EP3433557B1 - System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas - Google Patents

System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas Download PDF

Info

Publication number
EP3433557B1
EP3433557B1 EP17716577.6A EP17716577A EP3433557B1 EP 3433557 B1 EP3433557 B1 EP 3433557B1 EP 17716577 A EP17716577 A EP 17716577A EP 3433557 B1 EP3433557 B1 EP 3433557B1
Authority
EP
European Patent Office
Prior art keywords
gas
exchanger
liquid
heat exchanger
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17716577.6A
Other languages
German (de)
French (fr)
Other versions
EP3433557A1 (en
Inventor
Mathias Ragot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryostar SAS
Original Assignee
Cryostar SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryostar SAS filed Critical Cryostar SAS
Publication of EP3433557A1 publication Critical patent/EP3433557A1/en
Application granted granted Critical
Publication of EP3433557B1 publication Critical patent/EP3433557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons

Definitions

  • the present invention relates to a system and a method for treating gas resulting from the evaporation of a cryogenic liquid and for supplying pressurized gas to a gas engine.
  • the field of the present invention is more particularly the maritime transport of cryogenic liquids and even more particularly of Liquefied Natural Gas (LNG).
  • LNG Liquefied Natural Gas
  • the systems and methods which will be proposed later could also find applications in terrestrial installations.
  • LNG carriers use the natural gas they transport as fuel to ensure their propulsion.
  • engine that run on natural gas.
  • the present invention relates more particularly to those which are supplied with natural gas in a high pressure gaseous phase.
  • gas is pumped out of a liquefied natural gas tank on board the LNG carrier, then is pressurized using a pump before being vaporized in order to be able to power the motor.
  • the document EP-2 746 707 A1 is interested in a natural gas evaporating from liquefied natural gas storage tanks, typically arranged on board a seagoing vessel, which is compressed in a compressor with several compression stages. At least part of the compressed natural gas stream being sent to a liquefier, which typically operates according to a Brayton cycle, in order to be reliquefied. The temperature of the compressed natural gas coming from the final stage is reduced to a value below 0 ° C by passing through a heat exchanger.
  • the first compression stage here functions as a cold compressor, and the resulting cold compressed natural gas is used in the heat exchanger so as to provide the necessary cooling of the flow from the compression stage.
  • the cold compressed natural gas Downstream of its passage through the heat exchanger, the cold compressed natural gas circulates through the remaining stages of the compressor. If desired, part of the compressed natural gas can be used as fuel to supply the engines of the ocean-going vessel. In an alternative embodiment ( ⁇ [0026]), it is planned to cool the compressed gas in the gaseous state. before its liquefaction with partly compressed liquid before it is expanded for use in an engine or turbine.
  • a refrigerant loop with nitrogen in the Brayton cycle implies providing specific equipment for the refrigerant. So, for example, when a nitrogen refrigerant circuit is provided on board a ship (or elsewhere), a nitrogen treatment (purification) unit is necessary to allow its use in the cryogenic field. It is also advisable to provide a specific tank, valves and other devices for regulating the circulation of nitrogen.
  • the object of the present invention is therefore to provide an optimized system making it possible to reliquefy gas which has evaporated and to supply a gas engine under high pressure.
  • the proposed system will make it possible to optimize the quantity of liquid recovered with regard to the portion of gas to be reliquefied.
  • the proposed system could also be used on board a ship such as an LNG carrier.
  • the system will operate without using a refrigerant such as nitrogen or the like to avoid having two separate circuits with fluids of different natures.
  • the proposed solution will also preferably not be more expensive to produce than the solutions of the prior art.
  • the present invention provides a system for treating a gas resulting from the evaporation of a cryogenic liquid and for supplying pressurized gas to a gas engine, said system comprising, on the one hand, from upstream to downstream, a reliquefaction unit with compression means, a first heat exchanger and expansion means, and, on the other hand, a pressurized gas supply line comprising from upstream to downstream a pump for putting liquid under pressure and high pressure vaporization means.
  • the pressurized gas supply line has, upstream of the vaporization means, a bypass for supplying a second heat exchanger between, on the one hand, liquid under pressure from the supply line and , on the other hand, a line of the reliquefaction unit downstream of the first heat exchanger and upstream of the expansion means, characterized in that the gas resulting from the evaporation of a cryogenic liquid, then compressed and cooled is condensed at least partially within the first heat exchanger (17).
  • the proposed solution makes it possible to create a synergy between the reliquefaction of the gas which has evaporated and the production of gas under pressure to supply an engine, for example a MEGI engine. Indeed, on the one hand there are needs to cool the gas and on the other hand there are needs to heat the liquid before vaporizing it.
  • the second proposed exchanger thus makes it possible both to limit the (cooling) requirements of the reliquefaction unit and the (heat) requirements of the high pressure gas supply line.
  • This pressurized liquid must then be relaxed in order to be able to be reintroduced into the reservoirs which are substantially at atmospheric pressure (just a little above to prevent air from entering the interior).
  • part of the condensed gas is vaporized.
  • this gas is subcooled and this makes it possible to limit, during expansion, the portion of condensed gas which revaporates.
  • the bypass can supply a cooling system downstream of the second exchanger. It may for example be a third exchanger mounted in series with and downstream of the second exchanger and / or a heat exchanger mounted in parallel with the second exchanger.
  • a particular variant of a system as described above provides that it further comprises, downstream of the expansion means, a balloon separating the gas phase from the liquid phase in the expanded fluid; that a line conducts the gas phase to a collector to mix it with the gas resulting from the evaporation of the cryogenic liquid, and that the bypass supplies a heat exchanger to cool the gas phase before its introduction into the collector.
  • the system described above is particularly well suited to a reliquefaction unit which uses as coolant the same fluid as the fluid to be liquefied.
  • said unit thus comprises for example, downstream of its compression means, a bypass to a loop comprising second expansion means, and the loop joins the circuit upstream of the compression means after passing through the first heat exchanger. heat in the opposite direction to the fraction of gas in the circuit not diverted by the loop.
  • the compression means to include several compression stages each with a compression wheel
  • the second expansion means to include an expansion turbine and for each compression wheel and the expansion turbine are associated with the same mechanical transmission.
  • This third exchanger makes it possible to increase the exchanges and thus to optimize the system.
  • the third heat exchanger can be mounted in parallel with the second heat exchanger and according to another alternative variant embodiment, the third heat exchanger may be mounted in series with the second heat exchanger.
  • the present invention also relates to a ship, in particular an LNG carrier, propelled by a gas engine, characterized in that it comprises a system for treating a gas resulting from the evaporation of a cryogenic liquid and for supplying gas. under pressure from a gas engine as described above.
  • the present invention proposes a method for treating a gas flow resulting from the evaporation of a cryogenic liquid and for supplying a high pressure gas to an engine, said gas flow being first of all compressed. then cooled and condensed at least partially within a first heat exchanger before being expanded, and the supply of gas under high pressure being carried out by pressurizing cryogenic liquid then by vaporizing it, and after its compression, the flow of liquid under pressure being separated into a first part of liquid flow and a second part of liquid flow, and the first part of the liquid flow being used to cool compressed and condensed gas within a second exchanger before expansion of the condensed gas, and the second part of the liquid flow receiving the first part of the liquid flow after the latter has cooled compressed gas, the whole of the liquid flow then being vaporized.
  • the flow of pressurized liquid is also used to cool gas before it is condensed.
  • part of the compressed gas is taken from within the first exchanger to be expanded within an expansion turbine, and that the expanded gas is introduced into the first exchanger. against the current to cool the compressed gas and cause it to condense.
  • the fluid to be reliquefied is also used as refrigerant fluid and it is then not necessary to provide a refrigerant circuit using another fluid to allow reliquefaction.
  • FIGS. 1 to 8 are each a schematic view, according to several variants, of a cryogenic liquid reservoir associated with a system for recovering the gas evaporating from said reservoir, with a system for treating part of the gas recovered to liquefy it and with a line high pressure gas supply to a gas engine.
  • a reservoir 1 is illustrated. Throughout the remainder of the description, it will be assumed that this is a Liquefied Natural Gas (or LNG) tank among several other similar tanks on board an LNG-type ocean-going vessel.
  • LNG Natural Gas
  • the tank 1 stores the LNG at a temperature of the order of -163 ° C which corresponds to the usual storage temperature of LNG at a pressure close to atmospheric pressure. This temperature obviously depends on the composition of the natural gas and the storage conditions.
  • the atmosphere around tank 1 being at a much higher temperature than that of LNG, although tank 1 is very well thermally insulated, calories are added to the liquid which heats up and vaporizes.
  • the volume of gas evaporating being much greater than that of the corresponding liquid, the pressure in the reservoir 1 therefore tends to increase as time passes and as calories are added to the liquid.
  • the gas which evaporates is gradually withdrawn from tank 1 (and from the other tanks of the ship) and is found in a manifold 2 connected to several tanks.
  • the gas which has evaporated is called “gas” even when it is subsequently reliquefied. It can thus be distinguished from LNG which is taken in liquid form from the tanks to supply an engine.
  • the aim here is to avoid losing the evaporated gas and therefore either using it on board the ship, or recovering it and returning it, in the liquid phase, to the tank 1.
  • first compression unit 3 which can be, as illustrated in the drawing, multistage.
  • the gas passes through a intercooler 4 in which it is cooled without significantly modifying its pressure.
  • the gas which has been reheated during its compression is at a temperature of the order of 40 to 45 ° C. at the outlet of the intercooler (these values are given purely by way of illustration and apply in particular for natural gas).
  • the gas thus compressed and cooled can then be sent in the gaseous phase via a pipe 5 to a generator on board the ship.
  • the gas requirements at the ship's generator (s) are often less than the "production" of evaporative gas in all tanks that are on board the ship.
  • the gas not used in the generator (s) is then sent to a reliquefaction unit 10.
  • the reliquefaction unit 10 comprises at its inlet a valve 6 intended in particular to control the pressure of the gas in line 5, then a main circuit and a loop which will be described below.
  • the main circuit allows from the gas (in the gas phase and which is at a pressure of the order of a few bars to about 50 bar - non-limiting values -) to obtain gas in the liquid phase which can return to the tank 1 .
  • a multistage compressor comprising here three successive stages with the references 11, 12 and 13. Each stage is formed by a compression wheel and the three compression wheels are driven by the same one. transmission 15 with shafts and pinions.
  • the line between the compression stages in the figures symbolizes the mechanical connection between them.
