EP3434905A1 - Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe - Google Patents

Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe Download PDF

Info

Publication number
EP3434905A1
EP3434905A1 EP17183117.5A EP17183117A EP3434905A1 EP 3434905 A1 EP3434905 A1 EP 3434905A1 EP 17183117 A EP17183117 A EP 17183117A EP 3434905 A1 EP3434905 A1 EP 3434905A1
Authority
EP
European Patent Office
Prior art keywords
pump
cooling
cooling device
component
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17183117.5A
Other languages
English (en)
French (fr)
Other versions
EP3434905B1 (de
Inventor
Peter Huber
Kevin Schneider
Christopher Kobus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP17183117.5A priority Critical patent/EP3434905B1/de
Publication of EP3434905A1 publication Critical patent/EP3434905A1/de
Application granted granted Critical
Publication of EP3434905B1 publication Critical patent/EP3434905B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature

Definitions

  • the present invention relates to a vacuum pump, in particular for generating coarse and / or fine vacuum, and to a method for operating a vacuum pump.
  • the present invention relates to Roots vacuum pumps and a method of operating the same.
  • Vacuum pumps in particular Roots vacuum pumps, are operated at increasingly high speeds. At the same time there is a need to keep the space of such vacuum pumps as small as possible, which can result in an overall increased energy density or heat stress within or on the pump. As a result, special demands are placed on the cooling of such pumps and their components.
  • the object of the present invention is to provide a vacuum pump, even at relatively high pump speeds can be cooled with a high degree of reliability. Likewise, the object is to provide a method for operating a vacuum pump.
  • a vacuum pump according to the invention in particular for generating coarse and / or fine vacuum, has at least one pump component and a cooling device for convective cooling of the pump component by means of a cooling medium.
  • the cooling medium may be a gas / gas mixture, in particular air.
  • a liquid medium e.g. Water, can be provided.
  • the cooling device is set up to variably change a convective heat transfer between the pump component to be cooled and the cooling medium by adjusting a heat transfer coefficient as a function of and / or to maintain a pump operating parameter.
  • At least one pump operating parameter influences the heat transfer between the pump component to be cooled and the cooling medium.
  • a high degree of reliability in the cooling process of the pump can be ensured.
  • the targeted selection of at least one pump operating parameter allows a high degree of flexibility of the pumping and / or cooling operation.
  • the heat transfer between the pump component to be cooled and the cooling medium can be changed in a particularly efficient manner by adapting a heat transfer coefficient. The variable change of the heat transfer by adjusting the heat transfer coefficient allows a high accuracy of the cooling, in particular for compliance with predetermined pump operating parameters.
  • the pump operating parameter may advantageously be a limit value and / or a value range.
  • reaching a limit value and / or exceeding a certain value range can trigger a change in the convective heat transfer by adapting a heat transfer coefficient.
  • the convective heat transfer can be varied variably to maintain a limit and / or maintain the particular pump operating parameter within a range of values.
  • the pump operating parameter may also be a value course.
  • rapid temperature and / or pressure changes can favorably influence the cooling behavior, so that the risk of unfavorable operating conditions is reduced.
  • the inventively provided pump operating parameter may also be a continuously and / or recurrently detected measured value, whereby a continuous monitoring of a respective pump operating state or a detection and / or recording of value curves is possible.
  • the pump operating parameter may be selectable and / or adjustable by a user, thereby increasing deployment flexibility with respect to different modes of operation of the pump.
  • the pump operating parameter may be invariably preset and / or predetermined based on empirical data, thereby reducing the risk of operator errors and consequent damage to the pump.
  • the pump operating parameter is advantageously an operating safety, longevity and / or energy-saving parameter.
  • an operational safety parameter which may be, for example, a relatively narrow permissible temperature range of a pump component
  • a longevity parameter can align the cooling with respect to a relatively low-wear pump operation, which is also possible for example by tight temperature tolerances for individual pump components.
  • an energy saving parameter can improve the pumping and cooling operation in terms of power consumption. This can be achieved for example by the largest possible temperature ranges for pump components, so that only a small amount of cooling is required.
  • the pump operating parameter is a temperature and / or a temperature profile and / or in at least one pump component.
  • the temperature and / or the temperature profile and / or in a pump component can be decisive for the operation of a vacuum pump, so that the adjustment of the heat transfer in their dependence and / or compliance with them can be decisive for the pump operation, for example, to maintain a high Operational safety and / or longevity of individual pump components.
  • the pump operating parameter is a temperature, a temperature profile, a gas pressure, a gas pressure curve, a condensation and / or reaction behavior of a process gas to be compressed inside the pump and / or a differential pressure between a pump inlet and / or a pump outlet.
  • specific influence on the gas compression by the vacuum pump can be taken.
  • the compression performance or the compression result of the vacuum pump can thus be ensured in a further precise manner, in particular at relatively high pump speeds.
  • the cooling device is adapted to vary the heat transfer in dependence and / or to maintain a deformation state of a pump component and / or a gap between at least two pump components, which are preferably arranged to be movable relative to each other variable.
  • the risk of large deformation states or unfavorable gap dimensions can be reduced as a result, which has an effect on both the efficiency of the pump performance as well as on the reliability and longevity of the vacuum pump.
  • gap sizes set by selective cooling can have a positive influence on energy efficiency, namely by maintaining high pump efficiency.
  • the cooling device may be configured to variably change the heat transfer in a predetermined ratio to the power consumption of the pump drive, in particular to couple in accordance with a proportionality function.
  • the cooling device can have a control and / or regulating device which controls and / or regulates the operation of the cooling device as a function of and / or to maintain the pump operating parameter.
  • the variable change of the heat transfer between the pump component to be cooled and the cooling medium can be realized in this way with high precision and a high degree of reliability.
  • the control and / or regulating device can be equipped at least with a sensor, which is preferably a temperature sensor and / or a pressure sensor.
  • a pump operating parameter can be detected continuously and / or recurrently by the sensor.
  • the data acquired by the sensor can be used for control and / or regulating operations.
  • the inventively relevant pump operating parameters can be preset in the control and / or regulating device and / or adjustable by a user. Accordingly, there is the possibility that a user sets and / or actively modifies the pump operating parameters required for achieving and / or maintaining a respective desired pump operating state or actively changes this in a control and / or regulating device provided for this purpose. There is also the possibility that approximately safety-relevant pump operating parameters in the control and / or regulating device are preset in a fixed manner, so that dangerous operating conditions can be avoided.
  • the cooling device is operable independently of a pump operation and / or a pump speed.
  • the versatility of the cooling device can thus be further increased.
  • the cooling device is adapted to receive the cooling operation as a function of an elapsed time since the beginning of the pump operation and / or with a time delay after the onset of pump operation and / or after the pump speed has started and / or started up. In this way, the cooling operation can be adjusted depending on an actual cooling requirement of the respective pump component.
  • the cooling device is adapted to keep the cooling power off during a warm-up period of the pump component or to increase linear and / or degressive.
  • a warm-up period may be a period which begins with the start of the pump operation or the startup and / or startup of the pump rotational speed.
  • the warm-up time may last until a predetermined pump speed and / or component temperature is reached. If, during this period, the cooling power remains switched off or is increased linearly and / or degressively, it can be ensured that the respective pump component is faster each desired operating temperature reached. At the same time, an unnecessarily high cooling operation can be avoided. This allows energy savings, which can increase the overall energy efficiency of the pump operation.
  • the cooling device has a cooling device drive.
  • This cooling device drive is advantageously designed as an independent motor and can therefore be operated independently of a pump motor. Therefore, it is also possible to keep the cooling device drive at or near zero during a warm-up period or to increase it linearly and / or degressively.
  • the cooling device has a rated power for continuous operation.
  • the cooling device drive may have a rated speed for continuous operation. It is understood that the cooling device can be operated between a switched-off state and a state at rated power. It is also possible that the cooling device can only be operated at rated power. In this case, the cooling device can either be switched off or operated at rated power, whereas operation at an intermediate stage is not provided. Accordingly, a device drive can be designed only for operation at rated speed. Overall, this can be accomplished with a low expenditure on equipment.
  • the cooling device for the temporary operation can be set above the rated power. Accordingly, the cooling device drive for the temporary operation can be set above the rated speed. In this way, a limited amount of cooling power can be provided for a limited time, which may be advantageous in the case of a special load on the pump. At the same time, the time limit ensures that the reliability and / or the life of the cooling device is not overused.
  • the cooling power after completion of the warm-up period to nominal power or the cooling device drive is kept at nominal speed in an advantageous manner. Holding at rated power or at rated speed can take place after completion of the warm-up period for a limited period or permanently during pump operation.
  • the cooling device is set up to interrupt the cooling operation and / or for an intermittent and / or interval-controlled and / or regulated cooling operation.
  • the cooling of the pump component by the cooling device can thus be temporarily interrupted, with such an interruption can occur several times, so that an intermittent cooling performance is provided. Any control operations can be accomplished in this way with little equipment. In particular, can be avoided in this way that the exact cooling capacity or speed of the cooling device drive must be permanently adjusted. Overall, therefore, the tax and regulatory burden can be reduced to a low level.
  • the different operating intervals for cooling can have identical or different durations and / or the interruption intervals between the operating intervals can be identical or different.
  • the cooling capacity and / or the speed of the cooling device drive in different operating intervals may be the same or different.
  • the cooling device may be configured to switch off the cooling operation upon reaching a maximum and / or minimum permissible limit value and / or in the event of a malfunction of the cooling device and / or a pump component. Any malfunctions can lead to the simultaneous shutdown of the pump operation. The risk of damage to the cooling device and / or pump components can thus be reduced.
  • the cooling device can be set up to switch on the cooling operation when a maximum and / or minimum permissible parameter limit value is reached. For example, the achievement of a predetermined temperature level of a pump component can initiate the activation of the cooling operation, so that a respectively achieved temperature level of the pump component can be maintained or reduced again, in particular before damage occurs.
  • the pump component may be arranged as part of a pump assembly and / or wherein the cooling device is designed for the convective cooling of a pump assembly of a plurality of pump components.
  • the efficiency of the cooling by the cooling device can be increased by the arrangement of the pump component as part of a pump assembly, in particular because a plurality of pump components can be cooled simultaneously by the cooling device.
  • the pump component can be designed, for example, as part of the pump drive, in particular as an engine component, transmission, transmission housing, rotating or stationary component, and / or pump housing and / or as part of an electronic assembly.
