EP3448748B1 - Unbemanntes oberflächenschiff für den ferngesteuerten betrieb von unterwasserfahrzeugen - Google Patents

Unbemanntes oberflächenschiff für den ferngesteuerten betrieb von unterwasserfahrzeugen Download PDF

Info

Publication number
EP3448748B1
EP3448748B1 EP17727736.5A EP17727736A EP3448748B1 EP 3448748 B1 EP3448748 B1 EP 3448748B1 EP 17727736 A EP17727736 A EP 17727736A EP 3448748 B1 EP3448748 B1 EP 3448748B1
Authority
EP
European Patent Office
Prior art keywords
vessel
rov
unmanned
unmanned surface
input parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17727736.5A
Other languages
English (en)
French (fr)
Other versions
EP3448748A1 (de
Inventor
Oskar Levander
Sauli Petteri SIPILÄ
Mark CALLAWAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kongsberg Maritime AS
Original Assignee
Kongsberg Maritime AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58995197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3448748(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kongsberg Maritime AS filed Critical Kongsberg Maritime AS
Priority to EP23181517.6A priority Critical patent/EP4242096A3/de
Priority to DK20198858.1T priority patent/DK3778373T3/da
Priority to EP20198858.1A priority patent/EP3778373B1/de
Priority to SI201731170T priority patent/SI3448748T1/sl
Priority to HRP20220773TT priority patent/HRP20220773T1/hr
Publication of EP3448748A1 publication Critical patent/EP3448748A1/de
Application granted granted Critical
Publication of EP3448748B1 publication Critical patent/EP3448748B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B2003/147Moon-pools, e.g. for offshore drilling vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/16Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
    • B63B2027/165Deployment or recovery of underwater vehicles using lifts or hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/008Unmanned surface vessels, e.g. remotely controlled remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like

