape.
  • the present invention is based on the object of specifying an advantageous fan wheel which is particularly advantageous with regard to its air delivery properties and / or its acoustic properties.
  • a fan wheel in particular for a motor vehicle, having a hub cup, in particular one that is rotationally symmetrical about an axis of rotation; and a plurality of impeller blades which are arranged on the hub pot and extend outwardly in the radial direction from an, in particular at least essentially cylindrical, outer wall of the hub pot, the fan wheel having an at least essentially circular outer ring which connects the blade tips of the impeller blades to one another wherein each airfoil has a leading edge and a trailing edge, the following applies to at least one airfoil, in particular some of the airfoils, in particular all airfoils: a reference straight line is defined by: a first point on an axis of rotation of the fan wheel; a radial extension through the first point and perpendicular to the axis of rotation; and a second point which divides an arc-shaped edge at the transition from the hub pot to the airfoil into two sections of equal length, a
  • R i is an outer radius of the hub cup, which in particular corresponds at least substantially to an inner radius of the airfoil;
  • R a is an outer radius of the airfoil;
  • z VK (t) is the z coordinate of the orthogonal projection of the front edge in the, in particular cylindrical, cutting plane running through t
  • z HK (t) is the z-coordinate of the orthogonal projection of the rear edge in the, in particular cylindrical, cutting plane running through t
  • the course of the axial unit depth z * (t) has an aperiodically undulating shape
  • the course of the axial unit depth z * (t) has a global minimum in the range from 65% to 90% of the relative unit radius T (r) of the airfoil.
  • this is particularly advantageous since a favorable air volume flow can be achieved in this way.
  • Comparative measurements which are explained in detail in the description of the figures, have shown that a fan wheel according to the present invention can achieve, in particular, a higher air volume flow compared to an otherwise structurally identical one Fan wheel with flat or curved rear edge.
  • the same air volume flow can be generated with a power saving or a slower running fan wheel according to the present invention.
  • a higher air volume flow can be achieved with the same output.
  • a "fan wheel” in the sense of the present invention is in particular a rotationally symmetrical component that connects a hub, in particular a hub pot, which connects the fan wheel to a motor, in particular via a shaft protruding from this, in such a way that the torque generated by the Motor is generated, is at least substantially completely transferred to the fan wheel.
  • the fan wheel has a plurality of blade blades which are provided, in particular designed, to generate an air volume flow as soon as the fan wheel is set in a rotational movement.
  • the blades are preferably inclined with respect to the axis of rotation in an angular range of -90 ° to + 90 °.
  • a "hub pot” in the sense of the present invention is in particular a central part of the fan wheel, which is arranged at least essentially in the middle of the fan wheel, provides a connection to a drive, in particular a motor, in particular an electric motor, this drive, in particular a motor , in particular an electric motor, at least partially and which, like a classic pot, is composed of an at least substantially flat base surface and an adjoining cylinder surface.
  • the blades are arranged, in particular molded, on this cylindrical outer wall.
  • a "blade” in the sense of the present invention is a flat body which is inclined with respect to a plane on which the axis of rotation is perpendicular, which is arranged on the hub cup and which is intended, in particular set up, to generate an air volume flow as soon as the fan wheel is in a rotational movement is displaced.
  • Blade blades in the context of the present invention are also understood in particular to mean blades or rotor blades.
  • a "leading edge" of the airfoil in the sense of the present invention is in particular that edge which leads in the direction of rotation.
  • a “trailing edge” of an airfoil in the sense of the present invention is in particular that edge of the airfoil which, viewed in the direction of rotation, lags behind.
  • orthogonal projection within the meaning of the present invention is an image of a point on a plane, so that the connecting line between the point and its image forms a right angle with this plane. The image then has the shortest distance to the starting point of all points on the plane.
  • the orthogonal projection is thus a special case of a parallel projection in which the projection direction is the same as the normal direction of the plane.
  • An “axial unit depth” in the sense of the present invention is the height of the airfoil when looking at the airfoil perpendicular to the axis of rotation. This is particularly advantageous because in this way the absolute dimensions of the blade are normalized, which leads to better comparability between the various designs of a fan wheel.
  • a “relative unit radius” in the sense of the present invention describes a point or a particularly cylindrical plane at a defined distance from the axis of rotation in a standardized manner, which leads to improved comparability between different fan impellers.