  • the cooling device can supply all the temperature-relevant components within a vacuum pump with a cooling medium flow and the respective heat transfer selectively change between the cooling medium flow and the pump component.
  • the at least one pump component can be covered by a cladding.
  • all pump components can be covered and / or enclosed by an overall covering.
  • Such panels avoid the risk of incorrect operation or reduce the number of accidents due to improper handling, such as reaching into rotating components.
  • adequate protection of the pump components or the cooling device can be ensured by a fairing.
  • the cooling device may have at least one fan, which is preferably arranged on such a panel. This allows a firm and secure arrangement of the fans relative to the pump component to be cooled.
  • the cladding may advantageously be equipped with a gas inlet and / or at least one gas outlet. At least one fan can be arranged in or on the gas inlet or in or on the gas outlet. The introduction of a cooling medium in the panel and / or the lead out of this can thus be favored.
  • the gas inlet and the gas outlet are each arranged in planes which enclose an angle to one another, preferably a right angle.
  • the cooling medium flow is deflected from the gas inlet to the gas outlet at least once in its spatial orientation, whereby at times turbulent flows can arise. This can have a favorable effect on the cooling behavior or the heat transfer coefficient ⁇ .
  • the cladding may in particular have a plurality of gas inlets and / or gas outlets, wherein preferably at least one gas outlet is arranged at a pump inlet and / or at a pump outlet. Since the pump inlet or the pump outlet in any case requires an opening of the panel, this can be advantageously combined with a gas inlet and / or a gas outlet for the cooling medium. The design effort for the panel is reduced thereby.
  • the cooling medium is guided in a targeted manner by the lining (for example by means of corresponding guide means, such as ribs, channels, housing sections or the like), in particular between the respective gas inlet and the respective gas outlet.
  • corresponding guide means such as ribs, channels, housing sections or the like
  • a vacuum pump is also advantageously a Roots vacuum pump, more preferably a vacuum pump with at least one of the features described above.
  • a vacuum pump is also advantageously a Roots vacuum pump, more preferably a vacuum pump with at least one of the features described above.
  • at least one pump component is cooled by a cooling device and the cooling device for convective cooling of the pump component conveys a cooling medium.
  • the heat transfer between the pump component to be cooled and the cooling medium is variably changed by the cooling device by adapting a heat transfer coefficient as a function of and / or to maintaining at least one pump operating parameter.
  • this can ensure a precise cooling performance.
  • Fig. 1 shows a perspective view of a vacuum pump according to an embodiment of the present invention.
  • the vacuum pump 1 may in particular be a Roots vacuum pump, which may be operated at relatively high speeds.
  • the vacuum pump 1 is equipped with a lining 2, which is cuboidal or can define a cuboid interior.
  • the panel 2 at least partially cover a pump component 4.
  • the pump components 4 may be, for example, a pump housing. Again Fig. 1 can be seen, the pump housing may be equipped with a flange 6, via which the pump housing 4 can be coupled with another device.
  • the shroud 2 is further provided with a plurality of gas inlets, which are designated here by the reference numerals 8, 10 and 12.
  • a first gas inlet 8 can be arranged on a first side wall 9 of the lining 2.
  • Two further gas inlets 10 may be arranged on a second side wall 11 and two further gas inlets 12 may be arranged on a third side wall 13.
  • the side walls 9, 11 and 13 each extend along different planes and are preferably arranged orthogonal to each other. Accordingly, the gas inlets 8, 10 and 12 may be aligned along different planes.
  • the gas inlet 8 extends along a plane that differs from the plane in which the gas inlets 10 are arranged, and preferably with this an angle, in particular a right angle, includes.
  • the gas inlet 8 extends along a plane that differs from the plane in which the gas inlets 12 are arranged, and preferably with this an angle, in particular a right angle, includes.
  • the gas inlets 10 may be arranged along a plane different from the planes of the respective other gas inlets 8 and 12 and including an angle, preferably a right angle, with these planes.
  • the above also applies accordingly to the gas inlets 12 and their extension along a plane. In this way, a cooling medium is conducted starting from different spatial levels and thus in different orientations in the interior of the panel 2, which can have a favorable effect on the cooling effect.
  • cooling devices which are preferably designed as a fan 14 or a fan 14 included (the use of only one fan 14 is also conceivable).
  • the fans 14 are preferably arranged in the interior of the lining or on an inner side of the respective gas inlet 8, 10 and 12. Unintentional reaching into the fan 14 during operation can thus be avoided. Not every gas inlet 8, 10, 12 must be assigned a fan 14.
  • the fairing 2 is further equipped with at least one gas outlet 16.
  • the gas outlet 16 is advantageously formed by an opening in the Area of the connecting flange 6 of the pump housing is arranged.
  • a gas outlet can also be provided on an oppositely disposed side of the lining 2, which is not shown here and indicated by the reference numeral 18.
  • the gas outlet 18 may also be formed by an opening which is arranged in the region of a further housing flange of the pump housing 4.
  • the gas outlets 16 and 18 are each in a plane which include an angle with a plane of the gas inlet 8 and / or the gas inlet 10, preferably a right angle. This results in a forced deflection of the cooling medium flow from one of the gas inlets 8 and / or 10 to one of the gas outlets 16 and / or 18 within the lining 2. It may also be advantageous if at least the gas inlet 16 is in the same plane, as one of the gas inlets 12, which also can be forced a deflection of the cooling medium flow within the panel 2.
  • the Fig. 2a schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to a first embodiment. It will be appreciated that during a warm-up period 30, the speed of the fan is kept at zero so that the cooling operation remains off. Only after elapse of the warm-up period 30 of the fan is turned on and set immediately to a suitable for stationary continuous operation rated speed speed 32. The length of the period 30 until the fan is switched on can be preset and / or be influenced by continuously recorded sensor data. In this case, limit values may initiate the start of operation of the fan.
  • Fig. 2b shows schematically the course of the rotational speed "n" of the fan over the time "t” according to a second embodiment. It will be appreciated that during a warm-up period 30, the speed of the fan increases linearly up to a rated speed 32 suitable for stationary operation of the fan. A steady startup of the fan can be made especially gentle for the components of the fan. At the same time excessive ventilation during the warm-up period 30 is avoided.
  • Fig. 2c schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to a third embodiment.
  • a degressive behavior ensures that no sudden speed changes occur during operation of the fan.
  • the operating temperature of the respective pump component can be achieved quickly by the delayed connection of the fan or by a reduced speed of the fan during the warm-up period 30. At the same time, this can also influence the behavior of condensate and reactive process gases inside the pump. This may be of particular relevance during a warm-up period 30.
  • Fig. 3 schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to a fourth embodiment.
  • a solid line indicates a speed of the fan selected as the rated speed 32 for continuous operation or permissible for continuous operation. Dashed is an increased speed 34 shown within a limited period. Such an increased speed 34 of the fan can be adjusted in the short term with increased cooling demand. To the life or operational safety the fan does not overly affect, the time limit of the period for the increased speed 34 may be suitably preset and / or fixed.
  • Fig. 4a schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to a fifth embodiment.
  • an interval operation of the fan in which the operating interval 36 of the fan identical and the interruption intervals 38 between the respective operating intervals 36 are the same length. Furthermore, the speed of the fan in the different operating intervals 36 is the same.
  • Such an interval operation can be implemented without control, so that only the time since the beginning of the pump operation or the time course is used as a pump operating parameter for varying the heat transfer.
  • Fig. 4b shows schematically the course of the rotational speed "n" of the fan over the time "t” according to a sixth embodiment. It can be seen that in turn the operating intervals 36 and also the interruption intervals 38 each have the same time duration. In contrast, the rotational speed of the fan is varied from one to the next operating interval 36, so that a different cooling power is generated by each operating interval 36. Such a variation can arise due to the influence of predetermined control variables, such as detected temperature data. Due to the different speeds can be responded to different cooling requirements during different operating intervals 36. The length of the interruption intervals may also vary.
  • Fig. 4c schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to a seventh embodiment.
  • the operating intervals 36 are each the same length and also the speed of the fan in the different operating intervals 36 is the same.
  • the length of the interruption intervals 38 varies between the operating intervals 36.
  • the interruption interval 38 between the first two operating intervals 36 differs from the interruption interval 38 between the last two operating intervals 36.
  • the variation of the length of the interruption intervals 38 can be the result of a control variable, for example, detected temperature data during the pumping operation.
  • Fig. 4d schematically shows the profile of the rotational speed "n" of the fan over the time "t” according to an eighth embodiment. It can be seen that the length of the operating intervals 36 varies. Thus, the first operating interval 36 is made longer in terms of time than the second operating interval 36, which in turn is dimensioned to be longer than the third operating interval 36.
  • the interruption intervals 38 have the same length. This also makes it possible to react to controlled variables such as, for example, detected temperature data during pump operation, so that in turn the heat transfer between the cooling medium and the pump component to be cooled can be varied in a suitable manner.
  • the length of the intervals 36, 38 and / or the speed of the fan in the interval 36 can in principle be arbitrarily adapted to the respective needs.
  • Fig. 5 schematically shows the profile of the speed "n" of the fan in response to a measured value "x".
  • the measured value "x” may be, for example, a temperature at or in the pump or on or in the pump housing.
  • the measured value "x” may relate to a temperature of a gas to be compressed, a gas pressure, a differential pressure between the pump inlet and the pump outlet and / or a power consumption of the pump motor.
  • the course of the respective measured value "x” therefore reflects the course of the respectively relevant variable.
  • the measured value shown schematically or the course of the measured value is therefore a pump operating parameter in the sense of the present invention.
  • the respective measured value "x" and thus also its course are preferably detected during the pump operation, for example by means of suitable sensors.
  • a pump operating parameter can also be formed by combining different measured values and / or measured value profiles, which thus can be decisive for the speed function of the fan.
  • the Indian Fig. 5 schematically shown functions can be seen that the speed of the fan increases up to a rated speed 32 of the fan, which is particularly suitable for continuous operation of the fan.
  • the increase of the rotational speed up to the nominal rotational speed 32 for the continuous operation may be linear during a first increase 40, linear flat during a second increase 42 and degressive during a third increase 44.
  • the increase in the speed of the fan is dependent on the respective measured value "x".
  • a maximum permissible measured value "x" is reached, the fan is switched off and / or the speed is reduced to zero.
  • the shutdown can also be done with a detected malfunction such as a defect of the fan and / or a pump component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Vakuumpumpe, insbesondere zur Erzeugung von Grob- und/oder Feinvakuum, mit zumindest einer Pumpenkomponente sowie einer Kühlvorrichtung zur konvektiven Kühlung der Pumpenkomponente mittels eines Kühlmediums, wobei die Kühlvorrichtung dazu eingerichtet ist, einen konvektiven Wärmeübergang zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium durch Anpassung eines Wärmeübergangskoeffizienten in Abhängigkeit und/oder zur Einhaltung eines Pumpenbetriebsparameters variabel zu verändern.