Definitions

  • a remotely operated underwater vehicle is a tethered underwater mobile device.
  • ROVs are unoccupied, highly maneuverable, and operated by a crew aboard a vessel.
  • the ROVs are typically deployed by a Launch and Recovery System (LARS) onboard the vessel.
  • the ROVs are connected to the vessel by a neutrally buoyant tether, or when working in rough conditions or in deeper water, a load-carrying umbilical cable is used along with a Tether Management System (TMS).
  • TMS Tether Management System
  • the TMS may be a separate assembly, top hat, connected to the top of the ROV.
  • the top hat goes with the ROV down to the working depth and discharges the ROV.
  • the top hat is equipped with a winch and umbilical connected to the ROV.
  • the TMS may be a garage system that contains the ROV during lowering to the working depth.
  • the garage cage is equipped with an umbilical connected to the ROV.
  • the TMS decouples the
  • Remote operated vehicle operations are typically performed from large manned multipurpose vessels as shown in Fig. 1 .
  • the chartering of these large vessels can be expensive and the vessel is limited to perform other types of work while ROV operations are ongoing. It is also costly and cumbersome that the ROV crew is required to stay and work onboard the vessel.
  • the large vessels may also pose a threat to offshore rigs.
  • GB2365824A discloses a drone vessel for remotely operated vehicles, such as may be used for launching, controlling and recovering an ROV.
  • the drone vessel is a modular device with a first self-buoyant module, a second free flooding module with a winch and storage drum and a third self-buoyant module attached to the second module. Dynamic positioning thrusters are provided on the first and third modules.
  • GB2480688A discloses a ROV controlled guide to assist in controlling the catenary when laying pipelines and umbilicals from a manned installation vessel provided with a dynamic positioning control system.
  • the ROV pilot on the installation vessel flies the ROV manually, but a substantial element of automatic control of the ROV may also be provided.
  • the control system of the ROV works together with the dynamic positioning system of the installation vessel laying the umbilical.
  • the movement of the ROV and the installation vessel may be linked in a "follow-ship" or "follow-sub” mode.
  • the invention provides an unmanned surface vessel for remotely operated underwater vehicle (ROV) operations, the unmanned surface vessel comprising: a ROV; a deployment and recovery device to deploy a ROV from the unmanned surface vessel to water and recover the ROV from the water to the unmanned surface vessel; and a vessel control unit controlling the deployment and recovery of the ROV, the operation of the ROV, and movements of the unmanned surface vessel; a dynamic positioning control system controlling the position and determining when and where the unmanned vessel should be moved based on a plurality of input parameters, wherein the plurality of input parameters comprises parameters relating to the ROV during ROV operations, the parameters relating to the ROV comprising the working position of the ROV, characterized in that the plurality of input parameters also comprise surface traffic parameters; wherein the dynamic positioning control system is configured to prioritize maintaining a working position of the ROV when controlling the position and determining when and where the unmanned vessel should be moved; and the dynamic positioning control system further comprises a database comprising navigational rules and evaluates the surface traffic parameters in view of the navigational
  • the invention also provides an unmanned surface vessel controller comprising: a propulsion controller module to control movements of the unmanned surface vessel; a deployment and recovery module to control deployment of a ROV from the unmanned surface vessel to water and recover the ROV from the water to the unmanned surface vessel; and a ROV operation module to control operation of the ROV; a dynamic positioning control system controlling the position and determining when and where the unmanned vessel should be moved based on a plurality of input parameters, wherein the plurality of input parameters comprises parameters relating to the ROV during ROV operations, the parameters relating to the ROV comprising the working position of the ROV; characterized in that the plurality of input parameters also comprise surface traffic parameters; wherein the dynamic positioning control system is configured to prioritize maintaining a working position of the ROV when controlling the position and determining when and where the unmanned vessel should be moved; and wherein the dynamic positioning control system further comprises a database comprising navigational rules and evaluates the surface traffic parameters in view of the navigational rules when determining when and where the vessel should be moved.
  • an unmanned surface vessel for remotely operated underwater vehicle (ROV) operations, the unmanned surface vessel comprising an ROV, a deployment and recovery device to deploy an ROV from the vessel to water and recover the ROV from the water to the vessel, and a vessel control unit controlling the deployment and recovery of the ROV, the operation of the ROV, and movements of the vessel.
  • ROV underwater vehicle
  • the vessel may comprise a dynamic positioning control system controlling the position of the vessel based on a plurality of input parameters.
  • the plurality of input parameters may comprise parameters relating to the ROV during ROV operations, the parameters relating to the ROV comprises at least one of paid out length of a tether, tension on a tether between the vessel and the ROV, paid out length of an umbilical cable between the ROV and a tether management system, tension on the umbilical cable between the ROV and a tether management system, and working position of the ROV.
  • the dynamic positioning control system may be configured to prioritize maintaining a working position of the ROV when controlling the position of the vessel.
  • the plurality of input parameters controlling the position of the vessel may comprise at least one of surface traffic, meteorological data, environmental data, movement of the vessel, location of the vessel, and electronic navigational charts.
  • the dynamic positioning control system may further comprises a database comprising navigational rules, and evaluates the surface traffic parameters in view of the navigational rules.
  • the vessel may deploy and recover the ROV through at least one of a base of the vessel below the waterline, a side of the vessel, and a top side of the vessel.
  • the vessel may further comprise an enclosed space for storage of the ROV. When the deployment and recovery device is in a resting position, it may be located within the enclosed space.
  • the vessel may deploy the ROV using a load-carrying umbilical cable connected to a Tether Management System.
  • the ROV may be deployed using a neutrally buoyant tether.
  • the deployment and recovery device may be an automated Launch and Recovery System (LARS).
  • the vessel may further comprise a redundant propulsion and steering system. The operation of the vessel may be carried out autonomously by the vessel control unit, or may be controlled from a land based control station.
  • the vessel may further comprise connection means configured for connection to a launch and recovery system on a second vessel or shore installation.
  • an unmanned surface vessel controller comprising a propulsion controller module to control movements of the vessel, a deployment and recovery module to control deployment of an ROV from the vessel to water and recover the ROV from the water to the vessel, and a ROV operation module to control operation of the ROV.