  • Aperiodic within the meaning of the present invention is in particular a shape which extends asymmetrically over the relative unit radius, that is, in other words, no axis of symmetry can be found which divides the function of the axial unit depth into two identical sub-functions.
  • the axial unit depth is not a function whose function values are repeated at regular intervals.
  • the basic idea of the present invention is to give the trailing edge an aperiodically wavy shape, in particular while the leading edge is flat or curved, which leads to a unique design of the airfoil, as described in terms of the axial depth.
  • this form according to the invention lies the key to increased air performance or to the power savings described above.
  • the orthogonal projection of the leading edge is flat or curved. This is particularly advantageous because of the contrast between a flat or curved leading edge and aperiodically undulating trailing edge an advantageous air volume flow can be generated. This is particularly the case when the orthogonal projection of the leading edge does not have any turning points.
  • the fan wheel has one or more blades that are sickled forward, as seen in the direction of rotation.
  • sickle forward means in particular that the tip of the blade with the outer radius R a , viewed in the direction of rotation, leads the center of the blade.
  • the fan wheel has an at least substantially circular outer ring which connects the blade tips of the blades to one another. This is particularly advantageous because in this way an increased mechanical strength of the fan wheel is achieved and a defined, at least essentially constant, gap is provided between a frame ring and the outer ring, which in turn leads to advantageous aerodynamic and / or acoustic effects.
  • the course of the axial unit depth z * (t) has a global minimum in the range from 65% to 90%, in particular 70% to 85%, in particular 75% to 80%, of the relative unit radius of the airfoil. This is particularly advantageous since extensive experimental studies have shown that a global minimum in the specified range contributes the main part to the increase in the air volume flow.
  • the course of the axial unit depth z * (t) in the y direction has no or at most no or at most the global minimum
  • the course of the axial unit depth z * (t) in the range from 0% to 50%, in particular from 0% to 40%, in particular from 0% to 30%, of the relative unit radius of the airfoil has at least one essentially continuously increasing or continuously decreasing course on.
  • t 0 describes an offset of the relative unit radius for setting the apex on the hub cup, N the number of oscillations over the axial unit radius, a an oscillation coefficient for scaling the wavelength and setting the position of the global minimum, A 1 a quadratic polynomial coefficient, A 2 a linear polynomial coefficients, A 3 a coefficient of the axial threading, ie for setting the linear course of the trailing edge from the hub cup to the blade tip or to the outer ring and A 4 a relative base deflection ("start" deflection) of the trailing edge on the hub cup.
  • the above function describes the aperiodically wavy shape of the axial unit depth. With the help of the specified parameters, it is possible to adapt the axial unit depth to the external conditions in the course of the fan wheel design in order to achieve an advantageous power saving or an equivalent increase in air volume flow.
  • the total length of the airfoil is divided into the following sections: Section I. from 0% to 65% of the total length of the airfoil; Section II from 65% to 77.5% of the total length of the airfoil; and Section III from 77.5% to 100% of the total length of the blade, where the axial unit depth z * (t) plotted over the entire length is limited upwards by an upper limit function G O as a function of the relative unit radius t (r), as defined below: Section I.
  • the total length of the airfoil is divided into the following sections: Section I.
  • Section I from 0% to 65% of the total length of the airfoil; Section II from 65% to 77.5% of the total length of the airfoil; and Section III from 77.5% to 100% of the total length of the blade, where the axial unit depth z * (t) plotted over the entire length is limited downwards by a lower limit function G U as a function of the relative unit radius t (r), as defined below: Section I.
  • G U extends linearly from an axial unit depth z * (t) of 0.05 to an axial unit depth z * (t) of 0.05; Section II Starting from an axial unit depth z * (t) of 0.05, G U extends linearly to an axial unit depth z * (t) of 0.02; and Section III G U extends linearly from an axial unit depth z * (t) of 0.02 to an axial unit depth z * (t) of 0.10.
  • the axial unit depth z * (t) over the total length of the airfoil is always less than the associated value of the upper limit function G O and the axial unit depth z * (t) over the total length of the airfoil is always less is greater than the associated value of the lower limit function G U.
  • the fan wheel according to the invention is intended in particular for use in connection with a fan frame with struts located at the rear, i.e. the struts are located behind the fan wheel as seen in the main flow direction.
