EP3596340B1 - Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung - Google Patents

Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung Download PDF

Info

Publication number
EP3596340B1
EP3596340B1 EP17778214.1A EP17778214A EP3596340B1 EP 3596340 B1 EP3596340 B1 EP 3596340B1 EP 17778214 A EP17778214 A EP 17778214A EP 3596340 B1 EP3596340 B1 EP 3596340B1
Authority
EP
European Patent Office
Prior art keywords
compressor
oil
temperature
approx
switching state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17778214.1A
Other languages
English (en)
French (fr)
Other versions
EP3596340A1 (de
Inventor
Gilles Hebrard
Jean-Baptiste Marescot
Jörg MELLAR
Thomas Weinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Publication of EP3596340A1 publication Critical patent/EP3596340A1/de
Application granted granted Critical
Publication of EP3596340B1 publication Critical patent/EP3596340B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • F04C29/0014Injection of a fluid in the working chamber for sealing, cooling and lubricating with control systems for the injection of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication

Definitions

  • the present invention relates to a compressor system of a vehicle, in particular a commercial vehicle, with at least one compressor which has at least one oil sump and at least one temperature monitoring device.
  • An additional safety device is effective as a function of the temperature of the oil separated from the compressed air and prevents the transition from idling operation of the screw compressor to standstill below a predeterminable oil temperature.
  • the DE 10 2004 060 417 A1 a compact screw compressor for mobile use in a vehicle.
  • an oil circuit which is required for cooling the screw compressor unit, can be coupled to a thermostatically controlled cooling circuit of the vehicle via a heat exchanger.
  • the EP 1 156 213 A1 a method for regulating a fan in a compressor unit, the compressor unit comprising at least one compressor element, a motor and a cooling device.
  • DE 603 04 555 T2 a method for controlling the oil return in an oil-injected screw compressor.
  • US 2005/089432 A1 discloses a method of controlling oil circulation in an oil-injected screw compressor having an oil circulation line between the oil separator and the compressor element in which an oil cooler is installed which is bypassed by a passage or bypass.
  • the KR 2016 0058838 A discloses a device structure similar to that of US Pat US 2005/089432 A1 .
  • the WO 2016/127226 A2 discloses a device for controlling the oil temperature of an oil injection compressor system with a compressor element which is provided with a gas inlet and an outlet for pressurized gas, which is connected to an oil separator which is connected to the aforesaid compressor element by means of an injection line, and wherein a cooler is in one part the injection line is attached, which can be bypassed by means of a bypass line.
  • the cooling of the oil is usually controlled by a wax thermostat, which supplies the oil to the heat exchanger for cooling above a certain temperature threshold. If the ambient temperature is low, the so-called switchover point of the wax thermostat cannot be reached because the compressor is usually not operated continuously, but works in a part-load cycle. As a result, the oil temperature and the component temperatures of the compressor generally remain comparatively low at low ambient temperatures. In this context, it becomes difficult to reach the usual operating temperature, which is in the region of approx. 90 ° C. This can also lead to undesired water condensation or moisture condensation in the housing and valves of the compressor.
  • a compressor system of a vehicle in particular a commercial vehicle, comprises at least one compressor, which has at least one oil sump and at least one temperature monitoring device, and at least one heat exchanger, wherein the compressor, the oil sump, the heat exchanger and the temperature monitoring device are operatively connected, the temperature monitoring device also having at least one compressor start-up switching state and at least one compressor low-temperature switching state, the compressor start-up switching state being assigned to at least a first temperature range of the oil and the compressor low-temperature switching state being assigned to at least a second temperature range of the oil, with im Compressor start-up status, the oil flowing out of the compressor at least to this can be returned via the heat exchanger for heating the oil and, in the compressor low-temperature switching state, the oil flowing out of the compressor cannot be returned to it via the heat exchanger.
  • the invention is based on the basic idea of heating the oil of the compressor at low temperatures of the components of the compressor, for example as a result of low outside temperatures and / or during the start-up process if necessary, e.g. after a long period of standstill.
  • the oil is heated via a heat exchanger in the compressor system, which is connected to a heat source in the commercial vehicle.
  • the compressor system also has a temperature monitoring device that can be regulated as a function of the respective operating temperature of the compressor. If the temperature of the compressor and its oil is in a first, low temperature range (e.g. below 0 ° C), for example during the start-up process, the temperature monitoring device is set up to additionally heat the oil of the compressor via the heat exchanger.
  • the temperature monitoring device In this first low temperature range, the temperature monitoring device is in a compressor start-up switching state. Since the oil continues to heat up due to the compressor operation and the supply of preheated oil, the temperature monitoring device changes after the transition from the first low to a second temperature range to a compressor-low temperature switching state in which the oil flowing out of the compressor is no longer returned to it via the heat exchanger and is heated there.
  • the compressor also has an oil filter, so that in the compressor low-temperature switching state of the temperature monitoring device, the oil flowing out of the compressor can be returned to it at least via the oil filter.
  • the provision of an oil filter is advantageous for minimizing wear and tear on the compressor, since the oil filter filters operational and wear-promoting particles from the oil and thus cleans it.
  • the temperature monitoring device has at least one normal compressor temperature switching state, with the oil flowing out of the compressor in the normal compressor temperature switching state at least via the heat exchanger is recyclable for cooling the oil.
  • the oil flowing out of the compressor in the normal compressor temperature switching state at least via the heat exchanger is recyclable for cooling the oil.
  • the temperature monitoring device switches to a normal compressor temperature switching state, so that the oil is returned to the compressor again via the heat exchanger, but in this case to its cooling.
  • the temperature monitoring device has at least one control and / or regulating valve that can be actuated as a function of temperature.
  • the provision of a control and / or regulating valve enables a very precise, reliable and loss-free allocation of the oil flow to the oil filter or the heat exchanger within the various switching states of the temperature monitoring device.
  • control and / or regulating valve which can be actuated as a function of temperature
  • the design as a 4/2-way solenoid control and / or regulating valve is particularly advantageous because it can be controlled or regulated very quickly and with great functional variability in response to electrical control signals, for example from an electronic control or regulating device.
  • the 4/2-way control and / or regulating valve can also be designed as a pneumatically or electro-pneumatically operated 4/2-way control and / or regulating valve.
  • the temperature-dependently actuable control and / or regulating valve is in the compressor start-up switching state if the oil temperature is less than or equal to a temperature of another medium that is located in the heat exchanger.
  • This is a very simple and efficient way of controlling or regulating the control and / or regulating valve by means of a control or regulating device, since essentially the oil temperature is to be compared with the temperature of the further medium.
  • This can be done, for example, in such a way that a control or regulating device of an air treatment device of the commercial vehicle first receives and compares the temperature signals of the oil temperature and the temperature of the further medium via a CAN bus.
  • control and / or regulating valve can then be controlled or regulated by means of a correspondingly output signal.
  • a pneumatically or electro-pneumatically operated 4/2-way control and / or regulating valve it is conceivable that the to compare corresponding signals of the oil temperature and the temperature of the further medium in the heat exchanger as already described above by means of the electronic control or regulation device and to generate a pneumatic switching signal as a function thereof.
  • the control and / or regulating valve which can be actuated as a function of temperature, is in the compressor start-up switching state.
  • the heating of the oil via the heat exchanger is particularly efficient in a temperature range below approx. 50 ° C, since the heat exchanger is usually operated in an average nominal temperature range of approx. 40 ° C to approx. 50 ° C.
  • the temperature-dependently actuable control and / or regulating valve is in the normal compressor temperature switching state.
  • its oil temperature can exceed a temperature range of approx. 80 ° C to approx. 90 ° C, which in the interests of operational safety requires renewed cooling of the oil and therefore the control and / or regulating valve changes to the normal compressor temperature switching state.
  • the temperature monitoring device has at least one first wax thermostat valve and at least one second wax thermostat valve. Since wax thermostatic valves are relatively inexpensive, tried and tested and reliable temperature-dependent switching valves, their use within the temperature monitoring device is particularly advantageous.
  • the first wax thermostatic valve is in a first switching state and the second wax thermostatic valve is in a first switching state, so that the oil flowing out of the compressor can be returned to it at least via the heat exchanger to heat the oil.
  • the heating of the oil via the heat exchanger is particularly efficient, since the heat exchanger usually operates at a temperature range of approx. 40 ° C to approx. 50 ° C is operated.
  • the end of approx. 40 ° C to approx. 50 ° C of this temperature range is due to the opening and closing characteristics of the first wax thermostatic valve.
  • the operation of the compressor can be switched off at an oil temperature of greater than approx. 120 ° C., in particular greater than approx. 110 ° C..
  • oil temperature is greater than approx. 120 ° C.
  • the vehicle in particular the commercial vehicle, has a hybrid drive, in particular a hybrid main drive, or an electric drive, in particular an electric main drive, in particular in connection with a hybrid main drive or an electric main drive of the vehicle, there is the possibility of waste heat of the electrical components (e.g. electric motors or power electronics) to be used advantageously as a heat source for heating the oil of the compressor.
  • a hybrid drive in particular a hybrid main drive
  • an electric drive in particular an electric main drive, in particular in connection with a hybrid main drive or an electric main drive of the vehicle
  • waste heat of the electrical components e.g. electric motors or power electronics
  • the heat exchanger is a liquid-liquid heat exchanger. Due to the fluids that can be used, liquid-liquid heat exchangers are characterized by very high degrees of thermal efficiency, which means that the heating or cooling of the oil can be carried out even more efficiently and advantageously.
  • the heat exchanger is fluidly connected to at least one electrical component of the vehicle to be cooled, in particular of the utility vehicle.
  • the power electronics or the electric motor of a hybrid or electric main drive of the commercial vehicle require an additional cooling circuit that can be used to heat the compressor oil via the heat exchanger mentioned. Due to the relatively rapid heating of these electrical components, in particular the heating of the oil of the compressor can take place even faster and thus even more efficiently.
  • the compressor is a positive displacement compressor, in particular a screw compressor and / or a vane compressor.
  • Displacement compressors have a very good degree of efficiency with small to medium mass or volume flows and can be constructed relatively easily and consequently in a weight-optimized manner.
  • Other concepts of positive displacement compressors such as reciprocating compressors, scroll compressors, liquid ring compressors, free piston compressors or roots compressors can also be used. It is also conceivable that the compressor is a turbo compressor.
  • Fig. 1 shows a schematic sectional illustration of a compressor 10 of a compressor system 100, 200 in the sense of a first and second exemplary embodiment for the present invention.
  • the compressor 10 according to Fig. 1 is a screw compressor 10.
  • the screw compressor 10 has a fastening flange 12 for mechanically fastening the screw compressor 10 to a drive in the form of an electric motor, which is not shown in detail here.
  • the screw 18 meshes with the screw 16 and is driven by this.
  • the screw compressor 10 has a housing 20 in which the essential components of the screw compressor 10 are accommodated.
  • the housing 20 is filled with oil 22.
  • the oil 22 forms an oil sump 22a in its lower housing area.
  • an inlet connector 24 is provided on the housing 20 of the screw compressor 10.
  • the inlet connector 24 is designed in such a way that an air filter 26 is arranged on it.
  • an air inlet 28 is provided radially on the air inlet connector 24.
  • a spring-loaded valve insert 30 is provided, designed here as an axial seal.
  • This valve insert 30 serves as a check valve.
  • An air supply channel 32 is provided downstream of the valve insert 30 and supplies the air to the two screws 16, 18.
  • an air outlet pipe 34 with a riser 36 is provided on the output side of the two screws 16, 18.
  • a temperature sensor 38 is provided, by means of which the oil temperature can be monitored.
  • a holder 40 for an air / oil separator 42 is also provided in the air outlet area.
  • the holder 40 for the exhaust filter has in the area facing the floor (as also in FIG Fig. 1 shown) the exhaust filter 42 on.
  • a corresponding filter screen or known filter and oil separation devices 44 which are not specified in detail, are also provided in the interior of the air / oil separator 42.
  • the holder for the exhaust filter 40 has an air outlet opening 46, which lead to a check valve 48 and a minimum pressure valve 50.
  • the check valve 48 and the minimum pressure valve 50 can also be formed in a common, combined valve.
  • the air outlet 51 is provided downstream of the check valve 48.
  • the air outlet 51 is usually connected to correspondingly known compressed air consumers.
  • a riser 52 is provided which has a filter and check valve 54 at the outlet of the holder 40 for the exhaust filter 42 when it passes into the housing 20.
  • a nozzle 56 is provided in a housing bore downstream of the filter and check valve 54.
  • the oil return line 58 leads back approximately to the middle area of the screw 16 or the screw 18 in order to supply oil 22 again.
  • An oil drain plug 59 is provided within the bottom area of the housing 20 in the assembled state. A corresponding oil drain opening through which the oil 22 can be drained can be opened via the oil drain screw 59.
  • the housing 20 In the lower area of the housing 20 there is also the extension 60 to which the oil filter 62 is attached. Via an oil filter inlet channel 64, which is arranged in the housing 20, the oil 22 is first passed to a temperature monitoring device 66, which is designed as a thermostatic valve 66a.
  • thermostat valve 66 a control and / or regulating device can be provided, by means of which the oil temperature of the oil 22 located in the housing 20 can be monitored and adjusted to a target value.
  • a nozzle 72 is also provided, which is provided in the housing 20 in connection with the return line 68.
  • the cooler 74 is connected to the extension 60.
  • a safety valve 76 In the upper area of the housing 20 (in relation to the assembled state) there is a safety valve 76, by means of which excess pressure in the housing 20 can be reduced.
  • a bypass line 78 which leads to a relief valve 80, is located upstream of the minimum pressure valve 50. Via this relief valve 80, which is controlled by means of a connection to the air supply 32, air can be returned to the area of the air inlet 28.
  • a vent valve (not shown in detail) and also a nozzle (diameter reduction of the supply line) can be provided in this area.
  • an oil level sensor 82 can be provided approximately at the level of the line 34 in the outer wall of the housing 20.
