EP3441613B1 - Hydrostatische zahnrad-kreiskolbenmaschine - Google Patents

Hydrostatische zahnrad-kreiskolbenmaschine Download PDF

Info

Publication number
EP3441613B1
EP3441613B1 EP17185063.9A EP17185063A EP3441613B1 EP 3441613 B1 EP3441613 B1 EP 3441613B1 EP 17185063 A EP17185063 A EP 17185063A EP 3441613 B1 EP3441613 B1 EP 3441613B1
Authority
EP
European Patent Office
Prior art keywords
rotary piston
shaft
hydrostatic
teeth
gearwheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17185063.9A
Other languages
English (en)
French (fr)
Other versions
EP3441613A1 (de
Inventor
Siegfried A. Eisenmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP17185063.9A priority Critical patent/EP3441613B1/de
Publication of EP3441613A1 publication Critical patent/EP3441613A1/de
Application granted granted Critical
Publication of EP3441613B1 publication Critical patent/EP3441613B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0065Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the invention relates to a hydrostatic rotary piston gear machine based on the orbit principle according to the preamble of claim 1.
  • a hydrostatic rotary piston machine is known from the EP 0 367 046 A1 .
  • the working spaces between the toothing of the rotary piston and the stator are controlled by a drum-shaped rotary commutator.
  • This rotary commutator is driven by a circular arc gear, which transfers the speed of the rotary piston to the speed of the rotary commutator 1: 1.
  • This rotary commutator is mounted radially in the machine housing with the necessary radial running clearance.
  • the working pressures of such rotary piston machines have increased to such an extent that such a constant, relatively large clearance no longer meets the volumetric requirements.
  • the drive is via a Such a circular arc gear is afflicted with too much backlash, so that the rotational angle accuracy between the rotary piston and the rotary commutator suffers.
  • Another disadvantage is the relatively complex structure of the machine.
  • a centrally mounted shaft with external shaft teeth rotates centrally within a stator with a stationary in the housing Internal stator toothing, with a rotary piston arranged between the internal stator toothing and the external shaft toothing, the internal rotary piston toothing of which engages in the external shaft toothing with a different number of teeth and its external circular piston toothing in the internal stator toothing with a different number of teeth.
  • the rotary piston executes a rotary movement around its own rotary piston axis, which runs parallel to, but not fixed to, the shaft and stator axes at a distance.
  • the rotary piston performs an orbital movement around the shaft axis in the area between the internal stator toothing and the external shaft toothing.
  • the rotary piston axis thus performs a complex circular movement around the shaft and stator axis.
  • the orbit movement i.e. the rotational movement around an axis circling in a circular path
  • the tooth chambers filled with hydraulic fluid between the stator internal toothing and the rotary piston external tooth system also perform a circular movement around the shaft, while the tooth chambers in a gerotor machine are essentially fixed.
  • a rotary piston machine In order to supply and dispose of the rotating tooth chambers with hydraulic fluid to generate the output, a rotary piston machine requires complex commutation by means of a rotary valve, also called a rotary commutator, which is driven at the speed of the rotary piston. Since such a rotary valve does not have to be used in a gerotor machine and the problem of its drive, as in particular in the EP 0 367 046 A1 and the EP 1 776 525 A1 described, does not exist, approaches from the field of gerotor machines for solving the problem with rotary piston machines are not or only partially applicable.
  • a wobble sleeve is arranged around the shaft, the external teeth of which mesh with the internal teeth of the rotary piston with the same number of teeth and internal teeth of the wobble sleeve with the same number of teeth engage in external teeth of the shaft.
  • the disc-shaped rotary valve which is used to dispose of and dispose of the tooth chambers, is also coupled to the shaft in a rotationally fixed manner at a speed ratio of 1: 1. In this way, the shaft, the rotary piston and the rotary valve always rotate at the same speed in the ultra-slow runner.
  • the object of the invention is to provide a hydrostatic gear rotary piston machine which is characterized on the one hand by a compact and relatively simple structure, on the other hand by a high performance potential, an exact drive of the rotary valve and high operational reliability even at high working pressures.
  • the combination of these properties is currently considered a trade-off in the prior art.
  • a disc-shaped rotary valve of the known design in particular with axial play-compensated, is used between the two bearings and the drive of this rotary valve is improved by an almost play-free, direct, toothed cup-shaped wobble sleeve, which has a large diameter stable and continuous wave surrounds.
  • the internal gear between the shaft and the rotary piston is also optimized for the highest possible displacement per shaft revolution.
  • the machine mentioned at the beginning can be used for much higher working pressures and the kinematic drive conditions for the disc-shaped rotary valve are much more precise, simpler and cheaper than the known machine mentioned.
  • the invention reduces the dimensions and thus the weight of the machine by at least 15% can be reduced, which also contributes to a reduction in manufacturing costs.
  • the compactness of the construction according to the invention is unsurpassed.
  • the invention represents a further development of the hydrostatic rotary piston machines known from the prior art, which is why the general basic structure of the hydrostatic rotary piston machine according to the invention, which is already essentially known from the prior art, is discussed below before the features according to the invention are explained.
  • the present invention is a rotary piston machine based on the orbit principle, with an internally toothed stator fixed in space, a rotary piston rotates around its own axis and this axis makes a circular movement in the opposite direction of rotation than the rotary piston. This means that in this overall movement the center distance line between the rotary piston and stator center executes a rotary movement in the opposite direction of rotation than the rotary piston around its own axis.
  • the hydrostatic rotary piston machine which can also be referred to as a particularly slow-running high-torque rotary piston engine, comprises a power section acting as an output, which is arranged in the housing of the rotary piston machine or forms a logical section of the housing or the machine.
  • the power section is essentially composed of a stationary, central stator, a movable rotary piston and a section of a centrally rotatably mounted shaft serving as an output, which engages with the rotary piston.
  • the stator has internal stator teeth with the number of teeth Z4.
  • the rotary piston has a rotary piston external gear with a number of teeth Z3 and a rotary piston internal gear with a number of teeth Z2, which partially engages in the internal stator teeth. With its first external shaft toothing with a number of teeth Z1, the shaft partially meshes with the internal toothing of the rotary piston, the rotary piston being arranged and dimensioned eccentrically to the shaft axis in order to perform an orbit movement and the number of teeth Z1, Z2, Z3, Z4 in such a ratio are related to each other that tooth chambers that can be supplied and disposed of with working fluid are formed between the internal stator toothing of the stator and the external toothing of the rotary piston of the rotary piston.
  • the hydrostatic gear rotary piston machine thus comprises a central, stationary stator with internal stator teeth with the number of teeth Z4 and an eccentrically arranged rotary piston within the stator - for executing an orbit movement revolving around an eccentricity - one of which is partially inserted into the stator - has internal toothing engaging rotary piston external toothing with a number of teeth Z3, the difference in number of teeth between the number of teeth Z4 and the number of teeth Z3 being one.
  • Z4 minus Z3 is therefore 1.
  • a rotary piston internal toothing with a number of teeth Z2 Inside the rotary piston there is a rotary piston internal toothing with a number of teeth Z2.
  • a shaft rotatably mounted about a shaft axis is arranged centrically to the stator.
  • an external shaft toothing with a number of teeth Z1 which partially engages the internal rotary piston toothing, is arranged.
  • Tooth chambers are arranged radially between the stator internal teeth and the rotary piston external teeth and are of the stator internal toothing and the rotary piston external toothing limited radially in the radial direction and essentially sealed by the engagement of these toothings.
  • the supply and disposal of the tooth chambers with the working fluid is controlled via a disc-shaped rotary valve, which is mounted running centrically to the shaft and the stator.
  • the rotary valve is mounted rotatably about the centric, geometric shaft axis extending along the center of the shaft.
  • the rotary valve itself does not perform an orbit movement, but rotates around the shaft axis.
  • the supply and disposal of the tooth chambers with the working fluid can be controlled commutatingly by rotating the rotary valve via pressure windows arranged essentially radially in the rotary valve in such a way that the working fluid from the pressure connection into a first part of the tooth chambers with the working pressure and out of a second Part of the tooth chambers is passed out to a low-pressure connection, so that the working pressure in the first part of the tooth chambers leads to an orbit movement of the rotary piston and displaces the working fluid from the second part of the tooth chambers, causing the shaft to rotate, and vice versa.
  • the disc-shaped rotary valve can be rotated centrically about the shaft axis and is mounted running centrically to the shaft and to the stator.
  • the disk-shaped rotary valve is for the commutating control of the supply and disposal of the tooth chambers with the working fluid for introducing working fluid into a first part of the tooth chambers with the working pressure and for discharging the working fluid from a
  • the second part of the tooth chambers is designed to generate the output and is connected to the tooth chambers.
  • the shaft is supported by radial bearings, especially roller bearings.
  • a main bearing is arranged on a shaft output side of the shaft.
  • a secondary bearing is arranged on an opposite side of the shaft, which is at the other end of the shaft - opposite the shaft output side.
  • the main bearing and / or the secondary bearing are designed in particular as radial bearings, as roller bearings, as roller bearings or preferably as tapered roller bearings, in particular in an X arrangement.
  • a non-rotatable hydrostatic axial compensating piston is preferably used for axial backlash freedom of the disc-shaped rotary valve, which acts axially on the rotary valve.
  • the axial compensating piston is arranged around the shaft.
  • the hydrostatic rotary piston gear machine has a housing that is logically divided into several parts, i.e. with regard to individual functional sections. These parts are not necessarily to be understood as separate or separable pieces, but rather as logical sections. It is thus possible to form several parts in one piece or individual parts in several parts. In a preferred embodiment, however, the individual housing parts are each designed as a separable housing piece.
  • the housing is divided into at least an output-side housing part, an inlet and outlet housing part and a power part located axially between them in the axial direction, i.e. along the shaft axis, and in particular a control plate arranged axially between the inlet and outlet housing part and the power part.
  • the housing part on the output side includes the main bearing.
  • the main bearing is arranged radially between the housing part on the output side and the shaft output side of the shaft.
  • the shaft output side of the shaft and the shaft end there are led out of the housing from the housing part on the output side.
  • the inlet and outlet housing parts are located on the side of the housing opposite the housing part on the output side. This is used for supplying and disposing of the power unit with the working fluid, the working fluid being able to be fed to the rotary piston machine at a working pressure via a pressure connection that serves as an inlet.
  • the inlet and outlet housing part includes the disc-shaped rotary valve, which is rotatably mounted therein about the shaft axis.
  • the inlet and outlet housing part includes connections and Channels which are designed for the supply and disposal of the disc-shaped rotary valve with the working fluid.
  • the inlet and outlet housing parts include, in particular, the compensating piston.
  • the power part seen in the axial direction between the output-side housing part and the inlet and outlet housing part, acts as a drive for the machine and includes the stator, the rotary piston, the tooth chambers and the external shaft toothing.
  • the control plate comprises windows and control plate channels in order to guide the working fluid essentially in the axial direction from the disc-shaped rotary valve to the tooth chambers.
  • the housing parts are preferably braced with one another by means of axially extending screws.
  • the secondary bearing in the inlet and outlet housing part and the disc-shaped rotary valve are arranged between the power part and the secondary bearing, viewed in the axial direction.
  • the power section and the rotary valve, and in particular the hydrostatic axial compensating piston and a cup-shaped sleeve, are located axially between the main bearing and the secondary bearing.
  • This cup-shaped sleeve which is also referred to below as a wobble sleeve, is arranged radially around the shaft and extends in the axial direction at a radial distance therefrom.
  • the cup-shaped sleeve surrounds the shaft axis and the shaft tumbling, since it is rotatably mounted on one end about the shaft axis, and rotatably on the other end about the rotary piston axis.
  • the sleeve extends, viewed in the axial direction, between the power unit and the input and output Outlet housing part in the housing and is in particular passed freely through the control plate.
  • the sleeve has a first sleeve external toothing and a second sleeve external toothing.
  • the first sleeve external toothing engages with a number of teeth Z5 on the side of the power section in the rotary piston internal toothing and meshes with it.
  • the number of teeth Z5 of the first sleeve external toothing is preferably equal to the number of teeth Z2 of the rotary piston internal toothing.
  • the second sleeve external toothing engages with a number of teeth Z6 on the side of the inlet and outlet housing part in a rotary valve internal toothing of the rotary valve and meshes with these, the rotary valve internal toothing having the number of teeth Z7.
  • the number of teeth Z6 of the second sleeve external toothing is preferably equal to the number of teeth Z7 of the rotary valve internal toothing.
  • the sleeve and its teeth are designed for a tumbling 1: 1 rotary coupling between the rotary piston and the disc-shaped rotary valve and enable the rotary valve to be operated at the speed of the rotary piston, which, however, is in relation to the rotary valve around another axis rotating in space - the rotary piston axis - turns to drive.
  • the difference in number of teeth between the number of teeth Z2 and the number of teeth Z1 is preferably equal to 2.
  • Z2 minus Z1 equals 2.
  • the cup-shaped sleeve can be cylindrical or conical, but also have any other shape which at least partially surrounds the shaft and has the said first sleeve external toothing at one end and the said second sleeve external toothing at the other end.
  • the cup-shaped sleeve can also have a lattice structure.
  • the number of teeth Z3 has the values 10:11 or 11:12 or 12:13 for the number of teeth Z4, and / or the number of teeth Z1 has the values 15 for the number of teeth Z2 : 17 or 16:18 or 17:19.
  • the number of teeth Z3 for the number of teeth Z4 preferably has the value 11:12 and the number of teeth Z1 for the number of teeth Z2 has the value 16:18.
  • the hydrostatic axial compensating piston is arranged between the disc-shaped rotary valve and the auxiliary bearing in the inlet and outlet housing parts, seen in the axial direction.
  • the volumetric efficiency is always an important variable, as it has a decisive influence on the overall efficiency.