  • the controller may further comprise a dynamic positioning control system controlling the position of the vessel based on a plurality of input parameters.
  • the plurality of input parameters may comprise parameters relating to the ROV during ROV operations, the plurality of input parameters relating to the operation of the ROV comprises at least one of paid out length of a tether, tension on the tether between the vessel and the ROV, paid out length of an umbilical cable between the ROV and a tether management system, tension on the umbilical cable between the ROV and a tether management system, and working position of the ROV.
  • the controller may prioritize maintaining a working position of the ROV.
  • the plurality of input parameters controlling the position of the may comprise at least one of meteorological data, environmental data, movement of the vessel, electronic navigational charts, position of the vessel relative to land, rocks and other fixed hazards, and position of the vessel relative to other surface traffic.
  • the dynamic positioning control system may further comprise a database comprising navigational rules, and evaluates the surface traffic parameters in view of the navigational rules.
  • the dynamic positioning control system may further comprise a docking module to position the vessel for a vessel-to-vessel connection or a vessel-to-dock connection. The operation of the vessel may be carried out autonomously by the vessel control unit, or the vessel may be controlled from a land based control station.
  • an unmanned surface vessel for remotely operated underwater vehicle (ROV) operations, the unmanned surface vessel comprising a hull comprising an enclosed space, the enclosed space accommodating at least one ROV, and a deployment and recovery device to deploy an ROV from the vessel to water and recover the ROV from the water to the vessel.
  • the deployment and recovery device may in a resting position be located within the enclosed space.
  • the deployment and recovery device may be configured to deploy and recover the ROV through at least one of a base of the hull below the waterline, in a side of the hull, and in a top side of the enclosed space.
  • the deployment and recovery device may be an automated Launch and Recovery System (LARS).
  • the enclosed space of the vessel may be watertight.
  • the enclosed space may further be located in a midship section of the vessel.
  • the deployment and recovery device may be positioned on a side of the enclosed space.
  • the vessel may further comprise a redundant propulsion and steering system.
  • the hull of the vessel may be provided with two symmetrically positioned fin keels.
  • the vessel may further comprise at least one of a redundant vessel control unit controlling the deployment and recovery of an ROV, the operation of the ROV, and movements of the vessel, redundant fuel tanks or battery banks, redundant communication systems, and redundant sensors.
  • the vessel may further comprise connection means provided on the hull configured for connection to a launch and recovery system on a second vessel or onshore installation.
  • the hull and top section of the vessel may be essentially symmetrical both along the vessel and along a midship section of the vessel.
  • the redundant and steering system may comprise azimuth thrusters located on opposite ends of the vessel.
  • an exemplary embodiment of the independent unmanned ROV surface vessel comprising a hull 201 and a top section 202 is shown in perspective view on a water surface 206.
  • the vessel is further provided with a hatch 204 in the top section for access through the top section to an enclosed space.
  • the enclosed space may accommodate at least one ROV.
  • the vessel also comprises a deployment and recovery device to deploy an ROV from the vessel to water and recover the ROV from the water to the vessel.
  • the deployment and recovery device may in a resting position be located within the enclosed space.
  • the deployment and recovery device may be positioned on the a side of the enclosed space.
  • the enclosed space is watertight. In this manner is the interior of the enclosed space against rough weather and sea conditions.
  • the watertightness of the enclosed space may be provided by the top section.
  • the enclosed space may be located in a midship section of the vessel.
  • the vessel may also be provided with at least one tower 205.
  • the towers may be provided with antennas, communication units, radars, sensors etc. as will be described in further detail below. However, the antennas, communication units, radars, sensors etc. may also be positioned in other positions of the vessel.
  • the vessel may be provided with redundant antennas, communication units, radars and sensors. The redundant antennas, communication units, radars and sensors may provide additional safety for the vessel. In the embodiment illustrated in Fig. 2 , the towers are positioned symmetrically on each end of the vessel.
  • the hull and top section are essentially symmetrical both along the length of the vessel and along the midship section of the vessel.
  • the essentially symmetrical layout of the vessel comprise two mirrored bow sections back to back.
  • the vessel may have a traditional layout with a bow section and a stern section.
  • Fig. 3a illustrates an exemplary embodiment of the vessel seen in perspective view from below the water surface.
  • the hull is amidships provided with an opening in the floor or base of the hull, known as a moon pool 301 to deploy an ROV 302 under the water surface.
  • the hull may be provided with an opening in the side of the hull above the waterline, or partially above and below the waterline.
  • the ROV are connected to the vessel by a tether 306.
  • the tether may be a neutrally buoyant tether, or a load-carrying umbilical cable used along with a Tether Management System (TMS).
  • TMS Tether Management System
  • the vessel is provided with a redundant propulsion and steering system.
  • the redundant propulsion and steering system comprises in the embodiment illustrated in Fig.
  • each propulsion system is located on opposite ends of the vessel.
  • At least one of the propulsion units 304 comprise an azimuth thruster.
  • Azimuth thrusters provides high maneuverability of the vessel.
  • the vessel may be provided with two symmetrically positioned fin keels 305. In Fig. 3 the two symmetrically positioned fin keels are illustrated as positioned between two azimuth thrusters. In other embodiments, the vessel may be provided with other combinations of propulsion units, such as a propeller and rudder configuration, bow thruster, stern thruster etc.
  • Fig. 3b illustrates the exemplary embodiments of Fig. 2 and Fig. 3 in side view, and shows an exemplary waterline 307.
  • Fig. 4 illustrates the inside of the hull according to an embodiment of the vessel.
  • the vessel includes a ROV 401, a deployment and recovery device 402, such as an automated Launch and Recovery System (LARS), propulsion motors 403, azimuth thruster connectors 404, a spool winch 405 for an umbilical cable and an energy source 406.
  • the propulsion motors 403 may be a diesel-mechanic arrangement wherein a diesel engine connects mechanically to the thrusters e.g. by gearing.
  • the propulsion motors 403 may be a diesel-electric arrangement where a diesel engine connects mechanically to an electrical generator, creating electricity that powers electric motors positioned inside the vessel or in the thruster itself.
  • the energy source 406 comprises at least one fuel tank.
  • the engines are described as diesel engines, engines running on other fuels such as petrol or gas may be used.