Description

  • Die vorliegende Erfindung betrifft eine Vakuumpumpe, insbesondere zur Erzeugung von Grob- und/oder Feinvakuum, sowie ein Verfahren zum Betreiben einer Vakuumpumpe. Insbesondere betrifft die vorliegende Erfindung Wälzkolbenvakuumpumpen sowie ein Verfahren zum Betreiben derselben.
  • Aus dem Stand der Technik in der Druckschrift EP 1 936 203 A2 ist eine Vakuumpumpe bekannt, die einen Lüfter mit einem eigenen Lüftermotor aufweist, so dass der von dem Lüfter erzeugte Gasstrom unabhängig von der Geschwindigkeit des Motors der Vakuumpumpe eingestellt werden kann. Hierdurch soll die Kühlung nach den jeweiligen Bedürfnissen ausgerichtet werden und stellt somit keinen Kompromiss zwischen Vakuum- und Kühlungsanforderungen dar. Aus diesem Stand der Technik gehen jedoch keine näheren Einzelheiten zu den Kühlungsanforderungen beziehungsweise zu den maßgeblichen Faktoren für die Steuerung der Kühlung hervor.
  • Vakuumpumpen, insbesondere Wälzkolbenvakuumpumpen, werden mit zunehmend hohen Drehzahlen betrieben. Gleichzeitig besteht das Erfordernis, den Bauraum derartiger Vakuumpumpen möglichst klein zu halten, wodurch insgesamt eine erhöhte Energiedichte beziehungsweise Wärmebeanspruchung innerhalb oder an der Pumpe entstehen kann. Hierdurch werden besondere Anforderungen an die Kühlung solcher Pumpen sowie deren Komponenten gestellt.
  • Vor diesem Hintergrund besteht die Aufgabe der vorliegenden Erfindung darin, eine Vakuumpumpe anzugeben, die auch bei verhältnismäßig hohen Pumpendrehzahlen mit einem hohen Maß an Zuverlässigkeit gekühlt werden kann. Ebenso besteht die Aufgabe darin, ein Verfahren zum Betreiben einer Vakuumpumpe anzugeben.
  • Im Hinblick auf eine Vakuumpumpe ist diese Aufgabe mit den Merkmalen des Anspruchs 1 gelöst worden. Ein erfindungsgemäßes Verfahren ist Gegenstand des Anspruchs 15. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben und werden nachfolgend erörtert.
  • Eine erfindungsgemäße Vakuumpumpe, insbesondere zur Erzeugung von Grob- und/oder Feinvakuum, weist zumindest eine Pumpenkomponente sowie eine Kühlvorrichtung zur konvektiven Kühlung der Pumpenkomponente mittels eines Kühlmediums auf. Das Kühlmedium kann ein Gas/Gasgemisch sein, insbesondere Luft. Auch ein flüssiges Medium, z.B. Wasser, kann vorgesehen sein. Dabei ist die Kühlvorrichtung dazu eingerichtet, einen konvektiven Wärmeübergang zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium durch Anpassung eines Wärmeübergangskoeffizienten in Abhängigkeit und/oder zur Einhaltung eines Pumpenbetriebsparameters variabel zu verändern.
  • Erfindungsgemäß ist also vorgesehen, dass zumindest ein Pumpenbetriebsparameter den Wärmeübergang zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium beeinflusst. Durch Festlegung eines solchen Pumpenbetriebsparameters kann ein hohes Maß an Zuverlässigkeit im Kühlprozess der Pumpe sichergestellt werden. Gleichzeitig ermöglicht die gezielte Auswahl zumindest eines Pumpenbetriebsparameters ein hohes Maß an Flexibilität des Pumpen- und/oder Kühlbetriebs. Schließlich kann der Wärmeübergang zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium in besonders effizienter Weise durch Anpassung eines Wärmeübergangskoeffizienten verändert werden. Die variable Veränderung des Wärmeübergangs durch Anpassung des Wärmeübergangskoeffizienten gestattet dabei eine hohe Genauigkeit der Kühlung, insbesondere zur Einhaltung vorbestimmter Pumpenbetriebsparameter.
  • Bei dem Pumpenbetriebsparameter kann es sich in vorteilhafter Weise um einen Grenzwert und/oder einen Wertbereich handeln. So kann beispielsweise das Erreichen eines Grenzwerts und/oder das Überschreiten eines bestimmten Wertbereichs eine Veränderung des konvektiven Wärmeübergangs durch Anpassung eines Wärmeübergangskoeffizienten auslösen. Ebenso kann der konvektive Wärmeübergang variabel verändert werden, um einen Grenzwert einzuhalten und/oder den jeweiligen Pumpenbetriebsparameter innerhalb eines Wertbereichs zu halten.
  • Weiterhin kann der Pumpenbetriebsparameter auch ein Wertverlauf sein. Beispielsweise schnelle Temperatur- und/oder Druckveränderungen können das Kühlverhalten günstig beeinflussen, sodass die Gefahr ungünstiger Betriebszustände verringert wird. Der erfindungsgemäß vorgesehene Pumpenbetriebsparameter kann auch ein laufend und/oder wiederkehrend erfasster Messwert sein, wodurch eine kontinuierliche Überwachung eines jeweiligen Pumpenbetriebszustandes beziehungsweise eine Erfassung und/oder Aufzeichnung von Wertverläufen möglich ist.
  • Ferner kann der Pumpenbetriebsparameter durch einen Anwender auswählbar und/oder einstellbar sein, sodass die Einsatzflexibilität im Hinblick auf unterschiedliche Betriebsarten der Pumpe erhöht wird. Ebenso kann der Pumpenbetriebsparameter unveränderlich voreingestellt und/oder auf Grundlage empirischer Daten vorbestimmt sein, wodurch die Gefahr von Fehlbedienungen und damit einhergehenden Beschädigung der Pumpe verringert werden kann.
  • Bei dem Pumpenbetriebsparameter handelt es sich in vorteilhafter Weise um einen Betriebssicherheits-, Langlebigkeits- und/oder Energiesparparameter. Durch einen Betriebssicherheitsparameter, bei dem es sich beispielsweise um einen verhältnismäßig engen zulässigen Temperaturbereich einer Pumpenkomponente handeln kann, wird ein Pumpenbetrieb mit einer hohen Betriebssicherheit ermöglicht. Ein Langlebigkeitsparameter kann die Kühlung hinsichtlich eines verhältnismäßig verschleißarmen Pumpenbetriebs ausrichten, was beispielsweise auch durch enge Temperaturtoleranzen für einzelne Pumpenkomponenten möglich ist. Demgegenüber kann ein Energiesparparameter den Pumpen- und Kühlbetrieb hinsichtlich des Energieverbrauchs verbessern. Dies kann beispielsweise durch möglichst große zulässige Temperaturbereiche für Pumpenkomponenten erreicht werden, sodass nur ein geringer Kühlaufwand erforderlich ist.
  • In besonders vorteilhafter Weise ist der Pumpenbetriebsparameter eine Temperatur und/oder ein Temperaturverlauf an und/oder in zumindest einer Pumpenkomponente. Die Temperatur und/oder der Temperaturverlauf an und/oder in einer Pumpenkomponente kann maßgeblich sein für den Betrieb einer Vakuumpumpe, so dass die Einstellung des Wärmeübergangs in deren Abhängigkeit und/oder zu deren Einhaltung entscheidend für den Pumpenbetrieb sein kann, beispielsweise zur Einhaltung einer hohen Betriebssicherheit und/oder Langlebigkeit einzelner Pumpenkomponenten.
  • Weiterhin kann es von Vorteil sein, wenn der Pumpenbetriebsparameter eine Temperatur, ein Temperaturverlauf, ein Gasdruck, ein Gasdruckverlauf, ein Kondensations- und/oder Reaktionsverhalten eines zu verdichtenden Prozessgases im Pumpeninneren und/oder ein Differenzdruck zwischen einem Pumpeneinlass und/oder einem Pumpenauslass ist. Auf diese Weise kann gezielt Einfluss auf die Gasverdichtung durch die Vakuumpumpe genommen werden. Die Verdichtungsleistung beziehungsweise das Verdichtungsergebnis der Vakuumpumpe kann somit in weiter präzisierter Weise sichergestellt werden, insbesondere bei verhältnismäßig hohen Pumpendrehzahlen.
  • In weiter bevorzugter Weise ist die Kühlvorrichtung dazu eingerichtet, den Wärmeübergang in Abhängigkeit und/oder zur Einhaltung eines Verformungszustandes einer Pumpenkomponente und/oder eines Spaltmaßes zwischen zumindest zwei Pumpenkomponenten, die bevorzugt relativ zueinander beweglich angeordnet sind, variabel zu verändern. Die Gefahr zu großer Verformungszustände beziehungsweise ungünstiger Spaltmaße kann hierdurch reduziert werden, was sich sowohl auf die Effizienz der Pumpenleistung als auch auf die Betriebssicherheit und Langlebigkeit der Vakuumpumpe auswirkt. Schließlich können durch gezielte Kühlung eingestellte Spaltmaße einen positiven Einfluss auf die Energieeffizienz haben, nämlich durch Aufrechterhalten einer hohen Pumpeneffizienz.
  • Schließlich besteht auch die Möglichkeit, den Wärmeübergang in Abhängigkeit der Leistungsaufnahme eines Pumpenantriebs variabel zu verändern. Beispielsweise kann die Kühlvorrichtung dazu eingerichtet sein, den Wärmeübergang in einem vorgegebenen Verhältnis zur Leistungsaufnahme des Pumpenantriebs variabel zu verändern, insbesondere gemäß einer Proportionalitätsfunktion zu koppeln.
  • In weiter bevorzugter Weise kann die Kühlvorrichtung eine Steuer- und/oder Regeleinrichtung aufweisen, die den Betrieb der Kühlvorrichtung in Abhängigkeit und/oder zur Einhaltung des Pumpenbetriebsparameters steuert und/oder regelt. Die variable Veränderung des Wärmeübergangs zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium kann auf diese Weise mit hoher Präzision und einem großen Maß an Zuverlässigkeit realisiert werden. Dabei kann die Steuer- und/oder Regeleinrichtung zumindest mit einem Sensor ausgestattet sein, bei dem es sich bevorzugt um einen Temperatursensor und/oder einen Drucksensor handelt. Durch den Sensor kann insbesondere ein Pumpenbetriebsparameter laufend und/oder wiederkehrend erfasst werden. Die durch den Sensor erfassten Daten können zu Steuer- und/oder Regelvorgängen genutzt werden.