  • the factors influencing the volumetric efficiency are, among other things, the axial leakage gap between the rotary piston and the side walls.
  • the axial leakage gap between the rotary piston and the side walls For example, if the design of the axial running clearance is too small, the machine runs the risk of the rotary piston jamming axially at a higher temperature, with the result that there is a risk of seizure and, at the same time, the mechanical efficiency drops.
  • a resilience of at least one side wall in the machine housing is therefore desirable. Without special measures, however, this resilience would result in the internal hydraulic axial forces increasing the axial play again because of the lower rigidity of this side wall.
  • a control plate - with windows and control plate channels between the tooth chambers and the disc-shaped rotary valve - is arranged for supplying and disposing of the tooth chambers with the working fluid, and this control plate is designed to be flexible.
  • the latter is achieved in particular in that the thickness in the axial direction of the control plate and / or its material are such that the axial running clearance of the rotary piston between the output-side housing part and the inlet and outlet housing part decreases or remains the same as the working pressure of the working fluid increases.
  • the invention therefore provides for this control plate to be made much thinner because of the required axial flexibility, but to support it on the opposite side with sufficiently large hydraulic compensation surfaces. These are available when the axially acting compensation surfaces on the rotary valve are large enough. Correspondingly, the compensation surface of the compensating piston should then also have an overcompensated size. If these hydraulic compensation surfaces on the control plate are sufficiently overcompensated, e.g. by 10 to 15%, there is a possibility that the axial play of the rotary piston between its side walls will decrease as the working pressure increases. Since the axial leakage current decreases according to the Hagen-Poiseuille law with the third power of the leakage gap reduction, the volumetric efficiency can be improved, especially at high working pressure.
  • the flexibility of the control plate can also be influenced by the selection of the material used for it.
  • plain bearing materials such as lead bronze or brass alloys are popular.
  • Aluminum plain bearing alloys are an option. At the same time, these have the great advantage that emergency running properties significantly improve the sliding conditions.
  • the significantly lower modulus of elasticity of these materials increases their above-mentioned compliance.
  • the flexibility of the control plate can be particularly effectively influenced by the selection of the thickness of the plate.
  • plate stiffness is proportional to the cube of the plate thickness, inversely proportional to the modulus of elasticity of the plate material.
  • the deflection of the circular ring plate clamped at the edge can be calculated relatively easily, provided the differential force is known. What is important here is the deflection on the inner edge of the circular ring plate that is involved here.
  • the shaft output side of the shaft is therefore designed in an advantageous embodiment as a cone for fastening a wheel flange by means of an axial nut to form a compact wheel motor.
  • the internal stator toothing is formed by rotatable, in particular circular-cylindrical rollers, which leads to further increased pressure output and excellent service life and as a result of which the start-up efficiency and also the mechanical-hydraulic efficiency can be increased considerably.
  • the shaft external toothing of the shaft is designed conically with a smaller diameter amount, viewed in the axial direction, on its shaft output side, as explained in more detail in the exemplary embodiments.
  • one aspect of the invention provides that a tooth tip shortening is provided at the tooth tip of the external shaft toothing, in that the tooth flank radius is calculated to be larger at the points and on the tooth tip where the teeth come out of engagement than at the point of the deepest tooth engagement, which is also the case will be discussed in more detail in the exemplary embodiments.
  • a development of the invention comprises a hydrostatic rotary piston gear machine in the form of a Gear double rotary piston machine, which is composed of two hydrostatic gear rotary piston machines coupled to one another. These two hydrostatic gear rotary piston machines each correspond to one of the hydrostatic gear rotary piston machines according to the invention.
  • the shaft opposite side of the shaft of the first hydrostatic gear rotary piston machine is axially coupled to the shaft opposite side of the shaft of the second hydrostatic gear rotary piston machine, in particular by means of a sleeve, and is connected with effective torque.
  • the first hydrostatic gear rotary piston machine and the second hydrostatic gear rotary piston machine have, in particular, different absorption quantities, in particular differently dimensioned tooth chambers.
  • a first splined shaft / toothed hub toothing on the opposite side of the shaft of the shaft of the first hydrostatic geared rotary piston machine and a corresponding second splined shaft / toothed hub toothing of the second hydrostatic toothed / splined piston machine are each connected to the sleeve in a torque-effective manner.
  • This sleeve is in particular supported radially by a common roller bearing in the inlet and outlet housing part of the first hydrostatic gear rotary piston machine and in the inlet and outlet housing part of the second hydrostatic gear rotary piston machine.
  • the roller bearing is designed as a centering of the first hydrostatic gear rotary piston machine with the second hydrostatic gear rotary piston machine.
  • Figure 1 shows a longitudinal section through a first embodiment of the hydrostatic gear rotary piston machine, while the Figure 2 shows a cross section through the power part of this machine.
  • the two Figures 1 and 2 are described together below.
  • the hydrostatic gear rotary piston machine according to the orbit principle has a central, stationary stator 2 provided with internal stator teeth 1 with the number of teeth Z4 equal to 12, as well as an eccentrically arranged rotary piston 4 within the stator 2 for executing an orbit movement that revolves around an eccentricity e , the one partially engaging in the stator internal toothing 1
  • Rotary piston external toothing 3 with a number of teeth Z3 equal to 11.
  • the difference in number of teeth between the number of teeth Z4 equal to 12 and the number of teeth Z3 equal to 11 is 1, as in FIG Figure 2 evident.
  • the internal stator toothing 1 is designed as rotatable rollers.
  • a rotary piston internal toothing 5 is formed with a number of teeth Z2.
  • a shaft 6 is arranged centrally with respect to the stator 2 and is mounted rotatably about a geometric shaft axis 52 in a tapered roller main bearing 9 and a tapered roller secondary bearing 11.
  • Shaft external toothing 7 with a number of teeth Z1 is formed on shaft 6 and partially engages in rotary piston internal toothing 5.
  • the geometrical shaft axis 52 is thus also the geometrical axis of the external shaft toothing 7, the stator 2 and the internal stator toothing 1.
  • the difference in number of teeth between the number of teeth Z2 and the number of teeth Z1 is 2.
  • the tooth chambers 53a, 53b formed by the difference in number of teeth between the number of teeth Z4 and the number of teeth Z3 between the stator internal gear 1 and the rotary piston external gear 3 are radially separated from the stator internal gear 1 and the rotary piston external gear 3, as in Figure 2 shown, and axially from a wall 58 on the output side and opposite from a control plate 25, as in FIG Figure 1 shown, limited essentially sealed.
  • the stator 2, the rotary piston 4, the tooth chambers 53a, 53b and the external shaft toothing 7 form the power part 51 of the housing 24, which acts as a drive.
  • the tapered roller main bearing 9 On a shaft output side 8 of the shaft 6, the tapered roller main bearing 9 is arranged, while on a the shaft output side 8 at the other end of the shaft 6 opposite shaft opposite side 55, the tapered roller sub-bearing 11 is located.
  • Figure 1 the extremely stable design of the shaft 6 is shown, the output-side tapered roller main bearing 9 being selected with a particularly high load rating. This is arranged very close to the tooth engagement between the rotary piston 4 and the external shaft toothing 7 of the shaft 6 for the smallest possible deflection of the shaft 6 due to the tooth force, since the tapered roller sub-bearing 11 is placed at the greatest possible distance therefrom. At maximum working pressure, the amount of shaft deflection at the point of tooth meshing should not exceed 15 to 20 micrometers.
  • FIG. 1 Shown in Figure 1 shown is an inlet and outlet housing part 54 of the housing 24, which is an output-side housing part 10, on the left in Figure 1 , viewed in the axial direction opposite.
  • the inlet and outlet housing part 54 contains a disk-shaped rotary valve 12 as well as connections 21 and 22 and channels 56 for the supply and disposal of the disk-shaped rotary valve 12 with working fluid.
  • the disc-shaped rotary valve 12 can be rotated centrically about the shaft axis 52 and is mounted running centrically to the shaft 6 and to the stator 2 in the inlet and outlet housing part 54 between the power unit 51 and the tapered roller sub-bearing 11 and is used for the commutating control of the supply and disposal of the tooth chambers 53a, 53b with the working fluid for guiding working fluid into a first part 53a of the tooth chambers with a working pressure and for guiding the working fluid out of a second part 53b of the tooth chambers to generate the output.
  • the rotary valve 12 is used to connect a first part 53a of the circling tooth chambers to one of the two connections 21 and 22 for supplying these tooth chambers 53a with the working fluid under working pressure and a second part 53b of the circling tooth chambers to the other of the two connections 21 and 22 designed to discharge the working fluid from these tooth chambers 53b and connected to the tooth chambers 53a, 53b via the channels 56, respectively.
  • a hydrostatic axial compensating piston 17 for the disc-shaped rotary valve 12 to have no axial play.
  • control plate 25 Viewed in the axial direction between the power part 51 and the inlet and outlet housing part 54, the control plate 25 is arranged.
  • This control plate 25 has windows 26 and control plate channels 57 between the tooth chambers 53a, 53b and the pressure windows 27 formed in the disc-shaped rotary valve 12 for supplying and removing the tooth chambers 53a, 53b with the working fluid.
  • the thickness d in the axial direction of the control plate 25 and its material are such that the axial running clearance of the rotary piston 4 between the output-side housing part 10 and the inlet and outlet housing part 54 decreases or remains the same as the working pressure of the working fluid increases.
  • the tapered roller main bearing 9 is arranged in the output-side housing part 10, from which the shaft output side 8 of the shaft 6 is led out of the housing 24, while the tapered roller sub-bearing 11 is located in the inlet and outlet housing part 54.
  • the power part 51 acting as a drive is arranged with the stator 2, the rotary piston 4, the tooth chambers 53a, 53b and the external shaft toothing 7.
  • a cup-shaped sleeve 13 is arranged between the rotary piston 4 and the rotary valve 12.
  • the cup-shaped sleeve 13 surrounds the shaft 6 at a radial distance and wobbles about the shaft axis 52 when the rotary piston 4 rotates.
  • the wobble sleeve 13 has a first sleeve external toothing 14 with a number of teeth Z5 on the side of the power section 51, i.e. in the direction of the output side, and a second sleeve external toothing 15 with a number of teeth Z6 on the side of the inlet and outlet housing part 54, i.e. in Direction opposite to the output side.
  • the first sleeve external toothing 14 meshes with the rotary piston internal toothing 5, the number of teeth Z2 of which is equal to the number of teeth Z5.
  • the second sleeve external toothing 15 meshes with a rotary valve internal toothing 16 with a number of teeth Z7 of the rotary valve 12 corresponding to the number of teeth Z6.
  • the cup-like wobble sleeve 13 performs a wobble movement with a wobble angle of approximately 5.5 degrees during the orbital movement of the rotary piston 4.
  • the backlash between the teeth of the first sleeve external toothing 14 and the rotary piston internal toothing 5 and between the teeth of the second sleeve external toothing 15 and the rotary valve internal toothing 16 should preferably be as small as possible for an exact commutating control of the power unit from the rotary piston External teeth 3 and the stator internal teeth 1. Therefore, the teeth of the first sleeve external teeth 14, the second sleeve external teeth 15 and the rotary valve internal teeth 16 are very narrow.
  • blind depressions should also be provided between the windows 26 of the control plate 25, seen in the circumferential direction.
  • the arrangements of these windows 26 of the control plate 25 and the pressure windows 27 of the rotary valve 12 are shown in simplified form in the drawing and are generally known to those skilled in the art.
  • stator internal teeth 1 and the rotary piston external teeth 3 of the gerotor set and the rotary piston internal teeth 5 and shaft external teeth 7 of the Internal gear between the shaft 6 and the rotary piston 4 are in Figure 2 shown. Since one and the same eccentricity e, i.e. the same axial distance between the shaft axis 52 and the rotary piston axis 50, must apply to both internal gears, the difference in the number of teeth in the shaft eccentric internal gear is two. So that the displacement of the machine and the shaft diameter are as large as possible, the number of teeth is also chosen to be large.
  • the tooth pitch and, accordingly, the module of the teeth are based on the amount of eccentricity e of the entire running set, which at the same time means the center distance for both internal gears.
  • the design of the internal gear between the shaft 6 and the rotary piston 4 has a significant influence on the absorption volume per shaft revolution and thus on the hydraulic performance of the machine.
  • Figure 3 shows a table that makes these relationships clear.
  • the essential size for the absorption volume is the so-called conveying surface Ao of the rotor toothing between the rotary piston external toothing 3 and the stator internal toothing 1.
  • the calculation is based on the so-called stationary gear, in which the center distance line or the eccentricity e is stationary in space. In this state of motion, the rotors do not run as a rotary piston gear, but rather as a rotary piston gear. Both wheels rotate around their own centers and form a normal internal gear machine.
  • Ao is independent of the number of teeth.
  • the outside diameter of the machine is the same in every case, thus also the basic conveying area Ao.
  • Figure 4 shows a longitudinal section through a second embodiment of the invention designed as a wheel motor as a particularly compact construction.
  • This second embodiment differs in particular from the first embodiment in that the shaft output side 8 of the shaft 6 is designed as a cone 37 and a wheel flange 18 is attached to this cone 37 by means of an axial nut 19 to form a compact wheel motor.
  • FIG Figure 5 shows a longitudinal section through a third embodiment of the invention designed as a gear double circular piston machine.
  • This two to three-stage hydrostatic rotary piston machine is a combination of a first hydrostatic gear rotary piston machine 40 with a large displacement per revolution and a second hydrostatic gear rotary piston machine 41 with a smaller displacement per revolution.
  • the first and second rotary hydrostatic gear machines 40 and 41 respectively correspond in terms of their essential features to the hydrostatic rotary piston machine according to the invention described at the beginning, but they have tooth chambers 53a, 53b of different sizes with different axial extensions, as in FIG Figure 5 shown.
  • the respective opposite shaft sides 55 of the shafts 6 of both machines 40 and 41 are connected to one another in a torque-effective manner via a sleeve 42 via toothed shaft and toothed hub teeth 43a and 43b, the sleeve 42 being connected radially by a common roller bearing 44 in the inlet and outlet housing part 54 of the first hydrostatic gear rotary piston machine 40 and is mounted in the inlet and outlet housing part 54 of the second hydrostatic gear rotary piston machine 41.
  • the roller bearing 44 is used in an advantageous manner to center the two machines 40 and 41.
  • the length of this multi-stage hydrostatic rotary piston machine is only about twice the diameter.