  • the propulsion motors 403 may be a battery-electric arrangement wherein electric motors, positioned inside the vessel or in the thruster itself, are powered directly from at least one battery bank 406.
  • the ROV is deployed through an opening in the floor or base of the hull, known as a moon pool.
  • the ROV is deployed through an opening above the waterline, or partially above and below the waterline, in the side of the hull.
  • the ROV may also be deployed by a deployment and recovery device positioned on the top section of the vessel. In this case the ROV may be lifted from the enclosed space through an opening or the hatch in the top section.
  • the ROV may be stored on the top section of the vessel and deployed therefrom.
  • Fig. 4 illustrates an embodiment where the vessel is provided with redundant fuel tanks or battery banks 406.
  • the ROV 401 is housed in an enclosed space centrally positioned in the vessel.
  • the enclosed space may also comprise an deployment and recovery device 402, such as an automated Launch and Recovery System (LARS).
  • LFS automated Launch and Recovery System
  • the deployment and recovery device may be positioned on one side of the enclosed space mounted on ribs transversal to the length direction of the hull.
  • enclosed space may comprise a winch to deploy and recover the ROV.
  • the vessel may be designed such that the trim of the vessel should be unaffected by the presence of a ROV.
  • the vessel is provided with four symmetrically positioned fuel tanks or battery banks 406. The symmetrical positioning to optimize weight distribution and balance of the vessel.
  • the unmanned ROV surface vessel may comprise connection means provided on the hull configured for connection to a launch and recovery system on a second vessel or onshore installation. This connection means allows the vessel to be deployed from onshore installations or another support vessel.
  • the unmanned ROV surface vessel is provided with a unmanned surface vessel controller 500 as illustrated in Fig. 5 .
  • the vessel controller 500 controls the deployment and recovery of the ROV from the vessel to water and recover the ROV from the water to the vessel by a deployment and recovery module 503.
  • the vessel controller also controls the operation of the ROV by an ROV operation module 504.
  • the vessel controller 500 also controls movements of the vessel by a propulsion controller module 505.
  • the vessel controller may receive communication, by a communication module 501, from land based operators comprising instructions to control the vessel.
  • the vessel controller 500 may transmit data to the land based operators comprising data including at least one as location of the vessel, location of the ROV, meteorological data, environmental conditions, surface traffic, umbilical parameters and status parameters for the vessel.
  • the umbilical parameters may include at least one of paid out length of a tether, tension on the tether between the vessel and the ROV, paid out length of an umbilical cable between the ROV and a tether management system and tension on the umbilical cable between the ROV and a tether management system
  • This provides a land based control station control of the ROV surface vessel from a land based control station.
  • the land based control may provide predetermined instructions to the vessel control unit that autonomously carries out the operation of the vessel after receiving the instructions.
  • the vessel may send continuous feedback to land based operators during autonomous operation.
  • the vessel controller 500 receives instructions from land based operators through the communication unit 501.
  • the instructions are stored in a memory 502.
  • the instructions may be predetermined operation plans that the vessel controller 500 carries out autonomously after receiving the instructions, or may be real time instructions provided by the land based operators.
  • the vessel controller 500 reads the instructions from the memory 501.
  • the vessel controller 500 instructs the propulsion controller module 505.
  • the propulsion controller unit then instructs the propulsion system of the vessel to move according to the movement instructions, i.e. speed and direction of the vessel.
  • the vessel controller 500 instructs the deployment and recovery module 503 to launch or recover the ROV.
  • the vessel controller unit instructs the ROV operation module 504 to operate the ROV according to instructions in the memory 502.
  • the vessel controller 500 may therefore comprise a dynamic positioning (DP) control system 506 that receives a plurality of input parameters from sensors 507 and navigational systems 508. Based on the plurality of input parameters the DP control system 506 is controlling the position of the vessel. The DP control system 506 determines when and where the vessel should be moved. When the DP control system 506 determines that the vessel should move, the DP control system 506 outputs movement instructions including speed and direction to the propulsion control unit 505.
  • DP dynamic positioning
  • the vessel may be deployed and recovered from a second vessel or onshore installations.
  • the DP control system 506 may further comprise a docking module 509 to position the vessel for a vessel-to-vessel connection or a vessel-to-dock connection.
  • the docking module 509 may determine the docking movement based on the plurality of input parameters from sensors 507 and navigational systems 508.
  • the docking module 509 may also receive input parameters from a plurality of docking sensors 510.
  • the docking sensor 510 may be distance sensors such as a short-range radar.
  • the communication module 501 providing communication to and from the land based operators is a wireless communication unit.
  • the wireless communication unit may transmit and receive wireless data communication.
  • the wireless data communication transmission to and from the vessel may be a direct link between the vessel and the land based control.
  • the data communication transmission may be relayed via a larger vessel or structure such as an offshore platform.
  • the wireless communication unit may utilize any suitable wireless data communication protocol for cellular data services, mobile satellite communication, wireless sensor network protocols or Wi-Fi.
  • Exemplary cellular data service protocols includes, but is not limited to, Global System for Mobile Communications (GSM), Code division multiple access (CDMA), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), CDMA2000, Enhanced Data rates for GSM Evolution (EDGE), Mobile WiMAX, Long Term Evolution (LTE).
  • GSM Global System for Mobile Communications
  • CDMA Code division multiple access
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • CDMA2000 Code division multiple access for GSM Evolution
  • EDGE Enhanced Data rates for GSM Evolution
  • LTE Long Term Evolution
  • the vessel may be provided with a redundant vessel controller 500 controlling the deployment and recovery of an ROV, the operation of the ROV, and movements of the vessel.
  • the redundant vessel controller 500 includes a redundant propulsion controller module 505, a deployment and recovery module 503 and a ROV operation module 504.
  • the redundant vessel controller 500 may also include a redundant docking module 509.
  • the vessel may be provided with a redundant communication module 501, including redundant antennas and communication units.
  • the dynamic positioning control system 506 autonomously controls the position of the vessel based on a plurality of input parameters obtained from plurality of sensors 507 and navigational systems 508.
  • the vessel may be provided with a redundant dynamic positioning control system 506.