  • Der erfindungsgemäß relevante Pumpenbetriebsparameter kann in der Steuer- und/oder Regeleinrichtung voreingestellt und/oder durch einen Anwender einstellbar sein. Dementsprechend besteht die Möglichkeit, dass ein Anwender für das Erreichen und/oder Einhalten eines jeweils gewünschten Pumpenbetriebszustandes die dazu erforderlichen Pumpenbetriebsparameter einstellt beziehungsweise in einer dafür vorgesehenen Steuer- und/oder Regeleinrichtung aktiv ändert. Ebenso besteht die Möglichkeit, dass etwa sicherheitsrelevante Pumpenbetriebsparameter in der Steuer- und/oder Regeleinrichtung unveränderlich voreingestellt sind, so dass gefährliche Betriebszustände vermieden werden können.
  • Es kann weiter von Vorteil sein, wenn die Kühlvorrichtung unabhängig von einem Pumpenbetrieb und/oder einer Pumpendrehzahl betreibbar ist. Die Einsatzflexibilität der Kühlvorrichtung kann somit weiter gesteigert werden. In bevorzugter Weise ist die Kühlvorrichtung dazu eingerichtet, den Kühlbetrieb in Abhängigkeit eines verstrichenen Zeitraums seit Beginn des Pumpenbetriebs und/oder zeitlich verzögert nach Einsetzen des Pumpenbetriebs und/oder nach An- und/oder Hochfahren einer Pumpendrehzahl aufzunehmen. Auf diese Weise kann der Kühlbetrieb in Abhängigkeit eines tatsächlichen Kühlerfordernisses der jeweiligen Pumpenkomponente eingestellt werden.
  • Gemäß einer weiter bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Kühlvorrichtung dazu eingerichtet, während eines Warmlaufzeitraums der Pumpenkomponente die Kühlleistung ausgeschaltet zu halten oder linear und/oder degressiv zu erhöhen. Bei einem Warmlaufzeitraum kann es sich insbesondere um einen Zeitraum handeln, der mit dem Beginn des Pumpenbetriebs beziehungsweise dem An- und/oder Hochfahren der Pumpendrehzahl beginnt. Ferner kann die Warmlaufzeit bis zum Erreichen einer vorbestimmten Pumpendrehzahl und/oder Komponententemperatur anhalten. Sofern während dieses Zeitraums die Kühlleistung ausgeschaltet bleibt beziehungsweise linear und/oder degressiv erhöht wird, kann sichergestellt werden, dass die jeweilige Pumpenkomponente schneller die jeweils gewünschte Betriebstemperatur erreicht. Gleichzeitig kann ein unnötig hoher Kühlbetrieb vermieden werden. Dies erlaubt Energieeinsparungen, wodurch insgesamt die Energieeffizienz des Pumpenbetriebs gesteigert werden kann.
  • Bevorzugt weist die Kühlvorrichtung einen Kühlvorrichtungsantrieb auf. Dieser Kühlvorrichtungsantrieb ist in vorteilhafter Weise als unabhängiger Motor ausgebildet und kann dementsprechend unabhängig von einem Pumpenmotor betrieben werden. Daher besteht auch die Möglichkeit, den Kühlvorrichtungsantrieb während eines Warmlaufzeitraums auf oder nahe null zu halten oder linear und/oder degressiv zu erhöhen.
  • Weiterhin kann es von Vorteil sein, wenn die Kühlvorrichtung eine Nennleistung für den Dauerbetrieb aufweist. Dabei kann der Kühlvorrichtungsantrieb eine Nenndrehzahl für den Dauerbetrieb aufweisen. Es versteht sich, dass die Kühlvorrichtung zwischen einem ausgeschalteten Zustand und einem Zustand auf Nennleistung betrieben werden kann. Ebenso besteht die Möglichkeit, dass die Kühlvorrichtung lediglich bei Nennleistung betrieben werden kann. Die Kühlvorrichtung kann in diesem Fall entweder ausgeschaltet sein oder auf Nennleistung betrieben werden, wohingegen ein Betrieb auf einer Zwischenstufe nicht vorgesehen ist. Entsprechend kann ein Vorrichtungsantrieb nur für den Betrieb auf Nenndrehzahl ausgebildet sein. Insgesamt kann dies mit einem geringen apparativen Aufwand bewerkstelligt werden.
  • Gemäß einer bevorzugten Ausgestaltung kann die Kühlvorrichtung für den zeitlich begrenzten Betrieb oberhalb der Nennleistung eingerichtet sein. Entsprechend kann der Kühlvorrichtungsantrieb für den zeitlich begrenzten Betrieb oberhalb der Nenndrehzahl eingerichtet sein. Auf diese Weise kann zeitlich begrenzt ein hohes Maß an Kühlleistung bereitgestellt werden, was bei besonderer Beanspruchung der Pumpe von Vorteil sein kann. Gleichzeitig wird durch die zeitliche Begrenzung erreicht, dass die Betriebssicherheit und/oder die Lebensdauer der Kühlvorrichtung nicht über Gebühr beansprucht wird.
  • Schließlich wird in vorteilhafter Weise die Kühlleistung nach Abschluss des Warmlaufzeitraums auf Nennleistung beziehungsweise der Kühlvorrichtungsantrieb auf Nenndrehzahl gehalten. Das Halten auf Nennleistung beziehungsweise auf Nenndrehzahl kann nach Abschluss der Warmlaufzeit für einen begrenzten Zeitraum oder dauerhaft während des Pumpenbetriebs erfolgen.
  • Gemäß einer weiter bevorzugten Ausgestaltung der Vakuumpumpe ist die Kühlvorrichtung zur Unterbrechung des Kühlbetriebs und/oder für einen intermittierenden und/oder intervallgesteuerten und/oder -geregelten Kühlbetrieb eingerichtet. Die Kühlung der Pumpenkomponente durch die Kühlvorrichtung kann also zeitweise unterbrochen werden, wobei eine solche Unterbrechung mehrfach auftreten kann, so dass eine intermittierende Kühlleistung erbracht wird. Etwaige Regelungsvorgänge können auf diese Weise mit nur geringem apparativem Aufwand bewerkstelligt werden. Insbesondere kann auf diese Weise vermieden werden dass die genaue Kühlleistung beziehungsweise Drehzahl des Kühlvorrichtungsantriebs permanent ausgeregelt werden muss. Insgesamt lässt sich somit der Steuer- und Regelaufwand auf ein geringes Maß reduzieren.
  • Um dennoch Einfluss auf die jeweils gewünschte Kühlleistung der Kühlvorrichtung zu nehmen, können die unterschiedlichen Betriebsintervalle zur Kühlung identische oder unterschiedliche Zeitdauern aufweisen und/oder die Unterbrechungsintervalle zwischen den Betriebsintervallen identisch oder unterschiedlich sein. Ebenso kann die Kühlleistung und/oder die Drehzahl des Kühlvorrichtungsantriebs in unterschiedlichen Betriebsintervallen gleich hoch oder verschieden sein. Hierdurch kann ohne permanente Ausregelung der Kühlleistung beziehungsweise der Drehzahl des Kühlvorrichtungsantriebs Einfluss auf die Kühlleistung in Abhängigkeit etwaiger Pumpenbetriebsparameter genommen werden. Eine kontinuierliche Regelung der Kühlleistung beziehungsweise der Drehzahl des Kühlpumpenantriebs ist somit nicht erforderlich.
  • Weiter bevorzugt kann die Kühlvorrichtung dazu eingerichtet sein, den Kühlbetrieb bei Erreichen eines maximal und/oder minimal zulässigen Grenzwerts und/oder bei einer Fehlfunktion der Kühlvorrichtung und/oder einer Pumpenkomponente abzuschalten. Dabei können etwaige Fehlfunktionen zum gleichzeitigen Abstellen des Pumpenbetriebs führen. Die Gefahr von Beschädigungen der Kühlvorrichtung und/oder von Pumpenkomponenten kann damit reduziert werden.
  • Weiterhin kann die Kühlvorrichtung zum Einschalten des Kühlbetriebs bei Erreichen eines maximal und/oder minimal zulässigen Parametergrenzwerts eingerichtet sein. Beispielsweise kann das Erreichen eines vorbestimmten Temperaturniveaus einer Pumpenkomponente die Einschaltung des Kühlbetriebs initiieren, so dass ein jeweils erreichtes Temperaturniveau der Pumpenkomponente beibehalten oder wieder reduziert werden kann, insbesondere bevor Beschädigungen entstehen.
  • In vorteilhafter Weise kann die Pumpenkomponente als Teil einer Pumpenbaugruppe angeordnet sein und/oder wobei die Kühlvorrichtung zur konvektiven Kühlung einer Pumpenbaugruppe aus einer Mehrzahl von Pumpenkomponenten ausgebildet ist. Die Effizienz der Kühlung durch die Kühlvorrichtung kann durch die Anordnung der Pumpenkomponente als Teil einer Pumpenbaugruppe erhöht werden, da insbesondere eine Mehrzahl von Pumpenkomponenten gleichzeitig durch die Kühlvorrichtung gekühlt werden kann. Die Pumpenkomponente kann beispielsweise als Teil des Pumpenantriebs, insbesondere als Motorbauteil, Getriebe, Getriebegehäuse, rotierendes oder feststehendes Bauteil, und/oder Pumpengehäuse und/oder als Teil einer Elektronikbaugruppe ausgebildet sein. Somit kann die Kühlvorrichtung sämtliche temperaturrelevanten Bauteile innerhalb einer Vakuumpumpe mit einem Kühlmedienstrom versorgen und den jeweiligen Wärmeübergang zwischen dem Kühlmedienstrom und der Pumpenkomponente gezielt verändern.
  • In weiter bevorzugter Weise kann die zumindest eine Pumpenkomponente von einer Verkleidung abgedeckt sein. Insbesondere können sämtliche Pumpenkomponenten von einer Gesamtverkleidung abgedeckt und/oder eingefasst sein. Derartige Verkleidungen vermeiden die Gefahr von Fehlbedienungen beziehungsweise Reduzieren die Zahl von Unfällen durch unsachgemäße Handhabung, wie beispielsweise das Hineingreifen in rotierende Bauteile. Ferner kann durch eine Verkleidung ein adäquater Schutz der Pumpenkomponenten beziehungsweise auch der Kühlvorrichtung sichergestellt werden. Dabei kann die Kühlvorrichtung zumindest einen Lüfter aufweisen, der bevorzugt an einer derartigen Verkleidung angeordnet ist. Dies gestattet eine feste und sichere Anordnung der Lüfter relativ zu der zu kühlenden Pumpenkomponente.