Description

  • Die Erfindung betrifft eine hydrostatische Zahnrad-Kreiskolbenmaschine nach dem Orbitprinzip nach dem Oberbegriff des Anspruchs 1.
  • Eine solche hydrostatische Kreiskolbenmaschine nach dem Oberbegriff wird in der EP 1 776 525 A1 beschrieben.
  • Bekannt ist eine hydrostatische Kreiskolbenmaschine aus der EP 0 367 046 A1 . Bei dieser bekannten hydrostatischen Kreiskolbenmaschine werden die Arbeitsräume zwischen den Verzahnungen des Kreiskolbens und dem Stator durch einen trommelförmigen Drehkommutator gesteuert werden. Der Antrieb dieses Drehkommutators erfolgt dort über ein Kreisbogengetriebe, das die Drehzahl des Kreiskolbens auf die Drehzahl des Drehkommutators 1:1 überträgt.
  • Ein Vorteil dieser bekannten hydrostatischen Kreiskolbenmaschine besteht darin, dass der Drehkommutator und das Kreisbogengetriebe zwischen den Wälzlagern der Welle angeordnet sind und somit ein verhältnismäßig kompakter Aufbau der Maschine möglich erscheint. Aufgrund der Komplexität bzw. der Existenz des trommelförmigen Drehkommutators und des Kreisbogengetriebes zwischen den Lagern ist der Lagerabstand jedoch verhältnismäßig groß, was wiederum das Leistungspotenzial der Maschine begrenzt.
  • Dieser Drehkommutator ist im Maschinengehäuse radial gelagert mit einem notwendigen radialen Laufspiel. In der Zwischenzeit haben sich die Arbeitsdrücke solcher Kreiskolbenmaschinen in einem Maße erhöht, dass ein solches konstantes verhältnismäßig großes Spiel den volumetrischen Anforderungen nicht mehr entspricht. Außerdem ist der Antrieb über ein solches Kreisbogengetriebe mit zu großem Zahnspiel behaftet, sodass dadurch die Drehwinkelgenauigkeit zwischen dem Kreiskolben und dem Drehkommutator leidet. Ein exakter Antrieb des auch als Drehventil bezeichneten Drehkommutators und somit eine hohe Betriebssicherheit bei hohen Arbeitsdrücken über einen langen Zeitraum sind daher nicht uneingeschränkt gewährleistet. Ein weiterer Nachteil besteht zudem in dem verhältnismäßig komplexen Aufbau der Maschine.
  • Aus der EP 1 776 525 A1 , welche als nächstliegender Stand der Technik betrachtet wird, ist eine hydrostatische Kreiskolbenmaschine bekannt, bei der zur Erhöhung des Leistungspotenziales die Kegelrollenlager in unmittelbarer Nachbarschaft zum Kreiskolben-Stator-System angeordnet sind. Hierbei ist es nur mit technisch komplexen Mitteln möglich, den außerhalb der beiden Lager in größerer Entfernung zum Kreiskolben-Stator-System angeordneten Drehkommutator 1:1 mit dem Kreiskolben drehzahlkinematisch zu verbinden. Dort werden ein Exzentergetriebe sowie ein Planetengetriebe vorgeschlagen, die diese kinematischen Bedingungen erfüllen können. Diese verhältnismäßig komplexe Konstruktion erfordert vom nachschaffenden Fachmann erhöhte Kenntnisse der Getriebeanalyse solcher Getriebe. Außerdem kann der Fachmann durch bloße Anschauung die Übersetzungsverhältnisse nicht erkennen. Diese sind nur mathematisch nachweisbar. So erhöht sich der Widerstand in der Fachwelt gegen eine praktische Verwendung solcher Konstruktionen. Durch die notwendigen Zahnspiele bei einem Exzenter-Taumelgetriebe ist auch hier die exakte Drehlage zwischen dem Kreiskolben und dem Drehkommutator mit Kompromissen behaftet.
  • Bei einer Kreiskolbenmaschine dreht sich eine zentrisch gelagerte Welle mit einer Wellen-Außenverzahnung zentrisch innerhalb eines im Gehäuse feststehenden Stators mit einer Stator-Innenverzahnung, wobei zwischen der Stator-Innenverzahnung und der Wellen-Außenverzahnung ein Kreiskolben angeordnet ist, dessen Kreiskolben-Innenverzahnung in die Wellen-Außenverzahnung mit unterschiedlicher Zähnezahl und dessen Kreiskolben-Außenverzahnung in die Stator-Innenverzahnung mit unterschiedlicher Zähnezahl eingreifen. Der Kreiskolben führt eine Drehbewegung um seine eigene Kreiskolbenachse aus, die beabstandet parallel, aber nicht feststehend zu der Wellenund Statorachse verläuft. Bei Rotation der Welle führt der Kreiskolben eine Orbitbewegung um die Wellenachse im Bereich zwischen der Stator-Innenverzahnung und der Wellen-Außenverzahnung durch. Die Kreiskolbenachse führt somit eine komplexe Kreisbewegung um die Wellen- und Statorachse aus. Somit unterscheidet sich die Orbitbewegung, also die Rotationsbewegung um eine in einer Kreisbahn kreisenden Achse, grundsätzlich von den einfachen Rotationsbewegungen um feststehende Achsen einer Gerotor-Maschine. Bei einer Kreiskolbenmaschine führen auch die mit Hydraulikflüssigkeit befüllten Zahnkammern zwischen der Stator-Innenverzahnung und der Kreiskolben-Außenverzahnung eine Kreisbewegung um die Welle durch, während die Zahnkammern bei einer Gerotor-Maschine in ihrer Grundlage feststehen. Um die kreisenden Zahnkammern zur Erzeugung des Abtriebs mit Hydraulikflüssigkeit zu versorgen und zu entsorgen, bedarf es bei einer Kreiskolbenmaschine einer komplexen Kommutierung mittels eines Drehventils, auch Drehkommutator genannt, welches mit der Drehzahl des Kreiskolbens anzutreiben ist. Da bei einer Gerotor-Maschinen kein solches Drehventil zum Einsatz kommen muss und die Problematik dessen Antriebs, wie insbesondere in der EP 0 367 046 A1 und der EP 1 776 525 A1 beschrieben, nicht besteht, sind Lösungsansätze aus dem Bereich der Gerotor-Maschinen zur Lösung des Problems bei Kreiskolbenmaschine nicht oder nur bedingt anwendbar.
  • In der Gebrauchsmusterschrift DE 20 2014 006761 U1 wird eine hydrostatische Kreiskolbenmaschine nach dem Orbit-Prinzip beschrieben, die als ein so genannter Ultra-Langsamläufer ausgebildet ist. Gegenüber der ebenfalls in der Gebrauchsmusterschrift beschriebenen, vorbekannten hydrostatische Kreiskolbenmaschine nach der EP 1 776 525 A1 , bei der ein Innengetriebes zwischen dem Kreiskolben (Rotor) und der Welle angeordnet ist, wodurch sich die Welle schneller dreht als der Kreiskolben um seine eigene Achse, unterscheidet sich der dort beschriebene Ultra-Langsamläufer vor allem dadurch, dass eine 1:1-Drehkopplung zwischen dem Rotor und der Welle vorgesehen ist. Somit dreht sich der Rotor mit der Drehzahl der Welle, das Schluckvolumen pro Wellenumdrehung ist wesentlich größer und bei gleichem Arbeitsdruck steigt das Abtriebsmoment. Zur 1:1-Drehzahl- und Drehmomentübertragung zwischen Rotor und Welle ist eine Taumelhülse um die Welle angeordnet, deren Außenverzahnung mit gleicher Zähnezahl in die Innenverzahnung des Kreiskolbens und eine Innenverzahnung der Taumelhülse mit gleicher Zähnezahl in eine Außenverzahnung der Welle eingreift. Auch das scheibenförmige Drehventil, das zur Verund Entsorgung der Zahnkammern dient, ist im Drehzahlverhältnis 1:1 mit der Welle drehfest gekoppelt. Somit drehen sich bei dem Ultra-Langsamläufer die Welle, der Kreiskolben und das Drehventil stets mit gleicher Drehzahl.
  • In US 6,019,584 A wird eine Gerotor-Maschine beschrieben, bei der eine zentrisch laufende Welle mit einem umschließenden sternförmigen Rotor, der innerhalb eines Stators zur Durchführung einer Orbitbewegung angeordnet ist, 1:1 drehfest über eine taumelnd angeordnete zylindrische Kopplung zur Drehmomentübertragung verbunden ist. Ein Drehventil ist 1:1 drehfest mit der Welle gekoppelt. Somit drehen sich auch hier Welle, Rotor und Drehventil stets mit gleicher Drehzahl.
  • Die Aufgabe der Erfindung besteht darin, eine hydrostatische Zahnrad-Kreiskolbenmaschine bereitzustellen, welche sich einerseits durch einen kompakten und verhältnismäßig einfachen Aufbau, andererseits durch ein hohes Leistungspotenzial, einen exakten Antrieb des Drehventils und eine hohe Betriebssicherheit selbst bei hohen Arbeitsdrücken auszeichnet. Die Kombination dieser Eigenschaften gilt momentan im Stand der Technik als Zielkonflikt.
  • Diese Aufgabe wird durch die Verwirklichung der Merkmale des unabhängigen Anspruchs gelöst. Merkmale, die die Erfindung in alternativer oder vorteilhafter Weise weiterbilden, sind den abhängigen Patentansprüchen zu entnehmen.
  • Um die Vorteile dieser bekannten Konstruktionen bezüglich des hohen Leistungspotenziales zu nutzen, wird erfindungsgemäß zwischen den beiden Lagern ein insbesondere axialspielkompensiertes scheibenförmiges Drehventil der bekannten Ausführung verwendet und der Antrieb dieses Drehventils durch eine nahezu spielfreie, direkte, verzahnte becherförmige Taumelhülse verbessert, die in großem Durchmesser die stabile und durchgehende Welle umgibt. In einer Weiterbildung wird zudem das Innengetriebe zwischen der Welle und dem Kreiskolben für ein möglichst hohes Schluckvolumen pro Wellenumdrehung optimiert.
  • Durch diese erfindungsgemäßen Merkmale wird die eingangs erwähnte Maschine für sehr viel höhere Arbeitsdrücke verwendungsfähig und die kinematischen Antriebsverhältnisse für das scheibenförmige Drehventil gegenüber der erwähnten bekannten Maschine wesentlich drehwinkelgenauer, einfacher und billiger. Hinzu kommt, dass durch die Erfindung die Abmessungen und somit das Gewicht der Maschine um mindestens 15 % reduziert werden, was ebenso zu einer Verminderung der Herstellungskosten beiträgt. Die Kompaktheit der erfindungsgemäßen Konstruktion ist unübertroffen.
  • Die Erfindung stellt eine Weiterentwicklung der aus dem Stand der Technik bekannten hydrostatischen Kreiskolbenmaschinen dar, weshalb im Folgenden zunächst auf den bereits im Wesentlichen aus dem Stand der Technik bekannten allgemeinen Grundaufbau der erfindungsgemässen hydrostatischen Kreiskolbenmaschine eingegangen wird, bevor die erfindungsgemässen Merkmale erläutert werden.
  • Bei der vorliegenden Erfindung handelt es sich um einen Kreiskolbenmaschine nach dem Orbitprinzip, wobei ein innenverzahnter Stator im Raume feststeht, ein Kreiskolben eine Drehbewegung um seine eigene Achse ausführt und diese Achse eine Kreisbewegung im entgegen gesetzten Drehsinn als der Kreiskolben macht. Das bedeutet, dass in dieser Gesamtbewegung die Achsabstandlinie zwischen Kreiskolben- und Stator-Mittelpunkt eine Drehbewegung im entgegen gesetzten Drehsinn als der Kreiskolben um seine eigene Achse ausführt.
  • Die hydrostatische Kreiskolbenmaschine, die auch als insbesondere langsamlaufender Hochmoment-Kreiskolbenmotor bezeichnet werden kann, umfasst einen als Abtrieb wirkenden Leistungsteil, der im Gehäuse der Kreiskolbenmaschine angeordnet ist oder einen logischen Abschnitt des Gehäuses oder der Maschine bildet. Der Leistungsteil setzt sich im Wesentlichen aus einem feststehenden, zentrischen Stator, einem beweglichen Kreiskolben und einem mit dem Kreiskolben in Eingriff stehenden Abschnitt einer zentrisch drehbar gelagerten, als Abtrieb dienenden Welle zusammen.
  • Der Stator hat eine Stator-Innenverzahnung mit der Zähnezahl Z4. Der Kreiskolben besitzt eine teilweise in die Stator-Innenverzahnung des Stators eingreifende Kreiskolben-Außenverzahnung mit einer Zähnezahl Z3 und eine Kreiskolben-Innenverzahnung mit einer Zähnezahl Z2. Die Welle kämmt mit ihrer ersten Wellen-Außenverzahnung mit einer Zähnezahl Z1 teilweise die Kreiskolben-Innenverzahnung des Kreiskolbens, wobei der Kreiskolben zum Ausführen einer Orbitbewegung derart exzentrisch zur Wellenachse angeordnet und dimensioniert ist und die Zähnezahlen Z1, Z2, Z3, Z4 in einem derartigen Verhältnis zueinander stehen, dass sich mit Arbeitsfluid ver- und entsorgbare Zahnkammern zwischen der Stator-Innenverzahnung des Stators und der Kreiskolben-Außenverzahnung des Kreiskolbens bilden.