  • the gas arriving in the multistage compressor arrives in the second stage 12 of this compressor. Depending on the system, it may as well arrive at the first - as illustrated in the other figures of the drawing - or at the third (or more generally nth stage) of this compressor.
  • the gas passes into an intercooler 16. Its pressure is then a few tens of bars, for example. example about 50 bar, and its temperature is again around 40 to 45 ° C.
  • the gas thus compressed is then cooled and condensed within a first multi-flow exchanger 17.
  • the gas circulates in this first exchanger 17 in a first direction.
  • the fluids circulating in the opposite direction (with respect to this first direction) and used to cool it will be described below.
  • the compressed gas cooled to a temperature of the order of -110 to -120 ° C. is mainly (almost entirely) in the liquid phase and is sent, always at a pressure of the order of a few tens of bars (for example around 50 bar) via an insulated pipe 22 to an expansion valve 30.
  • Expansion through condensed gas expansion valve 30 provides both methane-rich liquid phase gas and nitrogen-rich gas phase gas.
  • the separation of this liquid phase and this gas phase is carried out within a balloon 40 in which the pressure is of the order of a few bars, for example between 3 and 5 bar.
  • the gas in the gaseous phase of the balloon 40 is preferably returned to the manifold 2. In this way, it can be used either as fuel in a generator, or to pass back into the reliquefaction unit 10. This gas being cold, it can be used either as fuel in a generator. used to cool and condense the compressed gas in the first exchanger 17. It is therefore planned to make it circulate in the opposite direction in this first exchanger 17 before returning it to the manifold 2.
  • a set of valves 31, 32 controls the sending of the gas in the gaseous phase from the balloon 40 respectively to the manifold 2 via a connection pipe 35 or to a combustion unit (not shown).
  • the gas in the liquid phase recovered at the bottom of the tank 40 is for its part intended to return to the tank 1.
  • the gas in the liquid phase can be sent directly to the tank 1 (passage controlled by a valve 33 ), or using a pump 41 (passage controlled by a valve 34).
  • the return of the gas in liquid phase from the balloon 40, directly or by the pump 41, to the reservoir 1 is effected by means of an insulated pipe 36 provided here with a valve 54, for example a valve. stop.
  • cooling of the compressed gas in the multistage compressor should be ensured.
  • This cooling is usually done using a separate thermodynamic machine, operating for example according to a Brayton cycle, and using nitrogen as refrigerant. It is possible to use in the reliquefaction unit 10 such a refrigeration machine which then cools and condenses the gas within the first exchanger 17.
  • a cooling loop using natural gas as refrigerant. This loop begins with a branch pipe 18 which separates the gas flow downstream of the multistage compressor (stages 11, 12, 13) into a first flow, or main flow, which corresponds to the main circuit described above, and into a second flow, or derivative flow.
  • the bypass pipe 18 is preferably connected to the main circuit at the level of the first exchanger 17.
  • the gas in the gas phase which therefore enters the bypass pipe 18 is at "high pressure" (approximately 50 bar in the numerical example given ) and at an intermediate temperature between 40 ° C and -110 ° C.
  • the gas taken by the bypass pipe 18 is expanded within expansion means formed by an expansion turbine 14.
  • This expansion turbine 14 is, in the preferred embodiment illustrated in the drawing, mechanically connected to the three compression wheels. corresponding to stages 11, 12 and 13 of the multistage compressor of the reliquefaction unit 10.
  • the transmission 15 by shafts and pinions connects the expansion turbine 14 and the compression wheels of the multistage compressor. This transmission 15 is symbolized by a line connecting in the figures the expansion turbine 14 to the stages 11, 12 and 13.
  • the gas is expanded for example to a pressure level which corresponded to its pressure level when entering the reliquefaction unit 10, or about 15 to 20 bar. Its temperature drops below -120 ° C.
  • This gas flow (gas phase) is then sent into the first exchanger 17 in the opposite direction to cool and condense the pressurized gas from the main circuit, first of all in a portion 19 located downstream of the bypass pipe 18 then in a portion of this main circuit in the first exchanger 17 upstream of this bypass pipe 18.
  • the expanded gas returns to temperatures of the order of 40 ° C and can be reinjected in the gas phase into the main circuit of the reliquefaction unit, upstream of the multistage compressor via a return line 21.
  • An open cooling loop is thus produced which uses as gas for cooling the same gas as that which is to be liquefied.
  • the illustrated system also has a gas supply line under (high) pressure to a gas engine, for example a MEGI type engine (not illustrated).
  • a gas engine for example a MEGI type engine (not illustrated).
  • This supply line starts from a tank 1. It is first of all supplied by an immersed pump 50 which supplies cryogenic liquid (LNG) to a pipe 51 to lead it to a high pressure pump 48. The high pressure liquid is then carried by a pipe 56 in a vaporizer 61, for example carrying out a heat exchange with water vapor, to produce vapor (natural gas in the gaseous phase) under high pressure which can then supply an engine of the MEGI type by a supply line 62.
  • LNG cryogenic liquid
  • vaporizer 61 for example carrying out a heat exchange with water vapor
  • bypass 57 On the pipe 56.
  • This bypass 57 will supply liquid under pressure, still in the liquid phase, a second exchanger 60 intended to sub-cool the condensate leaving the first exchanger 17 in the main circuit of the reliquefaction unit 10.
  • This second exchanger 60 in the embodiment illustrated on figure 1 , is here provided to make a heat exchange between on one side the pressurized liquid of the pipe 56 supplying the MEGI motor (or other) and derived by the bypass 57 and on the other hand the condensate in the pipe isolated 22 between the first exchanger 17 and the expansion valve 30.
  • the liquid derived in the bypass 57 is located at approximately -150 ° C upstream of the second exchanger 60 and emerges from the latter for example at -140 ° C. (still in the liquid phase).
  • the condensed gas leaving the first exchanger 17 passes for example from -120 ° C to -135 ° C.
  • the regulation of the flow in the pipe 56 and the bypass 57 is provided by means of a valve 55 placed on the line 56 upstream of the bypass 57 and another valve 59 integrated in the bypass 57 (illustrated in downstream of the second exchanger 60, but the person skilled in the art understands that this valve 59 could equally be placed upstream of this second exchanger 60).
  • a valve 58 manually or automatically controlled, is also provided between the two points of connection of the bypass 57 with the pipe 56.
  • the figure 2 illustrates an alternative embodiment of the system of the figure 1 with two modifications totally independent of each other. Provision is made here first of all, as already mentioned above, to inject the compressed gas in the first compression unit 3 into the first stage 11 of the multistage compressor of the reliquefaction unit. Then, provision is made for the regulation at the second heat exchanger 60 in a slightly different manner. Instead of adjusting the exchanges in the exchanger by varying the flow rates in bypass 57 ( figure 1 ), provision is made here to vary the flow rates passing through the exchanger at the level of the insulated pipe 22. It is thus provided in the embodiment of the figure 2 to pass through the second exchanger 60 between 0% and 100% of the flow (mixture between gas and liquid phase but mainly in liquid phase) circulating in the insulated pipe 22.
  • a bypass pipe 66 short-circuits the second exchanger 60.
  • a three-way valve 65 is provided upstream of the second exchanger 60 to regulate the flow of the insulated pipe 22 passing through the second exchanger 60 and that passing through the bypass pipe 66.
  • Other means of regulation could be considered (such as for example at bypass 57, with a valve upstream of the bypass line and a valve in the bypass line and / or in the circuit branch containing the second exchanger).
  • the embodiment of the figure 2 simply provides for providing each branch of the bypass 57, an upstream branch and a downstream branch of the second exchanger 60, with a valve 64a and 64b, respectively, manually or controlled.
  • a valve 63 is arranged between the two points of connection of the bypass 57 with the pipe 56 of the engine supply line (not shown).
  • FIGS. 5 and 6 illustrate embodiments implementing a third heat exchanger 70 to cool the gas in the gaseous phase entering the refrigeration open loop of the reliquefaction unit 10.
  • the exchange is here carried out between the liquid from line 56 and the compressed gas in the gaseous phase and already partially cooled from the branch pipe 18.
  • the third exchanger 70 is mounted in parallel with the second exchanger 60, while in the embodiment of the figure 6 , the third exchanger 70 is mounted in series with (and downstream of) the second exchanger 60.
  • the figure 7 proposes an embodiment in which four heat exchangers 80a-d are provided in various places of the main circuit of the reliquefaction unit 10 to cool the gas still in the gaseous phase before liquefying it.
  • the exchanger 80a is here intended to cool the compressed gas in the first stage 11 of the multistage compressor before it enters the second stage 12 of this compressor.
  • the exchanger 80b is disposed in a similar manner between the second stage 12 and the third stage 13.
  • Another exchanger 80c is disposed downstream of the multistage compressor, before or after the intercooler 16 and before the first exchanger 17.
  • it is proposed here to also have a heat exchanger 80d on the connecting pipe 35 to cool the gas returning to the manifold 2.
  • This embodiment is intended to be illustrative (and not limiting) of the various possibilities for positioning exchangers supplied with cryogenic liquid under high pressure.
  • These exchangers may be four in number, or more, or much less. They are preferably mounted in parallel as illustrated, the exchangers 80n forming an exchange system mounted in series with the second exchanger 60. Other assemblies (series or parallel) can be envisaged. It is also possible to provide exchangers on the open loop cooling circuit.
  • FIG 8 is attached to illustrate that the pressurized liquid (still liquid phase) in line 56 can also be used, in part, to cool other elements within a cooling system 90 on board the ship.
  • the liquid used for the cooling system 90 is preferably disposed downstream of the second exchanger 60 so that the liquid from the line 56 taken from the bypass 57 primarily serves for cooling at the level of the reliquefaction unit 10.
  • the cooling system can be for example an air conditioning unit, industrial refrigeration, ....
  • the system proposed here achieves cooperation between a liquefaction unit and a high pressure gas supply, for example for the supply of a MEGI type motor.
  • a synergy is created between these two sub-systems, one having cooling needs to liquefy a gas and the other requiring energy to vaporize liquid at high pressure.
  • the system as proposed makes it possible to increase the efficiency of the reliquefaction unit, that is to say to increase the proportion of the evaporated gas which is reliquefied, to limit the cooling requirements to be supplied to carry out the reliquefaction of evaporated gas and at the same time to limit the energy needs to obtain a high pressure gas to supply an engine (MEGI engine or other system operating with gas under high pressure).
  • the system proposed here is particularly well suited to a reliquefaction unit having an open loop of refrigerant gas corresponding to refrigerated gas with production of cold at two different temperatures, a temperature of around -120 ° C at the outlet of the expansion turbine. and a temperature of about -160 ° C at the outlet of the expansion valve.
  • the system is independent of the engines on board the vessel which are powered by evaporated gas. There can be two different types of gas engines, one being supplied by the high pressure supply line and the other by the evaporated gas compressed by the first compression unit.
  • the system also allows, from the evaporated gas, independently of any other external cold source, to achieve liquefaction.
  • the cold production can be matched to the load of the reliquefaction unit and can be regulated over a wide range.
  • the proposed system does not require a nitrogen treatment unit or the like. Its structure is simplified by the use of a refrigerant gas of the same nature as the gas to be refrigerated and to be liquefied and which also serves as fuel for an engine (or similar).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