  • Die Verkleidung kann in vorteilhafter Weise mit einem Gaseinlass und/oder zumindest einem Gasauslass ausgestattet sein. Zumindest ein Lüfter kann dabei in oder an dem Gaseinlass oder auch in oder an dem Gasauslass angeordnet sein. Das Hineinleiten eines Kühlmediums in die Verkleidung und/oder das Herausleiten aus dieser heraus kann somit begünstigt werden.
  • Weiterhin kann es von Vorteil sein, wenn der Gaseinlass und der Gasauslass jeweils in Ebenen angeordnet sind, die zueinander einen Winkel einschließen, bevorzugt einen rechten Winkel. Auf diese Weise wird der Kühlmedienstrom ausgehend vom Gaseinlass bis zum Gasauslass zumindest einmal in seiner räumlichen Orientierung umgelenkt, wodurch stellenweise turbulente Strömungen entstehen können. Dies kann sich günstig auf das Kühlverhalten beziehungsweise den Wärmeübergangskoeffizienten α auswirken.
  • Die Verkleidung kann insbesondere eine Mehrzahl von Gaseinlässen und/oder Gasauslässen aufweisen, wobei bevorzugt zumindest ein Gasauslass an einem Pumpeneinlass und/oder an einem Pumpenauslass angeordnet ist. Da der Pumpeneinlass beziehungsweise der Pumpenauslass ohnehin eine Öffnung der Verkleidung erfordert, kann dies in vorteilhafter Weise mit einem Gaseinlass und/oder einem Gasauslass für das Kühlmedium kombiniert werden. Der konstruktive Aufwand für die Verkleidung verringert sich dadurch.
  • Schließlich ist in vorteilhafter Weise vorgesehen, dass das Kühlmedium durch die Verkleidung gezielt geführt wird (z.B. mittels entsprechender Führungsmittel, wie Rippen, Kanäle, Gehäuseabschnitte o.ä.), insbesondere zwischen dem jeweiligen Gaseinlass und dem jeweiligen Gasauslass. Die variable Veränderung des Wärmeübergangs kann auf diese Weise mit großer Genauigkeit vorgenommen werden.
  • Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zum Betreiben einer Vakuumpumpe. Bei einer solchen Vakuumpumpe handelt es sich ebenfalls in vorteilhafter Weise um eine Wälzkolbenvakuumpumpe, besonders bevorzugt um eine Vakuumpumpe mit zumindest einem der voranstehend beschriebenen Merkmalen. Dementsprechend wird bei einem erfindungsgemäßen Verfahren zumindest eine Pumpenkomponente durch eine Kühlvorrichtung gekühlt und die Kühlvorrichtung zur konvektiven Kühlung der Pumpenkomponente fördert ein Kühlmedium. Dabei wird von der Kühlvorrichtung ein Wärmeübergang zwischen der zu kühlenden Pumpenkomponente und dem Kühlmedium durch Anpassung eines Wärmeübergangskoeffizienten in Abhängigkeit und/oder zur Einhaltung zumindest eines Pumpenbetriebsparameters variabel verändert. Insbesondere bei dem Betrieb von Vakuumpumpen mit einer verhältnismäßig hohen Pumpendrehzahl, wie zum Beispiel im Fall von Wälzkolbenvakuumpumpen, kann hierdurch eine präzise Kühlleistung sichergestellt werden.
  • Die obigen Ausführungen zu der erfindungsgemäßen Vakuumpumpe gelten entsprechend auch für das erfindungsgemäße Verfahren zum Betreiben einer Vakuumpumpe.
  • Die vorliegende Erfindung wird nachfolgend anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1
    eine erfindungsgemäße Vakuumpumpe in einer perspektivischen Ansicht,
    Fig. 2a
    die schematische Darstellung der Drehzahl eines Lüfters der Pumpe über der Zeit gemäß einem ersten Ausführungsbeispiel,
    Fig. 2b
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem zweiten Ausführungsbeispiel,
    Fig. 2c
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem dritten Ausführungsbeispiel,
    Fig. 3
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem vierten Ausführungsbeispiel,
    Fig. 4a
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem fünften Ausführungsbeispiel,
    Fig. 4b
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem sechsten Ausführungsbeispiel,
    Fig. 4c
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem siebten Ausführungsbeispiel,
    Fig. 4d
    die schematische Darstellung der Drehzahl des Lüfters über der Zeit gemäß einem achten Ausführungsbeispiel und
    Fig. 5
    die schematische Darstellung der Drehzahl des Lüfters in Abhängigkeit eines Messwerts gemäß einem neunten Ausführungsbeispiel.
  • Fig. 1 zeigt eine perspektivische Darstellung einer Vakuumpumpe gemäß einer Ausführungsform der vorliegenden Erfindung. Bei der Vakuumpumpe 1 kann es sich insbesondere um eine Wälzkolbenvakuumpumpe handeln, die mit verhältnismäßig hohen Drehzahlen betrieben werden kann.
  • Die Vakuumpumpe 1 ist mit einer Verkleidung 2 ausgestattet, die quaderförmig ausgebildet beziehungsweise einen quaderförmigen Innenraum begrenzen kann. Dabei kann die Verkleidung 2 zumindest abschnittsweise eine Pumpenkomponente 4 abdecken. Bei den Pumpenkomponenten 4 kann es sich beispielsweise um ein Pumpengehäuse handeln. Wie der Fig. 1 zu entnehmen ist, kann das Pumpengehäuse mit einem Flansch 6 ausgestattet sein, über den das Pumpengehäuse 4 mit einer weiteren Vorrichtung koppelbar ist.
  • Die Verkleidung 2 ist ferner mit einer Mehrzahl von Gaseinlässen ausgestattet, die hier mit den Bezugszeichen 8, 10 und 12 gekennzeichnet sind. Ein erster Gaseinlass 8 kann dabei an einer ersten Seitenwand 9 der Verkleidung 2 angeordnet sein. Zwei weitere Gaseinlässe 10 können an einer zweiten Seitenwand 11 angeordnet sein und noch zwei weitere Gaseinlässe 12 können an einer dritten Seitenwand 13 angeordnet sein. Die Seitenwände 9, 11 und 13 erstrecken sich jeweils entlang unterschiedlicher Ebenen und sind bevorzugt orthogonal zueinander angeordnet. Dementsprechend können auch die Gaseinlässe 8, 10 und 12 entlang unterschiedlicher Ebenen ausgerichtet sein.
  • Der Gaseinlass 8 erstreckt sich entlang einer Ebene, die sich von der Ebene, in der die Gaseinlässe 10 angeordnet sind, unterscheidet und bevorzugt mit dieser einen Winkel, insbesondere einen rechten Winkel, einschließt. Ebenso erstreckt sich der Gaseinlass 8 entlang einer Ebene, die sich von der Ebene, in der die Gaseinlässe 12 angeordnet sind, unterscheidet und bevorzugt mit dieser einen Winkel, insbesondere einen rechten Winkel, einschließt. Dementsprechend können die Gaseinlässe 10 entlang einer Ebene angeordnet sein, die sich von den Ebenen der jeweils anderen Gaseinlässe 8 und 12 unterscheiden und mit diesen Ebenen einen Winkel, bevorzugt einen rechten Winkel, einschließen. Voranstehendes gilt entsprechend auch für die Gaseinlässe 12 sowie deren Erstreckung entlang einer Ebene. Auf diese Weise wird ein Kühlmedium ausgehend von unterschiedlichen räumlichen Ebenen und damit in unterschiedlichen Orientierungen in das Innere der Verkleidung 2 geleitet, was sich günstig auf die Kühlwirkung auswirken kann.
  • In oder an den Gaseinlässen 8, 10 und 12 können jeweils Kühlvorrichtungen angeordnet sein, die bevorzugt als Lüfter 14 ausgebildet sind beziehungsweise einen Lüfter 14 enthalten (die Verwendung lediglich eines Lüfters14 ist auch denkbar). Die Lüfter 14 sind bevorzugt im Inneren der Verkleidung beziehungsweise auf einer Innenseite des jeweiligen Gaseinlasses 8, 10 sowie 12 angeordnet. Ein unbeabsichtigtes Hineingreifen in den Lüfter 14 während des Betriebs kann somit vermieden werden. Nicht jedem Gaseinlass 8, 10, 12 muss ein Lüfter 14 zugeordnet sein.
  • Die Verkleidung 2 ist ferner mit zumindest einem Gasauslass 16 ausgestattet. Der Gasauslass 16 ist dabei in vorteilhafter Weise durch eine Öffnung gebildet, die im Bereich des Anschlussflanschs 6 des Pumpengehäuses angeordnet ist. Ebenso kann auch auf einer gegenüberliegend angeordneten Seite der Verkleidung 2 ein Gasauslass vorgesehen sein, der hier nicht gezeigt und mit dem Bezugszeichen 18 angedeutet ist. Der Gasauslass 18 kann ebenfalls durch eine Öffnung gebildet sein, die im Bereich eines weiteren Gehäuseflanschs des Pumpengehäuses 4 angeordnet ist.
  • Durch die Bezugsziffern 20, 22 und 24 soll schematisch eine Gaseinströmung durch die jeweiligen Gaseinlässe 8, 10 und 12 dargestellt werden. Ferner wird durch die Bezugsziffer 26 eine Gasausströmung aus dem Gasauslass 16 sowie durch die Bezugsziffer 28 eine Gasausströmung aus dem Gasaustritt 18, gegenüberliegend des Gasaustritts 16, angedeutet.
  • In vorteilhafter Weise befinden sich die Gasaustritte 16 und 18 jeweils in einer Ebene, die mit einer Ebene des Gaseintritts 8 und/oder des Gaseintritts 10 einen Winkel einschließen, bevorzugt einen rechten Winkel. Hierdurch erfolgt eine zwangsweise Umlenkung des Kühlmedienstroms ausgehend von einem der Gaseinlässe 8 und/oder 10 bis zu einem der Gasaustritte 16 und/oder 18 innerhalb der Verkleidung 2. Ebenso kann es von Vorteil sein, wenn sich zumindest der Gaseinlass 16 in derselben Ebene befindet, wie einer der Gaseinlässe 12, wodurch ebenfalls eine Umlenkung des Kühlmedienstroms innerhalb der Verkleidung 2 erzwungen werden kann.