  • Die hydrostatische Zahnrad-Kreiskolbenmaschine nach dem Orbitprinzip umfasst also einen mit einer Stator-Innenverzahnung versehenen zentrischen, feststehenden Stator mit der Zähnezahl Z4 und einem innerhalb des Stators - zum Ausführen einer um eine Exzentrizität kreisenden Orbitbewegung - exzentrisch angeordneten Kreiskolben, der eine teilweise in die Stator-Innenverzahnung eingreifende Kreiskolben-Außenverzahnung mit einer Zähnezahl Z3 aufweist, wobei die Zähnezahldifferenz zwischen der Zähnezahl Z4 und der Zähnezahl Z3 eins beträgt. Z4 minus Z3 ist also 1.
  • Im Innern des Kreiskolbens ist eine Kreiskolben-Innenverzahnung mit einer Zähnezahl Z2 angeordnet. Zentrisch zum Stator ist eine um eine Wellenachse drehbar gelagerte Welle angeordnet. Auf der Welle ist wiederum eine teilweise in die Kreiskolben-Innenverzahnung eingreifende Wellen-Außenverzahnung mit einer Zähnezahl Z1 angeordnet. Zahnkammern sind radial zwischen der Stator-Innenverzahnung und der Kreiskolben-Außenverzahnung angeordnet und werden von der Stator-Innenverzahnung und der Kreiskolben-Außenverzahnung in radiale Richtung radial begrenzt und im Wesentlichen durch den Eingriff dieser Verzahnungen abgedichtet.
  • Über ein scheibenförmiges Drehventil, das zur Welle und zum Stator zentrisch laufend gelagert ist, erfolgt die Steuerung der Ver- und Entsorgung der Zahnkammern mit dem Arbeitsfluid. In anderen Worten ist das Drehventil drehbar um die zentrische, sich längs mittig der Welle erstreckenden geometrischen Wellenachse gelagert. Das Drehventil selbst führt also keine Orbitbewegung durch, sondern rotiert um die Wellenachse.
  • Mittels des Drehventils ist über im Wesentlichen radial im Drehventil angeordnete Druckfenster die Ver- und Entsorgung der Zahnkammern mit dem Arbeitsfluid durch Rotation des Drehventils derart kommutierend steuerbar, dass das Arbeitsfluid von dem Druckanschluss in einen ersten Teil der Zahnkammern mit dem Arbeitsdruck hinein und aus einem zweiten Teil der Zahnkammern zu einem Niederdruckanschluss heraus geleitet wird, so dass der Arbeitsdruck in dem ersten Teil der Zahnkammern zu einer Orbitbewegung des Kreiskolbens führt und das Arbeitsfluid aus dem zweiten Teil der Zahnkammern verdrängt, wodurch die Welle in Rotation versetzt wird, und umgekehrt.
  • In anderen Worten ist das scheibenförmige Drehventil um die Wellenachse zentrisch drehbar und zur Welle und zum Stator zentrisch laufend gelagert. Das scheibenförmige Drehventil ist zur kommutierenden Steuerung der Ver- und Entsorgung der Zahnkammern mit dem Arbeitsfluid zum Hineinleiten von Arbeitsfluid in einen ersten Teil der Zahnkammern mit dem Arbeitsdruck und zum Hinausleiten des Arbeitsfluids aus einem zweiten Teil der Zahnkammern zur Erzeugung des Abtriebs ausgebildet und mit den Zahnkammern verbunden.
  • Die Welle wird von Radiallagern, insbesondere Wälzlagern gelagert. Auf einer Wellen-Abtriebsseite der Welle ist ein Hauptlager angeordnet. Auf einer Wellen-Gegenseite, die sich am anderen Ende der Welle - der Wellen-Abtriebsseite gegenüberliegend - befindet, ist ein Nebenlager angeordnet. Das Hauptlager und/oder das Nebenlager sind insbesondere als Radiallager, als Wälzlager, als Rollenlager oder vorzugsweise als Kegelrollenlager, insbesondere in X-Anordnung, ausgebildet.
  • Aufgrund des genannten Aufbaus der hydrostatischen Kreiskolbenmaschine kann eine durchgehende Welle mit großen Wellendurchmessern und hoher Torsionsfestigkeit eingesetzt werden. Somit ist es möglich, beide Wellenenden einem hohen Drehmomentfluss auszusetzen und beispielsweise beide Wellenenden als Abtrieb, oder ein Wellenende als Abtrieb und das andere Wellenende zum Anschluss einer Bremse oder eines zweiten Antriebs zu verwenden, wodurch die gesamte Antriebseinheit kompakt gestaltet werden kann.
  • Um das scheibenförmige Drehventil axial gegen Leckage des Arbeitsfluids abzudichten und es mit seinen Druckfenstern mit ausreichendem Druck insbesondere gegen die Steuerplatte mit ihren Fenstern, die über Steuerplatten-Kanäle zu den Zahnkammern führen, zu drücken, ist vorzugsweise ein drehfester hydrostatischer axialer Ausgleichskolben für eine axiale Spielfreiheit des scheibenförmigen Drehventils vorgesehen, der axial auf das Drehventil wirkt. Der axiale Ausgleichskolben ist rings um die Welle angeordnet.
  • Die hydrostatische Zahnrad-Kreiskolbenmaschine hat ein Gehäuse, das sich logisch, also bezüglich einzelner Funktionsabschnitte, in mehrere Teile unterteilt. Diese Teile sind nicht notwendigerweise als getrennte oder trennbare Stücke zu verstehen, sondern als logische Abschnitte. So ist es möglich, mehrere Teile einstückig oder einzelne Teile mehrstückig auszubilden. In einer bevorzugten Ausführungsform sind die einzelnen Gehäuseteile allerdings jeweils als ein trennbares Gehäusestück ausgebildet.
  • Das Gehäuse gliedert sich zumindest in einen abtriebseitigen Gehäuseteil, einen Ein- und Auslassgehäuseteil und einen in axialer Richtung, also entlang der Wellenachse, gesehen axial dazwischen liegenden Leistungsteil, sowie insbesondere eine axial zwischen dem Ein- und Auslassgehäuseteil und dem Leistungsteil angeordnete Steuerplatte.
  • Der abtriebseitige Gehäuseteil umfasst das Hauptlager. Das Hauptlager ist radial zwischen dem abtriebseitigen Gehäuseteil und der Wellen-Abtriebsseite der Welle angeordnet. Aus dem abtriebseitigen Gehäuseteil sind die Wellen-Abtriebsseite der Welle und das dortige Wellenende aus dem Gehäuse hinausgeführt.
  • In axialer Richtung gesehen auf der dem abtriebseitigen Gehäuseteil gegenüberliegenden Seite des Gehäuses befindet sich der Ein- und Auslassgehäuseteil. Dieser dient zur Verund Entsorgung des Leistungsteils mit dem Arbeitsfluid, wobei das Arbeitsfluid mit einem Arbeitsdruck über einen Druckanschluss, der als Eingang dient, der Kreiskolbenmaschine zugeführt werden kann. Der Ein- und Auslassgehäuseteil umfasst das scheibenförmige Drehventil, welches darin um die Wellenachse drehbar gelagert ist. Zudem umfasst das Ein- und Auslassgehäuseteil Anschlüsse und Kanäle, die zur Ver- und Entsorgung des scheibenförmigen Drehventils mit dem Arbeitsfluid ausgebildete sind. Ausserdem umfasst das Ein- und Auslassgehäuseteil insbesondere den Ausgleichskolben.
  • Der in axialer Richtung gesehen zwischen dem abtriebseitigen Gehäuseteil und dem Ein- und Auslassgehäuseteil angeordnete Leistungsteil wirkt als Antrieb der Maschine um umfasst den Stator, den Kreiskolben, die Zahnkammern und die Wellen-Außenverzahnung.
  • Die Steuerplatte umfasst Fenster und Steuerplatten-Kanäle, um das Arbeitsfluids im Wesentlichen in axiale Richtung vom scheibenförmigen Drehventil zu den Zahnkammern zu führen.
  • Vorzugsweise sind die Gehäuseteile mittels sich axial erstreckender Schrauben miteinander verspannt.
  • Erfindungsgemäss sind das Nebenlager im Ein- und Auslassgehäuseteil und das scheibenförmige Drehventil in axialer Richtung gesehen zwischen dem Leistungsteil und dem Nebenlager angeordnet. Axial zwischen dem Hauptlager und dem Nebenlager befinden sich also der Leistungsteil und das Drehventil, sowie insbesondere der hydrostatische axiale Ausgleichkolben, sowie eine becherförmige Hülse.
  • Diese becherförmige Hülse, welche im Folgenden auch als Taumelhülse bezeichnet wird, ist radial um die Welle herum angeordnet und erstreckt sich von dieser radial beabstandet in axiale Richtung. Die becherförmige Hülse umgibt die Wellenachse und die Welle taumelnd, da sie einenende um die Wellenachse drehbar, anderenend um die Kreiskolbenachse drehbar gelagert ist. Die Hülse erstreckt sich in axialer Richtung gesehen zwischen dem Leistungsteil und dem Ein- und Auslassgehäuseteil im Gehäuse und ist insbesondere durch die Steuerplatte frei beweglich hindurchgeführt.
  • Die Hülse weist eine erste Hülsen-Außenverzahnung und eine zweite Hülsen-Außenverzahnung auf. Die erste Hülsen-Außenverzahnung greift mit einer Zähnezahl Z5 auf der Seite des Leistungsteils in die Kreiskolben-Innenverzahnung ein und kämmt diese. Vorzugsweise ist die Zähnezahl Z5 der ersten Hülsen-Außenverzahnung gleich der Zähnezahl Z2 der Kreiskolben-Innenverzahnung. Die zweite Hülsen-Außenverzahnung greift mit einer Zähnezahl Z6 auf der Seite des Ein- und Auslassgehäuseteils in eine Drehventil-Innenverzahnung des Drehventils ein und kämmt diese, wobei die Drehventil-Innenverzahnung die Zähnezahl Z7 hat. Vorzugsweise ist die Zähnezahl Z6 der zweiten Hülsen-Außenverzahnung gleich der Zähnezahl Z7 der Drehventil-Innenverzahnung.
  • Die Hülse und deren Verzahnungen sind zur taumelnden 1:1 Drehkopplung zwischen dem Kreiskolben und dem scheibenförmigen Drehventil ausgebildet und ermöglicht, das Drehventil mit der Drehzahl des Kreiskolbens, welcher sich jedoch in Bezug zum Drehventil um eine andere, im Raum kreisende Achse - der Kreiskolbenachse - dreht, anzutreiben.
  • Vorzugsweise ist die Zähnezahldifferenz zwischen der Zähnezahl Z2 und der Zähnezahl Z1 gleich 2. Somit ergibt Z2 minus Z1 gleich 2.
  • Die becherförmige Hülse kann zylindrisch oder kegelförmig ausgebildet sein, jedoch auch jede beliebige andere Form haben, welche die Welle zumindest teilweise umgibt und einenends die genannte erste Hülsen-Außenverzahnung und anderenends die genannte zweite Hülsen-Außenverzahnung hat. Beispielsweise kann die becherförmige Hülse auch eine Gitterstruktur aufweisen.
  • In einer bevorzugten Ausführung, welche im Folgenden noch genauer erläutert wird, weist die Zähnezahl Z3 zu der Zähnezahl Z4 die Werte 10:11 oder 11:12 oder 12:13 auf, und/oder die Zähnezahl Z1 weist zu der Zähnezahl Z2 die Werte 15:17 oder 16:18 oder 17:19 auf. Vorzugsweise weist die Zähnezahl Z3 zu der Zähnezahl Z4 den Wert 11:12 und die Zähnezahl Z1 zu der Zähnezahl Z2 den Wert 16:18 auf.
  • In einer Weiterbildung ist der hydrostatische axiale Ausgleichkolben in axialer Richtung gesehen zwischen dem scheibenförmigen Drehventil und dem Nebenlager im Ein- und Auslassgehäuseteil angeordnet.
  • Bei hohen Arbeitsdrücken ist der volumetrische Wirkungsgrad stets eine bedeutende Größe, da er den Gesamtwirkungsgrad maßgeblich beeinflusst. Die Einflussgrößen auf den volumetrischen Wirkungsgrad sind unter anderen die axialen Leckspalte des Kreiskolbens zu den Seitenwänden. Wird beispielsweise konstruktiv das axiale Laufspiel zu klein gewählt, läuft die Maschine Gefahr, dass der Kreiskolben bei höherer Temperatur axial klemmt, sodass Fressgefahr besteht und gleichzeitig der mechanische Wirkungsgrad abfällt. Wünschenswert ist somit eine Nachgiebigkeit zumindest einer Seitenwand im Maschinengehäuse. Diese Nachgiebigkeit hätte aber ohne besondere Maßnahmen zur Folge, dass die inneren hydraulischen Axialkräfte das Axialspiel wieder vergrößern wegen der kleineren Steifigkeit dieser Seitenwand.
  • Erfindungsgemäß wird daher vorgeschlagen, dass in axialer Richtung gesehen zwischen dem Leistungsteil und dem Ein- und Auslassgehäuseteil, benachbart und angrenzend zum Leistungsteil, eine Steuerplatte - mit Fenstern und Steuerplatten-Kanälen zwischen den Zahnkammern und dem scheibenförmiges Drehventil - zur Ver- und Entsorgung der Zahnkammern mit dem Arbeitsfluid angeordnet ist, und diese Steuerplatte nachgiebig ausgestaltet ist. Letztes wird insbesondere dadurch erreicht, dass die Dicke in axialer Richtung der Steuerplatte und/oder deren Material derart sind, dass das axiale Laufspiel des Kreiskolbens zwischen dem abtriebseitigen Gehäuseteil und dem Ein- und Auslassgehäuseteil sich mit zunehmendem Arbeitsdruck des Arbeitsfluids verringert oder gleich bleibt.