La présente invention concerne un système et un procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique et pour l'alimentation en gaz sous pression d'un moteur à gaz.The present invention relates to a system and a method for treating gas resulting from the evaporation of a cryogenic liquid and for supplying pressurized gas to a gas engine.

Le domaine de la présente invention est plus particulièrement le transport maritime de liquides cryogéniques et encore plus particulièrement de Gaz Naturel Liquéfié (GNL). Cependant, les systèmes et les procédés qui seront proposés plus loin pourraient aussi trouver des applications dans des installations terrestres.The field of the present invention is more particularly the maritime transport of cryogenic liquids and even more particularly of Liquefied Natural Gas (LNG). However, the systems and methods which will be proposed later could also find applications in terrestrial installations.

Si l'on considère le gaz naturel liquéfié, celui-ci présente, à pression ambiante, une température de l'ordre -163°C (ou moins). Lors du transport maritime de GNL, ce dernier est mis dans des réservoirs sur un navire, un méthanier. Bien que ces réservoirs soient isolés thermiquement, des fuites thermiques existent et le milieu extérieur apporte de la chaleur au liquide contenu dans les réservoirs. Le liquide se réchauffe donc et s'évapore. Compte tenu de la taille des réservoirs se trouvant sur un méthanier, en fonction des conditions d'isolation thermique et des conditions extérieures, plusieurs tonnes de gaz peuvent s'évaporer par heure.If we consider liquefied natural gas, it has, at ambient pressure, a temperature of the order of -163 ° C (or less). During maritime transport of LNG, the latter is placed in tanks on a ship, an LNG carrier. Although these tanks are thermally insulated, thermal leaks exist and the external environment brings heat to the liquid contained in the tanks. The liquid therefore heats up and evaporates. Given the size of the tanks on an LNG carrier, depending on thermal insulation conditions and external conditions, several tonnes of gas can evaporate per hour.

Il n'est pas possible de maintenir le gaz évaporé dans les réservoirs du navire pour des raisons de sécurité. La pression dans les réservoirs augmenterait dangereusement. Il faut donc laisser le gaz qui s'évapore s'échapper hors des réservoirs. La règlementation interdit de rejeter ce gaz (s'il s'agit de gaz naturel) dans l'atmosphère en l'état. Il faut le brûler.It is not possible to keep evaporated gas in the vessel's tanks for safety reasons. The pressure in the tanks would increase dangerously. It is therefore necessary to allow the gas which evaporates to escape from the tanks. The regulations prohibit discharging this gas (if it is natural gas) into the atmosphere as it is. It must be burnt.

Pour éviter de perdre ce gaz qui s'évapore, il est aussi connu, d'une part, de l'utiliser comme carburant pour les moteurs à bord du navire le transportant et, d'autre part, de le reliquéfier pour le remettre dans les réservoirs desquels il provient.To avoid losing this gas which evaporates, it is also known, on the one hand, to use it as fuel for the engines on board the ship transporting it and, on the other hand, to reliquefy it to put it back in. the reservoirs from which it comes.