  • a “cooling fan module” within the meaning of the present invention is in particular an assembly which, viewed in the direction of flow, is arranged upstream or downstream of a radiator of a vehicle and which is provided, in particular designed, to generate an air volume flow which extends through or around the radiator the Extends cooler around, the air volume flow absorbing thermal energy from the cooler.
  • a “fan frame” within the meaning of the present invention is in particular a frame in which the fan wheel is held and itself is in turn preferably arranged, in particular fastened, on or in the vicinity of a cooler.
  • a fan frame in the sense of the present invention preferably has a plastic material, in particular a plastic compound, in particular the fan frame is formed from this. Additionally and / or alternatively, the fan frame has a metal material, for example iron, steel, aluminum, magnesium or the like, in particular is at least partially, in particular at least substantially, in particular completely, formed from this material.
  • a fan frame can also have more than one fan wheel recess, a motor holder, a motor and a fan wheel; in particular, the present invention is suitable for use in cooling fan modules with two or more, in particular two, fan wheels.
  • the fan frame additionally has at least one closable opening, in particular at least one flap, in particular a plurality of the same. This is particularly advantageous since further air guidance properties can be implemented in this way.
  • a “fan wheel recess” in the sense of the present invention is in particular a material recess within the fan frame.
  • struts extend in the fan wheel recess which mechanically, in particular and electrically and / or electronically connect a motor holder, which is also arranged in the fan wheel recess, to the fan frame.
  • the fan wheel recess is delimited by a frame ring.
  • a "frame ring" within the meaning of the present invention delimits the fan wheel recess in a plane perpendicular to the axis of rotation of the fan wheel, the plane in particular being at least essentially identical to the direction in which the fan frame extends.
  • the frame ring can either be formed by an edge of the fan wheel recess and / or have a cylinder surface which expands in the axial direction and which is preferably formed in one piece with the fan frame.
  • a “motor holder” in the sense of the present invention is in particular a device for mechanically fastening the motor to the fan frame, in particular for providing the torque counteracting the fan wheel.
  • the motor holder is an at least substantially annular structure in which the Engine is held. This is particularly advantageous since in this way an advantageous flow of cooling air through the motor is not impaired.
  • “Struts” in the sense of the present invention are in particular bar-shaped or sickle-shaped structures which provide a mechanical connection between the motor holder and the fan shroud.
  • the struts can have a teardrop-shaped cross section in order to achieve advantageous aerodynamic and / or acoustic effects.
  • a “motor” within the meaning of the present invention is in particular a machine that performs mechanical work by converting a form of energy, for example thermal / chemical or electrical energy, into kinetic energy, in particular a torque.
  • a form of energy for example thermal / chemical or electrical energy
  • kinetic energy in particular a torque.
  • An “electric motor” in the sense of the present invention is an electromechanical converter (electrical machine) which converts electrical power into mechanical power, in particular into torque.
  • the term electric motor in the context of the present invention includes but is not limited to direct current motors, alternating current motors and three-phase motors or brushed and brushless electric motors or internal rotor and external rotor motors. This is particularly advantageous since electrical energy represents a form of energy that can be easily transmitted in comparison to mechanical or chemical energy, with which the required torque for driving the fan wheel is provided.
  • the struts of the cooling fan module are arranged behind the fan wheel, viewed in the direction of flow. This is particularly relevant because the front and rear struts lead to significantly different aerodynamic framework conditions and the fan wheel described here can be used particularly advantageously with rear struts, as extensive tests have shown.
  • Another aspect of the present invention relates to the use of a fan wheel of the type described here or a cooling fan module of the type described here in a motor vehicle. This is particularly important since the type of fan wheel described here comes into play in a particularly advantageous manner with the external conditions at the installation site.
  • FIG. 11 shows a rear view of a blade 30 of the known fan wheel of FIG Figure 1A with a perspective view from the reference plane, with the top of the fan wheel 1 pointing downwards.
  • the fan wheel 1 has according to the Figure 1A , 1B , 2A , 2 B and 3 a hub pot 10 that is rotationally symmetrical about an axis of rotation R.
  • a plurality of impeller blades 30 are arranged on the hub pot 10 and extend outward in the radial direction from a cylindrical outer wall 12 of the hub pot 10.
  • a direction of rotation D is in the Figure 1A and 2A indicated by the arrow on the hub cup. Accordingly, the direction of rotation is clockwise.
  • a main flow direction of the conveyed air is marked with HSR.
  • the fan wheel 1 has an at least substantially circular outer ring 20 which connects the blade tips of the blade blades 30 to one another.