  • Die Erfindung sieht also vor, diese Steuerplatte wesentlich dünner zu machen wegen der erforderlichen axialen Nachgiebigkeit, sie jedoch auf der Gegenseite mit ausreichend großen hydraulischen Kompensationsflächen zu stützen. Diese sind dann vorhanden, wenn die axialwirkenden Ausgleichsflächen am Drehventil groß genug sind. Entsprechend sollte dann auch die Kompensationsfläche des Ausgleichskolbens eine überkompensierte Größe haben. Wenn diese hydraulischen Ausgleichsflächen an der Steuerplatte mit ausreichendem Maße überkompensiert sind, z.B. um 10 bis 15%, besteht die Möglichkeit, dass mit zunehmendem Arbeitsdruck das Axialspiel des Kreiskolbens zwischen seinen Seitenwänden kleiner wird. Da der axiale Leckstrom nach dem Gesetz von Hagen-Poiseuille mit der dritten Potenz der Leckspaltverkleinerung abnimmt, kann dadurch besonders bei hohem Arbeitsdruck der volumetrische Wirkungsgrad verbessert werden.
  • Die Nachgiebigkeit der Steuerplatte kann auch durch die Auswahl des dafür verwendeten Materials beeinflusst werden. Beliebt sind in solchen Fällen Gleitlagermaterialien, z.B. Bleibronze oder Messinglegierungen. Es kommen auch hochfeste Aluminium-Gleitlager-Legierungen infrage. Diese haben dann gleichzeitig den großen Vorteil, dass Notlaufeigenschaften die Gleitbedingungen wesentlich verbessern. Der wesentlich niedrigere Elastizitätsmodul dieser Materialien erhöht ihre oben erwähnte Nachgiebigkeit.
  • Besonders wirksam kann die Nachgiebigkeit der Steuerplatte durch die Auswahl der Dicke der Platte beeinflusst werden. Nach der Theorie der Platten und Schalen ist die Plattensteifigkeit proportional der dritten Potenz der Plattendicke, umgekehrt proportional dem Elastizitätsmodul des Plattenmaterials. Somit kann verhältnismäßig leicht die Durchbiegung der am Rande eingespannten Kreisringplatte berechnet werden, sofern die Differenzkraft bekannt ist. Wichtig ist dabei die Durchbiegung am inneren Rand der Kreisringplatte, um die es sich hier handelt.
  • Wegen des großen Abstandes der Kegelrollenlager ist dieses Konzept prädestiniert für eine Ausführung als hydrostatischer Radmotor, da das abtriebseitige Kegelrollen-Hauptlager mit seiner großen Tragzahl zu der vom Kreiskolben herrührenden Zahnkraft auf die Wellenaußenverzahnung noch die Radlast aufnehmen muss. Die Wellen-Abtriebsseite der Welle ist daher in einer vorteilhaften Ausführungsform als Konus ausgebildet zur Befestigung eines Radflansches mittels einer Axialmutter zur Bildung eines kompakten Radmotors.
  • In einer vorteilhaften Ausführungsform wird die Stator-Innenverzahnung durch drehbare, insbesondere kreiszylindrische Rollen gebildet, was zu weiter erhöhter Druckleistung und exzellenter Lebensdauer führt und wodurch der Anfahrwirkungsgrad sowie auch der mechanisch-hydraulische Wirkungsgrad erheblich gesteigert werden können.
  • Weiters ist die Wellen-Außenverzahnung der Welle in einer Weiterbildung konisch mit kleinerem Durchmesser-Betrag in axialer Richtung gesehen an ihrer Wellen-Abtriebsseite ausgebildet, wie in den Ausführungsbeispielen näher erläutert.
  • Außerdem sieht ein Erfindungsaspekt vor, dass am Zahnkopf der Wellen-Außenverzahnung eine Zahnkopfkürzung vorgesehen ist, indem rechnerisch an den Stellen und des Zahnkopfs, an denen die Verzahnungen außer Eingriff kommen, der Zahnflankenradius größer vorgesehen ist als an der Stelle des tiefsten Zahneingriffs, worauf ebenfalls in den Ausführungsbeispielen näher eingegangen wird.
  • Wegen der insbesondere axialen Dimension besonders kompakten Bauweise der erfindungsgemäßen Kreiskolbenmaschine besteht die Möglichkeit, zwei Maschinen axial drehmomentwirksam zu koppeln, ohne dass die Einheit übermäßig lang wird. Der Vorteil einer solchen Anordnung liegt darin, dass mittels einer verhältnismäßig einfachen Schieber-Ventilsteuerung ein zwei- bis dreistufiger Hydromotor entsteht. Bei der Anwendung als Antrieb einer hydrostatischen Seilwinde in Hebezeugen kann zum Beispiel die Leerhaken-Geschwindigkeit erhöht werden. Bei der Anwendung als Antrieb für ein hydrostatisches Mobilfahrzeug kann dadurch die Fahrzeuggeschwindigkeit bei Leerfahrt erhöht werden. In beiden Fällen ist dadurch eine Zeitersparnis erzielbar, sodass die Hydraulikölmenge der Lieferpumpe konstant gehalten werden kann. Hierbei ist ohne großen konstruktiven Aufwand eine Spreizung der Abtriebsdrehzahl der Kreiskolbenmaschine bis zum Faktor 3 möglich.
  • Daher umfasst eine Weiterbildung der Erfindung eine hydrostatische Zahnrad-Kreiskolbenmaschine in Form einer Zahnrad-Doppelkreiskolben-Maschine, welche sich aus zwei miteinander gekoppelten hydrostatischen Zahnrad-Kreiskolbenmaschinen zusammensetzt. Diese zwei hydrostatischen Zahnrad-Kreiskolbenmaschinen entsprechen jeweils einer der erfindungsgemäßen hydrostatischen Zahnrad-Kreiskolbenmaschinen. Die Wellen-Gegenseite der Welle der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine ist mit der Wellen-Gegenseite der Welle der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine axial - insbesondere mittels einer Muffe - gekoppelt und drehmomentwirksam verbunden. Die erste hydrostatische Zahnrad-Kreiskolbenmaschine und die zweite hydrostatische Zahnrad-Kreiskolbenmaschine weisen insbesondere unterschiedliche Schluckmengen, insbesondere unterschiedlich dimensionierte Zahnkammern auf. Insbesondere sind eine erste Zahnwellen-Zahnnaben-Verzahnung auf der Wellen-Gegenseite der Welle der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine und eine entsprechende zweite Zahnwellen-Zahnnaben-Verzahnung der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine jeweils mit der Muffe drehmomentwirksam verbunden. Diese Muffe ist insbesondere radial durch ein gemeinsames Wälzlager im Ein- und Auslassgehäuseteil der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine und im Ein- und Auslassgehäuseteil der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine gelagert. Hierbei ist das Wälzlager als Zentrierung der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine mit der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine ausgebildet.
  • Die erfindungsgemäße hydrostatische Zahnrad-Kreiskolbenmaschine wird nachfolgend anhand von in den Zeichnungen schematisch dargestellten konkreten Ausführungsbeispielen rein beispielhaft näher beschrieben, wobei auch auf weitere Vorteile der Erfindung eingegangen wird.
  • Im Einzelnen zeigen:
  • Figur 1
    einen Längsschnitt durch eine erste Ausführungsform der hydrostatischen Zahnrad-Kreiskolbenmaschine;
    Figur 2
    einen Querschnitt durch den Leistungsteil der hydrostatischen Zahnrad-Kreiskolbenmaschine nach Figur 1;
    Figur 3
    eine Tabelle mit unterschiedlichen Zähnezahlverhältnissen;
    Figur 4
    einen Längsschnitt durch eine als Radmotor ausgebildete zweite Ausführungsform der Erfindung; und
    Figur 5
    einen Längsschnitt durch eine als Zahnrad-Doppelkreiskolben-Maschine ausgebildete dritte Ausführungsform der Erfindung.
  • Figur 1 zeigt einen Längsschnitt durch eine erste Ausführungsform der hydrostatischen Zahnrad-Kreiskolbenmaschine, während die Figur 2 einen Querschnitt durch den Leistungsteil dieser Maschine zeigt. Die beiden Figuren 1 und 2 werden im Folgenden gemeinsam beschrieben.
  • Die hydrostatische Zahnrad-Kreiskolbenmaschine nach dem Orbitprinzip besitzt einen mit einer Stator-Innenverzahnung 1 versehenen zentrischen, feststehenden Stator 2 mit der Zähnezahl Z4 gleich 12, sowie einem innerhalb des Stators 2, zum Ausführen einer um eine Exzentrizität e kreisenden Orbitbewegung, exzentrisch angeordneten Kreiskolben 4, der eine teilweise in die Stator-Innenverzahnung 1 eingreifende Kreiskolben-Außenverzahnung 3 mit einer Zähnezahl Z3 gleich 11 hat. Die Zähnezahldifferenz zwischen der Zähnezahl Z4 gleich 12 und der Zähnezahl Z3 gleich 11 beträgt 1, wie in Figur 2 ersichtlich. Die Stator-Innenverzahnung 1 ist als drehbare Rollen ausgebildet.
  • Im Innern des Kreiskolbens 4 ist eine Kreiskolben-Innenverzahnung 5 mit einer Zähnezahl Z2 ausgeformt. Eine Welle 6 ist zum Stator 2 zentrisch angeordnet und um eine geometrische Wellenachse 52 drehbar in einem Kegelrollen-Hauptlager 9 und einem Kegelrollen-Nebenlager 11 gelagert. Auf der Welle 6 ist eine Wellen-Außenverzahnung 7 mit einer Zähnezahl Z1 ausgeformt, die teilweise in die Kreiskolben-Innenverzahnung 5 eingreift. Die geometrische Wellenachse 52 ist somit auch die geometrische Achse der Wellen-Außenverzahnung 7, des Stators 2 und der Stator-Innenverzahnung 1. Die Zähnezahldifferenz zwischen der Zähnezahl Z2 und der Zähnezahl Z1 beträgt 2.
  • Die durch die Zähnezahldifferenz zwischen der Zähnezahl Z4 und der Zähnezahl Z3 gebildeten Zahnkammern 53a, 53b zwischen der Stator-Innenverzahnung 1 und der Kreiskolben-Außenverzahnung 3 werden radial von der Stator-Innenverzahnung 1 und der Kreiskolben-Außenverzahnung 3, wie in Figur 2 gezeigt, und axial von einer abtriebsseitigen Wand 58 sowie gegenüberliegend von einer Steuerplatte 25, wie in Figur 1 gezeigt, im wesentlichen abgedichtet begrenzt.
  • Der Stator 2, der Kreiskolben 4, die Zahnkammern 53a, 53b und die Wellen-Außenverzahnung 7 bilden den als Antrieb wirkenden Leistungsteil 51 des Gehäuses 24.
  • Auf einer Wellen-Abtriebsseite 8 der Welle 6 ist das Kegelrollen-Hauptlager 9 angeordnet, während sich auf einer der Wellen-Abtriebsseite 8 am anderen Ende der Welle 6 gegenüberliegenden Wellen-Gegenseite 55 das Kegelrollen-Nebenlager 11 befindet.
  • In Figur 1 wird die äußerst stabile Ausbildung der Welle 6 gezeigt, wobei das abtriebseitige Kegelrollen-Hauptlager 9 mit besonders hoher Tragzahl ausgewählt ist. Dieses ist sehr nahe am Zahneingriff zwischen dem Kreiskolben 4 und der Wellen-Außenverzahnung 7 der Welle 6 angeordnet für eine möglichst kleine Durchbiegung der Welle 6 durch die Zahnkraft, da das Kegelrollen-Nebenlager 11 im äußerst möglichen Abstand davon platziert ist. Bei maximalem Arbeitsdruck sollte an der Stelle des Zahneingriffs der Betrag der Wellendurchbiegung den Wert von 15 bis 20 Mikrometer nicht überschreiten. Damit bei Höchstdruck des Arbeitsfluids kein Kantenträger entsteht zwischen der Kreiskolben-Innenverzahnung 5 des Kreiskolbens 4 und der Wellen-Außenverzahnung 7 der Welle 6 infolge der Durchbiegung der Welle 6, besteht erfindungsgemäß die Möglichkeit, dass die Wellen-Außenverzahnung 7 leicht konisch geschliffen ist mit etwas kleinerem Durchmesser-Betrag in axialer Richtung gesehen an ihrer Abtriebsseite in Richtung der Wellen-Abtriebsseite 8.
  • Rechts in Figur 1 gezeigt befindet sich ein Ein- und Auslassgehäuseteil 54 des Gehäuses 24, welches einem abtriebseitigen Gehäuseteil 10, links in Figur 1, in axialer Richtung gesehen gegenüberliegt. Das Ein- und Auslassgehäuseteil 54 beinhaltet ein scheibenförmiges Drehventil 12 sowie Anschlüsse 21 und 22 und Kanäle 56 zur Ver- und Entsorgung des scheibenförmigen Drehventils 12 mit Arbeitsfluid.
  • Das scheibenförmige Drehventil 12 ist um die Wellenachse 52 zentrisch drehbar und zur Welle 6 und zum Stator 2 zentrisch laufend im Ein- und Auslassgehäuseteil 54 zwischen dem Leistungsteil 51 und dem Kegelrollen-Nebenlager 11 gelagert und dient zur kommutierenden Steuerung der Ver- und Entsorgung der Zahnkammern 53a, 53b mit dem Arbeitsfluid zum Hineinleiten von Arbeitsfluid in einen ersten Teil 53a der Zahnkammern mit einem Arbeitsdruck und zum Hinausleiten des Arbeitsfluids aus einem zweiten Teil 53b der Zahnkammern zur Erzeugung des Abtriebs.