  • Die Fig. 2a zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem ersten Ausführungsbeispiel. Es ist zu erkennen, dass während eines Warmlaufzeitraums 30 die Drehzahl des Lüfters auf null gehalten wird, so dass der Kühlbetrieb ausgeschaltet bleibt. Erst nach Verstreichen des Warmlaufzeitraums 30 wird der Lüfter angeschaltet und unmittelbar auf eine für den stationären Dauerbetrieb geeignete Nenndrehzahl Drehzahl 32 eingestellt. Die Länge des Zeitraums 30 bis zum Einschalten des Lüfters kann voreingestellt und/oder von laufend erfassten Sensordaten beeinflusst sein. In diesem Fall können etwa Grenzwerte den Betriebsbeginn des Lüfters initiieren.
  • Fig. 2b zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem zweiten Ausführungsbeispiel. Zu erkennen ist, dass während eines Warmlaufzeitraums 30 die Drehzahl des Lüfters linear ansteigt bis zu einer Nenndrehzahl 32, die für den stationären Betrieb des Lüfters geeignet ist. Ein stetiges Herauffahren des Lüfters kann insbesondere schonend für die Komponenten des Lüfters vorgenommen werden. Gleichzeitig wird ein zu starkes Lüften während des Warmlaufzeitraums 30 vermieden.
  • Fig. 2c zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem dritten Ausführungsbeispiel. Zu erkennen ist ein degressiver Anstieg der Drehzahl des Lüfters während eines Warmlaufzeitraums 30 bis zum Erreichen einer Nenndrehzahl 32 für den stationären Dauerbetrieb. Ein degressives Verhalten stellt sicher, dass während des Betriebs des Lüfters keine sprunghaften Drehzahlveränderungen erfolgen. Insgesamt kann durch das verzögerte Zuschalten des Lüfters oder durch eine verringerte Drehzahl des Lüfters während des Warmlaufzeitraums 30 die Betriebstemperatur der jeweiligen Pumpenkomponente zügig erreicht werden. Gleichzeitig kann hierdurch auch das Verhalten von Kondensat und reaktionsfähigen Prozessgasen im Pumpeninneren beeinflusst werden. Dies kann während eines Warmlaufzeitraums 30 von besonderer Relevanz sein.
  • Fig. 3 zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem vierten Ausführungsbeispiel. Mit einer durchgezogenen Linie ist eine Drehzahl des Lüfters gekennzeichnet, die als Nenndrehzahl 32 für einen Dauerbetrieb gewählt ist beziehungsweise für den Dauerbetrieb zulässig ist. Gestrichelt ist eine erhöhte Drehzahl 34 innerhalb eines begrenzten Zeitraums dargestellt. Eine derart erhöhte Drehzahl 34 des Lüfters kann kurzfristig bei erhöhtem Kühlbedarf eingestellt werden. Um die Lebensdauer beziehungsweise Betriebssicherheit des Lüfters nicht über Gebühr zu beeinträchtigen, kann die zeitliche Begrenzung des Zeitraums für die erhöhte Drehzahl 34 geeignet voreingestellt und/oder unveränderlich sein.
  • Fig. 4a zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem fünften Ausführungsbeispiel. Zu erkennen ist ein Intervallbetrieb des Lüfters, bei dem die Betriebsintervall 36 des Lüfters identisch und auch die Unterbrechungsintervalle 38 zwischen den jeweiligen Betriebsintervallen 36 gleich lang sind. Ferner ist die Drehzahl des Lüfters in den unterschiedlichen Betriebsintervallen 36 gleich hoch. Ein derartiger Intervallbetrieb kann ohne Regelung umgesetzt werden, so dass lediglich der Zeitpunkt seit Beginn des Pumpenbetriebs beziehungsweise der zeitliche Verlauf als Pumpenbetriebsparameter zur Variation des Wärmeübergangs herangezogen wird.
  • Fig. 4b zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem sechsten Ausführungsbeispiel. Zu erkennen ist, dass wiederum die Betriebsintervalle 36 und auch die Unterbrechungsintervalle 38 jeweils die gleiche Zeitdauer aufweisen. Demgegenüber wird die Drehzahl des Lüfters von einem zum nächsten Betriebsintervall 36 variiert, so dass durch jedes Betriebsintervall 36 eine unterschiedliche Kühlleistung erzeugt wird. Eine derartige Variation kann durch Einfluss vorbestimmter Regelgrößen wie etwa erfasster Temperaturdaten entstehen. Durch die unterschiedlichen Drehzahlen kann auf unterschiedliche Kühlanforderungen während unterschiedlicher Betriebsintervalle 36 reagiert werden. Die Länge der Unterbrechungsintervalle können ebenfalls variieren.
  • Fig. 4c zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem siebten Ausführungsbeispiel. Zu erkennen ist, dass die Betriebsintervalle 36 jeweils gleich lang sind und auch die Drehzahl des Lüfters in den unterschiedlichen Betriebsintervallen 36 gleich hoch ist. Demgegenüber variiert die Länge der Unterbrechungsintervalle 38 zwischen den Betriebsintervallen 36. So unterscheidet sich der Unterbrechungsintervall 38 zwischen den ersten beiden Betriebsintervallen 36 von dem Unterbrechungsintervall 38 zwischen den letzten beiden Betriebsintervallen 36. Auch bei einem derartigen Kühlbetrieb kann die Variation der Länge der Unterbrechungsintervalle 38 Folge einer Regelgröße sein, beispielsweise erfasster Temperaturdaten während des Pumpenbetriebs.
  • Fig. 4d zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters über der Zeit "t" gemäß einem achten Ausführungsbeispiel. Zu erkennen ist, dass die Länge der Betriebsintervalle 36 variiert. So ist das erste Betriebsintervall 36 zeitlich länger bemessen als das zweite Betriebsintervall 36, welches wiederum zeitlich länger bemessen ist als das dritte Betriebsintervall 36. Die Unterbrechungsintervalle 38 hingegen weisen die gleiche Länge auf. Auch hierdurch kann auf Regelgrößen wie zum Beispiel erfasste Temperaturdaten während des Pumpenbetriebs reagiert werden, so dass wiederum in geeigneter Weise der Wärmeübergang zwischen dem Kühlmedium und der zu kühlenden Pumpenkomponente variabel verändert werden kann.
  • Die Länge der Intervalle 36, 38 und/oder die Drehzahl des Lüfters im Intervall 36 können grundsätzlich beliebig an die jeweiligen Bedürfnisse angepasst werden.
  • Fig. 5 zeigt schematisch den Verlauf der Drehzahl "n" des Lüfters in Abhängigkeit eines Messwerts "x". Bei dem Messwert "x" kann es sich beispielsweise um eine Temperatur an oder in der Pumpe beziehungsweise an oder in dem Pumpengehäuse handeln. Ebenso kann der Messwert "x" eine Temperatur eines zu verdichtenden Gases, einen Gasdruck, einen Differenzdruck zwischen Pumpeneinlass und Pumpenauslass und/oder eine Leistungsaufnahme des Pumpenmotors betreffen. Der Verlauf des jeweiligen Messwerts "x" spiegelt demnach den Verlauf der jeweils relevanten Größe wieder.
  • Bei dem in der Fig. 5 schematisch dargestellten Messwert beziehungsweise des Messwertverlaufs handelt es sich daher um einen Pumpenbetriebsparameter im Sinne der vorliegenden Erfindung. Der jeweilige Messwert "x" und damit auch dessen Verlauf werden bevorzugt während des Pumpenbetriebs erfasst, beispielsweise durch geeignete Sensoren. Es versteht sich ferner, dass ein Pumpenbetriebsparameter auch durch Kombination unterschiedlicher Messwerte und/oder Messwertverläufe gebildet sein kann, die somit für die Drehzahlfunktion des Lüfters maßgebend sein können.
  • Der in der Fig. 5 schematisch gezeigten Funktionen ist zu entnehmen, dass die Drehzahl des Lüfters bis zu einer Nenndrehzahl 32 des Lüfters ansteigt, welche insbesondere für den Dauerbetrieb des Lüfters geeignet ist. Der Anstieg der Drehzahl bis zur Nenndrehzahl 32 für den Dauerbetrieb kann dabei während eines ersten Anstiegs 40 linearsteil, während eines zweiten Anstiegs 42 linearflach und während eines dritten Anstiegs 44 degressiv verlaufen. Der Anstieg der Drehzahl des Lüfters erfolgt in Abhängigkeit des jeweils erfassten Messwerts "x". Bei Erreichen eines maximal zulässigen Messwerts "x" wird der Lüfter abgeschaltet und/oder die Drehzahl auf null reduziert. Das Abschalten kann ebenso bei einer erfassten Fehlfunktion wie zum Beispiel einem Defekt des Lüfters und/oder einer Pumpenkomponente erfolgen.
  • Die anhand der Fig. 2a bis 5 beschriebenen Kühlkonzepte können bedarfsgerecht beliebig kombiniert werden, um eine optimale Kühlung der Pumpe zu gewährleisten.
  • Insgesamt kann durch die voranstehend beschriebene Vakuumpumpe auch für den Fall hoher Pumpendrehzahlen ein hohes Maß an Kühlpräzision sowie auch Flexibilität der Kühlung im Einsatz sichergestellt werden.
  • Bezugszeichenliste
  • 1
    Vakuumpumpe
    2
    Verkleidung
    4
    Pumpenkomponente
    6
    Flansch
    8, 10, 12
    Gaseinlass
    9, 11, 13
    Seitenwand
    14
    Lüfter
    16
    Gasauslass
    20, 22, 24
    Gaseinströmung
    26,28
    Gasausströmung
    30
    Warmlaufzeitraum
    32
    Nenndrehzahl
    34
    erhöhte Drehzahl
    36
    Betriebsintervall
    38
    Unterbrechungsintervall
    40, 42, 44
    Drehzahlanstieg
    x
    Messwert
    n
    Drehzahl