  • the airfoils 30 have flat or curved leading edges VK and flat or curved trailing edges HK in an orthogonal projection.
  • Figure 2A shows a fan wheel 1 according to an embodiment of the present invention in a perspective illustration and Figure 2B a rear view of a blade 30 of the fan wheel of FIG Figure 2A with viewing direction from the reference plane in a perspective representation.
  • Fig. 3 shows a fan wheel 1 from the prior art in a perspective illustration for describing a reference plane E_REF.
  • a reference straight line G_REF is defined by a first point P1 on the axis of rotation R of the fan wheel 1, a radial extension E through the first point P1 and perpendicular to the axis of rotation R and a second point P2, which has an arc-shaped edge at the transition divided from the hub pot 10 to the blade 30 into two equally long sections.
  • the radius is determined which runs through the point P2.
  • Point P2 represents the midpoint of the transition edge from hub cup to blade, in particular the edge of blade 30 facing the pot bottom.
  • P2 Another at least essentially identical definition of P2 can be derived from an angle: Two auxiliary radii are required, with the first auxiliary radius passing through P1 and the foremost point of the transition edge between the cylindrical outer wall and the airfoil runs and a second auxiliary radius, which runs through the rearmost point of the transition edge from the hub cup to the airfoil and from this angle, which is enclosed between the two auxiliary radii, the bisector is formed.
  • the point at which said bisector intersects the cylindrical outer wall 12, in particular on an outer side thereof, is P2.
  • a reference plane E_REF is defined by a straight line shifted parallel to the axis of rotation and a straight line shifted parallel to the reference straight line G_REF, the shift being such that it is located completely behind the blade 30 when viewed in the direction of rotation D of the fan wheel 1.
  • An orthogonal projection of the front edge VK of the airfoil 10 and an orthogonal projection of the rear edge HK of the airfoil 10 are shown on the reference plane E_REF.
  • the direction of view B shows how in the Figure 1B and 2 B one blade segment of the fan wheel is looked at in each case.
  • a coordinate system consisting of the z-axis and y-axis is set up in the reference plane. This is decisive for the description of the leading and trailing edge.
  • the z-axis is defined by an orthogonal projection of the axis of rotation R in the reference plane E_REF, which in a second step in the reference plane E_REF, starting from the orthogonal projection of the axis of rotation R , is shifted parallel to the outside by an outer radius R i of the hub pot 10 in the radial direction.
  • the orientation of the z-axis is unchanged, but is shifted in parallel in two steps, namely once by the orthogonal projection onto the reference plane E_REF and then by the shift in the reference plane E_REF by R i .
  • the z-axis runs through the orthogonal projection from P2 to E_REF.
  • the y-axis is defined by an orthogonal projection of the radial extension E in the reference plane E_REF.
  • the origin of this yz coordinate system is defined by the intersection of the two axes.
  • Fig. 4 shows the course of the axial unit depth over the relative unit radius of a fan wheel according to an embodiment of the present invention.
  • the horizontal axis corresponds to the y-axis described above and the vertical axis corresponds to the z-axis described above.
  • the relative unit radius t (r) is plotted on the horizontal axis.
  • the axial unit depth z * (t) of the blade is plotted on the vertical axis.
  • the course of the axial unit depth z * (t) shown in this way has an aperiodically undulating shape. It can be seen that the axial unit depth z * (t), analogous to the orthogonal projection of the rear edge HK, is in the range from 65% to 90%, in particular from 70% to 85%, in particular 75% to 80%, of the relative unit radius t (r ) of the airfoil has a global minimum.
  • the Fig. 5 shows a comparison of a previously known fan wheel 1 with a fan wheel 1 according to an embodiment of the present invention.
  • the electrical power of the electric motor is used here as the input power, with corresponding losses (heat, friction, etc.) of the electric motor being taken into account and shown in the overall efficiency ⁇ .
  • Fig. 6 shows a cooling fan module 100 with the fan wheel 1 according to the present invention according to the second aspect of the present invention.
  • the cooling fan module 100 has a fan frame 2, a fan wheel recess 40 being formed in the fan frame 2, which is delimited by a frame ring 42.
  • a motor holder (covered by the hub cup 10) is arranged within the fan wheel recess 40 and is mechanically connected to the fan frame 2 via struts 44.
  • a motor in particular an electric motor, is at least partially held in the motor holder (also covered by the hub cup 10).
  • a fan wheel 1 is arranged in the fan wheel recess 40 and is driven in rotation by the motor.
  • the fan wheel 1 corresponds to an embodiment of a fan wheel according to the present invention.
  • the struts 44 are according to the embodiment of FIG Fig. 6 Arranged behind the fan wheel as viewed in the direction of flow, the direction of flow being perpendicular to the figure Fig. 6 pointing into it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (13)