  • the redundant DP control system may include a redundant navigational system 508.
  • the redundant DP control system may also include redundant sensors 507, including redundant antennas and communication units.
  • Fig. 6 illustrates an exemplary arrangement 600 for the dynamic positioning control system 506.
  • the DP control system checks current operating instructions 601, e.g. if the vessel is to stay in one desired location, move from move from a first location to a second location following a predetermined path and/or is operating an ROV.
  • the DP control system 506 checks parameters relating meteorological input parameters 602, environmental input parameters 603 and movement of the vessel 604 as described in further detail below. If the vessel has drifted away, or is likely to drift away, from the desired location or path, the DP control system outputs movement instructions to counteract the drift. The DP control system 506 may also check parameters relating to the actual position of the vessel relative to land, rocks and other fixed hazards 605 as described in further detail below. If the DP control system 506 determines that the vessel is too close to any fixed hazards, the DP control system outputs movement instructions to move the vessel safely away from the fixed hazards.
  • the DP control system 506 may also check parameters relating to the position of the vessel relative to other surface traffic 606, evaluates the surface traffic parameters in view of relevant navigational rules. If the DP control system 506 determines that the vessel should move away from other surface traffic, the DP control system outputs movement instructions to move the vessel accordingly.
  • the DP control system 506 also checks parameters relating to the operation of the ROV 607 when determining when and where the vessel should be moved. In the case the ROV is deployed using a neutrally buoyant tether the DP-control system may make the determination based on input parameters such as the paid out length of the tether and the tension on the tether between the vessel and the ROV.
  • the DP-control system may make the determination based on input parameters such as paid out length of the umbilical cable, the tension of the umbilical cable between the vessel and the TMS, the paid out length of the umbilical between the ROV and TMS, and the tension of the umbilical between the ROV and TMS.
  • the DP control system 506 outputs movement instructions to move the vessel following the ROV, hence reducing the distance to the ROV.
  • Another important input parameter during ROV operations is the working position of the ROV.
  • the DP control system 506 may be configured to prioritise maintaining the working position of the ROV when determining when and where the vessel should be moved.
  • the docking module 509 checks parameters relating to the docking of the vessel 608 when determining where the vessel should be moved. The docking module may make the determination based on input parameters such as distance to second vessel or dock, and position of the second vessel or dock.
  • the DP control system may calculate the movement from the desired location or path, e.g. the drift, based on meteorological parameters and environmental input parameters such as wind direction, wind strength, water temperature, air temperature, barometric pressure, wave height etc.
  • the input parameters are provided by relevant sensors connected to DP control system such as a wind meter, thermometer, barometer etc.
  • the system output movement instructions to counteract the drift.
  • Other input parameters to calculate the drift may include data from movement sensors such as a gyro, an accelerometer, a gyrocompass and a turn-rate indicator.
  • Movement of the vessel may also be calculated from actual position parameters of the vessel relative to the desired location.
  • the actual position parameters may be obtained from navigation systems connected to the DP control system.
  • the navigation system may be a ground based radio navigation system, such as DECCA, LORAN, GEE and Omega, or a satellite navigation systems, such as GPS, GLONASS, Galileo and BeiDou.
  • GPS Global Navigation System
  • GLONASS Galileo and BeiDou
  • BeiDou the accuracy of the actual location may be improved by input to the CP control system from a Differential Global Positioning System (DGPS).
  • DGPS Differential Global Positioning System
  • the DP-control system may also receive input parameters from electronic navigational charts. Combined with input parameters from the navigation systems, this allows the DP control system to determine movement instructions that safely controls the vessel from colliding with land, rocks and other fixed hazards.
  • the DP-control system may also receive input parameters from other sensors such as a sonar, marine radar, and/or an optical system using a camera.
  • the sonar may provide information about underwater hazards such as land, rocks, underwater vessel etc.
  • the marine radar and/or optical system may provide information about overwater hazards such as land and other surface vessels.
  • the marine radar and/or optical system may also provide navigation information from sea marks such as beacons, buoys, racons, cairns and lighthouses.
  • a database comprising the relevant navigational rules for an operation location of the vessel may be included in the DP control system.
  • the DP control system receives input parameters relating to other surface traffic, evaluates the surface traffic parameters in view of the relevant navigational rules, when determining when and where the vessel should be moved.
  • the input parameters relating to surface traffic may be provided by sensors and systems connected to the vessel controller unit such as a marine radar, an Automatic Identification System (AIS) and an automatic radar plotting aid (ARPA).
  • the input parameters relating to surface traffic may be provided by optical sensors such as a camera. The optical sensors may observe and recognize other surface vessels and provide navigation information from sea marks such as beacons, buoys, cairns and lighthouses.
  • the DP control system may optionally alert the land based control station through the wireless communication unit.
  • the DP control unit may transmit data from the marine radar, the Automatic Identification System (AIS), the automatic radar plotting aid (ARPA) or the camera.
  • the land based control station may then make a decision to overrun the DP control system when determining how and when the vessel should be moved.
  • AIS Automatic Identification System
  • ARPA automatic radar plotting aid
  • the unmanned ROV surface vessel is provided with a Global Maritime Distress and Safety System (GMDSS).
  • GDSS Global Maritime Distress and Safety System
  • Input parameters as described above may be received by the DP control system by wired connections or any suitable wireless data communication protocol, such as wireless sensor network protocols or Wi-Fi.
  • the vessel controller unit, the dynamic positioning control system and the propulsion control unit may be implemented in a computer having at least one processor and at least one memory.
  • An operating system runs on the at least one processor.
  • Custom programs, controlled by the system, are moved into and out of memory. These programs include at least the vessel controller unit, the dynamic positioning control system and the propulsion control unit as described above.
  • the system may further contain a removable memory component for transferring images, maps, instructions or programs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Catching Or Destruction (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Toys (AREA)