  • This oil level sensor 82 can, for example, be an optical sensor and can be designed and set up in such a way that the sensor signal can be used to identify whether the oil level is above the oil level sensor 82 during operation or whether the oil level sensor 82 is exposed and the oil level has fallen accordingly as a result.
  • an alarm unit can also be provided which outputs or forwards a corresponding error message or warning message to the user of the system.
  • the function of the in Fig. 1 shown screw compressor 10 is as follows: Air is supplied via the air inlet 28 and reaches the screws 16, 18 via the check valve 30, where the air is compressed. The compressed air-oil mixture, which rises with a factor of between 5 and 16-fold compression according to the screws 16 and 18 through the outlet line 34 via the riser pipe 36, is blown directly onto the temperature sensor 38.
  • the air which still partially carries oil particles, is then guided via the holder 40 into the exhaust filter 42 and, if the corresponding minimum pressure is reached, reaches the air outlet line 51.
  • the oil 22 located in the housing 20 is kept at operating temperature via the oil filter 62 and possibly via the heat exchanger 74.
  • the heat exchanger 74 is not used and is also not switched on.
  • the corresponding connection takes place via the thermostatic valve 68.
  • oil is fed to the screw 18 or the screw 16, but also to the bearing 72, via the line 68.
  • the screw 16 or the screw 18 is supplied with oil 22 via the return line 52, 58; here, the oil 22 is purified in the exhaust filter 42.
  • the screws 16 and 18 of the screw compressor 10 are driven via the electric motor, not shown in detail, which transmits its torque via the shaft 14 to the screw 16, which in turn meshes with the screw 18.
  • the relief valve 80 ensures that in the area of the supply line 32, the high pressure that prevails in the operating state, for example on the outlet side of the screws 16, 18, cannot be locked in, but that, especially when the compressor starts up, it is always in the area of the supply line 32 there is a low inlet pressure, in particular atmospheric pressure. Otherwise, when the compressor starts up, a very high pressure would initially arise on the output side of the screws 16 and 18, which would overload the drive motor.
  • Fig. 2 shows a first schematic representation of a first exemplary embodiment of a temperature monitoring device 166 according to the invention.
  • FIG. 2 a first embodiment of a compressor system 100 according to the invention of a commercial vehicle is also shown.
  • the compressor system 100 has a compressor 10.
  • the compressor 10 is according to Fig. 2 and also in connection with the further description of the figures below Figures 3 to 6 designed as a screw compressor 10.
  • the compressor 10 also includes an oil sump 22a having oil 22, an oil filter 62, a temperature monitoring device 166 and a heat exchanger 74.
  • the temperature monitoring device 166 is designed as a control or regulating valve 166b that can be actuated as a function of temperature.
  • the temperature-dependently actuatable control or regulating valve 166b is a 4/2-way solenoid control or regulating valve 166b.
  • control or regulating valve 166b which can be actuated as a function of the temperature can be a pneumatically actuatable control or regulating valve 166b.
  • the oil sump 22a of the compressor 10, the oil filter 62, the temperature monitoring device 166 and the heat exchanger 74 are operatively connected.
  • the compressor 10 is connected to the 4/2-way solenoid control or regulating valve 166b by means of a compressor output line 102.
  • the 4/2-way solenoid control or regulating valve 166b is arranged downstream of the compressor 10.
  • the 4/2-way solenoid control or regulating valve 166b is also connected to the heat exchanger 74 via a valve output line 104.
  • the heat exchanger 74 also has a heat exchanger inlet line 106 and a heat exchanger outlet line 108.
  • the 4/2-way solenoid control or regulating valve 166b is additionally connected to the heat exchanger 74 via a valve inlet line 110.
  • the 4/2-way solenoid control or regulating valve 166b is connected to the oil filter 62 via an oil filter inlet line 112.
  • the oil filter 62 is arranged downstream of the 4/2-way solenoid control or regulating valve 166b.
  • the oil filter 62 is also connected to the compressor 10 via a compressor input line 114.
  • the oil filter 62 is also arranged upstream of the compressor 10.
  • the 4/2-way solenoid control or regulating valve 166b is also connected to an electronic or pneumatic control or regulating device (not in Fig. 2 shown) electrically or pneumatically connected.
  • the function of the first exemplary embodiment of the compressor system 100 with a temperature monitoring device 166 in the form of the 4/2-way solenoid control or regulating valve 166b can be described as follows: Since the oil 22 in the oil sump 22a is continuously subjected to its working pressure during operation of the compressor 10, as soon as the compressor 10 has started operating, the oil 22 of the oil sump 22a in the vicinity of the compressor output line 102 flows out of the compressor 10 through the latter .
  • the oil 22 then flows through the compressor output line 102 until it enters the 4/2-way solenoid control or regulating valve 166b.
  • the 4/2-way solenoid control or regulating valve 166b has switching states assigned to the three temperature ranges.
  • the 4/2-way solenoid control or regulating valve 166b accordingly has a compressor start-up switching state, a compressor low-temperature switching state and a compressor normal temperature switching state.
  • the oil temperature can be measured by a temperature sensor that detects the temperature of the oil 22 within the oil sump 22a, within the 4/2-way solenoid control or regulating valve 166b or within the connecting line 102, in the form of a signal to a temperature sensor electrically connected control or regulation device are transmitted.
  • the 4/2-way solenoid control or regulating valve 166b can be actuated by means of the control or regulating device.
  • the 4/2-way solenoid control or regulating valve 166b is in the compressor start-up switching state (cf. Fig. 2 ).
  • the compressor start-up switching state is consequently assigned to a first temperature range of the oil 22.
  • This first temperature range of less than approximately 40 ° C. exists when the compressor 10 has not been in operation for a longer period of time, for example when the utility vehicle is at a standstill overnight.
  • the 4/2-way solenoid control or regulating valve 166b can be in the compressor start-up switching state if the oil temperature is less than or equal to a temperature of another medium that is located in the heat exchanger 74.
  • the medium can be water or a water / glycol mixture or a similar coolant.
  • the temperature of the medium can also be transmitted in the form of a corresponding signal to a control or regulating device electrically connected to the temperature sensor by a further temperature sensor, which detects its temperature within the heat exchanger 74, within the heat exchanger inlet line 106 or within the heat exchanger outlet line 108.
  • control or regulation device may receive the temperature value of the further medium via the data bus of the commercial vehicle from a measuring point assigned to the vehicle cooling circuit.
  • the 4/2-way solenoid control or regulating valve 166b can be actuated by means of the control or regulating device.
  • the oil 22 flowing out of the compressor 10 can be returned to the compressor 10 at least via the heat exchanger 74 for heating the oil 22.
  • the compressor output line 102 is connected to the valve output line 104 via the 4/2-way solenoid control or regulating valve 166b, whereby the oil 22 from the 4/2-way solenoid control or regulating valve 166b initially enters the Heat exchanger 74 flows in and is heated as a result.
  • the oil 22 flows through the valve inlet line 110 back into the 4/2-way solenoid control or regulating valve 166b and flows through it again.
  • the oil 22 then leaves the 4/2-way solenoid control or regulating valve 166b and flows into the oil filter 62 via the oil filter inlet line 112 and is cleaned there.
  • the heated oil 22 then flows out of the oil filter 62 and again flows into the compressor 10 via the compressor inlet line 114.
  • the 4/2-way solenoid control or regulating valve 166b remains in the compressor start-up switching state up to an oil temperature of less than approx. 40 ° C.
  • the temperature-dependently actuable 4/2-way solenoid control or regulating valve 166b is in the compressor temperature switching state.
  • the compressor low-temperature switching state is thus assigned to a second temperature range of the oil 22.
  • Fig. 3 shows in this regard a second schematic illustration of the 4/2-way solenoid control or regulating valve 166b according to FIG Fig. 2 in the compressor low temperature switching state.
  • the compressor output line 102 is connected directly to the oil filter input line 112 via the 4/2-way solenoid control or regulating valve 166b, as a result of which the heat exchanger 74 is bypassed.
  • the oil 22 first flows through the compressor output line 102 into the 4/2-way solenoid control or regulating valve 166b.
  • the oil 22 then leaves the 4/2-way solenoid control or regulating valve 166b and flows into the oil filter 62 via the oil filter inlet line 112 and is cleaned there.
  • the oil 22 then flows out of the oil filter 62 and flows in turn into the compressor 10 via the compressor inlet line 114.
  • the 4/2-way solenoid control or regulating valve 166b remains in the compressor low-temperature switching state up to an oil temperature of less than approx. 80 ° C.
  • the oil 22 flowing out of the compressor 10 can therefore be returned to it again at least via the heat exchanger 74 for cooling the oil 22.
  • the compressor output line 102 is connected to the valve output line 104 via the 4/2-way solenoid control or regulating valve 166b, whereby the oil 22 from the 4/2-way solenoid control or regulating valve 166b into the heat exchanger 74 flows in and cools down as a result.
  • the heat exchanger 74 is usually operated at an average temperature of approximately 40.degree. C. to 50.degree.
  • the oil 22 flows through the valve inlet line 110 back into the 4/2-way solenoid control or regulating valve 166b and flows through it again.
  • the oil 22 then leaves the 4/2-way solenoid control or regulating valve 166b and flows into the oil filter 62 via the oil filter inlet line 112 and is cleaned there.
  • the cooled oil 22 then flows out of the oil filter 62 and flows in turn into the compressor 10 via the compressor inlet line 114.
  • the heat exchanger 74 is designed as a liquid-liquid heat exchanger 74.
  • the medium which cools or warms the oil 22 of the compressor 10 depending on the switching state of the 4/2-way solenoid control or regulating valve 166b is water or a water / glycol mixture or a similar coolant.
  • the medium (coolant) is supplied to the heat exchanger 74 by means of a further fluid circuit in the form of a cooling circuit of the commercial vehicle by means of the heat exchanger inlet line 106 and the heat exchanger outlet line 108 and then discharged again.
  • the heat exchanger 74 is equipped with an electrical component to be cooled (not in Fig. 3 shown) of the commercial vehicle, fluid-connected.
  • Fig. 4 further shows a first schematic illustration of a second exemplary embodiment of a temperature monitoring device 266 according to the invention.
  • FIG. 12 also shows a second embodiment of the compressor system 200 according to the invention Fig. 1 of a commercial vehicle shown.
  • the compressor system 200 has a compressor 10 with a housing 20.
  • the compressor 10 also includes an oil sump 22a having oil 22, an oil filter 62, a temperature monitoring device 266 and a heat exchanger 74.
  • the temperature monitoring device 266 has a first wax thermostatic valve 266c and a second wax thermostatic valve 266d.
  • the oil sump 22a is connected to the first wax thermostatic valve 266c via a compressor output line 202.
  • the first wax thermostatic valve 266c is disposed downstream of the oil sump 22a.
  • the first wax thermostat valve 266c is also connected to the second wax thermostat valve 266d via a first thermostat valve line 204.
  • a second thermostat valve line 206 branches off from the first thermostat valve line 204 and additionally connects the first thermostat valve line 204 to the second wax thermostat valve 266d.
  • the second wax thermostatic valve 266d is arranged downstream of the first wax thermostatic valve 266c.
  • the second wax thermostatic valve 266d is also connected to the oil filter 62 via an oil filter inlet line 208.
  • the oil filter 62 is disposed downstream of the second wax thermostatic valve 266d.
  • the second wax thermostat valve 266d is connected to the heat exchanger 74 via a thermostat valve output line 210.
  • the heat exchanger 74 is arranged downstream of the second wax thermostatic valve 266d.
  • first wax thermostat valve 266c is connected to the thermostat valve output line 210 via a thermostat valve bypass line 212.
  • the heat exchanger 74 is also connected to the oil filter 62 via a second oil filter inlet line 214.
  • the oil filter 62 is further connected to the compressor 10 via a compressor input line 216.
  • the compressor output line 202, the first thermostat valve line 204, the second thermostat valve line 206, the first oil filter input line 208, the thermostat valve bypass line 212 and the compressor input line 216 are arranged within a housing extension 218 of the housing 20 of the compressor 10.
  • the thermostat valve output line 210 and the second oil filter input line 214 are at least partially arranged within the housing extension 218.
  • thermostat valve output line 210 and the second oil filter input line 214 are designed as overhead lines and are connected to the housing extension 218 via corresponding connections.
  • the oil filter 62 is also arranged on an end face of the housing extension 218 facing away from the housing 20.
  • the function of the second exemplary embodiment of the compressor system 200 with a temperature monitoring device 266 in the form of the first and second wax thermostatic valves 266c, 266d can be described as follows: When the oil temperature is greater than approximately -40 ° C. and when the oil temperature is less than approximately 40 ° C., the first wax thermostatic valve 266c is in a first switching state and the second wax thermostatic valve 266d is also in a first switching state.
  • the oil 22 flowing out of the compressor 10 can be returned to it at least via the heat exchanger 74 for heating the oil 22.
  • the compressor output line 202 and the thermostat valve bypass line 212 are fluidly connected to one another via the first wax thermostat valve 266c.
  • the second wax thermostatic valve 266d is thus bypassed.
  • the oil 22 consequently flows from the oil sump 22a via the compressor output line 202, the first wax thermostat valve 266c, the thermostat valve bypass line 212 and via the thermostat valve output line 210 into the heat exchanger 74 and is heated there.
  • the heated oil 22 in turn flows out of the heat exchanger 74 and is fed to the oil filter 62 by means of the second oil filter inlet line 214, where it is cleaned.
  • the preheated oil 22 flows out of the oil filter 62 and flows again via the compressor inlet line 216 into the compressor 10, where it contributes to its additional heating.
  • the first switching state of the first wax thermostat valve 266c and the first switching state of the second wax thermostat valve 266d are thus assigned to a compressor start-up switching state.
  • the compressor 10 continues to heat up as a result of its operation and the continuous supply of preheated oil 22 until an oil temperature of approx. 40 ° C. is reached.
  • the aim is for the wax thermostatic valve 266c to be fully open at approx. 40 ° C.
  • Fig. 5 shows a second schematic illustration of the second embodiment of the temperature monitoring device 266 in the form of the first and second wax thermostatic valve 266c, 266d according to FIG Fig. 4 .
  • the first wax thermostatic valve 266c is in a second switching state and the second wax thermostatic valve 266d is in a first switching state.
  • the oil 22 flowing out of the compressor 10 can be returned to it at least via the oil filter 62.
  • the first oil filter input line 208 is fluidly connected to the first thermostat valve line 204 via the second wax thermostat valve 266d and the first thermostat valve line 204 is fluidly connected to the compressor output line 202 via the first wax thermostat valve 266c.
  • the oil 22 from the oil sump 22a accordingly flows through the compressor output line 202, via the first wax thermostat valve 266c, through the first thermostat valve line 204, via the second wax thermostat valve 266d and through the first oil filter input line 208 into the oil filter 62 and is cleaned there.
  • the oil 22 flows out of the oil filter 62 and again flows into the compressor 10 via the compressor inlet line 216, where it is fed back to the compressor 10.
  • the second switching state of the first wax thermostat valve 266c and the first switching state of the second wax thermostat valve 266d are thus assigned to a compressor low-temperature switching state.
  • the compressor 10 continues to heat up continuously as a result of its operation until an oil temperature of approx. 80 ° C. is reached.