  1. Roue de ventilateur (1), en particulier pour un véhicule automobile, comprenant
    un pot de moyeu (10) en particulier à symétrie de rotation autour d'un axe de rotation (R) ; et
    une pluralité de pales (30) disposées sur le pot de moyeu (10) et s'étendant radialement vers l'extérieur depuis une paroi extérieure (12) du pot de moyeu (10), qui est en particulier au moins sensiblement cylindrique,
    dans laquelle la roue de ventilateur (1) comprend un anneau extérieur (20) au moins sensiblement circulaire, qui relie les extrémités des pales (30),
    dans laquelle chaque pale (30) comprend un bord d'attaque (VK) et un bord de fuite (HK),
    dans laquelle pour au moins une pale (30), une partie des pales (30), en particulier toutes les pales (30), le suivant s'applique :
    une ligne de référence (G_REF) est définie par :
    un premier point (P1) sur un axe de rotation (R) de la roue de ventilateur (1) ;
    une extension radiale (E) passant par le premier point (P1) et perpendiculaire à l'axe de rotation (R) ; et
    un deuxième point (P2), qui divise un bord arqué à la transition entre le pot de moyeu (10) et la pale (30) en deux sections de longueur égale,
    dans laquelle un plan de référence (E_REF) est défini par une ligne droite déplacée parallèlement à l'axe de rotation (R) et une ligne droite déplacée parallèlement à la ligne de référence (G_REF), dans laquelle le déplacement est tel que, vu dans la direction de rotation (D) de la roue de ventilateur (1), il est situé entièrement derrière la pale (30),
    dans laquelle une projection orthogonale du bord d'attaque (VK) de la pale (30) et une projection orthogonale du bord de fuite (HK) de la pale (30) sont cartographiées dans le plan de référence (E_REF) ;
    dans laquelle un axe z est défini dans le plan de référence (E_REF) par une projection orthogonale de l'axe de rotation (R) dans le plan de référence (E_REF), qui est déplacé d'une manière radialement parallèle vers l'extérieur dans le plan de référence (E_REF) à partir de la projection orthogonale de l'axe de rotation (R) d'un rayon extérieur (Ri) du pot de moyeu (10);
    dans laquelle un axe y est défini dans le plan de référence par une projection orthogonale de l'extension radiale (E) dans le plan de référence (E_REF) ;
    dans laquelle un rayon unitaire relatif t(r) est tracé sur l'axe des y, ledit rayon unitaire relatif t(r) étant défini comme suit : t r = r R i R a R i
    Figure imgb0016
    dans laquelle
    Ri est un rayon extérieur du pot de moyeu (10), qui correspond en particulier au moins sensiblement à un rayon intérieur de la pale (30) ;
    Ra est un rayon extérieur de la pale (30) ; et
    r est la distance entre l'axe de rotation (R) et le plan de coupe (S) à considérer, qui est à une distance r de l'axe de rotation (R) perpendiculaire sur la ligne de référence associée (G_REF), dans laquelle s'applique : r∈[Ri ;Ra ]
    dans laquelle une profondeur unitaire axiale z*(t) de la pale est tracée sur l'axe z, qui est défini comme suit : z * t = z HK t z VK t R a R i ,
    Figure imgb0017
    dans laquelle :
    zVK(t) est la coordonnée z de la projection orthogonale du bord d'attaque (VK) dans le plan de coupe (S) passant par t ; et
    zHK(t) est la coordonnée z de la projection orthogonale du bord de fuite (HK) dans le plan de coupe (S) passant par t ;
    dans laquelle l'évolution de la profondeur unitaire axiale z*(t) a une forme ondulée apériodique, et
    dans laquelle l'évolution de la profondeur unitaire axiale z*(t) a un minimum global dans la plage de 65% à 90% du rayon unitaire relatif t(r) de la pale (30).
  2. Roue de ventilateur selon la revendication 1, dans laquelle la projection orthogonale du bord d'attaque (VK) est plate ou incurvée.
  3. Roue de ventilateur selon l'une des revendications 1 ou 2, dans laquelle la pale (30) est une pale (30) inclinée vers l'avant, vue dans la direction de rotation (D).
  4. Roue de ventilateur selon l'une des revendications précédentes, dans laquelle l'évolution de la profondeur unitaire axiale z*(t) a un minimum global compris entre 70% et 85%, en particulier 75% et 80%, en particulier 75% et 80%, du rayon unitaire relatif t(r) de la pale (30).
  5. Roue de ventilateur selon la revendication précédente, dans laquelle l'évolution de la profondeur unitaire axiale z*(t) dans la direction y après le minimum global ne comprend aucun point haut ou au plus un point haut.