Claims (19)

  1. Unbemanntes Oberflächenschiff für einen Betrieb ferngesteuerter Unterwasserfahrzeuge (remotely operated underwater vehicle - ROV), wobei das unbemannte Oberflächenschiff Folgendes umfasst:
    - ein ROV,
    - eine Einsatz- und Bergungsvorrichtung (402), um ein ROV von dem unbemannten Oberflächenschiff in Wasser einzusetzen und das ROV aus dem Wasser zu dem unbemannten Oberflächenschiff zu bergen, und
    - eine Schiffssteuereinheit (500), die den Einsatz und die Bergung des ROV, den Betrieb des ROV und Bewegungen des unbemannten Oberflächenschiffs steuert, wobei ein dynamisches Positionierungssteuersystem (506) die Position steuert und bestimmt, wann und wohin das unbemannte Schiff bewegt werden soll, basierend auf mehreren Eingabeparametern, wobei die mehreren Eingabeparameter Parameter umfassen, die sich auf das ROV während des ROV-Betriebs beziehen, wobei die Parameter, die sich auf das ROV beziehen, die Arbeitsposition des ROV umfassen, dadurch gekennzeichnet, dass die mehreren Eingabeparameter ebenso Oberflächenverkehrsparameter umfassen,
    - wobei das dynamische Positionierungssteuersystem (506) konfiguriert ist, um zu priorisieren, eine Arbeitsposition des ROV beizubehalten, wenn es die Position steuert und bestimmt, wann und wohin das unbemannte Schiff bewegt werden soll, und
    - das dynamische Positionierungssteuersystem (506) ferner eine Datenbank umfasst, die Navigationsregeln umfasst, und die Oberflächenverkehrsparameter hinsichtlich der Navigationsregeln auswertet, wenn bestimmt wird, wann und wohin das Schiff bewegt werden soll.
  2. Schiff nach Anspruch 1, wobei die mehreren Eingabeparameter Parameter umfasst, die sich während des ROV-Betriebs auf das ROV beziehen, wobei die Parameter, die sich während des ROV-Betriebs auf das ROV beziehen, Folgendes umfassen:
    - ausgegebene Länge eines Halteseils,
    - Spannung an einem Halteseil zwischen dem Schiff und dem ROV,
    - ausgegebene Länge eines Versorgungskabels zwischen dem ROV und einem Halteseilverwaltungssystem, und/oder
    - Spannung an dem Versorgungskabel zwischen dem ROV und einem Haltesei lverwaltungssystem.
  3. Schiff nach Anspruch 1, wobei die mehreren Eingabeparameter Folgendes umfassen:
    - meteorologische Daten,
    - Umweltdaten,
    - Bewegung des Schiffs,
    - Standort des Schiffs und/oder
    - elektronische Navigationskarten.
  4. Schiff nach Anspruch 1, wobei das ROV durch Folgendes eingesetzt und geborgen wird:
    - eine Basis des unbemannten Oberflächenschiffs unterhalb der Wasserlinie,
    - eine Seite des unbemannten Oberflächenschiffs und/oder
    - eine Oberseite des unbemannten Oberflächenschiffs.
  5. Schiff nach Anspruch 1, das ferner einen umschlossenen Raum für eine Lagerung des ROV umfasst.
  6. Schiff nach Anspruch 5, wobei sich die Einsatz- und Bergungsvorrichtung in einer Ruheposition innerhalb des umschlossenen Raums befindet.
  7. Schiff nach Anspruch 1, wobei das ROV unter Verwendung eines lasttragenden Versorgungskabels eingesetzt wird, das mit einem Halteseilverwaltungssystem verbunden ist.
  8. Schiff nach Anspruch 1, wobei das ROV unter Verwendung eines neutral schwimmfähigen Halteseils eingesetzt wird.
  9. Schiff nach Anspruch 1, wobei die Einsatz- und Bergungsvorrichtung ein automatisiertes Start- und Bergungssystem (Launch and Recovery System - LARS) ist.
  10. Schiff nach Anspruch 1, das ferner ein redundantes Antriebs- und Lenkungssystem umfasst.
  11. Schiff nach Anspruch 1, wobei der Betrieb des unbemannten Oberflächenschiffs autonom durch die Schiffssteuereinheit ausgeführt wird.
  12. Schiff nach Anspruch 1, wobei das unbemannte Oberflächenschiff von einer landgestützten Steuerstation aus gesteuert wird.
  13. Schiff nach Anspruch 1, das ferner Verbindungsmittel umfasst, die zum Verbinden mit einem Start- und Bergungssystem auf einem zweiten Schiff oder einer Landanlage konfiguriert sind.
  14. Steuerung (500) für unbemannte Oberflächenschiffe, die Folgendes umfasst
    - ein Antriebssteuermodul (505), um Bewegungen des unbemannten Oberflächenschiffs zu steuern,
    - ein Einsatz- und Bergungsmodul (503), um den Einsatz eines ROV von dem unbemannten Oberflächenschiff in Wasser zu steuern und das ROV aus dem Wasser zu dem unbemannten Oberflächenschiff zu bergen, und
    - ein ROV-Betriebsmodul (504), um den Betrieb des ROV zu steuern,
    - ein dynamisches Positionierungssteuersystem (506), das die Position steuert und bestimmt, wann und wohin das unbemannte Schiff bewegt werden soll, basierend auf mehreren Eingabeparametern, wobei die mehreren Eingabeparameter Parameter umfassen, die sich auf das ROV während ROV-Betrieben beziehen, wobei die Parameter, die sich auf das ROV beziehen, die Arbeitsposition des ROV umfassen, dadurch gekennzeichnet, dass die mehreren Eingabeparameter ebenso Oberflächenverkehrsparameter umfassen,
    - wobei das dynamische Positionierungssteuersystem (506) konfiguriert ist, um zu priorisieren, eine Arbeitsposition des ROV beizubehalten, wenn es die Position steuert und bestimmt, wann und wohin das unbemannte Schiff bewegt werden soll, und wobei das dynamische Positionierungssteuersystem (506) ferner eine Datenbank umfasst, die Navigationsregeln umfasst, und die Oberflächenverkehrsparameter hinsichtlich der Navigationsregeln auswertet, wenn bestimmt wird, wann und wohin das Schiff bewegt werden soll.
  15. Steuerung nach Anspruch 14, wobei die mehreren Eingabeparameter Parameter umfassen, die sich auf das ROV während des ROV-Betriebs beziehen, wobei die mehreren Eingabeparameter, die sich auf den Betrieb des ROV beziehen, Folgendes umfassen:
    - ausgegebene Länge eines Halteseils,
    - Spannung an dem Halteseil zwischen dem unbemannten Oberflächenschiff und dem ROV,
    - ausgegebene Länge eines Versorgungskabels zwischen dem ROV und einem Halteseilverwaltungssystem, und/oder
    - Spannung an dem Versorgungskabel zwischen dem ROV und einem Haltesei lverwaltungssystem.
  16. Steuerung nach Anspruch 14 oder 15, wobei die mehreren Eingabeparameter Folgendes umfassen:
    - meteorologische Daten,
    - Umweltdaten,
    - Bewegung des unbemannten Oberflächenschiffs,
    - elektronische Navigationskarten und/oder
    - Position des unbemannten Oberflächenschiffs relativ zu Land, Felsen und anderen festen Hindernissen.
  17. Steuerung nach Anspruch 14, wobei das dynamische Positionierungssteuersystem (506) ferner ein Andockmodul umfasst, um das Schiff für eine Verbindung von Schiff zu Schiff oder eine Verbindung von Schiff zu Dock zu positionieren.
  18. Steuerung nach Anspruch 14, wobei der Betrieb des Schiffs autonom durch die Schiffssteuereinheit ausgeführt wird.
  19. Steuerung nach Anspruch 14, wobei das Schiff von einer landgestützten Steuerstation aus gesteuert wird.
EP17727736.5A 2016-04-27 2017-04-25 Unbemanntes oberflächenschiff für den ferngesteuerten betrieb von unterwasserfahrzeugen Active EP3448748B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP23181517.6A EP4242096A3 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
DK20198858.1T DK3778373T3 (da) 2016-04-27 2017-04-25 Ubemandet overfladefartøj til operationer med fjernbetjent undervandsfartøj
EP20198858.1A EP3778373B1 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
SI201731170T SI3448748T1 (sl) 2016-04-27 2017-04-25 Površinsko plovilo brez posadke za daljinsko upravljanje delovanja podvodnih vozil
HRP20220773TT HRP20220773T1 (hr) 2016-04-27 2017-04-25 Površinsko plovilo bez posade za upravljanje podvodnim vozilom na daljinsko upravljanje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20160706A NO341429B1 (en) 2016-04-27 2016-04-27 Unmanned surface vessel for remotely operated underwater vehicle operations
PCT/NO2017/050101 WO2017188823A1 (en) 2016-04-27 2017-04-25 Unmanned surface vessel for remotely operated underwater vehicle operations