Pour reliquéfier le gaz qui s'est évaporé, il est connu de refroidir ce gaz pour le ramener à nouveau dans des conditions de température et de pression lui permettant de repasser en phase liquide. Cet apport de froid est le plus souvent réalisé par échange de chaleur avec un circuit réfrigérant comportant par exemple une boucle de fluide réfrigérant tel de l'azote.In order to reliquefy the gas which has evaporated, it is known practice to cool this gas in order to bring it back again to temperature and pressure conditions allowing it to return to the liquid phase. This cold intake is the most often carried out by heat exchange with a refrigerant circuit comprising, for example, a loop of refrigerant fluid such as nitrogen.

En outre, certains méthaniers utilisent le gaz naturel qu'ils transportent comme carburant pour assurer leur propulsion. Il existe plusieurs types de moteur fonctionnant avec du gaz naturel. La présente invention concerne plus particulièrement ceux qui sont alimentés par du gaz naturel sous phase gazeuse à haute pression. Pour alimenter alors le moteur de propulsion du méthanier, du gaz est pompé hors d'un réservoir de gaz naturel liquéfié se trouvant à bord du méthanier, puis est mis sous pression à l'aide d'une pompe avant d'être vaporisé pour pouvoir alimenter le moteur.In addition, some LNG carriers use the natural gas they transport as fuel to ensure their propulsion. There are several types of engine that run on natural gas. The present invention relates more particularly to those which are supplied with natural gas in a high pressure gaseous phase. To then supply the propulsion engine of the LNG carrier, gas is pumped out of a liquefied natural gas tank on board the LNG carrier, then is pressurized using a pump before being vaporized in order to be able to power the motor.

Le document EP-2 746 707 A1 s'intéresse à un gaz naturel s'évaporant à partir de réservoirs de stockage de gaz naturel liquéfié, typiquement disposés à bord d'un navire de haute mer, qui est comprimé dans un compresseur à plusieurs étages de compression. Au moins une partie du flux de gaz naturel comprimé étant envoyé vers un liquéfacteur, qui fonctionne typiquement selon un cycle de Brayton, afin d'être reliquéfié. La température du gaz naturel comprimé provenant de l'étage final est réduite à une valeur inférieure à 0 °C par passage à travers un échangeur de chaleur. Le premier étage de compression fonctionne ici en tant que compresseur de froid, et le gaz naturel comprimé froid résultant est utilisé dans l'échangeur de chaleur de sorte à procéder au refroidissement nécessaire du flux provenant de l'étage de compression. En aval de son passage à travers l'échangeur de chaleur, le gaz naturel comprimé froid circulant à travers les étages restants du compresseur. Si cela est souhaité, une partie du gaz naturel comprimé peut servir de carburant pour alimenter les moteurs du navire de haute mer. Dans une variante de réalisation (§[0026]), il est prévu de refroidir le gaz comprimé à l'état gazeux avant sa liquéfaction avec en partie du liquide comprimé avant qu'il ne soit détendu pour être utilisé dans un moteur ou une turbine.The document EP-2 746 707 A1 is interested in a natural gas evaporating from liquefied natural gas storage tanks, typically arranged on board a seagoing vessel, which is compressed in a compressor with several compression stages. At least part of the compressed natural gas stream being sent to a liquefier, which typically operates according to a Brayton cycle, in order to be reliquefied. The temperature of the compressed natural gas coming from the final stage is reduced to a value below 0 ° C by passing through a heat exchanger. The first compression stage here functions as a cold compressor, and the resulting cold compressed natural gas is used in the heat exchanger so as to provide the necessary cooling of the flow from the compression stage. Downstream of its passage through the heat exchanger, the cold compressed natural gas circulates through the remaining stages of the compressor. If desired, part of the compressed natural gas can be used as fuel to supply the engines of the ocean-going vessel. In an alternative embodiment (§ [0026]), it is planned to cool the compressed gas in the gaseous state. before its liquefaction with partly compressed liquid before it is expanded for use in an engine or turbine.

La présence d'une boucle réfrigérante avec de l'azote dans le cycle de Brayton, ou bien tout autre gaz réfrigérant distinct du fluide à réfrigérer, implique de prévoir des équipements spécifiques pour le fluide réfrigérant. Ainsi par exemple lorsqu'un circuit réfrigérant à l'azote est prévu à bord d'un navire (ou ailleurs), une unité de traitement (purification) de l'azote est nécessaire pour permettre son utilisation dans le domaine cryogénique. Il convient également de prévoir un réservoir spécifique, des vannes et autres dispositifs pour la régulation de la circulation de l'azote.The presence of a refrigerant loop with nitrogen in the Brayton cycle, or any other refrigerant gas distinct from the fluid to be refrigerated, implies providing specific equipment for the refrigerant. So, for example, when a nitrogen refrigerant circuit is provided on board a ship (or elsewhere), a nitrogen treatment (purification) unit is necessary to allow its use in the cryogenic field. It is also advisable to provide a specific tank, valves and other devices for regulating the circulation of nitrogen.

Lorsque le gaz naturel alimentant les moteurs du méthanier est directement prélevé dans les réservoirs du navire, il est préférable d'avoir un rendement élevé au niveau de la liquéfaction car la consommation de gaz sous phase gazeuse est alors limitée.When the natural gas supplying the engines of the LNG tanker is taken directly from the tanks of the vessel, it is preferable to have a high efficiency in terms of liquefaction because the consumption of gas in the gas phase is then limited.

La présente invention a alors pour but de fournir un système optimisé permettant de reliquéfier du gaz qui s'est évaporé et d'alimenter sous haute pression un moteur à gaz. De préférence, le système proposé permettra d'optimiser la quantité de liquide recouvré pour ce qui concerna la part de gaz à reliquéfier. Avantageusement, le système proposé pourra également être utilisé à bord d'un navire tel un méthanier. De manière préférée, le système fonctionnera sans utilisation d'un fluide frigorigène tel de l'azote ou autre pour éviter d'avoir deux circuits distincts avec des fluides de natures différentes. La solution proposée ne sera également de préférence pas plus chère à réaliser que les solutions de l'art antérieur.The object of the present invention is therefore to provide an optimized system making it possible to reliquefy gas which has evaporated and to supply a gas engine under high pressure. Preferably, the proposed system will make it possible to optimize the quantity of liquid recovered with regard to the portion of gas to be reliquefied. Advantageously, the proposed system could also be used on board a ship such as an LNG carrier. Preferably, the system will operate without using a refrigerant such as nitrogen or the like to avoid having two separate circuits with fluids of different natures. The proposed solution will also preferably not be more expensive to produce than the solutions of the prior art.

À cet effet, la présente invention propose un système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz, ledit système comportant, d'une part, d'amont en aval, une unité de reliquéfaction avec des moyens de compression, un premier échangeur de chaleur et des moyens de détente, et, d'autre part, une ligne d'alimentation en gaz sous pression comportant d'amont en aval une pompe pour mettre du liquide sous pression et des moyens de vaporisation sous haute pression.To this end, the present invention provides a system for treating a gas resulting from the evaporation of a cryogenic liquid and for supplying pressurized gas to a gas engine, said system comprising, on the one hand, from upstream to downstream, a reliquefaction unit with compression means, a first heat exchanger and expansion means, and, on the other hand, a pressurized gas supply line comprising from upstream to downstream a pump for putting liquid under pressure and high pressure vaporization means.

Selon la présente invention, la ligne d'alimentation en gaz sous pression présente, en amont des moyens de vaporisation, une dérivation pour alimenter un deuxième échangeur de chaleur entre, d'une part, du liquide sous pression de la ligne d'alimentation et, d'autre part, une ligne de l'unité de reliquéfaction en aval du premier échangeur de chaleur et en amont des moyens de détente, caractérisé en ce que le gaz issu de l'évaporation d'un liquide cryogénique, puis comprimé et refroidi est condensé au moins partiellement au sein du premier échangeur de chaleur (17) .According to the present invention, the pressurized gas supply line has, upstream of the vaporization means, a bypass for supplying a second heat exchanger between, on the one hand, liquid under pressure from the supply line and , on the other hand, a line of the reliquefaction unit downstream of the first heat exchanger and upstream of the expansion means, characterized in that the gas resulting from the evaporation of a cryogenic liquid, then compressed and cooled is condensed at least partially within the first heat exchanger (17).