  • Fig. 6 shows a third schematic illustration of the second embodiment of the temperature monitoring device 266 in the form of the first and second wax thermostat valve 266c, 266d according to FIG Fig. 4 .
  • the first wax thermostatic valve 266c is in a second switching state and the second wax thermostatic valve 266d is in a second switching state
  • the oil 22 flowing out of the compressor 10 can be returned to it at least via the heat exchanger 74 for cooling the oil 22.
  • the thermostat valve output line 210 is fluidly connected to the first and second thermostat valve lines 204, 206 via the second wax thermostat valve 266d and the first thermostat valve line 204 is fluidly connected to the compressor output line 202 via the first wax thermostat valve 266c .
  • the oil 22 from the oil sump 22a accordingly flows through the compressor output line 202 via the first wax thermostat valve 266c into the first and second thermostat valve lines 204, 206 and further via the second wax thermostat valve 266d and via the thermostat valve output line 210 into the heat exchanger 74 and is cooled there .
  • the cooled oil 22 in turn flows out of the heat exchanger 74 and is fed by means of the second oil filter inlet line 214 to the oil filter 62, where it is cleaned.
  • the cooled oil 22 flows out of the oil filter 62 and flows further via the compressor inlet line 216 into the compressor 10 again, where it contributes to its cooling.
  • the second switching state of the first wax thermostat valve 266c and the second switching state of the second wax thermostat valve 266d are thus assigned to a normal compressor temperature switching state.
  • the compressor 10 will not continue to heat up above an oil temperature of approx. 110 ° C., since the heat exchanger 74 is sufficiently dimensioned to avoid further heating.
  • the operation of the compressor 10 can also be switched off when the oil temperature is greater than approx. 110 ° C.
  • the heat exchanger 74 is designed as a liquid-liquid heat exchanger 74.
  • the medium which the oil 22 of the compressor 10 cools or warms depending on the switching state of the first and second wax thermostatic valve 266c, 266d is water or a water / glycol mixture or a similar coolant.
  • the medium (coolant) is supplied to the heat exchanger 74 by means of a further fluid circuit in the form of a cooling circuit (not in Figures 2 to 6 shown) of the utility vehicle via the heat exchanger input line 106 and the heat exchanger output line 108 and discharged again.
  • the further fluid circuit thus serves as a heat source or as a heat sink, depending on the oil temperature of the compressor 10.
  • the heat exchanger 74 is therefore equipped with an electrical component to be cooled (not in Fig. 3 shown) of the commercial vehicle fluidly connected.
  • the heat exchanger 74 can be fluidly connected to an electrical and / or electronic module of the utility vehicle that is to be cooled.
  • the utility vehicle has a hybrid main drive or an electrical main drive.
  • Fig. 7 shows a schematic sectional illustration of a compressor 10 'in the form of a vane compressor 10' of a third or fourth embodiment of a compressor system 100 ', 200' according to the invention.
  • the compressor 10 ' is a rotary vane compressor 10 '.
  • the compressor 10 is according to Fig. 7 and also in connection with the further description of the figures below Figures 8 to 13 designed as a vane compressor 10 '.
  • the vane compressor 10 ' has an eccentrically mounted rotary piston 16' with seven spring-loaded separating slides 17 'guided radially displaceably therein.
  • the rotary piston 16 ' is enclosed by a hollow cylindrical housing 20', on the housing inner wall of which the separating slide 17 'seal off.
  • a sickle-shaped chamber is formed between the inner wall of the housing and the rotary piston 16 ', which is divided into an inlet chamber 21' and a compression chamber 23 '.
  • the sickle-shaped chamber is furthermore divided into individual sickle-chamber areas by the separating slide 17 '.
  • the inlet chamber 21 ' is also fluidly connected to an air inlet opening 32' in the housing 20 '.
  • the compression chamber 23 ' is also fluidly connected to an air outlet opening 34' in the housing 20 '.
  • the trapped air first passes through the inlet chamber 21' and the adjoining compression chamber 23 ', where it is then compressed due to the cross-sectional tapering of the compression chamber 23'.
  • the compressed air is supplied to the air outlet opening 34 'fluidly connected to the compression chamber 23', from where it can then be made available to further compressed air devices or compressed air consumers of a commercial vehicle.
  • Fig. 8 shows in a schematic perspective illustration the third and fourth exemplary embodiment of the compressor system 100 ', 200' with the vane compressor 10 'according to FIG Fig. 7 .
  • the vane compressor 10 ' is flanged to an electric motor 13' by means of the fastening flange 12 ', which has a control device 13a', which is operatively connected to it, for controlling it.
  • the housing 20 'of the vane compressor 10' is also filled with oil 22 '.
  • the oil 22' forms an oil sump 22a 'in its lower housing area.
  • the vane compressor 10 ' also has an air filter 26' and an exhaust filter 42 '.
  • An air inlet 28 'with the air inlet opening 32' (not in FIG Fig. 8 shown) fluidly connected in the housing 20 'of the vane compressor 10'.
  • a heat exchanger 74 ' is also arranged between the electric motor 13' and the vane compressor 10 '.
  • Fig. 9 shows a first schematic representation of a third embodiment of a temperature monitoring device 166 'according to the invention of the third embodiment of the compressor system 100' according to FIG Fig. 8 .
  • the third exemplary embodiment of the temperature monitoring device 166 ′ according to the invention shown has essentially the same structural and functional features as that in FIG Fig. 2 shown first embodiment of the temperature monitoring device 166 according to the invention.
  • the third exemplary embodiment of the compressor system 100 ′ has a vane compressor 10 ′.
  • FIG. 11 shows a second schematic illustration of the third exemplary embodiment of the temperature monitoring device 166 ′ according to FIG Fig. 9 .
  • the third exemplary embodiment of the temperature monitoring device 166 'according to the invention shown furthermore has essentially the same structural and functional features as that in FIG Fig. 3 shown first embodiment of the temperature monitoring device 166 according to the invention.
  • Fig. 11 shows a first schematic representation of a fourth embodiment of a temperature monitoring device 266 'according to the invention of the fourth embodiment of the compressor system 200' according to FIG Fig. 8 .
  • the fourth exemplary embodiment of the temperature monitoring device 266 ′ according to the invention shown has essentially the same structural and functional features as that in FIG Fig. 4 shown second embodiment of the temperature monitoring device 266 according to the invention.
  • the fourth exemplary embodiment of the compressor system 200 ′ has a vane compressor 10 ′.
  • FIG. 11 shows a second schematic illustration of the fourth exemplary embodiment of the temperature monitoring device 266 ′ according to FIG Fig. 11 .
  • the fourth exemplary embodiment of the temperature monitoring device 266 ′ according to the invention shown furthermore has essentially the same structural and functional features as that in FIG Fig. 5 shown second embodiment of the temperature monitoring device 266 according to the invention.
  • FIG. 13 shows a third schematic illustration of the fourth exemplary embodiment of the temperature monitoring device 266 ′ according to FIG Fig. 11 .
  • the fourth exemplary embodiment shown of the temperature monitoring device 266 ′ according to the invention also has essentially the same structural and functional features as that in FIG Fig. 6 shown second embodiment of the temperature monitoring device 266 according to the invention.
  • Fig. 14 shows a temperature-time diagram of a heating of the oil of a compressor and a heating of a cooling circuit of a commercial vehicle with a conventional compressor system.
  • Fig. 15 shows a temperature-time diagram of a heating of the oil of a compressor 10, 10 'and a heating of a cooling circuit of a commercial vehicle according to a compressor system 100, 200 according to the invention; 100 ', 200' according to Figs. 1 to 13 .
  • Fig. 16 shows a comparison of the temperature-time diagrams according to FIG Figures 14 and 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Kompressorsystem eines Fahrzeugs, insbesondere eines Nutzfahrzeugs, mit wenigstens einem Kompressor, der wenigstens einen Ölsumpf und wenigstens eine Temperaturüberwachungseinrichtung aufweist.
  • Aus dem Stand der Technik sind bereits derartige ölgeschmierte Kompressoren mit Vorrichtungen zur Überwachung der Öltemperatur bekannt.
  • So zeigt die DE 34 22 398 A1 ein Verfahren sowie eine Vorrichtung zum Betrieb einer Schraubenverdichteranlage. Eine zusätzliche Sicherheitseinrichtung ist in Abhängigkeit von der Temperatur des von der Druckluft getrennten Öls wirksam und verhindert unterhalb einer vorbestimmbaren Öltemperatur den Übergang vom Leerlaufbetrieb des Schraubenverdichters in den Stillstand.
  • Darüber hinaus offenbart die DE 10 2004 060 417 A1 einem kompakten Schraubenkompressor zum mobilen Einsatz in einem Fahrzeug. Gemäß einer die Erfindung verbessernden Maßnahme kann ein Ölkreislauf, welcher zur Kühlung der Schraubenverdichtereinheit erforderlich ist, über einen Wärmeübertrager mit einem thermostatisch geregelten Kühlkreislauf des Fahrzeuges gekoppelt werden.
  • Im Übrigen ist aus der DE 10 2010 015 150 A1 eine Vorrichtung zur Überwachung und/oder Anzeige eines bei verschiedenen Betriebszuständen eines Schraubenverdichters schwankenden Ölstands in einem Ölsumpf des Schraubenverdichters bekannt.
  • Aus der DE 10 2010 035 559 A1 ist ferner ein Verfahren für ein definiertes Nebenverbraucherantriebsystem mit einer Synchronschalteinrichtung, eingesetzt in einem Hybridfahrzeug, gezeigt.
  • Zudem offenbart die EP 1 156 213 A1 ein Verfahren zur Regulierung eines Lüfters in einer Kompressoreinheit, wobei die Kompressoreinheit wenigstens ein Kompressorelement, einen Motor und eine Kühleinrichtung umfasst.
  • Zusätzlich zeigt die DE 603 04 555 T2 ein Verfahren zur Steuerung der Ölrückführung in einem öleingespritzten Schraubenverdichter.
  • Weitere Beispiele aus dem Stand der Technik werden beispielsweise beschrieben in der US 2005/089432 A1 , der KR 2016 0058838 A , und der WO 2016/127226 A2 . Die US 2005/089432 A1 offenbart ein Verfahren zum Steuern der Ölumwälzung in einem öleinspritzten Schraubenkompressor, der zwischen dem Ölabscheider und dem Kompressorelement eine Ölumwälzleitung aufweist, in der ein Ölkühler installiert ist, der durch einen Durchgang oder eine Umleitung überbrückt wird. Die KR 2016 0058838 A offenbart einen ähnlichen Vorrichtungsaufbau wie die US 2005/089432 A1 . Die WO 2016/127226 A2 offenbart eine Vorrichtung zum Steuern der Öltemperatur einer Öleinspritzkompressoranlage mit einem Kompressorelement, das mit einem Gaseinlass und einem Auslass für Druckgas versehen ist, der mit einem Ölabscheider verbunden ist, der mittels einer Einspritzleitung mit dem vorgenannten Kompressorelement verbunden ist, und wobei ein Kühler in einem Teil der Einspritzleitung angebracht ist, der umgangen werden kann mittels einer Bypassleitung.
  • Die aus dem Stand der Technik bekannten ölgeschmierten Kompressorsysteme, die beispielsweise in Hybridfahrzeugen Einsatz finden, weisen üblicherweise einen wassergekühlten Wärmeübertrager zur Kühlung des sich innerhalb des Kompressorsystems befindlichen Öls auf.
  • Dabei wird die Kühlung des Öls üblicherweise durch ein Wachs-Thermostat gesteuert, welches das Öl ab einer gewissen Temperaturschwelle zur Kühlung dem Wärmeübertrager zuführt. Im Falle niedriger Umgebungstemperatur kann der sogenannte Umschaltpunkt des Wachs-Thermostats nicht erreicht werden, weil der Kompressor üblicherweise nicht kontinuierlich betrieben wird, sondern in einem Teillast-Zyklus arbeitet. Demzufolge verbleiben die Öltemperatur und die Bauteiltemperaturen des Kompressors bei niedrigen Umgebungstemperaturen im Regelfall vergleichsweise niedrig. In diesem Zusammenhang wird es schwierig, die übliche Betriebstemperatur, die im Bereich von ca. 90°C liegt, zu erreichen. Hier kann es auch zu einer nicht gewünschten Wasserkondensation oder Feuchtigkeitskondensation im Gehäuse und Ventilen des Kompressors kommen.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, ein Kompressorsystem eines Fahrzeugs, insbesondere eines Nutzfahrzeugs, der eingangs genannten Art in vorteilhafter Weise weiterzubilden, insbesondere dahingehend, dass der Kompressor hinsichtlich seines Temperaturmanagements verbessert werden kann, es erleichtert wird, die übliche Betriebstemperatur zu erreichen, insgesamt den Kompressor effizienter betreiben zu können und etwaige Kondensationen zu verhindern.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Kompressorsystem mit den Merkmalen des Anspruchs 1. Danach ist vorgesehen, dass ein Kompressorsystem eines Fahrzeugs, insbesondere eines Nutzfahrzeugs, wenigstens einen Kompressor, der wenigstens einen Ölsumpf und wenigstens eine Temperaturüberwachungseinrichtung aufweist, und wenigstens einen Wärmeübertrager umfasst, wobei der Kompressor, der Ölsumpf, der Wärmeübertrager sowie die Temperaturüberwachungseinrichtung wirkverbunden sind, wobei ferner die Temperaturüberwachungseinrichtung wenigstens einen Kompressoranlaufschaltzustand und wenigstens einen Kompressorniedertemperaturschaltzustand aufweist, wobei der Kompressoranlaufschaltzustand wenigstens einem ersten Temperaturbereich des Öls und der Kompressorniedertemperaturschaltzustand wenigstens einem zweiten Temperaturbereich des Öls zugeordnet ist, wobei im Kompressoranlaufschaltzustand das aus dem Kompressor ausströmende Öl diesem wenigstens über den Wärmeübertrager zur Erwärmung des Öls rückführbar ist und im Kompressorniedertemperaturschaltzustand das aus dem Kompressor ausströmende Öl diesem nicht über den Wärmeübertrager rückführbar ist.
  • Die Erfindung basiert auf dem Grundgedanken, das Öl des Kompressors bei niedrigen Temperaturen der Bauteile des Kompressors zum Beispiel infolge niedriger Außentemperaturen und/oder während des Anlaufvorgangs bei Bedarf, z.B. nach längerem Stillstand, zu erwärmen. Die Erwärmung des Öls erfolgt über einen Wärmeübertrager des Kompressorsystems, der mit einer Wärmequelle des Nutzfahrzeugs verbunden ist. Zur Regelung der Erwärmung des Öls weist das Kompressorsystem zusätzlich eine Temperaturüberwachungseinrichtung auf, die in Abhängigkeit der jeweiligen Betriebstemperatur des Kompressors regelbar ist. Falls sich die Temperatur des Kompressors sowie dessen Öls beispielsweise während des Anlaufvorgangs in einem ersten, niedrigen Temperaturbereich (z.B. unter 0°C) befindet, ist die Temperaturüberwachungseinrichtung derart eingerichtet, das Öl des Kompressors über den Wärmeübertrager zusätzlich zu erwärmen. Die Temperaturüberwachungseinrichtung befindet sich bei diesem ersten niedrigen Temperaurbereich in einem Kompressoranlaufschaltzustand. Da sich das Öl aufgrund des Kompressorbetriebs sowie durch das Zuführen von vorgewärmtem Öl kontinuierlich weiter erwärmt, wechselt die Temperaturüberwachungseinrichtung nach Übergang von dem ersten niedrigen in einen zweiten Temperaturbereich zu einem Kompressomiedertemperaturschaltzustand, in dem das aus dem Kompressor ausströmende Öl diesem nicht mehr über den Wärmeübertrager rückgeführt und dort erwärmt wird.
  • Im Übrigen kann vorgesehen sein, dass der Kompressor ferner einen Ölfilter aufweist, so dass im Kompressorniedertemperaturschaltzustand der Temperaturüberwachungseinrichtung das aus dem Kompressor ausströmende Öl diesem wenigstens über den Ölfilter rückführbar ist. Das Vorsehen eines Ölfilters ist für die Verschleißminimierung des Kompressors von Vorteil, da der Ölfilter betriebsbedingte und verschleißfördernde Partikel aus dem Öl filtert und es somit reinigt. Zudem ist es besonders vorteilhaft, während des Kompressorniedertemperaturschaltzustands der Temperaturüberwachungseinrichtung das aus dem Kompressor ausströmende Öl diesem wieder über den Ölfilter zurückzuführen, da nun das Öl bereits ungefähr die mittlere Temperatur des Wärmeübertragers erreicht hat und weiter über den Kompressorbetrieb erwärmt werden kann und um ferner den Wärmeübertrager nicht zusätzlich zu belasten.
  • Weiter ist vorstellbar, dass die Temperaturüberwachungseinrichtung wenigstens einen Kompressornormaltemperaturschaltzustand aufweist, wobei im Kompressornormaltemperaturschaltzustand das aus dem Kompressor ausströmende Öl diesem wenigstens über den Wärmeübertrager zur Kühlung des Öls rückführbar ist. Im Normalbetriebszustand des Kompressors würde sich das Öl, falls es weiterhin nur über den Ölfilter rückgeführt wird, nach einer gewissen Betriebsdauer insoweit erwärmen, dass infolgedessen die gesetzlich zulässige Höchsttemperatur überschritten wird oder temperaturbedingte Schädigungen des Kompressor eintreten würden. Folglich wechselt die Temperaturüberwachungseinrichtung bei einer Öltemperatur, die den zweiten Temperaturbereich (z.B. ca. 80°C bis ca. 90°C) übersteigt, in einen Kompressornormaltemperaturschaltzustand, so dass das Öl dem Kompressor abermals über den Wärmeübertrager rückgeführt wird, allerdings in diesem Fall zu dessen Kühlung.