  6. Roue de ventilateur selon l'une des revendications précédentes, dans laquelle l'évolution de la profondeur unitaire axiale z*(t) dans la plage de 0% à 50%, en particulier 0% à 40%, en particulier 0% à 30%, du rayon unitaire relatif t(r) de la pale (30) a une évolution au moins sensiblement continue croissante ou continue décroissante.
  7. Roue de ventilateur selon l'une des revendications précédentes, dans laquelle l'évolution de la profondeur unitaire axiale z*(t) en fonction du rayon unitaire relatif t(r) satisfait à la condition suivante : z * t = A 1 t 2 + A 2 t cos 2 πN a 1 t + 1 t + t 0 + A 3 t + A 4 R a R i
    Figure imgb0018
    dans laquelle s'applique le suivant :
    t 0∈[0;0,5]
    N∈[1;8]
    a∈[-1,5;1,5]
    A 1∈[2;10]
    A 2∈[-10;10]
    A 3∈[-10;10] et
    A 4∈[5;50].
  8. Roue de ventilateur selon l'une des revendications précédentes, dans laquelle la longueur totale de la pale (30) est divisée en les sections suivantes : section I de 0% à 65% de la longueur totale de la pale ; section II de 65% à 77,5% de la longueur totale de la pale ; et section III de 77,5% à 100% de la longueur totale de la pale,
    dans laquelle la profondeur axiale unitaire z*(t) tracée sur la longueur totale en fonction du rayon unitaire relatif t(r) est limitée au-dessus par une fonction de limite supérieure GO, telle qu'elle est définie ci-dessous : section I GO s'étend linéairement d'une profondeur axiale unitaire z*(t) de 0,175 à une profondeur axiale unitaire z*(t) de 0,175 ; section II GO s'étend linéairement d'une profondeur axiale unitaire z*(t) de 0,175 à une profondeur axiale unitaire z*(t) de 0,13 ; et section III GO s'étend linéairement d'une profondeur axiale unitaire z*(t) de 0,13 à une profondeur axiale unitaire z*(t) de 0,23.
  9. Roue de ventilateur selon l'une des revendications précédentes, dans laquelle la longueur totale de la pale (30) est divisée en les sections suivantes : section I de 0% à 65% de la longueur totale de la pale ; section II de 65% à 77,5% de la longueur totale de la pale ; et section III de 77,5% à 100% de la longueur totale de la pale,
    dans laquelle la profondeur axiale unitaire z*(t) appliquée sur la longueur totale en fonction du rayon unitaire relatif t(r) est limitée au-dessous par une fonction de limite inférieure Gu, telle qu'elle est définie ci-dessous : section I GU s'étend linéairement d'une profondeur unitaire axiale z*(t) de 0,05 à une profondeur unitaire axiale z*(t) de 0,05 ; section II GU s'étend linéairement d'une profondeur axiale unitaire z*(t) de 0,05 à une profondeur axiale unitaire z*(t) de 0,02 ; et section III GU s'étend linéairement d'une profondeur unitaire axiale z*(t) de 0,02 à une profondeur unitaire axiale z*(t) de 0,10.
  10. Roue de ventilateur selon les deux revendications précédentes, dans laquelle
    la profondeur unitaire axiale z*(t) sur la longueur totale de la pale (30) est toujours inférieure à la valeur associée de la fonction de limite supérieure GO ; et
    la profondeur unitaire axiale z*(t) sur la longueur totale de la pale (30) est toujours supérieure à la valeur associée de la fonction de limite inférieure GU.
  11. Module de ventilateur de radiateur (100), en particulier pour un véhicule automobile, comprenant :
    un cadre de ventilateur (2) ;
    un évidement de roue de ventilateur (40) formé dans le cadre de ventilateur (2), dans laquelle l'évidement de roue de ventilateur (40) est délimité par un anneau de cadre (42) ;
    un support de moteur, qui est disposé à l'intérieur de l'évidement de la roue du ventilateur (40) et qui est relié mécaniquement au cadre du ventilateur (2) par des entretoises (44) ;
    un moteur, en particulier un moteur électrique, qui est au moins partiellement maintenu dans le support de moteur ; et
    une roue de ventilateur (1), qui est disposée dans l'évidement (40) de la roue de ventilateur et qui est entraînée en rotation par le moteur,
    caractérisé en ce que
    la roue de ventilateur (1) est formée selon l'une des revendications précédentes.
  12. Module de ventilateur de radiateur selon la revendication précédente, dans lequel les entretoises (44) sont disposées derrière la roue de ventilateur (1), vu dans le direction de l'écoulement.
  13. Utilisation d'une roue de ventilateur selon l'une des revendications 1 à 11 ou d'un module de ventilateur de radiateur selon l'une des revendications 12 ou 13 dans un véhicule automobile.
EP18190530.8A 2017-09-05 2018-08-23 Roue de ventilateur Active EP3450717B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20211592A RS62787B1 (sr) 2017-09-05 2018-08-23 Točak ventilatora