La solution proposée permet de créer une synergie entre la reliquéfaction du gaz qui s'est évaporé et la production de gaz sous pression pour alimenter un moteur, par exemple un moteur MEGI. En effet, d'un côté il y a des besoins pour refroidir du gaz et d'un autre côté il y a des besoins pour réchauffer du liquide avant de le vaporiser. Le deuxième échangeur proposé permet ainsi à la fois de limiter les besoins (en froid) de l'unité de reliquéfaction et les besoins (en chaleur) de la ligne d'alimentation en gaz sous haute pression. De manière originale, il est proposé ici de « sous-refroidir » du gaz condensé. En effet, après le premier échangeur le gaz comprimé est suffisamment refroidi pour se condenser et se trouver majoritairement en phase liquide sous pression. Ce liquide sous pression doit alors être détendu pour pouvoir être réintroduit dans les réservoirs qui sont sensiblement à la pression atmosphérique (juste un peu au-dessus pour éviter à de l'air de pénétrer à l'intérieur). Lors de cette détente, une partie du gaz condensé se revaporise. En refroidissant avant détente le gaz condensé, étant donc sous phase liquide, ce gaz est sous refroidi et ceci permet de limiter lors de la détente la portion de gaz condensé qui se revaporise.The proposed solution makes it possible to create a synergy between the reliquefaction of the gas which has evaporated and the production of gas under pressure to supply an engine, for example a MEGI engine. Indeed, on the one hand there are needs to cool the gas and on the other hand there are needs to heat the liquid before vaporizing it. The second proposed exchanger thus makes it possible both to limit the (cooling) requirements of the reliquefaction unit and the (heat) requirements of the high pressure gas supply line. In an original manner, it is proposed here to “sub-cool” the condensed gas. Indeed, after the first exchanger, the compressed gas is sufficiently cooled to condense and be found mainly in the liquid phase under pressure. This pressurized liquid must then be relaxed in order to be able to be reintroduced into the reservoirs which are substantially at atmospheric pressure (just a little above to prevent air from entering the interior). During this expansion, part of the condensed gas is vaporized. By cooling the condensed gas before expansion, therefore being in the liquid phase, this gas is subcooled and this makes it possible to limit, during expansion, the portion of condensed gas which revaporates.

Pour optimiser encore l'utilisation de la source de froid provenant du flux de liquide sous pression destiné à être vaporisé pour alimenter un moteur, la dérivation peut alimenter en aval du deuxième échangeur un système de refroidissement. Il peut par exemple s'agir d'un troisième échangeur monté en série avec et en aval du deuxième échangeur et/ou d'un échangeur de chaleur monté en parallèle du deuxième échangeur.To further optimize the use of the cold source coming from the flow of pressurized liquid intended to be vaporized to supply an engine, the bypass can supply a cooling system downstream of the second exchanger. It may for example be a third exchanger mounted in series with and downstream of the second exchanger and / or a heat exchanger mounted in parallel with the second exchanger.

On peut prévoir dans le système décrit ci-dessus que la dérivation alimente outre le deuxième échangeur, un ou plusieurs échangeurs pour refroidir du gaz avant sa reliquéfaction.In the system described above, provision can be made for the bypass to supply, in addition to the second exchanger, one or more exchangers for cooling gas before its reliquefaction.

Une variante particulière d'un système tel que décrit ci-dessus prévoit qu'il comporte en outre, en aval des moyens de détente un ballon séparant la phase gazeuse de la phase liquide dans le fluide détendu ; qu'une ligne conduit la phase gazeuse vers un collecteur pour le mélanger au gaz issu de l'évaporation du liquide cryogénique, et que la dérivation alimente un échangeur de chaleur pour refroidir la phase gazeuse avant son introduction dans le collecteur.A particular variant of a system as described above provides that it further comprises, downstream of the expansion means, a balloon separating the gas phase from the liquid phase in the expanded fluid; that a line conducts the gas phase to a collector to mix it with the gas resulting from the evaporation of the cryogenic liquid, and that the bypass supplies a heat exchanger to cool the gas phase before its introduction into the collector.

Le système décrit ci-dessus est particulièrement bien adapté à une unité de reliquéfaction qui utilise comme liquide réfrigérant le même fluide que le fluide à liquéfier. Dans cette variante avantageuse, ladite unité comporte ainsi par exemple, en aval de ses moyens de compression une dérivation vers une boucle comportant de seconds moyens de détente, et la boucle rejoint le circuit en amont des moyens de compression après avoir traversé le premier échangeur de chaleur à contresens par rapport à la fraction de gaz du circuit non dérivée par la boucle. Dans cette forme de réalisation, il est de préférence prévu que les moyens de compression comportent plusieurs étages de compression avec chacun une roue de compression, que les seconds moyens de détente comportent une turbine de détente et que chaque roue de compression et la turbine de détente sont associées à une même transmission mécanique. On peut éventuellement prévoir aussi que le système, avec une telle unité de reliquéfaction, comporte en outre un troisième échangeur de chaleur entre du liquide sous pression dérivé de la ligne d'alimentation et du gaz entre les moyens de compression et les seconds moyens de détente. Ce troisième échangeur permet d'augmenter les échanges et ainsi donc d'optimiser le système. Comme évoqué plus haut, selon une première variante de réalisation, le troisième échangeur peut être monté en parallèle du deuxième échangeur et selon une autre variante de réalisation alternative, le troisième échangeur peut être monté en série avec le deuxième échangeur.The system described above is particularly well suited to a reliquefaction unit which uses as coolant the same fluid as the fluid to be liquefied. In this advantageous variant, said unit thus comprises for example, downstream of its compression means, a bypass to a loop comprising second expansion means, and the loop joins the circuit upstream of the compression means after passing through the first heat exchanger. heat in the opposite direction to the fraction of gas in the circuit not diverted by the loop. In this embodiment, provision is preferably made for the compression means to include several compression stages each with a compression wheel, for the second expansion means to include an expansion turbine and for each compression wheel and the expansion turbine are associated with the same mechanical transmission. Provision may also be made for the system, with such a reliquefaction unit, to further include a third heat exchanger between pressurized liquid derived from the supply line and gas between the compression means and the second expansion means. . This third exchanger makes it possible to increase the exchanges and thus to optimize the system. As mentioned above, according to a first variant embodiment, the third heat exchanger can be mounted in parallel with the second heat exchanger and according to another alternative variant embodiment, the third heat exchanger may be mounted in series with the second heat exchanger.

La présente invention concerne également un navire, notamment un méthanier, propulsé par un moteur à gaz, caractérisé en ce qu'il comporte un système de traitement d'un gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation en gaz sous pression d'un moteur à gaz tel que décrit plus haut.The present invention also relates to a ship, in particular an LNG carrier, propelled by a gas engine, characterized in that it comprises a system for treating a gas resulting from the evaporation of a cryogenic liquid and for supplying gas. under pressure from a gas engine as described above.

Enfin, la présente invention propose un procédé de traitement d'un flux de gaz issu de l'évaporation d'un liquide cryogénique et d'alimentation d'un moteur en gaz à haute pression, ledit flux de gaz étant tout d'abord comprimé puis refroidi et condensé au moins partiellement au sein d'un premier échangeur de chaleur avant d'être détendu, et l'alimentation en gaz sous haute pression étant réalisée en mettant sous pression du liquide cryogénique puis en le vaporisant, et après sa compression, le flux de liquide sous pression étant séparé en une première partie de flux de liquide et une seconde partie de flux de liquide, et la première partie du flux de liquide étant utilisée pour refroidir du gaz comprimé et condensé au sein d'un deuxième échangeur avant détente du gaz condensé, et la seconde partie du flux du liquide recevant la première partie du flux de liquide après que cette dernière ait refroidi du gaz comprimé, l'ensemble du flux liquide étant ensuite vaporisé.Finally, the present invention proposes a method for treating a gas flow resulting from the evaporation of a cryogenic liquid and for supplying a high pressure gas to an engine, said gas flow being first of all compressed. then cooled and condensed at least partially within a first heat exchanger before being expanded, and the supply of gas under high pressure being carried out by pressurizing cryogenic liquid then by vaporizing it, and after its compression, the flow of liquid under pressure being separated into a first part of liquid flow and a second part of liquid flow, and the first part of the liquid flow being used to cool compressed and condensed gas within a second exchanger before expansion of the condensed gas, and the second part of the liquid flow receiving the first part of the liquid flow after the latter has cooled compressed gas, the whole of the liquid flow then being vaporized.