  • Zudem ist denkbar, dass die Temperaturüberwachungseinrichtung wenigstens ein temperaturabhängig betätigbares Steuer- und/oder Regelventil aufweist. Das Vorsehen eines Steuer- und/oder Regelventils ermöglicht eine sehr präzise, zuverlässige und verlustfreie Zuteilung des Ölstroms auf den Ölfilter oder den Wärmeübertrager innerhalb der verschiedenen Schaltzustände der Temperaturüberwachungseinrichtung.
  • Außerdem kann vorgesehen sein, dass das temperaturabhängig betätigbare Steuer- und/oder Regelventil, ein 4/2-Wege-Steuer- und/oder Regelventil, insbesondere ein 4/2-Wege-Magnet-Steuer- und/oder Regelventil, ist. Die Ausgestaltung als 4/2-Wege-Magnet-Steuer- und/oder Regelventil ist besonders deshalb vorteilhaft, da es in Antwort auf elektrische Steuersignale beispielsweise einer elektronischen Steuer- oder Regelungseinrichtung sehr schnell sowie mit einer großen funktionalen Variabilität steuerbar bzw. regelbar ist. Zudem kann das 4/2-Wege-Steuer- und/oder Regelventil auch als pneumatisch bzw. elektro-pneumatisch betätigbares 4/2-Wege-Steuer- und/oder Regelventil ausgebildet sein.
  • Im Übrigen ist es möglich, dass sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil im Kompressoranlaufschaltzustand befindet, falls die Öltemperatur kleiner oder gleich einer Temperatur eines weiteren Mediums ist, das sich in dem Wärmeübertrager befindet. Hierbei handelt es sich um eine sehr einfache und effiziente Möglichkeit, das Steuer- und/oder Regelventil mittels einer Steuerungs- oder Regelungseinrichtung zu steuern bzw. zu regeln, da im Wesentlichen die Öltemperatur mit der Temperatur des weiteren Mediums zu vergleichen ist. Dies kann beispielsweise derart geschehen, dass eine Steuerungs- oder Regelungseinrichtung einer Luftaufbereitungseinrichtung des Nutzfahrzeugs die Temperatursignale der Öltemperatur sowie der Temperatur des weiteren Mediums über einen CAN-Bus zunächst empfängt und vergleicht. In Abhängigkeit davon ist sodann das Steuer- und/oder Regelventil mittels eines entsprechend ausgegebenen Signals steuerbar bzw. regelbar. Im Falle eines pneumatisch bzw. elektro-pneumatisch betätigbaren 4/2-Wege-Steuer- und/oder Regelventils ist es denkbar, die entsprechenden Signale der Öltemperatur und der Temperatur des weiteren Mediums im Wärmeübertrager wie bereits zuvor beschreiben mittels der elektronischen Steuerungs- oder Regelungseinrichtung zu vergleichen und abhängig davon ein pneumatisches Schaltsignal zu erzeugen.
  • Des Weiteren ist vorstellbar, dass bei einer Öltemperatur von kleiner als ca. 50°C, insbesondere kleiner als ca. 40°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil im Kompressoranlaufschaltzustand befindet. Insbesondere in einem Temperaturbereich der unterhalb von ca. 50°C liegt, ist die Erwärmung des Öls über den Wärmeübertrager besonders effizient, da der Wärmeübertrager üblicherweise in einem mittleren Nenntemperaturbereich von ca. 40°C bis ca. 50°C betrieben wird.
  • Ebenfalls ist denkbar, dass bei einer Öltemperatur von größer als ca. 50°C, insbesondere größer als ca. 40°C, sowie bei einer Öltemperatur von kleiner als ca. 90°C, insbesondere kleiner als ca. 80°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil im Kompressorniedertemperaturschaltzustand befindet. In einem Temperaturbereich ab ca. 40°C ist der Kompressor bereits ausreichend vorgewärmt, so dass dieser infolge seines weiteren Betriebs nun eigenständig die weitere Erwärmung des Öls ohne zusätzliche Unterstützung durch den Wärmeübertrager gewährleisten kann.
  • Darüber hinaus kann vorgesehen sein, dass bei einer Öltemperatur von größer als ca. 90°C, insbesondere größer als ca. 80°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil im Kompressornormaltemperaturschaitzustand befindet. Je nach Lastzustand des Kompressors kann dessen Öltemperatur einen Temperaturbereich von ca. 80°C bis ca. 90°C übersteigen, wodurch im Interesse der Betriebssicherheit eine erneute Kühlung des Öls notwendig wird und deshalb das Steuer- und/oder Regelventil in den Kompressornormaltemperaturschaltzustand wechselt.
  • Zusätzlich ist denkbar, dass die Temperaturüberwachungseinrichtung wenigstens ein erstes Wachsthermostatventil und wenigstens ein zweites Wachsthermostatventil aufweist. Da es sich bei Wachsthermostatventilen um verhältnismäßig günstige, vielfach erprobte und zuverlässige temperaturabhängige Schaltventile handelt, ist deren Verwendung innerhalb der Temperaturüberwachungseinrichtung besonders vorteilhaft.
  • Diesbezüglich kann vorgesehen sein, dass bei einer Öltemperatur von größer als ca. -50°C, insbesondere größer als ca. -40°C, sowie bei einer Öltemperatur von kleiner als ca. 50°C, insbesondere kleiner als ca. 40°C, sich das erste Wachsthermostatventil in einem ersten Schaltzustand und sich das zweite Wachsthermostatventil in einem ersten Schaltzustand befindet, so dass das aus dem Kompressor ausströmende Öl diesem wenigstens über den Wärmeübertrager zur Erwärmung des Öls rückführbar ist. Insbesondere in einem Temperaturbereich, der zwischen ca. -50°C und ca. 50°C liegt, ist die Erwärmung des Öls über den Wärmeübertrager besonders effizient, da der Wärmeübertrager üblicherweise bei einem Temperaturbereich von ca. 40°C bis ca. 50°C betrieben wird. Das Ende von ca. 40°C bis ca. 50°C dieses Temperaturbereichs ist der Öffnungs- und Schließcharakteristik des ersten Wachsthermostatventils geschuldet.
  • Auch ist vorstellbar, dass bei einer Öltemperatur von größer als ca. 50°C, insbesondere größer als ca. 40°C, sowie bei einer Öltemperatur von kleiner als ca. 90°C, insbesondere kleiner als ca. 80°C, sich das erste Wachsthermostatventil in einem zweiten Schaltzustand und sich das zweite Wachsthermostatventil in einem ersten Schaltzustand befindet, so dass das aus dem Kompressor ausströmende Öl diesem wenigstens über den Ölfilter rückführbar ist. Bei einem Temperaturbereich ab ca. 40°C ist das Öl des Kompressors bereits ausreichend vorgewärmt und infolge seines Betriebs kann dieser nun eigenständig die weitere Erwärmung des Öls gewährleisten. Das Ende von ca. 80°C bis ca. 90°C dieses Temperaturbereichs ist der Öffnungs- und Schließcharakteristik des zweiten Wachsthermostatventils geschuldet.
  • Überdies ist denkbar, dass bei einer Öltemperatur von größer als ca. 90°C, insbesondere größer als ca. 80°C, sowie bei einer öltemperatur von kleiner als ca. 120°C, insbesondere kleiner als ca. 110°C, sich das erste Wachsthermostatventil in einem zweiten Schaltzustand und sich das zweite Wachsthermostatventil in einem zweiten Schaltzustand befindet, so dass das aus dem Kompressor ausströmende Öl diesem wenigstens über den Wärmeübertrager zur Kühlung des Öls rückführbar ist. Je nach Lastzustand des Kompressors kann dessen Öltemperatur einen Temperaturbereich von ca. 80°C bis ca. 90°C übersteigen. Im Interesse der Betriebssicherheit wird eine Kühlung des Öls erneut notwendig, woraus der jeweilige zweite Schaltzustand des ersten und zweiten Wachsthermostatventils resultiert, so dass das aus dem Kompressor ausströmende Öl diesem erneut über den Wärmeübertrager rückgeführt wird.
  • Weiterhin ist vorstellbar, dass der Betrieb des Kompressors bei einer Öltemperatur von größer als ca. 120°C, insbesondere größer als ca. 110°C, abschaltbar ist. Aus Gründen der Betriebssicherheit ist es wichtig, den Betrieb des Kompressors ab einer Öltemperatur von größer als ca. 120°C abzuschalten, so dass erstens der Wärmeübertrager nicht überlastet wird bzw. auf höhere Temperaturen ausgelegt werden muss und sich somit verteuert und zweitens der Kompressor infolge des Stillstands abkühlen kann.
  • Ferner kann vorgesehen sein, dass das Fahrzeug, insbesondere das Nutzfahrzeug, einen Hybridantrieb, insbesondere einen Hybridhauptantrieb, oder einen elektrischen Antrieb, insbesondere einen elektrischen Hauptantrieb, aufweist, Insbesondere im Zusammenhang mit einem Hybridhauptantrieb oder einem elektrischen Hauptantrieb des Fahrzeugs bietet sich die Möglichkeit die Abwärme der elektrischen Bauteile (z.B. Elektromotoren oder Leistungselektronik) vorteilhaft als Wärmequelle zur Erwärmung des Öls des Kompressors zu verwenden.
  • Zudem kann vorgesehen sein, dass der Wärmeübertrager ein flüssig-flüssig Wärmeübertrager ist. Flüssig-flüssig Wärmeübertrager zeichnen sich aufgrund der verwendbaren Flüssigkeiten durch sehr hohe Wärmewirkungsgrade aus, wodurch die Erwärmung bzw. die Kühlung des Öls noch effizienter und vorteilhafter durchgeführt werden kann.
  • Außerdem ist denkbar, dass der Wärmeübertrager wenigstens mit einem zu kühlenden elektrischen Bauteil des Fahrzeugs, insbesondere des Nutzfahrzeugs, fluidverbunden ist. Insbesondere die Leistungselektronik bzw. der Elektromotor eines Hybrid- oder Elektrohauptantriebs des Nutzfahrzeugs benötigen einen zusätzlichen Kühlkreislauf, der dazu verwendet werden kann, über den angesprochenen Wärmeübertrager das Öl des Kompressors zu erwärmen. Aufgrund der verhältnismäßig schnellen Erwärmung dieser elektrischen Bauteile kann insbesondere die Erwärmung des Öls des Kompressors noch schneller und dadurch noch effizienter erfolgen.
  • Zusätzlich kann vorgesehen sein, dass der Kompressor ein Verdrängerkompressor, insbesondere ein Schraubenkompressor und/oder ein Flügelzellenkompressor, ist. Verdrängerkompressoren weisen bei kleineren bis mittleren Massen- bzw. Volumenströmen einen sehr guten Wirkungsgrad auf und können verhältnismäßig einfach und folglich gewichtsoptimiert aufgebaut werden. Andere Konzepte von Verdrängerkompressoren wie etwa Hubkolbenkompressoren, Scrollkompressoren, Flüssigkeitsringkompressoren, Freikolbenkompressoren oder Rootskompressoren können ebenfalls Verwendung finden. Zudem ist es denkbar, dass der Kompressor ein Turbokompressor ist.
  • Weitere Einzelheiten und Vorteile der vorliegenden Erfindung sollen nun anhand von zwei in den Figuren dargestellten Ausführungsbeispielen näher erläutert werden.
  • Es zeigen:
  • Fig. 1
    eine teilweise schematische Schnittdarstellung eines ersten bzw. zweiten Ausführungsbeispiels eines erfindungsgemäßen Kompressorsystems mit einem Kompressor in Form eines Schraubenkompressors;
    Fig. 2
    eine erste schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung des ersten Ausführungsbeispiels des Kompressorsystems gemäß Fig. 1;
    Fig. 3
    eine zweite schematische Darstellung des ersten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 2;
    Fig. 4
    eine erste schematische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung des zweiten Ausführungsbeispiels des Kompressorsystems gemäß Fig. 1;
    Fig. 5
    eine zweite schematische Darstellung des zweiten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 4;
    Fig. 6
    eine dritte schematische Darstellung des zweiten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 4;
    Fig. 7
    eine schematische Schnittdarstellung eines Kompressors in Form eines Flügelzellenkompressors 10' eines dritten bzw. vierten Ausführungsbeispiels eines erfindungsgemäßen Kompressorsystems;
    Fig. 8
    eine schematische perspektivische Darstellung des dritten bzw. vierten Ausführungsbeispiels des Kompressorsystems gemäß Fig. 7;
    Fig. 9
    eine erste schematische Darstellung eines dritten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung des dritten Ausführungsbeispiels des Kompressorsystems gemäß Fig. 8;
    Fig. 10
    eine zweite schematische Darstellung des dritten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 9;
    Fig. 11
    eine erste schematische Darstellung eines vierten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung des vierten Ausführungsbeispiels des Kompressorsystems gemäß Fig. 8;
    Fig. 12
    eine zweite schematische Darstellung des vierten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 11;
    Fig. 13
    eine dritte schematische Darstellung des vierten Ausführungsbeispiels der Temperaturüberwachungseinrichtung gemäß Fig. 11;
    Fig. 14
    ein Temperatur-Zeit-Diagramm einer Erwärmung des Öls eines Kompressors sowie eines Kühlkreislaufs eines Fahrzeugs gemäß eines konventionellen Kompressorsystems;
    Fig. 15
    ein Temperatur-Zeit-Diagramm einer Erwärmung des Öls eines Kompressors sowie eines Kühlkreislaufs eines Fahrzeugs gemäß eines erfindungsgemäßen Kompressorsystems gemäß Fig. 1 bis 13; und
    Fig. 16
    eine Gegenüberstellung der Diagramme gemäß Fig. 14 und Fig. 15.
  • Fig. 1 zeigt in einer schematischen Schnittdarstellung einen Kompressor 10 eines Kompressorsystems 100, 200 im Sinne eines ersten bzw. zweiten Ausführungsbeispiels für die vorliegende Erfindung.
  • Der Kompressor 10 gemäß Fig. 1 ist ein Schraubenkompressor 10.
  • Der Schraubenkompressor 10 weist einen Befestigungsflansch 12 zur mechanischen Befestigung des Schraubenkompressors 10 an einem hier nicht näher gezeigten Antrieb in Form eines Elektromotors auf.
  • Gezeigt ist jedoch die Eingangswelle 14, über die das Drehmoment vom Elektromotor auf eine der beiden Schrauben 16 und 18, nämlich die Schraube 16 übertragen wird.
  • Die Schraube 18 kämmt mit der Schraube 16 und wird über diese angetrieben.
  • Der Schraubenkompressor 10 weist ein Gehäuse 20 auf, in dem die wesentlichen Komponenten des Schraubenkompressors 10 untergebracht sind.
  • Das Gehäuse 20 ist mit Öl 22 befüllt.
  • Das Öl 22 bildet im montierten und betriebsfertigen Zustand des Schraubenkompressors 10 in dessen unteren Gehäusebereich einen Ölsumpf 22a aus.
  • Lufteingangsseitig ist am Gehäuse 20 des Schraubenkompressors 10 ein Einlassstutzen 24 vorgesehen. Der Einlassstutzen 24 ist dabei derart ausgebildet, dass an ihm ein Luftfilter 26 angeordnet ist. Außerdem ist radial am Lufteinlassstutzen 24 ein Lufteinlass 28 vorgesehen. Im Bereich zwischen Einlassstutzen 24 und der Stelle, an dem der Einlassstutzen 24 am Gehäuse 20 ansetzt, ist ein federbelasteter Ventileinsatz 30 vorgesehen, hier als Axialdichtung ausgeführt.
  • Dieser Ventileinsatz 30 dient als Rückschlagventil.
  • Stromabwärts des Ventileinsatzes 30 ist ein Luftzuführkanal 32 vorgesehen, der die Luft den beiden Schrauben 16, 18 zuführt.
  • Ausgangsseitig der beiden Schrauben 16, 18 ist ein Luftauslassrohr 34 mit einer Steigleitung 36 vorgesehen.
  • Im Bereich des Endes der Steigleitung 36 ist ein Temperaturfühler 38 vorgesehen, mittels dessen die Öltemperatur überwachbar ist.
  • Weiter vorgesehen ist im Luftauslassbereich ein Halter 40 für ein Luftentölelement 42.
  • Der Halter 40 für das Luftentölelement weist im montierten Zustand im dem Boden zugewandten Bereich (wie auch in Fig. 1 gezeigt) das Luftentölelement 42 auf.
  • Weiter vorgesehen ist im Inneren des Luftentölelements 42 ein entsprechendes Filtersieb bzw. bekannte Filter- und Ölabscheidevorrichtungen 44, die nicht näher im Einzelnen spezifiziert werden.
  • Im zentralen oberen Bereich, bezogen auf den montierten und betriebsfertigen Zustand (also wie in Fig. 1 gezeigt), weist der Halter für das Luftentölelement 40 eine Luftausgangsöffnung 46 auf, die zu einem Rückschlagventil 48 und einem Mindestdruckventil 50 führen. Das Rückschlagventil 48 und das Mindestdruckventil 50 können auch in einem gemeinsamen, kombinierten Ventil ausgebildet sein.
  • Nachfolgend des Rückschlagventils 48 ist der Luftauslass 51 vorgesehen.
  • Der Luftauslass 51 ist mit entsprechend bekannten Druckluftverbrauchern in der Regel verbunden.
  • Um das im Luftentölelement 42 befindliche und abgeschiedene Öl 22 wieder in das Gehäuse 20 zurückzuführen, ist eine Steigleitung 52 vorgesehen, die ausgangs des Halters 40 für das Luftentölelement 42 beim Übertritt in das Gehäuse 20 ein Filter- und Rückschlagventil 54 aufweist.
  • Stromabwärts des Filter- und Rückschlagventils 54 ist in einer Gehäusebohrung eine Düse 56 vorgesehen. Die Ölrückführleitung 58 führt zurück in etwa den mittleren Bereich der Schraube 16 oder der Schraube 18, um dieser wieder Öl 22 zuzuführen.
  • Innerhalb des im montierten Zustand befindlichen Bodenbereichs des Gehäuses 20 ist eine Ölablassschraube 59 vorgesehen. Über die Ölablassschraube 59 kann eine entsprechende Ölablauföffnung geöffnet werden, über die das Öl 22 abgelassen werden kann.
  • Im unteren Bereich des Gehäuses 20 ist auch der Ansatz 60 vorhanden, an dem der Ölfilter 62 befestigt wird. Über einen Ölfiltereinlasskanal 64, der im Gehäuse 20 angeordnet ist, wird das Öl 22 zunächst zu einer Temperaturüberwachungseinrichtung 66 geleitet, die als ein Thermostatventil 66a ausgebildet ist.
  • Anstelle des Thermostatventils 66 kann eine Steuerungs- undloder Regelungseinrichtung vorgesehen sein, mittels derer die Öltemperatur des im Gehäuse 20 befindlichen Öls 22 überwachbar und auf einen Sollwert einstellbar ist.
  • Stromabwärts des Thermostatventils 66 ist sodann der Öleinlass des Ölfilters 62, der über eine zentrale Rückführleitung 68 das Öl 22 wieder zurück zur Schraube 18 oder zur Schraube 16, aber auch zum ölgeschmierten Lager 70 der Welle 14 führt. Im Bereich des Lagers 70 ist auch eine Düse 72 vorgesehen, die im Gehäuse 20 im Zusammenhang mit der Rückführleitung 68 vorgesehen ist.
  • Der Kühler 74 ist am Ansatz 60 angeschlossen.
  • Im oberen Bereich des Gehäuses 20 (bezogen auf den montierten Zustand) befindet sich ein Sicherheitsventil 76, über das ein zu großer Druck im Gehäuse 20 abgebaut werden kann.
  • Vor dem Mindestdruckventil 50 befindet sich eine Bypassleitung 78, die zu einem Entlastungsventil 80 führt. Über dieses Entlastungsventil 80, das mittels einer Verbindung mit der Luftzuführung 32 angesteuert wird, kann Luft in den Bereich des Lufteinlasses 28 zurückgeführt werden.
  • In diesem Bereich können ein nicht näher gezeigtes Entlüftungsventil und auch eine Düse (Durchmesserverringerung der zuführenden Leitung) vorgesehen sein.