Claims (15)

  1. Vakuumpumpe (1), insbesondere zur Erzeugung von Grob- und/oder Feinvakuum, mit zumindest einer Pumpenkomponente (4) sowie einer Kühlvorrichtung (14) zur konvektiven Kühlung der Pumpenkomponente (4) mittels eines Kühlmediums
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) dazu eingerichtet ist, einen konvektiven Wärmeübergang (Q) zwischen der zu kühlenden Pumpenkomponente (4) und dem Kühlmedium durch Anpassung eines Wärmeübergangskoeffizienten (α) in Abhängigkeit und/oder zur Einhaltung eines Pumpenbetriebsparameters variabel zu verändern.
  2. Vakuumpumpe (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Pumpenbetriebsparameter ein Grenzwert und/oder Wertbereich und/oder Wertverlauf und/oder ein laufend und/oder wiederkehrend erfasster Messwert und/oder durch einen Anwender auswählbar und/oder einstellbar und/oder unveränderlich voreingestellt und/oder auf Grundlage empirischer Daten vorbestimmt ist.
  3. Vakuumpumpe (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    der Pumpenbetriebsparameter ein Betriebssicherheits-, Langlebigkeits- und/oder Energiesparparameter ist.
  4. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Pumpenbetriebsparameter eine Temperatur und/oder ein Temperaturverlauf an und/oder in zumindest einer Pumpenkomponente (4) und/oder eine Temperatur, ein Temperaturverlauf, ein Gasdruck, ein Gasdruckverlauf, ein Kondensations- und/oder Reaktionsverhalten eines zu verdichtenden Prozessgases im Pumpeninneren und/oder ein Differenzdruck zwischen einem Pumpeneinlass und einem Pumpenauslass und/oder ein Verformungszustand einer Pumpenkomponente (4) und/oder ein Spaltmaß zwischen zumindest zwei Pumpenkomponenten, die bevorzugt relativ zueinander beweglich angeordnet sind, und/oder eine Leistungsaufnahme eines Pumpenantriebs ist.
  5. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung eine Steuer- und/oder Regeleinrichtung aufweist, die den Betrieb der Kühlvorrichtung (14) in Abhängigkeit und/oder zur Einhaltung zumindest des Pumpenbetriebsparameters steuert und/oder regelt, und/oder wobei die Steuer- und/oder Regeleinrichtung zumindest einen Sensor, bevorzugt einen Temperatur- und/oder Drucksensor, zur Erfassung eines Pumpenbetriebsparameters aufweist.
  6. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) unabhängig von einem Pumpenbetrieb und/oder einer Pumpendrehzahl betreibbar ist und/oder wobei die Kühlvorrichtung (14) dazu eingerichtet ist, den Kühlbetrieb in Abhängigkeit eines verstrichenen Zeitraums seit Beginn des Pumpenbetriebs und/oder zeitlich verzögert nach Einsetzen eines Pumpenbetriebs und/oder nach An- und/oder Hochfahren einer Pumpendrehzahl aufzunehmen.
  7. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) dazu eingerichtet ist, während eines Warmlaufzeitraums der Pumpenkomponente (4), insbesondere nach Beginn des Pumpenbetriebs und/oder nach An- und/oder Hochfahren der Pumpendrehzahl und/oder bis zum Erreichen einer vorbestimmten Pumpendrehzahl und/oder Komponententemperatur, die Kühlleistung ausgeschaltet zu halten oder linear und/oder degressiv zu erhöhen.
  8. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) einen Kühlvorrichtungsantrieb für das Kühlmedium aufweist und dazu eingerichtet ist, während eines Warmlaufzeitraums der Pumpenkomponente (4), insbesondere nach Beginn des Pumpenbetriebs und/oder nach An- und/oder Hochfahren der Pumpendrehzahl und/oder bis zum Erreichen einer vorbestimmten Pumpendrehzahl und/oder Komponententemperatur, die Drehzahl des Kühlvorrichtungsantriebs auf oder nahe null zu halten oder linear und/oder degressiv zu erhöhen.
  9. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) eine Nennleistung für den Dauerbetrieb aufweist und/oder wobei die Kühlvorrichtung (14) für den zeitlich begrenzten Betrieb oberhalb der Nennleistung eingerichtet ist, wobei die Kühlvorrichtung bevorzugt dazu eingerichtet ist, die Kühlleistung nach Abschluss des Warmlaufzeitraums der Pumpenkomponente (4) auf der Nennleistung zu halten.
  10. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) zur Unterbrechung des Kühlbetriebs und/oder für einen intermittierenden und/oder intervallgesteuerten und/oder -geregelten Kühlbetrieb eingerichtet ist und/oder wobei unterschiedliche Betriebsintervalle (36) zur Kühlung identische oder unterschiedliche Zeitdauern aufweisen und/oder wobei Unterbrechungsintervalle (38) zwischen den Betriebsintervallen (36) identisch oder unterschiedlich sind und/oder wobei die Kühlleistung in unterschiedlichen Betriebsintervallen (36) gleich hoch oder verschieden ist.
  11. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) zur Abschaltung des Kühlbetriebs bei Erreichen eines maximal und/oder minimal zulässigen Grenzwerts und/oder bei einer Fehlfunktion der Kühlvorrichtung (14) und/oder einer Pumpenkomponente (4) eingerichtet ist und/oder wobei die Kühlvorrichtung (14) zum Einschalten des Kühlbetriebs bei Erreichen eines maximal und/oder minimal zulässigen Grenzwerts eingerichtet ist.
  12. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Pumpenkomponente (4) als Teil einer Pumpenbaugruppe angeordnet ist und/oder wobei die Kühlvorrichtung (14) zur konvektiven Kühlung einer Pumpenbaugruppe aus einer Mehrzahl von Pumpenkomponenten (4) ausgebildet ist und/oder wobei die Pumpenkomponente als Teil des Pumpenantriebs, insbesondere als Motorbauteil, Getriebe, Getriebegehäuse, rotierendes oder feststehendes Bauteil, und/oder als Pumpengehäuse und/oder als Teil einer Elektronikbaugruppe ausgebildet ist.
  13. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die zumindest eine Pumpenkomponente (4) von einer Verkleidung (2) abgedeckt ist, insbesondere sämtliche Pumpenkomponenten von einer Gesamtverkleidung (2) abgedeckt und/oder eingefasst sind, und/oder wobei
    die Kühlvorrichtung (14) zumindest einen Lüfter aufweist, der bevorzugt an
    der Verkleidung angeordnet ist, und/oder wobei die Verkleidung zumindest einen Gaseinlass (8, 10, 12) und/oder einen Gasauslass (16, 18) aufweist und/oder wobei zumindest ein Lüfter in oder an dem Gaseinlass (8, 10, 12) und/oder dem Gasauslass (16, 18) angeordnet ist und/oder wobei der Gaseinlass (8, 10, 12) und der Gasauslass (16, 18) jeweils in Ebenen angeordnet sind, die zueinander einen Winkel einschließen, bevorzugt einen rechten Winkel, und/oder wobei die Verkleidung (2) eine Mehrzahl von Gaseinlässen (8, 10, 12) und/oder Gasauslässen (16, 18) aufweist und/oder wobei zumindest ein Gasauslass (16, 18) an einem Pumpeneinlass und/oder an einem Pumpenauslass angeordnet ist und/oder wobei das Kühlmedium durch die Verkleidung (2) gezielt geführt ist, insbesondere zwischen Gaseinlass (8, 10, 12) und Gasauslass (16, 18).
  14. Vakuumpumpe (1) nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) dazu eingerichtet ist, den Wärmeübergang (Q) durch Anpassung der Temperatur des Kühlmediums variabel zu verändern und/oder wobei die Kühlvorrichtung dazu eingerichtet ist, den Wärmeübergangskoeffizienten (α) durch Anpassung der Strömungsgeschwindigkeit des Kühlmediums variabel zu verändern.
  15. Verfahren zum Betreiben einer Vakuumpumpe (1), bevorzugt nach einem
    der voranstehenden Ansprüche, bei dem zumindest eine Pumpenkomponente (4) durch eine Kühlvorrichtung (14) gekühlt wird und die Kühlvorrichtung (14) zur konvektiven Kühlung der Pumpenkomponente (4) ein Kühlmedium fördert
    dadurch gekennzeichnet, dass
    die Kühlvorrichtung (14) einen Wärmeübergang (Q) zwischen der zu kühlenden Pumpenkomponente (4) und dem Kühlmedium durch Anpassung eines Wärmeübergangskoeffizienten (α) in Abhängigkeit und/oder zur Einhaltung eines Pumpenbetriebsparameters variabel verändert.
EP17183117.5A 2017-07-25 2017-07-25 Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe Active EP3434905B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17183117.5A EP3434905B1 (de) 2017-07-25 2017-07-25 Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17183117.5A EP3434905B1 (de) 2017-07-25 2017-07-25 Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe

Publications (2)

Publication Number Publication Date
EP3434905A1 true EP3434905A1 (de) 2019-01-30
EP3434905B1 EP3434905B1 (de) 2023-04-26

Family

ID=59399365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17183117.5A Active EP3434905B1 (de) 2017-07-25 2017-07-25 Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe

Country Status (1)

Country Link
EP (1) EP3434905B1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320036B2 (en) 2019-09-23 2022-05-03 Ovg Vacuum Technology (Shanghai) Co., Ltd Transmission structure of motor connection of roots pump
US11339783B2 (en) 2019-09-23 2022-05-24 OVG Vacuum Technology (Shanghai) Co., Ltd. Pump housing structure of three-axis multi-stage Roots pump
US11441564B2 (en) 2019-09-23 2022-09-13 OVG Vacuum Technology (Shanghai) Co., Ltd. Driving structure of three-axis multi-stage roots pump
US11608829B2 (en) 2019-10-10 2023-03-21 OVG Vacuum Technology (Shanghai) Co., Ltd. Structure of rotor connection of multi-axial multi-stage roots pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812041A1 (fr) * 2000-07-20 2002-01-25 Cit Alcatel Principe de refroidissement de pompe a vide
WO2003042542A1 (de) * 2001-11-15 2003-05-22 Leybold Vakuum Gmbh Temperierugsverfahren einer schraubenvakuumpumpe
EP1936203A2 (de) 2006-12-13 2008-06-25 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Lüfter
EP2071186A2 (de) * 2007-12-12 2009-06-17 Pfeiffer Vacuum GmbH Vakuumpumpe und Verfahren zum Betrieb
GB2526292A (en) * 2014-05-19 2015-11-25 Edwards Ltd Vacuum system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306790A (ja) * 1997-05-01 1998-11-17 Daikin Ind Ltd 分子ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812041A1 (fr) * 2000-07-20 2002-01-25 Cit Alcatel Principe de refroidissement de pompe a vide
WO2003042542A1 (de) * 2001-11-15 2003-05-22 Leybold Vakuum Gmbh Temperierugsverfahren einer schraubenvakuumpumpe
EP1936203A2 (de) 2006-12-13 2008-06-25 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Lüfter
EP2071186A2 (de) * 2007-12-12 2009-06-17 Pfeiffer Vacuum GmbH Vakuumpumpe und Verfahren zum Betrieb
GB2526292A (en) * 2014-05-19 2015-11-25 Edwards Ltd Vacuum system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320036B2 (en) 2019-09-23 2022-05-03 Ovg Vacuum Technology (Shanghai) Co., Ltd Transmission structure of motor connection of roots pump
US11339783B2 (en) 2019-09-23 2022-05-24 OVG Vacuum Technology (Shanghai) Co., Ltd. Pump housing structure of three-axis multi-stage Roots pump
US11441564B2 (en) 2019-09-23 2022-09-13 OVG Vacuum Technology (Shanghai) Co., Ltd. Driving structure of three-axis multi-stage roots pump
US11608829B2 (en) 2019-10-10 2023-03-21 OVG Vacuum Technology (Shanghai) Co., Ltd. Structure of rotor connection of multi-axial multi-stage roots pump

Also Published As

Publication number Publication date
EP3434905B1 (de) 2023-04-26

Similar Documents

Publication Publication Date Title
EP3434905B1 (de) Vakuumpumpe sowie verfahren zum betreiben einer vakuumpumpe
DE2909825C2 (de) Vorrichtung zur Einstellung des Anstellwinkels der Verdichterleitschaufeln eines Gasturbinentriebwerks
EP2814617B1 (de) Laborzentrifuge mit kompressorkühleinrichtung und verfahren zur steuerung einer kompressorkühleinrichtung einer laborzentrifuge
WO2018086878A1 (de) Elektrische kühlmittelpumpe
EP2114679B1 (de) Kühlvorrichtung für druckmaschinen
WO2011082942A2 (de) Turboverdichter
EP3278039A1 (de) Wärmeübertrager oder chiller
EP1399656B1 (de) Verfahren zum überwachen eines kühlflüssigkeitskreislaufs einer brennkraftmaschine
DE202018003585U1 (de) Vakuumpumpe
EP3516234B1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3388677A1 (de) Verfahren zur steuerung eines schraubenverdichters
WO2018054878A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
DE102015200026B4 (de) Schätzung der Massendurchflussrate eines Zuluftverdichters
EP2582216B1 (de) Filterlüfter für einen Schaltschrank
DE4107481A1 (de) Raumlufttechnische anlage
EP2053249B1 (de) Anordnung mit Vakuumpumpe und Verfahren
EP3516233A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3596340B1 (de) Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung
DE102016011436A1 (de) Anordnung von Schrauben für einen Schraubenkompressor für ein Nutzfahrzeug
DE3840455A1 (de) Temperaturempfindliche fluessigkeitsventilatorkupplungsvorrichtung
DE102014223186A1 (de) Hydrostatische Versorgungseinrichtung
EP3516226B1 (de) Schraubenkompressor für ein nutzfahrzeug
DE3116710C2 (de) Verfahren zur Regelung der Kühldampfmenge für den Niederdruckteil einer Entnahme-Kondensations-Turbine
EP3516225A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP2907988A1 (de) Verfahren zum Betreiben eines Verdichterstrangs und derselbe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210628

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20230221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014648

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1563006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230717

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230725

26N No opposition filed

Effective date: 20240129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1563006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 8