Dans ce procédé on prévoit avantageusement que plus de la moitié, et de préférence au moins 90% en masse du gaz comprimé est condensé avant d'être refroidi au sein du deuxième échangeur.In this process it is advantageously provided that more than half, and preferably at least 90% by mass of the compressed gas is condensed before being cooled within the second exchanger.

Pour augmenter le rendement au niveau de la reliquéfaction, il est avantageusement prévu que le flux de liquide sous pression soit également utilisé pour refroidir du gaz avant qu'il ne soit condensé.In order to increase the efficiency of the reliquefaction, it is advantageously provided that the flow of pressurized liquid is also used to cool gas before it is condensed.

Dans un procédé tel que décrit ci-avant, on prévoit avantageusement qu'une partie du gaz comprimé est prélevée au sein du premier échangeur pour être détendue au sein d'une turbine de détente, et que le gaz détendu est introduit dans le premier échangeur à contre-courant pour refroidir le gaz comprimé et provoquer sa condensation. De la sorte, le fluide à reliquéfier est utilisé aussi comme fluide réfrigérant et il n'est alors pas nécessaire de prévoir un circuit réfrigérant utilisant un autre fluide pour permettre la reliquéfaction.In a method as described above, it is advantageously provided that part of the compressed gas is taken from within the first exchanger to be expanded within an expansion turbine, and that the expanded gas is introduced into the first exchanger. against the current to cool the compressed gas and cause it to condense. In this way, the fluid to be reliquefied is also used as refrigerant fluid and it is then not necessary to provide a refrigerant circuit using another fluid to allow reliquefaction.

Des détails et avantages de la présente invention apparaitront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :
Les figures 1 à 8 sont chacune une vue schématique, selon plusieurs variantes, d'un réservoir de liquide cryogénique associé à un système de récupération du gaz s'évaporant dudit réservoir, à un système de traitement d'une partie du gaz récupéré pour le liquéfier et à une ligne d'alimentation en gaz sous haute pression d'un moteur à gaz.
Details and advantages of the present invention will appear better from the following description, made with reference to the appended schematic drawing in which:
The figures 1 to 8 are each a schematic view, according to several variants, of a cryogenic liquid reservoir associated with a system for recovering the gas evaporating from said reservoir, with a system for treating part of the gas recovered to liquefy it and with a line high pressure gas supply to a gas engine.

Sur chacune des figures annexées, un réservoir 1 est illustré. Dans toute la suite de la description, on supposera qu'il s'agit d'un réservoir de Gaz Naturel Liquéfié (ou GNL) parmi plusieurs autres réservoirs similaires à bord d'un navire de haute mer de type méthanier.In each of the appended figures, a reservoir 1 is illustrated. Throughout the remainder of the description, it will be assumed that this is a Liquefied Natural Gas (or LNG) tank among several other similar tanks on board an LNG-type ocean-going vessel.

Les valeurs numériques dans la description qui suit sont données à titre d'exemples numériques purement illustratifs et nullement limitatifs. Elles sont adaptées au traitement de GNL à bord d'un navire mais peuvent varier, notamment si la nature du gaz change.The numerical values in the description which follows are given by way of purely illustrative numerical examples and in no way limiting. They are suitable for the treatment of LNG on board a ship but may vary, in particular if the nature of the gas changes.

Le réservoir 1 stocke le GNL à une température de l'ordre de -163°C qui correspond à la température de stockage habituelle du GNL à une pression proche de la pression atmosphérique. Cette température dépend bien entendu de la composition du gaz naturel et des conditions de stockage. L'atmosphère autour du réservoir 1 étant à une température bien plus élevée que celle du GNL, bien que le réservoir 1 soit très bien isolé thermiquement, des calories sont apportées au liquide qui se réchauffe et se vaporise. Le volume du gaz s'évaporant étant bien plus important que celui du liquide correspondant, la pression dans le réservoir 1 tend donc à augmenter au fur et à mesure que le temps s'écoule et que des calories sont apportées au liquide.The tank 1 stores the LNG at a temperature of the order of -163 ° C which corresponds to the usual storage temperature of LNG at a pressure close to atmospheric pressure. This temperature obviously depends on the composition of the natural gas and the storage conditions. The atmosphere around tank 1 being at a much higher temperature than that of LNG, although tank 1 is very well thermally insulated, calories are added to the liquid which heats up and vaporizes. The volume of gas evaporating being much greater than that of the corresponding liquid, the pressure in the reservoir 1 therefore tends to increase as time passes and as calories are added to the liquid.

Pour éviter d'atteindre des pressions trop importantes, le gaz qui s'évapore est retiré au fur et à mesure du réservoir 1 (et des autres réservoirs du navire) et se retrouve dans un collecteur 2 relié à plusieurs réservoirs. Dans la suite de la description, le gaz qui s'est évaporé est appelé « gaz » même lorsque par la suite il est reliquéfié. On le distingue ainsi du GNL qui est prélevé sous forme liquide dans les réservoirs pour alimenter un moteur.To avoid reaching excessively high pressures, the gas which evaporates is gradually withdrawn from tank 1 (and from the other tanks of the ship) and is found in a manifold 2 connected to several tanks. In the remainder of the description, the gas which has evaporated is called “gas” even when it is subsequently reliquefied. It can thus be distinguished from LNG which is taken in liquid form from the tanks to supply an engine.

Il est prévu dans les systèmes illustrés au dessin d'utiliser le gaz qui s'est évaporé comme source d'énergie à bord du navire (par exemple pour fabriquer de l'électricité) et de reliquéfier le surplus de gaz. Le but est ici d'éviter de perdre le gaz évaporé et donc soit de l'utiliser à bord du navire, soit de le récupérer et le renvoyer, en phase liquide, dans le réservoir 1. En outre, il est prévu une ligne d'alimentation en gaz à haute pression d'un moteur à gaz de type moteur MEGI à partir de GNL liquide prélevé dans les réservoirs du navire.In the systems illustrated in the drawing, provision is made to use the gas which has evaporated as a source of energy on board the ship (for example to produce electricity) and to reliquefy the surplus gas. The aim here is to avoid losing the evaporated gas and therefore either using it on board the ship, or recovering it and returning it, in the liquid phase, to the tank 1. In addition, there is provided a dc line. 'high pressure gas supply to a gas engine of the MEGI engine type from liquid LNG taken from the ship's tanks.

Pour être utilisé à bord du navire, le gaz évaporé des réservoirs doit être tout d'abord comprimé. Cette compression est alors réalisée au sein d'une première unité de compression 3 qui peut être, comme illustré au dessin, multi-étagée. Cette unité, à titre d'exemple numérique illustratif et nullement limitatif, porte la pression du gaz collecté dans le collecteur 2 d'une pression sensiblement égale à la pression atmosphérique à une pression de l'ordre de 15 à 20 bar (1 bar=105 Pa).To be used on board the ship, the gas evaporated from the tanks must first be compressed. This compression is then carried out within a first compression unit 3 which can be, as illustrated in the drawing, multistage. This unit, by way of illustrative and in no way limiting numerical example, takes the pressure of the gas collected in the manifold 2 from a pressure substantially equal to atmospheric pressure to a pressure of the order of 15 to 20 bar (1 bar = 10 5 Pa).

Après cette première étape de compression, le gaz passe dans un refroidisseur intermédiaire 4 dans lequel il est refroidi sans modifier de manière sensible sa pression. Le gaz qui a été réchauffé lors de sa compression est à une température de l'ordre de 40 à 45°C à la sortie du refroidisseur intermédiaire (ces valeurs sont données à titre purement illustratif et s'appliquent notamment pour du gaz naturel). Le gaz ainsi comprimé et refroidi peut alors être envoyé en phase gazeuse par une conduite 5 vers un générateur à bord du navire.After this first compression step, the gas passes through a intercooler 4 in which it is cooled without significantly modifying its pressure. The gas which has been reheated during its compression is at a temperature of the order of 40 to 45 ° C. at the outlet of the intercooler (these values are given purely by way of illustration and apply in particular for natural gas). The gas thus compressed and cooled can then be sent in the gaseous phase via a pipe 5 to a generator on board the ship.