  • Darüber hinaus kann ungefähr auf Höhe der Leitung 34 in der Außenwand des Gehäuses 20 ein Öllevelsensor 82 vorgesehen sein. Dieser Öllevelsensor 82 kann beispielsweise ein optischer Sensor sein und derart beschaffen und eingerichtet, dass anhand des Sensorsignals erkannt werden kann, ob der Ölstand im Betrieb oberhalb des Öllevelsensors 82 ist oder ob der Öllevelsensor 82 frei liegt und hierdurch der Ölstand entsprechend gefallen ist.
  • Im Zusammenhang mit dieser Überwachung kann auch eine Alarmeinheit vorgesehen sein, die eine entsprechende Fehlermeldung oder Warnmeldung an den Nutzer des Systems ausgibt bzw. weiterleitet.
  • Die Funktion des in Fig. 1 gezeigten Schraubenkompressors 10 ist dabei wie folgt:
    Luft wird über den Lufteinlass 28 zugeführt und gelangt über das Rückschlagventil 30 zu den Schrauben 16, 18, wo die Luft komprimiert wird. Das komprimierte Luft-Öl-Gemisch, das mit einem Faktor zwischen 5- bis 16facher Komprimierung nach den Schrauben 16 und 18 durch die Auslassleitung 34 über das Steigrohr 36 aufsteigt, wird direkt auf den Temperaturfühler 38 geblasen.
  • Die Luft, die noch teilweise Ölpartikel trägt, wird sodann über den Halter 40 in das Luftentölelement 42 geführt und gelangt, sofern der entsprechende Mindestdruck erreicht wird, in die Luftauslassleitung 51.
  • Das im Gehäuse 20 befindliche Öl 22 wird über den Ölfilter 62 und ggf. über den Wärmeübertrager 74 auf Betriebstemperatur gehalten.
  • Sofern keine Kühlung notwendig ist, wird der Wärmeübertrager 74 nicht verwendet und ist auch nicht zugeschaltet.
  • Die entsprechende Zuschaltung erfolgt über das Thermostatventil 68. Nach der Aufreinigung im Ölfilter 62 wird über die Leitung 68 Öl der Schraube 18 oder der Schraube 16, aber auch dem Lager 72 zugeführt. Die Schraube 16 oder die Schraube 18 wird über die Rückführleitung 52, 58 mit Öl 22 versorgt, hier erfolgt die Aufreinigung des Öls 22 im Luftentölelement 42.
  • Über den nicht näher gezeigten Elektromotor, der sein Drehmoment über die Welle 14 auf die Schraube 16 überträgt, die wiederum mit der Schraube 18 kämmt, werden die Schrauben 16 und 18 des Schraubenkompressors 10 angetrieben.
  • Über das nicht näher gezeigte Entlastungsventil 80 wird sichergestellt, dass im Bereich der Zuleitung 32 nicht der hohe Druck, der im Betriebszustand beispielsweise ausgangsseitig der Schrauben 16, 18 herrscht, eingesperrt werden kann, sondern dass insbesondere beim Anlaufen des Kompressors im Bereich der Zuleitung 32 stets ein niedriger Eingangsdruck, insbesondere Atmosphärendruck, besteht. Andernfalls würde mit einem Anlaufen des Kompressors zunächst ein sehr hoher Druck ausgangsseitig der Schrauben 16 und 18 entstehen, der den Antriebsmotor überlasten würde.
  • Fig. 2 zeigt eine erste schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung 166.
  • In Fig. 2 ist weiter ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kompressorsystems 100 eines Nutzfahrzeugs dargestellt.
  • Das Kompressorsystem 100 weist einen Kompressor 10 auf.
  • Der Kompressor 10 ist gemäß Fig. 2 und auch im Zusammenhang mit der weiteren Figurenbeschreibung der nachfolgenden Figuren 3 bis 6 als Schraubenkompressor 10 ausgebildet.
  • Der Kompressor 10 umfasst zudem einen Öl 22 aufweisenden Ölsumpf 22a, einen Ölfilter 62, eine Temperaturüberwachungseinrichtung 166 und einen Wärmeübertrager 74.
  • Die Temperaturüberwachungseinrichtung 166 ist als temperaturabhängig betätigbares Steuer- oder Regelventil 166b ausgebildet.
  • Gemäß Fig. 2 ist das temperaturabhängig betätigbare Steuer- oder Regelventil 166b ein 4/2-Wege-Magnet-Steuer- oder Regelventil 166b.
  • Ferner kann das temperaturabhängig betätigbare Steuer- oder Regelventil 166b ein pneumatisch betätigbares Steuer- oder Regelventil 166b sein.
  • Der Ölsumpf 22a des Kompressors 10, der Ölfilter 62, die Temperaturüberwachungseinrichtung 166 sowie der Wärmeübertrager 74 sind wirkverbunden.
  • Demnach ist der Kompressor 10 mittels einer Kompressorausgangsleitung 102 mit dem 4/2-Wege-Magnet-Steuer- oder Regelventil 166b verbunden.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ist stromabwärts des Kompressors 10 angeordnet.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ist ferner über eine Ventilausgangsleitung 104 mit dem Wärmeübertrager 74 verbunden.
  • Der Wärmeübertrager 74 weist ferner eine Wärmeübertragereingangsleitung 106 und eine Wärmeübertragerausgangsleitung 108 auf.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ist zusätzlich über eine Ventileingangsleitung 110 mit dem Wärmeübertrager 74 verbunden.
  • Zusätzlich ist das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b über eine Ölfiltereingangsleitung 112 mit dem Ölfilter 62 verbunden.
  • Der Ölfilter 62 ist stromabwärts des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b angeordnet.
  • Weiter ist der Ölfilter 62 über eine Kompressoreingangsleitung 114 mit dem Kompressor 10 verbunden.
  • Der Ölfilter 62 ist zudem stromaufwärts des Kompressors 10 angeordnet.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ist außerdem durch eine Signalleitung 116 mit einer elektronischen oder pneumatischen Steuer- oder Regelungseinrichtung (nicht in Fig. 2 gezeigt) elektrisch oder pneumatisch verbunden.
  • Die Funktion des ersten Ausführungsbeispiels des Kompressorsystems 100 mit einer Temperaturüberwachungseinrichtung 166 in Form des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b lässt sich wie folgt beschreiben:
    Da das Öl 22 im Ölsumpf 22a während des Betriebs des Kompressors 10 kontinuierlich mit dessen Arbeitsdruck beaufschlagt wird, strömt, sobald der Kompressor 10 seinen Betrieb aufgenommen hat, das Öl 22 des Ölsumpfes 22a in der Nähe der Kompressorausgangsleitung 102 durch diese aus dem Kompressor 10 aus.
  • Das Öl 22 durchströmt sodann die Kompressorausgangsleitung 102, bis es in das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b eintritt.
  • In Abhängigkeit der Öltemperatur weist das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b entsprechend den drei Temperaturbereichen zugeordnete Schaltzustände auf.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b weist dementsprechend einen Kompressoranlaufschaltzustand, einen Kompressorniedertemperaturschaltzustand sowie einen Kompressornormaltemperaturschaltzustand auf.
  • Die Öltemperatur kann durch einen Temperatursensor, der die Temperatur des Öls 22 innerhalb des Ölsumpfes 22a, innerhalb des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b oder innerhalb der Verbindungsleitung 102 erfasst, in Form eines Signals an eine mit dem Temperatursensor elektrisch verbundene Steuerungs- oder Regelungseinrichtung übertragen werden.
  • In Antwort auf das Signal des Temperatursensors kann das 4/2-Wege-Magnet-Steuer- oder Regetventil 166b mittels der Steuerungs- oder Regelungseinrichtung betätigt werden.
  • Bei einer Öltemperatur von kleiner als ca. 40°C befindet sich 4/2-Wege-Magnet-Steuer- oder Regelventil 166b im Kompressoranlaufschaltzustand (vgl. Fig. 2).
  • Der Kompressoranlaufschaltzustand ist folglich einem ersten Temperaturbereich des Öls 22 zugeordnet.
  • Dieser erste Temperaturbereich von kleiner als ca. 40°C existiert dann, wenn der Kompressor 10 über einen längeren Zeitraum, z.B. bei Stillstand des Nutzfahrzeugs über Nacht, nicht in Betrieb war.
  • Alternativ dazu kann sich das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b im Kompressoranlaufschaltzustand befinden, falls die Öltemperatur kleiner oder gleich einer Temperatur eines weiteren Mediums ist, das sich in dem Wärmeübertrager 74 befindet.
  • Das Medium kann Wasser oder ein Wasser-/Glykol-Gemisch oder ein ähnliches Kühlmittel sein.
  • Die Temperatur des Mediums kann durch einen weiteren Temperatursensor, der dessen Temperatur innerhalb des Wärmeübertragers 74, innerhalb der Wärmeübertragereingangsleitung 106 bzw. innerhalb der Wärmeübertragerausgangsleitung 108 erfasst, ebenfalls in Form eines entsprechenden Signals an eine mit dem Temperatursensor elektrisch verbundene Steuerungs- oder Regelungseinrichtung übertragen werden.
  • Es ist auch möglich, dass die Steuerungs- oder Regelungseinrichtung den Temperaturwert des weiteren Mediums über den Datenbus des Nutzfahrzeugs von einer dem Fahrzeugkühlkreislauf zugeordneten Messstelle empfängt.
  • In Antwort auf ein Vergleich der jeweiligen Signale beider Temperatursensoren kann das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b mittels der Steuerungs- oder Regelungseinrichtung betätigt werden.
  • Im Kompressoranlaufschaltzustand ist das aus dem Kompressor 10 ausströmende Öl 22 diesem wenigstens über den Wärmeübertrager 74 zur Erwärmung des Öls 22 rückführbar.
  • Folglich ist im Kompressoranlaufschaltzustand die Kompressorausgangsleitung 102 über das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b mit der Ventilausgangsleitung 104 verbunden, wodurch das Öl 22 von dem 4/2-Wege-Magnet-Steuer- oder Regelventil 166b zunächst in den Wärmeübertrager 74 einströmt und sich infolgedessen erwärmt.
  • Nach dem Durchströmen des Wärmeübertragers 74 strömt das Öl 22 durch die Ventileingangsleitung 110 wiederum zurück in das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ein und durchströmt dieses erneut.
  • Sodann verlässt das Öl 22 das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b und strömt über die Ölfiltereingangsleitung 112 in den Ölfilter 62 ein und wird dort gereinigt.
  • Anschließend strömt das erwärmte Öl 22 aus dem Ölfilter 62 aus und strömt über die Kompressoreingangsleitung 114 wiederum in den Kompressor 10 ein.
  • Durch das Einströmen des durch den Wärmeübertrager 74 vorgewärmten Öls 22 wird so die Erwärmung des Kompressors 10 insgesamt beschleunigt.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b verbleibt bis zu einer Öltemperatur von kleiner als ca. 40°C im Kompressoranlaufschaltzustand.
  • Bei einer Öltemperatur von größer als ca. 40°C sowie bei einer Öltemperatur von kleiner als ca. 80°C, befindet sich das temperaturabhängig betätigbare 4/2-Wege-Magnet-Steuer- oder Regelventil 166b im Kompressomiedertemperaturschaltzustand.
  • Somit ist der Kompressorniedertemperaturschaltzustand einem zweiten Temperaturbereich des Öls 22 zugeordnet.
  • Fig. 3 zeigt diesbezüglich eine zweite schematische Darstellung des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b gemäß Fig. 2 im Kompressorniedertemperaturschaltzustand.
  • Im Kompressorniedertemperaturschaltzustand ist das aus dem Kompressor 10 ausströmende Öl 22 diesem nicht über den Wärmeübertrager 74 rückführbar.
  • Folglich ist im Kompressorniedertemperaturschaltzustand des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b das aus dem Kompressor 10 ausströmende Öl 22 diesem wenigstens über den Ölfilter 62 rückführbar.
  • Hierbei ist die Kompressorausgangsleitung 102 direkt über das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b mit der Ölfiltereingangsleitung 112 verbunden, wodurch der Wärmeübertrager 74 überbrückt wird.
  • Folglich strömt das Öl 22 über die Kompressorausgangsleitung 102 zunächst in das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ein.
  • Sodann verlässt das Öl 22 das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b und strömt über die Ölfiltereingangsleitung 112 in den Ölfilter 62 ein und wird dort gereinigt.
  • Anschließend strömt das Öl 22 aus dem Ölfilter 62 aus und strömt über die Kompressoreingangsleitung 114 wiederum in den Kompressor 10 ein.
  • Das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b verbleibt bis zu einer Öltemperatur von kleiner als ca. 80°C im Kompressorniedertemperaturschaltzustand.
  • Bei einer Öltemperatur von größer als ca. 80°C befindet das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b im Kompressornormaltemperaturschaltzustand,
  • Folglich ist der Kompressornormaltemperaturschaltzustand einem dritten Temperaturbereich des Öls 22 zugeordnet.
  • Da das Öl 22 im Kompressornormaltemperaturschaltzustand erneut durch den Wärmeübertrager 74 (in diesem Fall allerdings zu dessen Kühlung) strömt, ergibt sich die gleiche Schaltstellung des 4/2-Wege-Magnet-Steuer- oder Regelventils 166b wie schon beim Kompressoranlaufschaltzustand (vgl. Fig. 2).
  • Im Kompressornormaltemperaturschaltzustand ist das aus dem Kompressor 10 ausströmende Öl 22 diesem daher erneut wenigstens über den Wärmeübertrager 74 zur Kühlung des Öls 22 rückführbar.
  • Folglich ist im Kompressornormaltemperaturschaltzustand die Kompressorausgangsleitung 102 über das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b mit der Ventilausgangsleitung 104 verbunden, wodurch das Öl 22 von dem 4/2-Wege-Magnet-Steuer- oder Regelventil 166b in den Wärmeübertrager 74 einströmt und sich infolgedessen abkühlt.
  • Schließlich wird der Wärmeübertrager 74 üblicherweise bei einer mittleren Temperatur von ca. 40°C bis 50°C betrieben.
  • Nach dem Durchströmen des Wärmeübertragers 74 strömt das Öl 22 durch die Ventileingangsleitung 110 wiederum zurück in das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b ein und durchströmt dieses erneut.
  • Sodann verlässt das Öl 22 das 4/2-Wege-Magnet-Steuer- oder Regelventil 166b und strömt über die Ölfiltereingangsleitung 112 in den Ölfilter 62 ein und wird dort gereinigt. Anschließend strömt das abgekühlte Öl 22 aus dem Ölfilter 62 aus und strömt über die Kompressoreingangsleitung 114 wiederum in den Kompressor 10 ein.
  • Durch das Einströmen des durch den Wärmeübertrager 74 gekühlten Öls 22 wird so die weitere Erwärmung des Kompressors 10 während dessen weiteren Betrieb verlangsamt.
  • Der Wärmeübertrager 74 als flüssig-flüssig Wärmeübertrager 74 ausgebildet.
  • Das Medium, welches das Öl 22 des Kompressors 10 je nach Schaltzustand des 4/2-Wege-Magnet-Steuer- oder Regelventil 166b kühlt oder wärmt ist Wasser oder ein Wasser-/Glykol-Gemisch oder ein ähnliches Kühlmittel.
  • Das Medium (Kühlmittel) wird dem Wärmeübertrager 74 mittels eines weiteren Fluidkreises in Form eines Kühlkreislaufs des Nutzfahrzeugs mittels der Wärmeübertragereingangsleitung 106 und der Wärmeübertragerausgangsleitung 108 zu- und wieder abgeführt.
  • Ferner ist der Wärmeübertrager 74 mit einem zu kühlenden elektrischen Bauteil (nicht in Fig. 3 gezeigt) des Nutzfahrzeugs, fluidverbunden.
  • Fig. 4 zeigt weiter eine erste schematische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung 266.
  • In Fig. 4 ist weiter ein zweites Ausführungsbeispiel des erfindungsgemäßen Kompressorsystems 200 gemäß Fig. 1 eines Nutzfahrzeugs dargestellt.
  • Das Kompressorsystem 200 weist einen Kompressor 10 mit einem Gehäuse 20 auf.
  • Der Kompressor 10 umfasst zudem einen Öl 22 aufweisenden Ölsumpf 22a, einen Ölfilter 62, eine Temperaturüberwachungseinrichtung 266 und einen Wärmeübertrager 74.
  • Die erfindungsgemäße Temperaturüberwachungseinrichtung 266 weist ein erstes Wachsthermostatventil 266c und ein zweites Wachsthermostatventil 266d auf.
  • Der Ölsumpf 22a ist über eine Kompressorausgangsleitung 202 mit dem ersten Wachsthermostatventil 266c verbunden.
  • Das erste Wachsthermostatventil 266c ist stromabwärts des Ölsumpfs 22a angeordnet.
  • Das erste Wachsthermostatventil 266c ist ferner über eine erste Thermostatventilleitung 204 mit dem zweiten Wachsthermostatventil 266d verbunden.
  • Zusätzlich zweigt von der ersten Thermostatventilleitung 204 eine zweite Thermostatventilleitung 206 ab, welche die erste Thermostatventilleitung 204 zusätzlich mit dem zweiten Wachsthermostatventil 266d verbindet.
  • Das zweite Wachsthermostatventil 266d ist stromabwärts des ersten Wachsthermostatventils 266c angeordnet.
  • Das zweite Wachsthermostatventil 266d ist ferner über eine Ölfiltereingangsleitung 208 mit dem Ölfilter 62 verbunden.
  • Der Ölfilter 62 ist stromabwärts des zweiten Wachsthermostatventils 266d angeordnet.
  • Zusätzlich ist das zweite Wachsthermostatventil 266d über eine Thermostatventilausgangsleitung 210 mit dem Wärmeübertrager 74 verbunden.
  • Der Wärmeübertrager 74 ist stromabwärts des zweiten Wachsthermostatventils 266d angeordnet.
  • Im Übrigen ist das erste Wachsthermostatventil 266c über eine Thermostatventilbypassleitung 212 mit der Thermostatventilausgangsleitung 210 verbunden.
  • Der Wärmeübertrager 74 ist zudem über eine zweite Ölfiltereingangsleitung 214 mit dem Ölfilter 62 verbunden.
  • Der Ölfilter 62 ist weiter über eine Kompressoreingangsleitung 216 mit dem Kompressor 10 verbunden.
  • Die Kompressorausgangsleitung 202, die erste Thermostatventilleitung 204, die zweite Thermostatventilleitung 206, die erste Ölfiltereingangsleitung 208, die Thermostatventilbypassleitung 212 und die Kompressoreingangsleitung 216 sind innerhalb eines Gehäuseansatzes 218 des Gehäuses 20 des Kompressors 10 angeordnet.
  • Die Thermostatventilausgangsleitung 210 sowie die zweite Ölfiltereingangsleitung 214 sind wenigstens teilweise innerhalb des Gehäuseansatzes 218 angeordnet.
  • Außerhalb des Gehäuseansatzes 218 sind Thermostatventilausgangsleitung 210 sowie die zweite Ölfiltereingangsleitung 214 als Freileitungen ausgebildet und über entsprechende Anschlüsse mit dem Gehäuseansatz 218 verbunden.
  • An einer dem Gehäuse 20 abgewandten Stirnseite des Gehäuseansatzes 218 ist zudem der Ölfilter 62 angeordnet.
  • Die Funktion des zweiten Ausführungsbeispiels des Kompressorsystems 200 mit einer Temperaturüberwachungseinrichtung 266 in Form des ersten und zweiten Wachsthermostatventils 266c, 266d lässt sich wie folgt beschreiben:
    Bei einer Öltemperstur von größer als ca. -40°C sowie bei einer Öltemperatur von kleiner als ca. 40°C befindet sich das erste Wachsthermostatventil 266c in einem ersten Schaltzustand und das zweite Wachsthermostatventil 266d ebenfalls in einem ersten Schaltzustand.
  • Dadurch ist das aus dem Kompressor 10 ausströmende Öl 22 diesem wenigstens über den Wärmeübertrager 74 zur Erwärmung des Öls 22rückführbar.