  • In anderen Worten ist das Drehventil 12 zur Verbindung eines ersten Teils 53a der kreisenden Zahnkammern mit einem der beiden Anschlüsse 21 und 22 zur Versorgung dieser Zahnkammern 53a mit dem unter Arbeitsdruck stehenden Arbeitsfluid und eines zweiten Teils 53b der kreisenden Zahnkammern mit dem anderen der beiden Anschlüsse 21 und 22 zur Ableistung des Arbeitsfluids aus diesen Zahnkammern 53b ausgebildet und mit den Zahnkammern 53a, 53b entsprechend über die Kanäle 56 verbunden.
  • Ebenfalls im Ein- und Auslassgehäuseteil 54 angeordnet ist ein hydrostatischer axialen Ausgleichkolben 17 für eine axiale Spielfreiheit des scheibenförmigen Drehventils 12.
  • In axialer Richtung gesehen zwischen dem Leistungsteil 51 und dem Ein- und Auslassgehäuseteil 54 ist die Steuerplatte 25 angeordnet. Diese Steuerplatte 25 weist Fenster 26 und Steuerplatten-Kanäle 57 zwischen den Zahnkammern 53a, 53b und den im scheibenförmigen Drehventil 12 ausgeformten Druckfenstern 27 zur Ver- und Entsorgung der Zahnkammern 53a, 53b mit dem Arbeitsfluid auf.
  • Die Dicke d in axialer Richtung der Steuerplatte 25 und deren Material sind derart, dass das axiale Laufspiel des Kreiskolbens 4 zwischen dem abtriebseitigen Gehäuseteil 10 und dem Ein- und Auslassgehäuseteil 54 sich mit zunehmendem Arbeitsdruck des Arbeitsfluid verringert oder gleich bleibt.
  • Wie im Figur 1 gezeigt, ist das Kegelrollen-Hauptlager 9 im abtriebseitigen Gehäuseteil 10, aus welchem die Wellen-Abtriebsseite 8 der Welle 6 aus dem Gehäuse 24 hinausgeführt ist, angeordnet, während sich das Kegelrollen-Nebenlager 11 im Ein- und Auslassgehäuseteil 54 befindet.
  • In axialer Richtung gesehen zwischen dem abtriebseitigen Gehäuseteil 10 und der Steuerplatte 25 ist das als Antrieb wirkende Leistungsteil 51 mit dem Stator 2, dem Kreiskolben 4, den Zahnkammern 53a, 53b und der Wellen-Außenverzahnung 7 angeordnet.
  • Um das um die Wellenachse 52 drehbare Drehventil 12 mit der Drehzahl des um die Kreiskolbenachse 50 drehbaren Kreiskolbens 4 - trotz Versatzes der Drehachsen um die Exzentrizität e - antreiben zu können, ist eine becherförmige Hülse 13 zwischen dem Kreiskolben 4 und dem Drehventil 12 angeordnet. Die becherförmige Hülse 13 umgibt die Welle 6 radial beabstandet und taumelt bei Rotation des Kreiskolbens 4 um die Wellenachse 52. Wie in Figur 1 gezeigt erstreckt sie sich in axialer Richtung gesehen zwischen dem Leistungsteil 51 und dem Ein- und Auslassgehäuseteil 54 im Gehäuse 24 und ist durch eine entsprechende Aussparung in der Steuerplatte 25 hindurchgeführt. Die Taumelhülse 13 hat eine erste Hülsen-Außenverzahnung 14 mit einer Zähnezahl Z5 auf der Seite des Leistungsteils 51, also in Richtung zur Abtriebsseite, und eine zweite Hülsen-Außenverzahnung 15 mit einer Zähnezahl Z6 auf der Seite des Ein- und Auslassgehäuseteils 54, also in Richtung entgegen zur Abtriebsseite. Die erste Hülsen-Außenverzahnung 14 kämmt mit der Kreiskolben-Innenverzahnung 5, deren Zähnezahl Z2 gleich der Zähnezahl Z5 ist. Die zweite Hülsen-Außenverzahnung 15 kämmt mit einer Drehventil-Innenverzahnung 16 mit einer der Zähnezahl Z6 entsprechenden Zähnezahl Z7 des Drehventils 12. Somit wird eine taumelnden 1:1 Drehkopplung zwischen dem Kreiskolben 4 und dem scheibenförmigen Drehventil 12 erzielt.
  • Im gezeigten Ausführungsbeispiel führt die becherartige Taumelhülse 13 bei der Orbitbewegung des Kreiskolbens 4 eine Taumelbewegung mit einem Taumelwinkel von ca. 5,5 Grad aus. Die Zahnspiele bei den Zähnen der erste Hülsen-Außenverzahnung 14 und der Kreiskolben-Innenverzahnung 5 und zwischen den Zähnen der zweite Hülsen-Außenverzahnung 15 und der Drehventil-Innenverzahnung 16 sollten vorzugsweise so klein wie möglich sein für eine exakte kommutierende Steuerung des Leistungsteils aus der Kreiskolben-Außenverzahnung 3 und der Stator-Innenverzahnung 1. Deshalb sind die Zähne der erste Hülsen-Außenverzahnung 14, der zweite Hülsen-Außenverzahnung 15 und der Drehventil-Innenverzahnung 16 sehr schmal ausgeführt.
  • Damit das Reibungs-Verlustmoment des Drehventils 12 so klein wie möglich ist, sollten zwischen den Fenstern 26 der Steuerplatte 25 in Umfangsrichtung gesehen noch Blindvertiefungen vorgesehen werden. Die Anordnungen dieser Fenster 26 der Steuerplatte 25 und der Druckfenster 27 des Drehventils 12 sind in der Zeichnung vereinfacht gezeigt und dem Fachmann allgemein bekannt.
  • Die Stator-Innenverzahnung 1 und die Kreiskolben-Außenverzahnung 3 des Gerotorsatzes und die Kreiskolben-Innenverzahnung 5 und Wellen-Außenverzahnung 7 des Innengetriebes zwischen der Welle 6 und dem Kreiskolben 4 sind in Figur 2 dargestellt. Da für beide Innengetriebe ein und dieselbe Exzentrizität e, also der selbe Achsabstand zwischen der Wellenachse 52 und der Kreiskolbenachse 50 gelten muss, ist bei dem Wellen-Exzenter-Innengetriebe die Zähnezahldifferenz gleich zwei. Damit das Schluckvolumen der Maschine und der Wellendurchmesser so groß wie möglich sind, werden die Zähnezahlen ebenfalls groß gewählt.
  • Die Zahnteilung und dementsprechend der Modul der Zähne richten sich nach dem Betrag der Exzentrizität e des gesamten Laufsatzes, die zugleich für beide Innengetriebe den Achsabstand bedeutet. Die Auslegung des Innengetriebes zwischen der Welle 6 und dem Kreiskolben 4 hat wesentlichen Einfluss auf das Schluckvolumen pro Wellenumdrehung und somit auf die hydraulische Leistung der Maschine.
  • Figur 3 zeigt eine Tabelle, die diese Verhältnisse deutlich macht. Die wesentliche Größe für das Schluckvolumen ist die so genannte Förderfläche Ao der Rotorverzahnung zwischen der Kreiskolben-Außenverzahnung 3 und der Stator-Innenverzahnung 1. Bei der Berechnung geht man vom sogenannten Standgetriebe aus, bei dem die Achsabstandslinie bzw. die Exzentrizität e im Raume stillsteht. In diesem Bewegungszustand laufen die Rotoren nicht als Kreiskolbengetriebe sondern als Drehkolbengetriebe. Dabei drehen sich beide Räder um ihre eigenen Mittelpunkte und bilden eine normale Innen-Zahnradmaschine.
  • Mit ausreichender Genauigkeit errechnet sich dann die Grundförderfläche Ao (Fördermenge pro cm Breite der Läufer) pro Umdrehung des Innenläufers (später Kreiskolben) nach der Formel: Ao = Pi / 4 Dk 1 2 Dk 2 2 e 2 cm 2
    Figure imgb0001
    dabei bedeuten
    • Dk1 der Kopfkreisdurchmesser des Innenläufers,
    • Dk2 der Kopfkreisdurchmesser des Außenläufers,
    • e der Achsabstand oder die Exzentrizität des Getriebes.
  • Wie man sieht ist Ao unabhängig von den Zähnezahlen. Für eine Vergleichsuntersuchung des Schluckvolumens geht man davon aus, dass der Außendurchmesser der Maschine in jedem Falle gleich ist, somit auch die Grundförderfläche Ao.
  • Im Falle der Kreiskolbenmaschine steht der Außenläufer (nunmehr als Stator 2 bezeichnet) im Raume still, der Innenläufer wird zum Kreiskolben 4 und beschreibt eine "Orbit"-Bewegung um den Wellenmittelpunk mit dem Abstand e. Der Kreiskolben 4 dreht sich weiterhin in positiver Richtung, ebenso die Welle 6. Die Exzentrizität e jedoch dreht sich in entgegen gesetzter Drehrichtung, also mit negativer Drehzahl. Dann sind die Drehzahlverhältnisse nach den Gesetzen der Umlaufgetriebe: Ne / Nk = Z 3 / 1 ;
    Figure imgb0002
    Nw / Nk = Z 4 Z 2 / Z 1 Z 3 / Z 4 Z 3
    Figure imgb0003
    Dabei bedeuten
    • Z1 die Zähnezahl der Wellen-Außenverzahnung 7,
    • Z2 die Zähnezahl der Kreiskolben-Innenverzahnung 5,
    • Z3 die Zähnezahl der Kreiskolben-Außenverzahnung 3,
    • Z4 die Zähnezahl der Stator-Innenverzahnung 1,
    • Ne die Drehzahl der Exzentrizität e (negativ),
    • Nk die Drehzahl des Kreiskolbens 4 (positiv),
    • Nw die Drehzahl der Welle 6 (positiv).
  • Bei dieser Kreiskolbenbewegung erhöht sich die Förderfläche Ak pro Kreiskolbenumdrehung dramatisch nach der Formel: Ak = Ne / Nk + 1 Ao = Z 3 + 1 Ao
    Figure imgb0004
    • bei Z4-Z3 = 1
    • Ak = Z4·Ao
  • Da sich die Welle 6 schneller dreht als der Kreiskolben 4, ist die Förderfläche Aw der Maschine pro Umdrehung der Welle 6: Aw = Ak / Nw / Nk Ao = Z 3 + 1 / Nw / Nk Ao
    Figure imgb0005
  • In der Tabelle gemäß der Figur 3 sind drei verschiedene Auslegungen des Gerotorsatzes Z3/Z4 und drei verschiedene Auslegungen des Kreiskolben-Innengetriebes Z1/Z2 angenommen, sodass sich 9 verschiedene Ergebnisse für die Wellenförderfläche Aw pro Wellenumdrehung ergeben, die in der letzten Spalte der Tabelle angegeben sind. Wie man sieht, steigen die Werte für Aw mit zunehmender Zähnezahl der Wellen-Außenverzahnung 7.
  • Somit ist das gesamte Schluckvolumen der Maschinen pro Wellenumdrehung: qw = Aw B , wenn B die Breite des Laufsatzes ist .
    Figure imgb0006
  • Die in der Tabelle in Figur 3 eingerahmte Auslegung entspricht der Darstellung in den Figuren.
  • Die kleine Zähnezahldifferenz von nur zwei Zähnen zwischen der Kreiskolben-Innenverzahnung 5 und der Wellen-Außenverzahnung 7 können an den Stellen 28 und 29 des Zahnkopfes des Wellen-Außenverzahnung 7, an denen die Verzahnungen außer Eingriff kommen, Zahnkopfeingriffstörungen auftreten (Figur 2). Um diese zu vermeiden, ist es deshalb zweckmäßig, dass an diesen Stellen des Zahnkopfs der Wellen-Außenverzahnung 7 eine Zahnkopfkürzung vorgesehen ist. Diese kann in einfacher Weise dadurch geschehen, dass im Berechnungsprogramm für die Zahnform der Wellen-Außenverzahnung 7 an diesen Stellen rechnerisch der Zahnflankenradius 30 der Kreiskolben-Innenverzahnung 5 etwas größer gerechnet wird als an der Stelle des tiefsten Zahneingriffs 31. Man sorgt hier für einen kontinuierlichen Übergang dieses Zahnflankenradius 30 von der Stelle tiefsten Zahneingriffs 31 zu den Stellen 28 und 29, an denen die Kreiskolben-Innenverzahnung 5 außer Eingriff kommt.
  • Figur 4 zeigt einen Längsschnitt durch eine als Radmotor ausgebildete zweite Ausführungsform der Erfindung als besonders kompakte Konstruktion.
  • Diese zweite Aufführungsform unterscheidet sich insbesondere dadurch von der ersten Ausführungsform, dass die Wellen-Abtriebsseite 8 der Welle 6 als Konus 37 ausgebildet ist und auf diesem Konus 37 ein Radflansch 18 mittels einer Axialmutter 19 zur Bildung eines kompakten Radmotors befestigt ist.
  • Figur 5 zeigt einen Längsschnitt durch eine als Zahnrad-Doppelkreiskolben-Maschine ausgebildete dritte Ausführungsform der Erfindung. Diese zwei- bis dreistufige hydrostatische Kreiskolbenmaschine ist eine Kombination einer ersten hydrostatischen Zahnrad-Kreiskolbenmaschine 40 mit großer Schluckmenge pro Umdrehung und einer zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine 41 mit kleinerer Schluckmenge pro Umdrehung. Die erste und die zweite hydrostatische Zahnrad-Kreiskolbenmaschine 40 bzw. 41 entsprechen bezüglich ihrer wesentlichen Merkmale jeweils der eingangs beschriebenen erfindungsgemäßen hydrostatischen Kreiskolbenmaschine, jedoch haben sie unterschiedlich große Zahnkammern 53a, 53b mit unterschiedlicher axialer Erstreckung, wie in Figur 5 gezeigt.
  • Die jeweiligen Wellen-Gegenseiten 55 der Wellen 6 beider Maschinen 40 und 41 sind drehmomentwirksam über eine Muffe 42 über Zahnwellen-Zahnnaben-Verzahnungen 43a und 43b miteinander verbunden, wobei die Muffe 42 radial durch ein gemeinsames Wälzlager 44 im Ein- und Auslassgehäuseteil 54 der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine 40 und im Ein- und Auslassgehäuseteil 54 der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine 41 gelagert ist. Das Wälzlager 44 dient dabei in vorteilhafter Weise als Zentrierung der beiden Maschinen 40 und 41. Mittels der Schrauben 46 sind beide Einheiten in axialer Richtung verschraubt.
  • Wie man der Zeichnung entnehmen kann, entspricht die Länge dieser mehrstufigen hydrostatischen Kreiskolbenmaschine nur etwa dem doppelten Durchmesser.