Les besoins en gaz au niveau du (des) générateur(s) du navire sont souvent inférieurs à la "production" de gaz par évaporation dans tous les réservoirs qui sont à bord du navire. Le gaz non utilisé dans le(s) générateur(s) est alors envoyé vers une unité de reliquéfaction 10.The gas requirements at the ship's generator (s) are often less than the "production" of evaporative gas in all tanks that are on board the ship. The gas not used in the generator (s) is then sent to a reliquefaction unit 10.

L'unité de reliquéfaction 10 comprend à son entrée une vanne 6 destinée notamment à contrôler la pression du gaz dans la conduite 5, puis un circuit principal et une boucle qui vont être décrits ci-après.The reliquefaction unit 10 comprises at its inlet a valve 6 intended in particular to control the pressure of the gas in line 5, then a main circuit and a loop which will be described below.

Le circuit principal permet à partir du gaz (en phase gazeuse et qui se trouve à une pression de l'ordre de quelques bars à environ 50 bar -valeurs non limitatives-) d'obtenir du gaz en phase liquide pouvant retourner dans le réservoir 1.The main circuit allows from the gas (in the gas phase and which is at a pressure of the order of a few bars to about 50 bar - non-limiting values -) to obtain gas in the liquid phase which can return to the tank 1 .

Le procédé pour obtenir ce gaz en phase liquide à remettre dans le réservoir est classique. Il s'agit de comprimer le gaz, de le refroidir pour le condenser puis de le détendre pour qu'il retrouve la pression régnant dans les réservoirs. Cette manière de faire est classique dans le domaine de la cryogénie.The process for obtaining this gas in liquid phase to be returned to the reservoir is conventional. This involves compressing the gas, cooling it to condense it and then expanding it so that it regains the pressure prevailing in the reservoirs. This way of doing things is classic in the field of cryogenics.

On trouve ainsi dans le circuit principal tout d'abord un compresseur multi-étagé comprenant ici trois étages successifs avec les références 11, 12 et 13. Chaque étage est formé par une roue de compression et les trois roues de compression sont entrainées par une même transmission 15 à arbres et pignons. Le trait entre les étages de compression sur les figures symbolise la liaison mécanique entre eux. Dans la forme de réalisation illustrée sur la figure 1, le gaz arrivant dans le compresseur multi-étagé arrive dans le deuxième étage 12 de ce compresseur. En fonction du système, il peut aussi bien arriver au premier-comme illustré sur les autres figures du dessin- ou au troisième (ou plus généralement nième étage) de ce compresseur.There is thus in the main circuit first of all a multistage compressor comprising here three successive stages with the references 11, 12 and 13. Each stage is formed by a compression wheel and the three compression wheels are driven by the same one. transmission 15 with shafts and pinions. The line between the compression stages in the figures symbolizes the mechanical connection between them. In the embodiment illustrated in figure 1 , the gas arriving in the multistage compressor arrives in the second stage 12 of this compressor. Depending on the system, it may as well arrive at the first - as illustrated in the other figures of the drawing - or at the third (or more generally nth stage) of this compressor.

Après cette seconde compression, le gaz passe dans un refroidisseur intermédiaire 16. Sa pression est alors de quelques dizaines de bars, par exemple environ 50 bar, et sa température est à nouveau de l'ordre de 40 à 45°C.After this second compression, the gas passes into an intercooler 16. Its pressure is then a few tens of bars, for example. example about 50 bar, and its temperature is again around 40 to 45 ° C.

Le gaz ainsi comprimé est alors refroidi et condensé au sein d'un premier échangeur 17 multiflux. Le gaz circule dans ce premier échangeur 17 dans un premier sens. Les fluides circulant à contresens (par rapport à ce premier sens) et utilisés pour le refroidir seront décrits plus loin.The gas thus compressed is then cooled and condensed within a first multi-flow exchanger 17. The gas circulates in this first exchanger 17 in a first direction. The fluids circulating in the opposite direction (with respect to this first direction) and used to cool it will be described below.

En sortie du premier échangeur 17, le gaz comprimé refroidi à une température de l'ordre de -110 à -120°C se trouve majoritairement (presque intégralement) en phase liquide et est envoyé, toujours à une pression de l'ordre de quelques dizaines de bars (par exemple environ 50 bar) par une conduite isolée 22 à une vanne de détente 30.At the outlet of the first exchanger 17, the compressed gas cooled to a temperature of the order of -110 to -120 ° C. is mainly (almost entirely) in the liquid phase and is sent, always at a pressure of the order of a few tens of bars (for example around 50 bar) via an insulated pipe 22 to an expansion valve 30.

La détente à travers la vanne de détente 30 du gaz condensé fournit à la fois du gaz en phase liquide riche en méthane et un gaz en phase gazeuse riche en azote. La séparation de cette phase liquide et de cette phase gazeuse est réalisée au sein d'un ballon 40 dans lequel la pression est de l'ordre de quelques bars, par exemple entre 3 et 5 bar.Expansion through condensed gas expansion valve 30 provides both methane-rich liquid phase gas and nitrogen-rich gas phase gas. The separation of this liquid phase and this gas phase is carried out within a balloon 40 in which the pressure is of the order of a few bars, for example between 3 and 5 bar.

Le gaz en phase gazeuse du ballon 40 est renvoyé de préférence vers le collecteur 2. De la sorte, il peut être utilisé soit comme carburant dans un générateur, soit repasser dans l'unité de reliquéfaction 10. Ce gaz étant froid, il peut être utilisé pour refroidir et condenser le gaz comprimé dans le premier échangeur 17. Il est donc prévu de le faire circuler à contresens dans ce premier échangeur 17 avant de le faire retourner dans le collecteur 2.The gas in the gaseous phase of the balloon 40 is preferably returned to the manifold 2. In this way, it can be used either as fuel in a generator, or to pass back into the reliquefaction unit 10. This gas being cold, it can be used either as fuel in a generator. used to cool and condense the compressed gas in the first exchanger 17. It is therefore planned to make it circulate in the opposite direction in this first exchanger 17 before returning it to the manifold 2.

Si le gaz en phase gazeuse du ballon 40 pour diverses raisons, notamment lors de phases transitoires, ne peut pas être recyclé vers le collecteur 2, il est prévu de l'envoyer à une torchère ou une unité de combustion. Un jeu de vannes 31, 32 contrôle l'envoi du gaz en phase gazeuse du ballon 40 respectivement vers le collecteur 2 par une conduite de liaison 35 ou vers une unité de combustion (non représentée).If the gas in the gaseous phase of the balloon 40 for various reasons, in particular during transient phases, cannot be recycled to the collector 2, provision is made to send it to a flare or a combustion unit. A set of valves 31, 32 controls the sending of the gas in the gaseous phase from the balloon 40 respectively to the manifold 2 via a connection pipe 35 or to a combustion unit (not shown).

Le gaz en phase liquide récupéré au fond du ballon 40 est quant à lui destiné à retourner dans le réservoir 1. En fonction des conditions de fonctionnement, le gaz en phase liquide peut être envoyé directement dans le réservoir 1 (passage contrôlé par une vanne 33), soit à l'aide d'une pompe 41 (passage contrôlé par une vanne 34).The gas in the liquid phase recovered at the bottom of the tank 40 is for its part intended to return to the tank 1. Depending on the operating conditions, the gas in the liquid phase can be sent directly to the tank 1 (passage controlled by a valve 33 ), or using a pump 41 (passage controlled by a valve 34).

Le retour du gaz en phase liquide en provenance du ballon 40, directement ou par la pompe 41, vers le réservoir 1 se fait par l'intermédiaire d'une conduite isolée 36 munie ici d'une vanne 54, par exemple une soupape d'arrêt.The return of the gas in liquid phase from the balloon 40, directly or by the pump 41, to the reservoir 1 is effected by means of an insulated pipe 36 provided here with a valve 54, for example a valve. stop.