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP20198858.1A Division EP3778373B1 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
EP20198858.1A Division-Into EP3778373B1 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
EP23181517.6A Division EP4242096A3 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen

Publications (2)

Publication Number Publication Date
EP3448748A1 EP3448748A1 (de) 2019-03-06
EP3448748B1 true EP3448748B1 (de) 2022-04-06

Family

ID=58995197

Family Applications (3)

Application Number Title Priority Date Filing Date
EP17727736.5A Active EP3448748B1 (de) 2016-04-27 2017-04-25 Unbemanntes oberflächenschiff für den ferngesteuerten betrieb von unterwasserfahrzeugen
EP20198858.1A Active EP3778373B1 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
EP23181517.6A Pending EP4242096A3 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP20198858.1A Active EP3778373B1 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen
EP23181517.6A Pending EP4242096A3 (de) 2016-04-27 2017-04-25 Unbemanntes überwasserschiff für ferngesteuerte unterwasserfahrzeugoperationen

Country Status (12)

Country Link
EP (3) EP3448748B1 (de)
DK (2) DK3448748T3 (de)
ES (2) ES2963531T3 (de)
FI (1) FI3778373T3 (de)
HR (2) HRP20231138T1 (de)
HU (2) HUE064019T2 (de)
LT (2) LT3778373T (de)
NO (1) NO341429B1 (de)
PL (2) PL3448748T3 (de)
PT (2) PT3778373T (de)
SI (2) SI3448748T1 (de)
WO (1) WO2017188823A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108016574A (zh) * 2017-12-12 2018-05-11 大连海事大学 一种具有水质监测功能的基于北斗导航的水面航行器
WO2019229633A1 (en) * 2018-05-27 2019-12-05 Rekise Marine Pvt. Ltd. An autonomous surface vessel
FR3088614B1 (fr) * 2018-11-16 2021-05-28 E 4S Bateau de surface autonome ameliore
CN112230639A (zh) * 2019-06-28 2021-01-15 中国科学院沈阳自动化研究所 一种用于自主遥控水下机器人的远程回收控制系统及方法
NO347397B1 (en) * 2019-09-12 2023-10-16 Kongsberg Maritime As Intermediate docking station for underwater vehicles
NL2025284B1 (en) * 2020-04-06 2021-10-25 Demcon Unmanned Systems B V Watercraft comprising a positioning system
CN111470013B (zh) * 2020-04-20 2021-04-09 中国科学院声学研究所 一种基于rov的水下设备收放装置、布放及回收方法
DE102020115215A1 (de) * 2020-06-08 2021-12-09 Scan4Pipes Europe GmbH Messplattform und Verfahren zum Auffinden und zur Überwachung von Rohrleitungen unter Wasser
CN111942530A (zh) * 2020-08-24 2020-11-17 上海海洋大学 一种连接水下机器人的无人船装置
CN114228961B (zh) * 2021-11-15 2023-06-30 中国船舶重工集团公司第七一九研究所 一种水下主动对接机器人及对接方法
CN114842635A (zh) * 2022-05-11 2022-08-02 徐文宇 一种具有显示功能的船艇遥控系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105453A (en) 1961-11-24 1963-10-01 Shell Oil Co Ship control system
WO1995032121A1 (en) * 1994-05-19 1995-11-30 Yung Yul Gung Supplied ship for underwater excavator
EP1031506A2 (de) * 1999-02-24 2000-08-30 J.Ray McDermott, S.A. Ferngesteuertes Gerät zum Aussetzen und Bergen von ferngesteuerten Wasserfahrzeugen
US6279501B1 (en) * 2000-09-28 2001-08-28 Mentor Subsea Technology Services, Inc. Umbilical constraint mechanism
GB2365824A (en) * 2000-08-14 2002-02-27 Mentor Subsea Tech Serv Inc Drone vessel for remotely operated vehicles
JP2006044622A (ja) 2004-08-02 2006-02-16 Yamaha Motor Co Ltd 機器艤装船舶
GB2480688A (en) * 2010-05-28 2011-11-30 Acergy Norway As A method of controlling subsea laying of an elongate article
US8612085B2 (en) 2008-12-30 2013-12-17 Elbit Systems Ltd. Autonomous navigation system and method for a maneuverable platform
US20150049588A1 (en) 2012-03-30 2015-02-19 Atlas Elektronik Gmbh Method for detecting naval mines and naval mine detection system
CN104369842A (zh) 2014-08-12 2015-02-25 浙江大学 基于自主水下航行器的水面辅助机器人及使用方法
KR20150047159A (ko) 2013-10-24 2015-05-04 대우조선해양 주식회사 Rov의 거동을 고려한 동적 위치 제어 시스템 및 그의 위치 제어 방법
US9223310B2 (en) 2013-02-08 2015-12-29 The Boeing Company Ship course obstruction warning transport
ES2558356A1 (es) 2015-06-10 2016-02-03 Universidad Politécnica De Cartagena Sistema y método de neutralización de minas submarinas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269763B1 (en) * 1998-02-20 2001-08-07 Richard Lawrence Ken Woodland Autonomous marine vehicle
DE10310550A1 (de) * 2003-03-02 2004-09-30 Fred Hocker Gewässeruntersuchungssystem
US6854410B1 (en) * 2003-11-24 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Underwater investigation system using multiple unmanned vehicles
WO2012053897A2 (en) * 2010-10-19 2012-04-26 Innova As An arrangement and a crane assembly for deployment and/ or retrieval of a payload at sea, and a movement attenuation payload deployment and/ or retrieval device, and a snubber device.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105453A (en) 1961-11-24 1963-10-01 Shell Oil Co Ship control system
WO1995032121A1 (en) * 1994-05-19 1995-11-30 Yung Yul Gung Supplied ship for underwater excavator
EP1031506A2 (de) * 1999-02-24 2000-08-30 J.Ray McDermott, S.A. Ferngesteuertes Gerät zum Aussetzen und Bergen von ferngesteuerten Wasserfahrzeugen
GB2365824A (en) * 2000-08-14 2002-02-27 Mentor Subsea Tech Serv Inc Drone vessel for remotely operated vehicles
US6279501B1 (en) * 2000-09-28 2001-08-28 Mentor Subsea Technology Services, Inc. Umbilical constraint mechanism
JP2006044622A (ja) 2004-08-02 2006-02-16 Yamaha Motor Co Ltd 機器艤装船舶
US8612085B2 (en) 2008-12-30 2013-12-17 Elbit Systems Ltd. Autonomous navigation system and method for a maneuverable platform
GB2480688A (en) * 2010-05-28 2011-11-30 Acergy Norway As A method of controlling subsea laying of an elongate article
US20150049588A1 (en) 2012-03-30 2015-02-19 Atlas Elektronik Gmbh Method for detecting naval mines and naval mine detection system
US9223310B2 (en) 2013-02-08 2015-12-29 The Boeing Company Ship course obstruction warning transport
KR20150047159A (ko) 2013-10-24 2015-05-04 대우조선해양 주식회사 Rov의 거동을 고려한 동적 위치 제어 시스템 및 그의 위치 제어 방법
CN104369842A (zh) 2014-08-12 2015-02-25 浙江大学 基于自主水下航行器的水面辅助机器人及使用方法
ES2558356A1 (es) 2015-06-10 2016-02-03 Universidad Politécnica De Cartagena Sistema y método de neutralización de minas submarinas

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. C. SHAH ET AL.: "Trajectory planning with adaptive control primitives for autonomous surface vehicles operating in congested civilian traffic", 2014 IEEE /RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2014, pages 2312 - 2318, XP032676532, DOI: 10.1109/IROS.2014.6942875
P. AGRAWAL ET AL.: "COLREGS-compliant target following for an Unmanned Surface Vehicle in dynamic environments", 2015 IEEE /RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS, 2015, pages 1065 - 1070, XP032831723, DOI: 10.1109/IROS.2015.7353502
P. SVEC ET AL.: "Dynamics-aware target following for an autonomous surface vehicle operating under COLREGs in civilian traffic", 2013 IEEE /RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2013, pages 3871 - 3878, XP032537844, DOI: 10.1109/IROS.2013.6696910