Claims (14)

  1. Hydrostatische Zahnrad-Kreiskolbenmaschine nach dem Orbitprinzip mit
    • einem mit einer Stator-Innenverzahnung (1) versehenen zentrischen, feststehenden Stator (2) mit der Zähnezahl Z4,
    • einem innerhalb des Stators (2), zum Ausführen einer um eine Exzentrizität (e) kreisenden Orbitbewegung, exzentrisch angeordneten Kreiskolben (4), der eine teilweise in die Stator-Innenverzahnung (1) eingreifende Kreiskolben-Außenverzahnung (3) mit einer Zähnezahl Z3 aufweist,
    • einer Zähnezahldifferenz 1 zwischen der Zähnezahl Z4 und der Zähnezahl Z3,
    • einer im Innern des Kreiskolbens (4) angeordneten Kreiskolben-Innenverzahnung (5) mit einer Zähnezahl Z2,
    • einer zum Stator (2) zentrisch angeordneten, um eine Wellenachse (52) drehbar gelagerten Welle (6),
    • einer auf der Welle (6) angeordneten, teilweise in die Kreiskolben-Innenverzahnung (5) eingreifenden Wellen-Außenverzahnung (7) mit einer Zähnezahl Z1,
    • Zahnkammern (53a, 53b), die radial zwischen der Stator-Innenverzahnung (1) und der Kreiskolben-Außenverzahnung (3) angeordnet und die von diesen radial begrenzt sind,
    • einem auf einer Wellen-Abtriebsseite (8) der Welle (6) angeordneten Hauptlager (9),
    • einem auf einer der Wellen-Abtriebsseite (8) am anderen Ende der Welle (6) gegenüberliegenden Wellen-Gegenseite (55) angeordneten Nebenlager (11),
    • einem scheibenförmigen Drehventil (12), das um die Wellenachse (52) zentrisch drehbar und zur Welle (6) und zum Stator (2) zentrisch laufend ist, und das zur kommutierenden Steuerung der Ver- und Entsorgung der Zahnkammern (53a, 53b) mit dem Arbeitsfluid zum Hineinleiten von Arbeitsfluid in einen ersten Teil (53a) der Zahnkammern mit einem Arbeitsdruck und zum Hinausleiten des Arbeitsfluids aus einem zweiten Teil (53b) der Zahnkammern zur Erzeugung des Abtriebs ausgebildet und mit den Zahnkammern (53a, 53b) verbunden ist,
    • einem hydrostatischen axialen Ausgleichkolben (17) für eine axiale Spielfreiheit des scheibenförmigen Drehventils (12), und
    • einem Gehäuse (24) mit
    - einem abtriebseitigen Gehäuseteil (10), der das Hauptlager (9) umfasst und aus welchem die Wellen-Abtriebsseite (8) der Welle (6) aus dem Gehäuse (24) hinausgeführt ist,
    - einem Ein- und Auslassgehäuseteil (54), welches dem abtriebseitigen Gehäuseteil (10) in axialer Richtung gesehen gegenüberliegt und welches das scheibenförmige Drehventil (12), zur Ver- und Entsorgung des scheibenförmige Drehventils (12) mit dem Arbeitsfluid ausgebildete Anschlüsse (21, 22) und Kanäle (56), und insbesondere den Ausgleichskolben (17) umfasst, und
    - einen als Antrieb wirkenden Leistungsteil (51), der den Stator (2), den Kreiskolben (4), die Zahnkammern (53a, 53b) und die Wellen-Außenverzahnung (7) umfasst und in axialer Richtung gesehen zwischen dem abtriebseitigen Gehäuseteil (10) und dem Ein- und Auslassgehäuseteil (54) angeordnet ist,
    dadurch gekennzeichnet, dass
    • das Nebenlager (11) im Ein- und Auslassgehäuseteil (54) angeordnet ist,
    • das scheibenförmige Drehventil (12) in axialer Richtung gesehen zwischen dem Leistungsteil (51) und dem Nebenlager (11) angeordnet ist,
    • eine becherförmige Hülse (13) die Welle (6) radial beabstandet und um die Wellenachse (52) taumelnd umgibt und sich in axialer Richtung gesehen zwischen dem Leistungsteil (51) und dem Ein- und Auslassgehäuseteil (54) im Gehäuse (24) erstreckt,
    • eine erste Hülsen-Außenverzahnung (14) der Hülse (13) mit einer Zähnezahl Z5 auf der Seite des Leistungsteils (51) in die Kreiskolben-Innenverzahnung (5) eingreift, und
    • eine zweite Hülsen-Außenverzahnung (15) der Hülse (13) mit einer Zähnezahl Z6 auf der Seite des Ein- und Auslassgehäuseteils (54) in eine Drehventil-Innenverzahnung (16) mit einer Zähnezahl Z7 des Drehventils (12) zur taumelnden 1:1 Drehkopplung zwischen dem Kreiskolben (4) und dem scheibenförmigen Drehventil (12) eingreift.
  2. Hydrostatische Zahnrad-Kreiskolbenmaschine nach Anspruch 1,
    gekennzeichnet durch
    eine Zähnezahldifferenz 2 zwischen der Zähnezahl Z2 und der Zähnezahl Z1.
  3. Hydrostatische Zahnrad-Kreiskolbenmaschine nach Anspruch 2,
    dadurch gekennzeichnet, dass
    • die Zähnezahl Z3 zu der Zähnezahl Z4 die Werte 10:11 oder 11:12 oder 12:13 und/oder
    • die Zähnezahl Z1 zu der Zähnezahl Z2 die Werte 15:17 oder 16:18 oder 17:19
    aufweist.
  4. Hydrostatische Zahnrad-Kreiskolbenmaschine nach Anspruch 2,
    dadurch gekennzeichnet, dass
    • die Zähnezahl Z3 zu der Zähnezahl Z4 den Wert 11:12 und
    • die Zähnezahl Z1 zu der Zähnezahl Z2 den Wert 16:18 aufweist.
  5. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    • die Zähnezahl Z5 gleich der Zähnezahl Z2 und
    • die Zähnezahl Z6 gleich der Zähnezahl Z7 ist.
  6. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    der hydrostatische axiale Ausgleichkolben (17) in axialer Richtung gesehen zwischen dem scheibenförmigen Drehventil (12) und dem Nebenlager (11) im Ein- und Auslassgehäuseteil (54) angeordnet ist.
  7. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    • in axialer Richtung gesehen zwischen dem Leistungsteil (51) und dem Ein- und Auslassgehäuseteil (54) eine Steuerplatte (25) mit Fenstern (26) und Steuerplatten-Kanäle (57) zwischen den Zahnkammern (53a, 53b) und dem scheibenförmiges Drehventil (12) zur Ver- und Entsorgung der Zahnkammern (53a, 53b) mit dem Arbeitsfluid angeordnet ist, und
    • die Dicke (d) in axialer Richtung der Steuerplatte (25) und/oder deren Material derart sind, dass die Steuerplatte (25) derart nachgiebig ist, dass das axiale Laufspiel des Kreiskolbens (4) zwischen dem abtriebseitigen Gehäuseteil (10) und dem Ein- und Auslassgehäuseteil (54) sich mit zunehmendem Arbeitsdruck des Arbeitsfluid verringert oder gleich bleibt.
  8. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass
    die Wellen-Abtriebsseite (8) der Welle (6) als Konus (37), zur Befestigung eines Radflansches (18) mittels einer Axialmutter (19) zur Bildung eines kompakten Radmotors, ausgebildet ist.
  9. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass
    die Stator-Innenverzahnung (1) als drehbare Rollen ausgebildet ist.
  10. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass
    die Wellen-Außenverzahnung (7) der Welle (6) konisch mit kleinerem Durchmesser-Betrag in axialer Richtung gesehen an ihrer Wellen-Abtriebsseite (8) ausgebildet ist.
  11. Hydrostatische Zahnrad-Kreiskolbenmaschine nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass
    am Zahnkopf der Wellen-Außenverzahnung (7) eine Zahnkopfkürzung vorgesehen ist, indem rechnerisch an den Stellen (28) und (29) des Zahnkopfs, an denen die Verzahnungen außer Eingriff kommen, der Zahnflankenradius (30) größer vorgesehen ist als an der Stelle des tiefsten Zahneingriffs (31).
  12. Hydrostatische Zahnrad-Kreiskolbenmaschine,
    gekennzeichnet durch
    • eine erste hydrostatische Zahnrad-Kreiskolbenmaschine (40) nach einem der Ansprüche 1 bis 11 und
    • eine zweite hydrostatische Zahnrad-Kreiskolbenmaschine (41) nach einem der Ansprüche 1 bis 11,
    wobei
    • die Wellen-Gegenseite (55) der Welle (6) der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine (40) mit der Wellen-Gegenseite (55) der Welle (6) der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine (41) axial, insbesondere mittels einer Muffe (42), gekoppelt und drehmomentwirksam verbunden ist und
    • die erste hydrostatische Zahnrad-Kreiskolbenmaschine (40) und die zweite hydrostatische Zahnrad-Kreiskolbenmaschine (41) insbesondere unterschiedliche Schluckmengen, insbesondere unterschiedlich dimensionierte Zahnkammern (53a, 53b) aufweisen.
  13. Hydrostatische Zahnrad-Kreiskolbenmaschine nach Anspruch 12,
    gekennzeichnet durch
    • eine Muffe (2), mittels welcher die Wellen-Gegenseite (55) der Welle (6) der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine (40) mit der Wellen-Gegenseite (55) der Welle (6) der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine (41) axial gekoppelt und drehmomentwirksam verbunden ist,
    • eine mit der Muffe (42) drehmomentwirksam verbundene erste Zahnwellen-Zahnnaben-Verzahnung (43a) auf der Wellen-Gegenseite (55) der Welle (6) der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine (40) und
    • eine mit der Muffe (42) drehmomentwirksam verbundene zweite Zahnwellen-Zahnnaben-Verzahnung (43b) der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine (41) .
  14. Hydrostatische Zahnrad-Kreiskolbenmaschine nach Anspruch 12 oder 13,
    dadurch gekennzeichnet, dass
    • die Muffe (42) radial durch ein gemeinsames Wälzlager (44) im Ein- und Auslassgehäuseteil (54) der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine (40) und im Ein- und Auslassgehäuseteil (54) der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine (41) gelagert ist und
    • das Wälzlager (44) als Zentrierung der ersten hydrostatischen Zahnrad-Kreiskolbenmaschine (40) mit der zweiten hydrostatischen Zahnrad-Kreiskolbenmaschine (41) ausgebildet ist.
EP17185063.9A 2017-08-07 2017-08-07 Hydrostatische zahnrad-kreiskolbenmaschine Active EP3441613B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17185063.9A EP3441613B1 (de) 2017-08-07 2017-08-07 Hydrostatische zahnrad-kreiskolbenmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17185063.9A EP3441613B1 (de) 2017-08-07 2017-08-07 Hydrostatische zahnrad-kreiskolbenmaschine