  • Da der Ölsumpf 22a mit Arbeitsdruck des Kompressors 10 beaufschlagt wird, kann das Öl 22 überhaupt erst aus diesem ausströmen.
  • Im ersten Schaltzustand des ersten Wachsthermostatventils 266c sind die Kompressorausgangsteitung 202 und die Thermostatventilbypassleitung 212 über das erste Wachsthermostatventil 266c miteinander fluidverbunden.
  • Das zweite Wachsthermostatventil 266d wird also überbrückt.
  • Das Öl 22 strömt folglich aus dem Ölsumpf 22a über die Kompressorausgangsleitung 202, das erste Wachsthermostatventil 266c, die Thermostatventilbypassleitung 212 und über die Thermostatventilausgangsleitung 210 in den Wärmeübertrager 74 ein und wird dort erwärmt.
  • Das erwärmte Öl 22 strömt wiederum aus dem Wärmeübertrager 74 aus und wird mittels der zweiten Ölfiltereingangsleitung 214 dem Ölfilter 62 zugeführt, wo es gereinigt wird.
  • Nach der Reinigung strömt das vorgewärmte Öl 22 aus dem Ölfilter 62 aus und strömt über die Kompressoreingangsleitung 216 wiederum in den Kompressor 10 ein, wo es zu dessen zusätzlicher Erwärmung beiträgt.
  • Der erste Schaltzustand des ersten Wachsthermostatventils 266c sowie der erste Schaltzustand des zweiten Wachsthermostatventils 266d ist somit einem Kompressoranlaufschaltzustand zugeordnet.
  • Der Kompressor 10 erwärmt sich infolge seines Betriebs sowie durch die kontinuierliche Zufuhr von vorgewärmtem Öl 22 immer weiter, bis eine Öltemperatur von ca. 40°C erreicht ist.
  • Ab dieser Temperatur wird der sogenannte Umschaltpunkt des ersten Wachsthermostatventils 266c erreicht.
  • Es wechselt sodann von dem ersten Schaltzustand in seinen zweiten Schaltzustand.
  • Ziel ist es, dass das Wachsthermostatventil 266c bei ca. 40°C voll geöffnet ist.
  • Dies wird durch den in Fig. 5 dargestellten Schaltzustand des gezeigten Ausführungsbeispiels auch erreicht.
  • Fig. 5 zeigt diesbezüglich eine zweite schematische Darstellung des zweiten Ausführungsbeispiels der Temperaturüberwachungseinrichtung 266 in Form des ersten und zweiten Wachsthermostatventils 266c, 266d gemäß Fig. 4.
  • Bei einer Öltemperatur von größer als ca. 40°C sowie bei einer Öltemperatur von kleiner als ca. 80°C befinden sich das erste Wachsthermostatventil 266c in einem zweiten Schaltzustand und das zweite Wachsthermostatventil 266d in einem ersten Schaltzustand.
  • Hierdurch ist das aus dem Kompressor 10 ausströmende Öl 22 diesem wenigstens über den Ölfilter 62 rückführbar.
  • Im zweiten Schaltzustand des ersten Wachsthermostatventils 266c sowie im ersten Schaltzustand des zweiten Wachsthermostatventils 266d ist die erste Ölfiltereingangsleitung 208 über das zweite Wachsthermostatventit 266d mit der ersten Thermostatventilleitung 204 fluidverbunden sowie ferner die erste Thermostatventilleitung 204 über das erste Wachsthermostatventil 266c mit der Kompressorausgangsleitung 202 fluidverbunden.
  • Das Öl 22 aus dem Ölsumpf 22a strömt demnach durch die Kompressorausgangsleitung 202, über das erste Wachsthermostatventil 266c, durch die erste Thermostatventilleitung 204, über zweite Wachsthermostatventil 266d sowie durch die erste Ölfiltereingangsleitung 208 in den Ölfilter 62 ein und wird dort gereinigt.
  • Nach der Reinigung strömt das Öl 22 aus dem Ölfilter 62 aus und strömt über die Kompressoreingangsleitung 216 wiederum in den Kompressor 10 ein, wo es dem Kompressor 10 wieder zugeführt wird.
  • Der zweite Schaltzustand des ersten Wachsthermostatventils 266c sowie der erste Schaltzustand des zweiten Wachsthermostatventils 266d ist somit einem Kompressorniedertemperaturschaltzustand zugeordnet.
  • Der Kompressor 10 erwärmt sich infolge seines Betriebs kontinuierlich weiter, bis eine Öltemperatur von ca. 80°C erreicht ist.
  • Ab dieser Temperatur von ca. 80°C wird der sogenannte Umschaltpunkt des zweiten Wachsthermostatventils 266d erreicht.
  • Es wechselt sodann von dem ersten Schaltzustand in seinen zweiten Schaltzustand.
  • Fig. 6 zeigt diesbezüglich eine dritte schematische Darstellung des zweiten Ausführungsbeispiels der Temperaturüberwachungseinrichtung 266 in Form des ersten und zweiten Wachsthermostatventils 266c, 266d gemäß Fig. 4.
  • Bei einer Öltemperatur von größer als ca. 80°C sowie bei einer Öltemperatur von kleiner als ca. 110°C befinden sich das erste Wachsthermostatventil 266c in einem zweiten Schaltzustand und das zweite Wachsthermostatventil 266d in einem zweiten Schaltzustand,
  • Folglich ist das aus dem Kompressor 10 ausströmende Öl 22 diesem wenigstens über den Wärmeübertrager 74 zur Kühlung des Öls 22 rückführbar.
  • Im zweiten Schaltzustand des ersten Wachsthermostatventils 266c sowie im zweiten Schaltzustand des zweiten Wachsthermostatventils 266d ist die Thermostatventilausgangsleitung 210 über das zweite Wachsthermostatventil 266d mit der ersten und zweiten Thermostatventilleitung 204, 206 fluidverbunden sowie ferner die erste Thermostatventilleitung 204 über das erste Wachsthermostatventil 266c mit der Kompressorausgangsleitung 202 fluidverbunden.
  • Das Öl 22 aus dem Ölsumpf 22a strömt demnach durch die Kompressorausgangsleitung 202 über das erste Wachsthermostatventil 266c in die erste und in die zweite Thermostatventilleitung 204, 206 sowie weiter über das zweite Wachsthermostatventil 266d und über die Thermostatventilausgangsleitung 210 in den Wärmeübertrager 74 ein und wird dort gekühlt.
  • Das gekühlte Öl 22 strömt wiederum aus dem Wärmeübertrager 74 aus und wird mittels der zweiten Ölfiltereingangsleitung 214 dem Ölfilter 62 zugeführt, wo es gereinigt wird.
  • Nach der Reinigung strömt das gekühlte Öl 22 aus dem Ölfilter 62 aus und strömt weiter über die Kompressoreingangsleitung 216 wiederum in den Kompressor 10 ein, wo es zu dessen Kühlung beiträgt.
  • Der zweite Schaltzustand des ersten Wachsthermostatventils 266c sowie der zweite Schaltzustand des zweiten Wachsthermostatventils 266d ist somit einem Kompressomormaltemperaturschaltzustand zugeordnet.
  • Der Kompressor 10 wird sich infolge seines Betriebs nicht über eine Öltemperatur von ca. 110°C weiter erwärmen, da der Wärmeübertrager 74 ausreichend dimensioniert ist, um eine weitere Erwärmung zu vermeiden.
  • Der Betrieb des Kompressors 10 ist zudem bei einer öltemperatur von größer als ca. 110°C abschaltbar.
  • Der Wärmeübertrager 74 ist als flüssig-flüssig Wärmeübertrager 74 ausgebildet.
  • Das Medium, weiches das Öl 22 des Kompressors 10 je nach Schaltzustand des ersten und zweiten Wachsthermostatventils 266c, 266d kühlt oder wärmt ist Wasser oder ein Wasser-/Glykol-Gemisch oder ein ähnliches Kühlmittel.
  • Das Medium (Kühlmittel) wird dem Wärmeübertrager 74 mittels eines weiteren Fluidkreislaufs in Form eines Kühlkreislaufs (nicht in Fig. 2 bis 6 gezeigt) des Nutzfahrzeugs über die Wärmeübertragereingangsieitung 106 und die Wärmeübertragerausgangsleitung 108 zu- und wieder abgeführt.
  • Der weitere Fluidkreislauf dient also je nach Öltemperatur des Kompressors 10 als Wärmequelle oder als Wärmesenke.
  • Der Wärmeübertrager 74 ist daher mit einem zu kühlenden elektrischen Bauteil (nicht in Fig. 3 gezeigt) des Nutzfahrzeugs fluidverbunden.
  • Zusätzlich oder alternativ kann der Wärmeübertrager 74 mit einem zu kühlenden elektrischen und/oder elektronischen Modul des Nutzfahrzeugs fluidverbunden sein.
  • Das Nutzfahrzeug weist hierzu einen Hybridhauptantrieb oder einen elektrischen Hauptantrieb auf.
  • Fig. 7 zeigt eine schematische Schnittdarstellung eines Kompressors 10' in Form eines Flügelzellenkompressors 10' eines dritten bzw. vierten Ausführungsbeispiels eines erfindungsgemäßen Kompressorsystems 100', 200'.
  • Der Kompressor 10' gemäß Fig. 7 ist ein Flügelzellenkompressor 10' (engl. rotary vane compressor).
  • Der Kompressor 10 ist gemäß Fig. 7 und auch im Zusammenhang mit der weiteren Figurenbeschreibung der nachfolgenden Figuren 8 bis 13 als Flügelzellenkompressor 10' ausgebildet.
  • Der Flügelzellenkompressor 10' weist einen exzentrisch gelagerten Rotationskolben 16' mit sieben darin radial verschieblich geführten und federbelasteten Trennschiebern 17' auf.
  • Der Rotationskolben 16' ist von einem hohlzylindrischen Gehäuse 20' umschlossen, an dessen Gehäuseinnenwand die Trennschieber 17' dichtend abschließen.
  • Zwischen der Gehäuseinnenwand und dem Rotationskolben 16' ist eine sichelförmige Kammer ausgebildet, die in eine Einlasskammer 21' und in eine Kompressionskammer 23' unterteilt ist.
  • Die sichelförmige Kammer wird im Übrigen durch die Trennschieber 17' in einzelne Sichelkammerbereiche unterteilt.
  • Die Einlasskammer 21' ist zudem mit einer Lufteinlassöffnung 32' im Gehäuse 20' fluidverbunden.
  • Die Kompressionskammer 23' ist ferner mit einem Luftauslassöffnung 34' im Gehäuse 20' fluidverbunden.
  • Die Funktion des Flügelzellenkompressors 10' lässt sich nun wie folgt beschreiben:
    Infolge der Drehung des Rotationskolbens 16' und der Trennschieber 17' strömt Luft von der Lufteinlassöffnung 32' in die Einlasskammer 21' ein, wo sie zwischen zwei benachbarten Trennschiebern 17' in einem Sichelkammerbereich eingeschlossen wird.
  • Durch die weitere Drehung des Rotationskolbens 16' durchläuft die eingeschlossene Luft zunächst die Einlasskammer 21' sowie die daran anschließende Kompressionskammer 23', wo sie sodann aufgrund der Querschnittsverjüngung der Kompressionskammer 23' verdichtet wird.
  • In diesem verdichteten Zustand wird die Druckluft der mit der Kompressionskammer 23' fluidverbundenen Luftauslassöffnung 34' zugeführt, von wo sie sodann weiteren Drucklufteinrichtungen oder Druckluftverbrauchern eines Nutzfahrzeugs bereitgestellt werden kann.
  • Fig. 8 zeigt in schematischer perspektivischer Darstellung das dritte bzw. vierte Ausführungsbeispiel des Kompressorsystems 100', 200' mit dem Flügelzellenkompressor 10' gemäß Fig. 7.
  • Der Flügelzellenkompressor 10' ist mittels des Befestigungsflanschs 12' an einen Elektromotor 13' angeflanscht, der eine mit ihm wirkverbundene Steuerungseinrichtung 13a' zu dessen Steuerung aufweist.
  • Das Gehäuse 20' des Flügelzellenkompressors 10' ist zudem mit Öl 22' befüllt.
  • Das Öl 22' bildet im montierten und betriebsfertigen Zustand des Flügelzellenkompressors 10' in dessen unteren Gehäusebereich einen Ölsumpf 22a' aus.
  • Der Flügelzellenkompressor 10' weist zusätzlich einen Luftfilter 26' sowie ein Luftentölelement 42' auf.
  • Über den Luftfilter 26' ist ein Lufteinlass 28' mit der Lufteinlassöffnung 32' (nicht in Fig. 8 gezeigt) im Gehäuse 20' des Flügelzellenkompressors 10' fluidverbunden.
  • Ferner ist über das Luftentölelement 42' die Luftauslassöffnung 34' (nicht in Fig. 8 gezeigt) im Gehäuse 20' des Flügelzellenkompressors 10' mit dem Luftauslass 51' fluidverbunden.
  • Zwischen Elektromotor 13' und dem Flügelzellenkompressor 10' ist ferner ein Wärmeübertrager 74' angeordnet.
  • Fig. 9 zeigt eine erste schematische Darstellung eines dritten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung 166' des dritten Ausführungsbeispiels des Kompressorsystems 100' gemäß Fig. 8.
  • Das in Fig. 9 gezeigte dritte Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 166' weist im Wesentlichen die gleichen strukturellen und funktionalen Merkmale wie das in Fig. 2 gezeigte erste Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 166 auf.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Lediglich der folgende strukturelle Merkmalsunterschied soll aufgezeigt werden:
    Das dritte Ausführungsbeispiel des Kompressorsystems 100' weist einen Flügelzellenkompressor 10' auf.
  • Fig. 10 zeigt eine zweite schematische Darstellung des dritten Ausführungsbeispiels der Temperaturüberwachungseinrichtung 166' gemäß Fig. 9.
  • Das in Fig. 10 gezeigte dritte Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 166' weist ferner im Wesentlichen die gleichen strukturellen und funktionalen Merkmale wie das in Fig. 3 gezeigte erste Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 166 auf.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Fig. 11 zeigt eine erste schematische Darstellung eines vierten Ausführungsbeispiels einer erfindungsgemäßen Temperaturüberwachungseinrichtung 266' des vierten Ausführungsbeispiels des Kompressorsystems 200' gemäß Fig. 8.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Das in Fig. 11 gezeigte vierte Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266' weist im Wesentlichen die gleichen strukturellen und funktionalen Merkmale wie das in Fig. 4 gezeigte zweite Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266 auf.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Lediglich der folgende strukturelle Merkmalsunterschied soll aufgezeigt werden:
    Das vierte Ausführungsbeispiel des Kompressorsystems 200' weist einen Flügelzellenkompressor 10' auf.
  • Fig. 12 zeigt eine zweite schematische Darstellung des vierten Ausführungsbeispiels der Temperaturüberwachungseinrichtung 266' gemäß Fig. 11.
  • Das in Fig. 12 gezeigte vierte Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266' weist ferner im Wesentlichen die gleichen strukturellen und funktionalen Merkmale wie das in Fig. 5 gezeigte zweite Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266 auf.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Fig. 13 zeigt eine dritte schematische Darstellung des vierten Ausführungsbeispiels der Temperaturüberwachungseinrichtung 266' gemäß Fig. 11.
  • Das in Fig. 13 gezeigte vierte Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266' weist zudem im Wesentlichen die gleichen strukturellen und funktionalen Merkmale wie das in Fig. 6 gezeigte zweite Ausführungsbeispiel der erfindungsgemäßen Temperaturüberwachungseinrichtung 266 auf.
  • Identische oder vergleichbare Merkmale bzw. Elemente sind mit demselben, allerdings mit zusätzlichen Strich versehenen Bezugszeichen versehen.
  • Fig. 14 zeigt ein Temperatur-Zeit-Diagramm einer Erwärmung des Öls eines Kompressors sowie einer Erwärmung eines Kühlkreislaufs eines Nutzfahrzeugs mit einem konventionellen Kompressorsystem.
  • Fig. 15 zeigt ein Temperatur-Zeit-Diagramm einer Erwärmung des Öls eines Kompressors 10, 10' sowie einer Erwärmung eines Kühlkreislaufs eines Nutzfahrzeugs gemäß eines erfindungsgemäßen Kompressorsystems 100, 200; 100', 200' gemäß Fig. 1 bis 13.
  • Fig. 16 zeigt eine Gegenüberstellung der Temperatur-Zeit-Diagramme gemäß Fig. 14 und Fig. 15.
  • BEZUGSZEICHENLISTE
  • 10
    Schraubenkompressor
    12
    Befestigungsflansch
    14
    Eingangswelle
    16
    Schraube
    18
    Schraube
    20
    Gehäuse
    22
    Öl
    22a
    Ölsumpf
    24
    Einlassstutzen
    26
    Luftfilter
    28
    Lufteinlass
    30
    Ventileinsatz
    32
    Luftzuführkanal
    34
    Luftauslassrohr
    36
    Steigleitung
    38
    Temperaturfühler
    40
    Halter für ein Luftentölelement
    42
    Luftentölelement
    44
    Filtersieb bzw. bekannte Filter- bzw. Ölabseheidevorrichtungen
    46
    Luftausgangsöffnung
    48
    Rückschlagventil
    50
    Mindestdruckventil
    51
    Luftauslass
    52
    Steigleitung
    54
    Filter- und Rückschlagventil
    56
    Düse
    58
    Ölrückführleitung
    59
    Ölablassschraube
    60
    Ansatz
    62
    Ölfilter
    64
    Ölfiltereinlasskanal
    66
    Temperaturüberwachungseinrichtung
    66a
    Thermostatventil
    68
    Rückführleitung
    70
    Lager
    72
    Düse
    74
    Wärmeübertrager
    76
    Sicherheitsventil
    78
    Bypassleitung
    80
    Entlastungsventil
    82
    Öllevelsensor
    100
    Kompressorsystem
    102
    Kompressorausgangsleitung
    104
    Ventilausgangsleitung
    106
    Wärmeübertragereingangsleitung
    108
    Wärmeübertragerausgangsieitung
    110
    Ventileingangsleitung
    112
    Ölfiltereingangsleitung
    114
    Kompressoreingangsleitung
    116
    Signalleitung166 Temperaturüberwachungseinrichtung
    166b
    4/2-Wege-Magnet-Steuer- oder Regelventil
    200
    Kompressorsystem
    202
    Kompressorausgangsleitung
    204
    erste Thermostatventilleitung
    206
    zweite Thermostatventilleitung
    208
    erste Ölfiltereingangsleitung
    210
    Thermostatventilausgangsleitung
    212
    Thermostatventilbypassleitung
    214
    zweite Ölfiltereingangsleitung
    216
    Kompressoreingangsleitung
    218
    Gehäuseansatz
    266
    Temperaturüberwachungseinrichtung
    266c
    erstes Thermostatventil
    266d
    zweites Thermostatventil
    10'
    Flügelzellenkompressor
    12'
    Befestigungsflansch
    13'
    Elektromotor
    13a'
    Steuerungseinrichtung des Elektromotors
    16'
    Rotationskolben
    17'
    Trennschieber
    20'
    Gehäuse
    21'
    Einlasskammer
    22'
    Öl
    22a'
    Ölsumpf
    23'
    Kompressionskammer
    26'
    Luftfilter
    28'
    Lufteinlass
    32'
    Lufteinlassöffnung
    34'
    Luftauslassöffnung
    42'
    Luftentölelement
    51'
    Luftauslass
    62'
    Ölfilter
    74'
    Wärmeübertrager
    100'
    Kompressorsystem
    102'
    Kompressorausgangsleitung
    104'
    Ventilausgangsleitung
    106'
    Wärmeübertragereingangsleitung
    108'
    Wärmeübertragerausgangsleitung
    110'
    Ventileingangsleitung
    112'
    Ölfiltereingangsleitung
    114'
    Kompressoreingangsleitung
    116'
    Signalleitung
    166'
    Temperaturüberwachungseinrichtung
    166b'
    4/2-Wege-Magnet-Steuer-oder Regelventil
    200'
    Kompressorsystem
    202'
    Kompressorausgangsleitung
    204'
    erste Thermostatventilleitung
    206'
    zweite Thermostatventilleitung
    208'
    erste Ölfiltereingangsleitung
    210'
    Thermostatventilausgangsleitung
    212'
    Thermostatventilbypassleitung
    214'
    zweite Ölfiltereingangsleitung
    216'
    Kompressoreingangsleitung
    218'
    Gehäuseansatz
    266'
    Temperaturüberwachungseinrichtung
    266c'
    erstes Thermostatventil
    266d'
    zweites Thermostatventil