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017008292.8A DE102017008292A1 (de) 2017-09-05 2017-09-05 Lüfterrad

Publications (2)

Publication Number Publication Date
EP3450717A1 EP3450717A1 (fr) 2019-03-06
EP3450717B1 true EP3450717B1 (fr) 2021-10-06

Family

ID=63371603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18190530.8A Active EP3450717B1 (fr) 2017-09-05 2018-08-23 Roue de ventilateur

Country Status (8)

Country Link
US (1) US10697467B2 (fr)
EP (1) EP3450717B1 (fr)
KR (1) KR102151458B1 (fr)
CN (1) CN109424582B (fr)
DE (1) DE102017008292A1 (fr)
ES (1) ES2902920T3 (fr)
MX (1) MX2018010661A (fr)
RS (1) RS62787B1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD289525S (en) * 1984-10-01 1987-04-28 Industrial Tools, Inc. Slicing machine for magnetic tape or the like
USD901669S1 (en) 2017-09-29 2020-11-10 Carrier Corporation Contoured fan blade
US11085415B1 (en) * 2017-12-22 2021-08-10 Star Sailor Energy, Inc. Wind generator system having a biomimetic aerodynamic element for use in improving the efficiency of the system
CN207795681U (zh) * 2018-01-13 2018-08-31 广东美的环境电器制造有限公司 轴流扇叶、轴流风机扇叶组件、轴流风机风道组件
EP3816454A4 (fr) * 2018-05-09 2022-01-26 York Guangzhou Air Conditioning and Refrigeration Co., Ltd. Pale et turbine à flux axial utilisant celle-ci
DE202019100367U1 (de) * 2019-01-23 2020-04-24 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Lüfterrad eines Kraftfahrzeugs
CN110513329A (zh) * 2019-09-30 2019-11-29 广东美的制冷设备有限公司 轴流风轮及具有其的空调器
US11754088B2 (en) * 2021-12-03 2023-09-12 Hamilton Sundstrand Corporation Fan impeller with thin blades
US11808282B1 (en) 2022-03-02 2023-11-07 Aaon, Inc. Propeller fan assembly with silencer seeds and concentric hub and method of use

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US632740A (en) * 1898-09-09 1899-09-12 Emerson Electric Mfg Co Ventilating-fan.
US2684723A (en) * 1950-09-07 1954-07-27 Guy S Faber Propeller-type fan blade
US3416725A (en) * 1967-10-12 1968-12-17 Acme Engineering And Mfg Corp Dihedral bladed ventilating fan
DE2405050A1 (de) 1974-02-02 1975-08-07 Motoren Turbinen Union Laufschaufeln fuer turbomaschinen
IT206701Z2 (it) * 1985-08-02 1987-10-01 Gate Spa Ventilatore assiale particolarmente per autoveicoli
SE511657C2 (sv) 1997-02-21 1999-11-01 Scania Cv Ab Fläktringstätning
US6241474B1 (en) * 1998-12-30 2001-06-05 Valeo Thermique Moteur Axial flow fan
JP3978083B2 (ja) * 2001-06-12 2007-09-19 漢拏空調株式会社 軸流ファン
ITBO20040417A1 (it) * 2004-07-06 2004-10-06 Spal Srl Ventola a flusso assiale
EP1801422B1 (fr) * 2005-12-22 2013-06-12 Ziehl-Abegg AG Ventilateur et aube de ventilateur
KR101660565B1 (ko) * 2010-03-10 2016-09-27 로베르트 보쉬 게엠베하 비대칭 축류 팬 조립체
FR2965314B1 (fr) * 2010-09-29 2017-01-27 Valeo Systemes Thermiques Helice pour ventilateur dont la longueur de corde varie
JP6490421B2 (ja) 2014-12-25 2019-03-27 テラル株式会社 ロータ