Also Published As

Publication number Publication date
EP4242096A2 (de) 2023-09-13
EP4242096A3 (de) 2023-11-08
ES2963531T3 (es) 2024-03-27
PL3448748T3 (pl) 2022-07-25
HRP20231138T1 (hr) 2024-01-05
PL3778373T3 (pl) 2024-02-19
LT3778373T (lt) 2023-10-25
DK3778373T3 (da) 2023-10-30
EP3778373A1 (de) 2021-02-17
SI3448748T1 (sl) 2022-09-30
ES2920894T3 (es) 2022-08-11
WO2017188823A1 (en) 2017-11-02
NO20160706A1 (en) 2017-10-30
NO341429B1 (en) 2017-11-13
PT3778373T (pt) 2023-11-20
LT3448748T (lt) 2022-07-11
HUE064019T2 (hu) 2024-02-28
FI3778373T3 (fi) 2023-10-31
EP3448748A1 (de) 2019-03-06
PT3448748T (pt) 2022-07-05
DK3448748T3 (da) 2022-07-04
SI3778373T1 (sl) 2024-01-31
EP3778373B1 (de) 2023-08-23
HUE059097T2 (hu) 2022-10-28
HRP20220773T1 (hr) 2022-09-16

Similar Documents

Publication Publication Date Title
EP3448748B1 (de) Unbemanntes oberflächenschiff für den ferngesteuerten betrieb von unterwasserfahrzeugen
US9223310B2 (en) Ship course obstruction warning transport
Kaminski et al. 12 days under ice–an historic AUV deployment in the Canadian High Arctic
JP7048753B2 (ja) 海洋監視用浮体
US10604218B2 (en) Manoeuvring device and method therof
US20220185436A1 (en) Autonomous navigation type marine buoy and marine information system using the same
US11447209B2 (en) Recovery apparatus and allocated method
RU2709058C2 (ru) Мобильный гидроакустический буй-маяк и способ навигационного оборудования морского района
KR101277002B1 (ko) 무인수상로봇
Jung et al. A study on unmanned surface vehicle combined with remotely operated vehicle system
EP3501966A1 (de) Unbemanntes meeresoberflächenschiff
Martorell-Torres et al. Xiroi ASV: a modular autonomous surface vehicle to link communications
JP7382321B2 (ja) インターフェース・ユニット
Yoshida et al. Development of the cruising-AUV “Jinbei”
Ohki et al. Development and testing of an unmanned surface towing system for autonomous transport of multiple heterogeneous underwater vehicles for seafloor survey
RU2766365C1 (ru) Контролируемый мобильный гидроакустический буй-маяк
Diercks et al. Advanced technology in motion: NIUST's AUV fleet
Tsukioka et al. Development of a long range autonomous underwater vehicle/spl Gt/OPEN"/AUV-EX1"
Proutiere et al. New concepts in mine warfare
Collins Untethered AUV'S Can Reduce Costs For Offshore Inspection Jobs
ES1218802U (es) Embarcación robotizada
Defilippo et al. REx 4-An Autonomous Surface Vessel for Marine Research
Ferguson et al. SeaKeeper–An Operational Remote Minehunting System
Lee et al. Development of a highly-maneuverable unmanned underwater vehicle having an RF communication buoy
Haas Seahorse II

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20220773T

Country of ref document: HR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONGSBERG MARITIME CM AS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONGSBERG MARITIME AS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1481105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017055536

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220627

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3448748

Country of ref document: PT

Date of ref document: 20220705

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220628

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2920894

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220811

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E022418

Country of ref document: EE

Effective date: 20220701

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20220401363

Country of ref document: GR

Effective date: 20220808

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220406

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20220773T

Country of ref document: HR

Payment date: 20220704

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20220773

Country of ref document: HR

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E059097

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017055536

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

26 Opposition filed

Opponent name: FNV IP B.V.

Effective date: 20221223

R26 Opposition filed (corrected)

Opponent name: FNV IP B.V.

Effective date: 20221223

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20220773

Country of ref document: HR

Payment date: 20230404

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20230331

Year of fee payment: 7

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230404

Year of fee payment: 7

Ref country code: PT

Payment date: 20230412

Year of fee payment: 7

Ref country code: NO

Payment date: 20230427

Year of fee payment: 7

Ref country code: MC

Payment date: 20230404

Year of fee payment: 7

Ref country code: LT

Payment date: 20230403

Year of fee payment: 7

Ref country code: IT

Payment date: 20230419

Year of fee payment: 7

Ref country code: IE

Payment date: 20230427

Year of fee payment: 7

Ref country code: FR

Payment date: 20230425

Year of fee payment: 7

Ref country code: ES

Payment date: 20230503

Year of fee payment: 7

Ref country code: EE

Payment date: 20230406

Year of fee payment: 7

Ref country code: DK

Payment date: 20230427

Year of fee payment: 7

Ref country code: DE

Payment date: 20230427

Year of fee payment: 7

Ref country code: CY

Payment date: 20230405

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

Ref country code: BG

Payment date: 20230418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230412

Year of fee payment: 7

Ref country code: SI

Payment date: 20230403

Year of fee payment: 7

Ref country code: SE

Payment date: 20230427

Year of fee payment: 7

Ref country code: PL

Payment date: 20230404

Year of fee payment: 7

Ref country code: LV

Payment date: 20230406

Year of fee payment: 7

Ref country code: HU

Payment date: 20230412

Year of fee payment: 7

Ref country code: HR

Payment date: 20230404

Year of fee payment: 7

Ref country code: GR

Payment date: 20230428

Year of fee payment: 7

Ref country code: FI

Payment date: 20230425

Year of fee payment: 7

Ref country code: AT

Payment date: 20230403

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230403

Year of fee payment: 7

Ref country code: GB

Payment date: 20230427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20230414

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20220773

Country of ref document: HR

Payment date: 20240405

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240426

Year of fee payment: 8