Publications (2)

Publication Number Publication Date
EP3441613A1 EP3441613A1 (de) 2019-02-13
EP3441613B1 true EP3441613B1 (de) 2022-01-05

Family

ID=59581737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17185063.9A Active EP3441613B1 (de) 2017-08-07 2017-08-07 Hydrostatische zahnrad-kreiskolbenmaschine

Country Status (1)

Country Link
EP (1) EP3441613B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022002619U1 (de) 2022-12-09 2023-02-01 Siegfried Alexander Eisenmann Hydrostatische Kreiskolbenmaschine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019001218U1 (de) 2019-03-13 2019-04-16 Siegfried Alexander Eisenmann Drehventilantrieb für Zahnrad-Kreiskolbenmotoren

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH679062A5 (de) 1988-10-24 1991-12-13 Siegfried Eisenmann
US5228846A (en) * 1991-11-25 1993-07-20 Eaton Corporation Spline reduction extension for auxilliary drive component
US6019584A (en) * 1997-05-23 2000-02-01 Eaton Corporation Coupling for use with a gerotor device
US5873243A (en) * 1996-10-10 1999-02-23 Eaton Corporation Torque generator steering device
CH701073B1 (de) 2004-07-22 2010-11-30 Siegfried A Dipl-Ing Eisenmann Hydrostatischer Kreiskolbenmotor.
WO2011161117A2 (de) * 2010-06-23 2011-12-29 Eisenmann Siegfried A Stufenlos volumenveränderbare hydrostatische kreiskolbenmaschine
US9512838B2 (en) * 2013-03-15 2016-12-06 Eaton Corporation Torque-generating steering device
DE202014006761U1 (de) * 2014-08-22 2015-11-24 Siegfried Eisenmann Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022002619U1 (de) 2022-12-09 2023-02-01 Siegfried Alexander Eisenmann Hydrostatische Kreiskolbenmaschine

Also Published As

Publication number Publication date
EP3441613A1 (de) 2019-02-13

Similar Documents

Publication Publication Date Title
DE102007061322B4 (de) Exzentergetriebe und Verfahren zum Übertragen einer Drehkraft durch das Exzentergetriebe
EP1776525B1 (de) Hydrostatischer kreiskolbenmotor
DE3006331C3 (de) Getriebe
DE60132281T2 (de) Getriebe mit inneneingreifenden planetenräder
AT394757B (de) Nebenantrieb einer brennkraftmaschine
EP0848165A2 (de) Füllstücklose Innenzahnradmaschine
DE1553275B2 (de) Rotationskolbenmaschine für Flüssigkeiten
DE2816777A1 (de) Zweigwegegetriebe mit zwei drehzahlbereichen
EP1252444B1 (de) Antrieb einer schraubenspindelpumpe
EP3441613B1 (de) Hydrostatische zahnrad-kreiskolbenmaschine
EP2255104B1 (de) Getriebe
DE10058883A1 (de) Zahnradmaschine
DE3117651A1 (de) Drehkolbenmotor mit im durchmesser vergroesserter antriebswelle
EP1910707B1 (de) Stellantrieb für armaturen mit einem planetengetriebe
DE2221211A1 (de) Waelzkoerperdrehverbindung mit getriebe
EP0432349B1 (de) Getriebe
EP1831590B1 (de) Vorrichtung, insbesondere ein planetengetriebe, mit einem ringartigen grundkörper
DE19951988B4 (de) Planetenreibradgetriebe mit Anpressmitteln
DE3327772A1 (de) Verdraengermaschine, insbesondere zykloiden-planetengetriebe mit integriertem hydraulischem motor
DE202014006761U1 (de) Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip
DE2458762A1 (de) Reibrad-planetengetriebe
DE202006011877U1 (de) Untersetzungsgetriebe
DE1216645C2 (de) Planetenraedergetriebe mit doppelten Schraegverzahnungen und hydraulischem Axialdruckausgleich an den Planetenraedern
EP0228609B1 (de) Zahnärztliches Handstück mit Untersetzungsgetriebe
DE4401688C2 (de) Rotorpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190726

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210816

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1460828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012380

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220330

Year of fee payment: 6

Ref country code: FR

Payment date: 20220414

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012380

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220628

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

26N No opposition filed

Effective date: 20221006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220807

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1460828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220807

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017012380

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170807