Also Published As

Publication number Publication date
CN109424582A (zh) 2019-03-05
CN109424582B (zh) 2021-05-28
DE102017008292A1 (de) 2019-03-07
MX2018010661A (es) 2019-03-07
ES2902920T3 (es) 2022-03-30
EP3450717A1 (fr) 2019-03-06
KR102151458B1 (ko) 2020-09-03
RS62787B1 (sr) 2022-02-28
US10697467B2 (en) 2020-06-30
KR20190026623A (ko) 2019-03-13
US20190072104A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
EP3450717B1 (fr) Roue de ventilateur
EP3450716B1 (fr) Roue de ventilateur et module de ventilateur de refroidissement doté d'une telle roue de ventilateur
DE69605040T3 (de) Axiallüftereinheit
EP3486499B1 (fr) Module de ventilateur de radiateur
DE69821681T2 (de) Axiallüfter
DE112014001308T5 (de) Axiallüfterbaugruppe mit freien Schaufelspitzen
DE4446110C2 (de) Kühlgebläseanordnung für Wechselstromgenerator
DE102016124019A1 (de) Kühlkreislauf für eine mehrwandige Schaufel
DE2756800A1 (de) Axialventilator mit hilfsfluegeln
DE102014119693B4 (de) Turbinenschaufel mit hohlem schaufelblatt mit inneren rippen und kühlkanälen
DE112015001218T5 (de) Fahrzeugkühllüfter mit aerodynamischen Statorstreben
DE102012023454A1 (de) Lüftereinrichtung und Fahrzeug mit einer Lüftereinrichtung
EP2275643A2 (fr) Aube de moteur dotée d'une charge de rebords avant surélevée
DE112010004744T5 (de) Kühlventilator für eine Antriebsvorrichtung und Kühlventilatorstruktur
DE202017104914U1 (de) Kühlkreislauf für ein mehrwandiges Blatt, Vorrichtung und Turbomaschine
DE202017104872U1 (de) Kühlkreislauf für eine mehrwandige Schaufel
DE102016204917B4 (de) Fahrzeug mit einem Heckkühler
WO2010145730A1 (fr) Ensemble rotor pour une machine à énergie fluidique, et turbocompresseur entraîné électriquement
DE202017104913U1 (de) Kühlkreislauf für ein mehrwandiges Blatt, Vorrichtung und Turbomaschine
DE102011107013A1 (de) Kühleinrichtung für Windenergieanlagen
DE102017012255A1 (de) Kühlerlüftermodul
EP2638295B1 (fr) Ventilateur en matière plastique avec anneau métallique encastré
DE102019135335A1 (de) Hybrid-laufschaufeln für turbinentriebwerke
EP2746537B1 (fr) Aube rotorique carénée avec dent de coupe
DE60128616T2 (de) Lüfter für ein Kraftfahrzeug mit Leitschaufeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190826

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BROSE FAHRZEUGTEILE SE & CO. KOMMANDITGESELLSCHAFT, WUERZBURG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/38 20060101ALI20210219BHEP

Ipc: F04D 29/32 20060101ALN20210219BHEP

Ipc: F04D 29/66 20060101ALI20210219BHEP

Ipc: F01P 5/06 20060101ALN20210219BHEP

Ipc: F01P 5/02 20060101AFI20210219BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 5/02 20060101AFI20210317BHEP

Ipc: F04D 29/38 20060101ALI20210317BHEP

Ipc: F04D 29/66 20060101ALI20210317BHEP

Ipc: F04D 29/32 20060101ALN20210317BHEP

Ipc: F01P 5/06 20060101ALN20210317BHEP

INTG Intention to grant announced

Effective date: 20210401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1436419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007345

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211006

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902920

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007345

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220823

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220823

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230822

Year of fee payment: 6

Ref country code: RO

Payment date: 20230726

Year of fee payment: 6

Ref country code: IT

Payment date: 20230711

Year of fee payment: 6

Ref country code: GB

Payment date: 20230629

Year of fee payment: 6

Ref country code: ES

Payment date: 20230908

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230728

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230630

Year of fee payment: 6

Ref country code: RS

Payment date: 20230721

Year of fee payment: 6

Ref country code: FR

Payment date: 20230703

Year of fee payment: 6

Ref country code: DE

Payment date: 20230831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006