Claims (18)

  1. Kompressorsystem (100, 200; 100', 200') eines Fahrzeugs, insbesondere eines Nutzfahrzeugs, mit wenigstens einem Kompressor (10, 10'), der wenigstens einen Ölsumpf (22a, 22a') und wenigstens eine Temperaturüberwachungseinrichtung (66; 166, 266; 166', 266') aufweist, und mit wenigstens einem Wärmeübertrager (74, 74'), wobei der Kompressor (10, 10'), der ÖIsumpf (22a, 22a'), der Wärmeübertrager (74, 74') sowie die Temperaturüberwachungseinrichtung (66; 166, 266; 166', 266') wirkverbunden sind, dadurch gekennzeichnet dass, ferner die Temperaturüberwachungseinrichtung (66; 166, 266; 166', 266') wenigstens einen Kompressoranlaufschaltzustand und wenigstens einen Kompressorniedertemperaturschaltzustand aufweist, und dass der Kompressoranlaufschaltzustand wenigstens einem ersten Temperaturbereich des Öls (22, 22') und der Kompressorniedertemperaturschaltzustand wenigstens einem zweiten Temperaturbereich des Öls (22, 22') zugeordnet ist, und dass im Kompressoranlaufschaltzustand das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Wärmeübertrager (74, 74') zur Erwärmung des Öls (22, 22') rückführbar ist und im Kompressorniedertemperaturschaltzustand das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem nicht über den Wärmeübertrager (74, 74') rückführbar ist.
  2. Kompressorsystem (100, 200; 100', 200') nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Kompressor (10, 10') ferner einen Ölfilter (62, 62') aufweist, so dass im Kompressorniedertemperaturschaltzustand der Temperaturüberwachungseinrichtung (66; 166, 266; 166', 266') das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Ölfilter (62, 62') rückführbar ist.
  3. Kompressorsystem (100, 200; 100', 200') nach Anspruch 1 oder Anspruch 2,
    dadurch gekennzeichnet, dass
    die Temperaturüberwachungseinrichtung (66; 166, 266; 166', 266') wenigstens einen Kompressornormaltemperaturschaltzustand aufweist, wobei im Kompressornormaltemperaturschaltzustand das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Wärmeübertrager (74, 74') zur Kühlung des Öls (22, 22') rückführbar ist.
  4. Kompressorsystem (100, 100') nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Temperaturüberwachungseinrichtung (166; 166') wenigstens ein temperaturabhängig betätigbares Steuer- und/oder Regelventil (166b, 166b') aufweist.
  5. Kompressorsystem (100,100') nach Ansprach 4, dadurch gekennzeichnet, dass
    das temperaturabhängig betätigbare Steuer- und/oder Regelventil (166b, 166b') ein 4/2-Wege-Steuer- und/oder Regelventil (166b, 166b'), insbesondere ein 4/2-Wege-Magnet-Steuer- und/oder Regelventil (166b, 166b'), ist.
  6. Kompressorsystem (100, 100') nach einem der vorhergehenden Ansprüche 4 oder 5, dadurch gekennzeichnet, dass
    sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil (166b, 166b') im Kompressoranlaufschaltzustand befindet, falls die Öltemperatur kleiner oder gleich einer Temperatur eines weiteren Mediums ist, das sich in dem Wärmeübertrager (74, 74') befindet.
  7. Kompressorsystem (100, 100') nach einem der vorhergehenden Ansprüche 4 bis 6, dadurch gekennzeichnet, dass
    bei einer Öltemperatur von kleiner als ca. 50°C, insbesondere kleiner als ca. 40°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil (166b, 166b') im Kompressoranlaufschaltzustand befindet.
  8. Kompressorsystem (100, 100') nach einem der vorhergehenden Ansprüche 4 bis 7, dadurch gekennzeichnet, dass
    bei einer Öltemperatur von größer als ca. 50°C, insbesondere größer als ca. 40°C, sowie bei einer Öltemperatur von kleiner als ca. 90°C, insbesondere kleiner als ca. 80°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil (166b, 166b') im Kompressorniedertemperaturschaltzustand befindet.
  9. Kompressorsystem (100, 100') nach einem der vorhergehenden Ansprüche 4 bis 8, dadurch gekennzeichnet, dass
    bei einer Öltemperatur von größer als ca. 90°C, insbesondere größer als ca. 80°C, sich das temperaturabhängig betätigbare Steuer- und/oder Regelventil (166b, 166b') im Kompressornormaltemperaturschaltzustand befindet.
  10. Kompressorsystem (200, 200') nach einem der vorhergehenden Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Temperaturüberwachungseinrichtung (266, 266') wenigstens ein erstes Wachsthermostatventil (266c, 266c') und wenigstens ein zweites Wachsthermostatventil (266d, 266d') aufweist.
  11. Kompressorsystem (200, 200') nach Anspruch 10,
    dadurch gekennzeichnet, dass
    bei einer Öltemperatur von größer als ca. -50°C, insbesondere größer als ca. -40°C, sowie bei einer Öltemperatur von kleiner als ca. 50°C, insbesondere kleiner als ca. 40°C, sich das erste Wachsthermostatventil (266c, 266c') in einem ersten Schaltzustand und sich das zweite Wachsthermostatventil (266d, 266d') in einem ersten Schaltzustand befindet, so dass das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Wärmeübertrager (74, 74') zur Erwärmung des Öls (22, 22') rückführbar ist.
  12. Kompressorsystem (200, 200') nach Anspruch 10 oder Anspruch 11,
    dadurch gekennzeichnet, dass
    bei einer Öltemperatur von größer als ca. 50°C, insbesondere größer als ca. 40°C, sowie bei einer Öltemperatur von kleiner als ca. 90°C, insbesondere kleiner als ca. 80°C, sich das erste Wachsthermostatventil (266c, 266c') in einem zweiten Schaltzustand und sich das zweite Wachsthermostatventil (266d, 266d') in einem ersten Schaltzustand befindet, so dass das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Ölfilter (62, 62') rückführbar ist.
  13. Kompressorsystem (200, 200') nach einem der vorhergehenden Ansprüche 10 bis 12,
    dadurch gekennzeichnet, dass
    bei einer Öltemperatur von größer als ca. 90°C, insbesondere größer als ca. 80°C, sowie bei einer Öltemperatur von kleiner als ca. 120°C, insbesondere kleiner als ca. 110°C, sich das erste Wachsthermostatventil (266c, 266c') in einem zweiten Schaltzustand und sich das zweite Wachsthermostatventil (266d, 266d') in einem zweiten Schaltzustand befindet, so dass das aus dem Kompressor (10, 10') ausströmende Öl (22, 22') diesem wenigstens über den Wärmeübertrager (74, 74') zur Kühlung des Öls (22, 22') rückführbar ist.
  14. Kompressorsystem (100, 200; 100', 200') nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Betrieb des Kompressors (10, 10') bei einer Öltemperatur von größer als ca. 120°C, insbesondere größer als ca. 110°C, abschaltbar ist.
  15. Kompressorsystem (100, 200; 100', 200') nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Fahrzeug, insbesondere das Nutzfahrzeug, einen Hybridantrieb, insbesondere einen Hybridhauptantrieb, oder einen elektrischen Antrieb, insbesondere einen elektrischen Hauptantrieb, aufweist.
  16. Kompressorsystem (100, 200; 100', 200') nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Wärmeübertrager (74, 74') ein flüssig-flüssig Wärmeübertrager (74, 74') ist.
  17. Kompressorsystem (100, 200; 100', 200') nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    der Wärmeübertrager (74, 74') wenigstens mit einem zu kühlenden elektrischen Bauteil des Fahrzeugs, insbesondere des Nutzfahrzeugs, fluidverbunden ist.
  18. Kompressorsystem (100, 200; 100', 200') nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Kompressor (10, 10') ein Verdrängerkompressor, insbesondere ein Schraubenkompressor (10) oder ein Flügelzellenkompressor (10'), ist.
EP17778214.1A 2017-04-12 2017-09-19 Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung Active EP3596340B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017107933.5A DE102017107933A1 (de) 2017-04-12 2017-04-12 Kompressorsystem mit regelbarer und/oder steuerbarer Temperaturüberwachungs-einrichtung
PCT/EP2017/073590 WO2018188768A1 (de) 2017-04-12 2017-09-19 Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung

Publications (2)

Publication Number Publication Date
EP3596340A1 EP3596340A1 (de) 2020-01-22
EP3596340B1 true EP3596340B1 (de) 2021-03-03

Family

ID=60009595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17778214.1A Active EP3596340B1 (de) 2017-04-12 2017-09-19 Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung

Country Status (7)

Country Link
EP (1) EP3596340B1 (de)
JP (1) JP2020516812A (de)
KR (1) KR20190138849A (de)
CN (1) CN110678654A (de)
BR (1) BR112019020975A2 (de)
DE (1) DE102017107933A1 (de)
WO (1) WO2018188768A1 (de)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888489A (ja) * 1981-11-20 1983-05-26 Tokico Ltd 油冷式圧縮機
US4419865A (en) * 1981-12-31 1983-12-13 Vilter Manufacturing Company Oil cooling apparatus for refrigeration screw compressor
JPS59165590U (ja) * 1983-04-20 1984-11-06 トキコ株式会社 油冷式空気圧縮機
DE3422398A1 (de) 1984-06-15 1985-12-19 Knorr-Bremse GmbH, 8000 München Verfahren und vorrichtung zum betrieb einer schraubenverdichteranlage
JP2599728B2 (ja) * 1987-09-08 1997-04-16 株式会社日立製作所 油冷式スクリュー圧縮機の給油装置
BE1013534A5 (nl) 2000-05-17 2002-03-05 Atlas Copco Airpower Nv Werkwijze voor het regelen van een ventilator in een compressorinstallatie en compressorinstallatie met aldus geregelde ventilator.
BE1014611A3 (nl) 2002-02-08 2004-01-13 Atlas Copco Airpower Nv Werkwijze voor het besturen van de olieterugvoer in een met olie geinjecteerde schroefcompressor en aldus bestuurde schroefcompressor.
DE102004060417B4 (de) 2004-12-14 2006-10-26 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompakter Schraubenkompressor zum mobilen Einsatz in einem Fahrzeug
DE102005033084B4 (de) * 2005-07-15 2007-10-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Öleingespritzter Verdichter mit Mitteln zur Öltemperaturregelung
BE1016814A3 (nl) * 2005-10-21 2007-07-03 Atlas Copco Airpower Nv Inrichting ter voorkoming van de vorming van condensaat in samengeperst gas en compressorinstallatie voorzien van zulke inrichting.
CN201448237U (zh) * 2009-06-08 2010-05-05 无锡五洋赛德压缩机有限公司 带加热装置的螺杆压缩机
EP2526297B1 (de) * 2010-01-22 2016-04-20 Ingersoll-Rand Company Verdichtersystem mit durchfluss- und temperaturregler
DE102010035559A1 (de) 2010-02-09 2011-12-15 Eduard Hilberer Vorrichtung, Anordnung und Verfahren eines Fahrzeuges und Fahrzeugantriebes
DE102010015150A1 (de) 2010-04-16 2011-10-20 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Ölstandsanzeige für einen Schraubenverdichter
JP2012097645A (ja) * 2010-11-01 2012-05-24 Daikin Industries Ltd 圧縮機
CN102155409B (zh) * 2011-05-27 2013-05-22 南通金坤机械设备有限公司 一种带有油温控制系统的风冷式旋片真空泵及其油温控制方法
CN103017407B (zh) * 2012-12-25 2016-04-06 克莱门特捷联制冷设备(上海)有限公司 制冷及热泵设备
CN103147990B (zh) * 2013-03-22 2015-11-18 宁波明欣化工机械有限责任公司 空压机余热回收系统
US10359240B2 (en) * 2013-08-20 2019-07-23 Ingersoll-Rand Company Compressor system with thermally active heat exchanger
BE1021737B1 (nl) * 2013-09-11 2016-01-14 Atlas Copco Airpower, Naamloze Vennootschap Vloeistofgeinjecteerde schroefcompressor, sturing voor de overgang van een onbelaste naar een belaste situatie van zulke schroefcompressor en werkwijze daarbij toegepast
BE1022707B1 (nl) * 2015-02-11 2016-08-19 Atlas Copco Airpower Naamloze Vennootschap Werkwijze en inrichting voor het regelen van de olietemperatuur van een oliegeïnjecteerde compressorinstallatie of vacuümpomp en klep toegepast in dergelijke inrichting
CN105570088B (zh) * 2015-08-31 2018-08-03 珠海格力电器股份有限公司 空调机组油温控制系统及控制方法
US20170175743A1 (en) * 2015-12-18 2017-06-22 Sumitomo (Shi) Cryogenics Of America, Inc. Cold start helium compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110678654A (zh) 2020-01-10
BR112019020975A2 (pt) 2020-05-05
EP3596340A1 (de) 2020-01-22
KR20190138849A (ko) 2019-12-16
WO2018188768A1 (de) 2018-10-18
JP2020516812A (ja) 2020-06-11
DE102017107933A1 (de) 2018-10-18

Similar Documents

Publication Publication Date Title
EP2545280B1 (de) Schmiervorrichtung für einen schraubenverdichter
DE102019215797B4 (de) Steuerventil zum Steuern eines Kühlmittelkreislaufs für einen Ladeluftkühler
EP2828592A1 (de) Kältemittelverdichter
EP3516171A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516234B1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054878A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3596340B1 (de) Kompressorsystem mit regelbarer und/oder steuerbarer temperaturüberwachungseinrichtung
WO2018054868A1 (de) System für ein nutzfahrzeug umfassend einen schraubenkompressor sowie einen elektromotor mit gemeinsamer kühlung
EP3516172B1 (de) Anordnung von schrauben für einen schraubenkompressor für ein nutzfahrzeug
WO2018054855A1 (de) System für ein nutzfahrzeug umfassend einen schraubenkompressor sowie einen elektromotor
WO2018054879A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516224B1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516236B1 (de) System für ein nutzfahrzeug umfassend einen kompressor sowie einen elektromotor
EP3516222A1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054883A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516229B1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516231B1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054856A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
WO2017194259A1 (de) Abwärmenutzungsanordnung einer brennkraftmaschine und verfahren zum betrieb der abwärmenutzungsanordnung
EP3516226B1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516235A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3029330A1 (de) Verfahren zum steuern einer lüftereinrichtung eines verflüssigers eines wärmepumpenkreislaufs
WO2018054859A1 (de) Schraubenkompressor für ein nutzfahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1367493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009602

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009602

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017009602

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210919

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210919

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1367493

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303