Dans l'unité de reliquéfaction 10, il convient d'assurer le refroidissement du gaz comprimé dans le compresseur multi-étagé (étages 11, 12 et 13). Ce refroidissement se fait habituellement à l'aide d'une machine thermodynamique distincte, fonctionnant par exemple selon un cycle de Brayton, et utilisant de l'azote comme fluide frigorigène. Il est possible d'utiliser dans l'unité de reliquéfaction 10 une telle machine de réfrigération qui vient alors refroidir et condenser le gaz au sein du premier échangeur 17. Toutefois, il est proposé ici comme mentionné plus haut, de munir cette unité de reliquéfaction d'une boucle de refroidissement utilisant le gaz naturel comme fluide frigorigène. Cette boucle commence par une conduite dérivée 18 qui sépare le flux de gaz en aval du compresseur multi-étagé (étages 11, 12, 13) en un premier flux, ou flux principal, qui correspond au circuit principal décrit précédemment, et en un second flux, ou flux dérivé.In the reliquefaction unit 10, cooling of the compressed gas in the multistage compressor (stages 11, 12 and 13) should be ensured. This cooling is usually done using a separate thermodynamic machine, operating for example according to a Brayton cycle, and using nitrogen as refrigerant. It is possible to use in the reliquefaction unit 10 such a refrigeration machine which then cools and condenses the gas within the first exchanger 17. However, it is proposed here, as mentioned above, to provide this reliquefaction unit a cooling loop using natural gas as refrigerant. This loop begins with a branch pipe 18 which separates the gas flow downstream of the multistage compressor (stages 11, 12, 13) into a first flow, or main flow, which corresponds to the main circuit described above, and into a second flow, or derivative flow.

La conduite de dérivation 18 est de préférence reliée au circuit principal au niveau du premier échangeur 17. Le gaz en phase gazeuse qui pénètre donc dans la conduite de dérivation 18 se trouve à "haute pression" (environ 50 bar dans l'exemple numérique donné) et à une température intermédiaire entre 40°C et -110°C.The bypass pipe 18 is preferably connected to the main circuit at the level of the first exchanger 17. The gas in the gas phase which therefore enters the bypass pipe 18 is at "high pressure" (approximately 50 bar in the numerical example given ) and at an intermediate temperature between 40 ° C and -110 ° C.

Le gaz prélevé par la conduite de dérivation 18 est détendu au sein de moyens de détente formés par une turbine de détente 14. Cette turbine de détente 14 est, dans la forme de réalisation préférée illustrée sur le dessin, relié mécaniquement aux trois roues de compression correspondant aux étages 11, 12 et 13 du compresseur multi-étagé de l'unité de reliquéfaction 10. La transmission 15 par arbres et pignons relie la turbine de détente 14 et les roues de compression du compresseur multi-étagé. Cette transmission 15 est symbolisée par un trait reliant sur les figures la turbine de détente 14 aux étages 11, 12 et 13.The gas taken by the bypass pipe 18 is expanded within expansion means formed by an expansion turbine 14. This expansion turbine 14 is, in the preferred embodiment illustrated in the drawing, mechanically connected to the three compression wheels. corresponding to stages 11, 12 and 13 of the multistage compressor of the reliquefaction unit 10. The transmission 15 by shafts and pinions connects the expansion turbine 14 and the compression wheels of the multistage compressor. This transmission 15 is symbolized by a line connecting in the figures the expansion turbine 14 to the stages 11, 12 and 13.

Le gaz est détendu par exemple à un niveau de pression qui correspondait à son niveau de pression en entrant dans l'unité de reliquéfaction 10, soit environ 15 à 20 bar. Sa température descend en dessous de -120°C. Ce flux de gaz (phase gazeuse) est alors envoyé dans le premier échangeur 17 à contresens pour refroidir et condenser le gaz sous pression du circuit principal, tout d'abord dans une portion 19 se trouvant en aval de la conduite de dérivation 18 puis dans une portion de ce circuit principal dans le premier échangeur 17 en amont de cette conduite de dérivation 18. En sortie du premier échangeur 17, le gaz détendu retrouve des températures de l'ordre de 40°C et peut être réinjecté en phase gazeuse dans le circuit principal de l'unité de reliquéfaction, en amont du compresseur multi-étagé par une conduite de retour 21.The gas is expanded for example to a pressure level which corresponded to its pressure level when entering the reliquefaction unit 10, or about 15 to 20 bar. Its temperature drops below -120 ° C. This gas flow (gas phase) is then sent into the first exchanger 17 in the opposite direction to cool and condense the pressurized gas from the main circuit, first of all in a portion 19 located downstream of the bypass pipe 18 then in a portion of this main circuit in the first exchanger 17 upstream of this bypass pipe 18. At the outlet of the first exchanger 17, the expanded gas returns to temperatures of the order of 40 ° C and can be reinjected in the gas phase into the main circuit of the reliquefaction unit, upstream of the multistage compressor via a return line 21.

On réalise ainsi une boucle de refroidissement ouverte qui utilise comme gaz pour le refroidissement le même gaz que celui qui doit être liquéfié.An open cooling loop is thus produced which uses as gas for cooling the same gas as that which is to be liquefied.

Comme indiqué plus haut, le système illustré présente aussi une ligne d'alimentation en gaz sous (haute) pression d'un moteur à gaz, par exemple un moteur de type MEGI (non illustré). Cette ligne d'alimentation part d'un réservoir 1. Elle est tout d'abord alimentée par une pompe immergée 50 qui alimente en liquide cryogénique (GNL) une conduite 51 pour le conduire vers une pompe haute pression 48. Le liquide sous haute pression est alors mené par une conduite 56 dans un vaporiseur 61, réalisant par exemple un échange thermique avec de la vapeur d'eau, pour produire de la vapeur (gaz naturel en phase gazeuse) sous haute pression pouvant alimenter alors un moteur de type MEGI par une conduite d'alimentation 62.As indicated above, the illustrated system also has a gas supply line under (high) pressure to a gas engine, for example a MEGI type engine (not illustrated). This supply line starts from a tank 1. It is first of all supplied by an immersed pump 50 which supplies cryogenic liquid (LNG) to a pipe 51 to lead it to a high pressure pump 48. The high pressure liquid is then carried by a pipe 56 in a vaporizer 61, for example carrying out a heat exchange with water vapor, to produce vapor (natural gas in the gaseous phase) under high pressure which can then supply an engine of the MEGI type by a supply line 62.

On remarque sur les figures la présence d'une dérivation 57 sur la conduite 56. Cette dérivation 57 va alimenter en liquide sous pression, toujours en phase liquide, un deuxième échangeur 60 destiné à sous-refroidir du condensat sortant du premier échangeur 17 dans le circuit principal de l'unité de reliquéfaction 10. Ce deuxième échangeur 60, dans la forme de réalisation illustrée sur la figure 1, est ici prévu pour faire un échange de chaleur entre d'un côté le liquide sous pression de la conduite 56 alimentant le moteur MEGI (ou autre) et dérivé par la dérivation 57 et d'un autre côté le condensat se trouvant dans la conduite isolée 22 entre le premier échangeur 17 et la vanne de détente 30.Note in the figures the presence of a bypass 57 on the pipe 56. This bypass 57 will supply liquid under pressure, still in the liquid phase, a second exchanger 60 intended to sub-cool the condensate leaving the first exchanger 17 in the main circuit of the reliquefaction unit 10. This second exchanger 60, in the embodiment illustrated on figure 1 , is here provided to make a heat exchange between on one side the pressurized liquid of the pipe 56 supplying the MEGI motor (or other) and derived by the bypass 57 and on the other hand the condensate in the pipe isolated 22 between the first exchanger 17 and the expansion valve 30.

À titre d'exemple numérique simplement illustratif et non limitatif, le liquide dérivé dans la dérivation 57 se trouve à environ -150°C en amont du deuxième échangeur 60 et ressort de ce dernier par exemple à -140°C (toujours en phase liquide). Dans la conduite isolée 22, le gaz condensé sortant du premier échangeur 17 passe quant à lui par exemple de -120°C à -135°C.By way of merely illustrative and non-limiting numerical example, the liquid derived in the bypass 57 is located at approximately -150 ° C upstream of the second exchanger 60 and emerges from the latter for example at -140 ° C. (still in the liquid phase). In the insulated pipe 22, the condensed gas leaving the first exchanger 17 passes for example from -120 ° C to -135 ° C.

Dans la forme de réalisation de la figure 1, la régulation des flux dans la conduite 56 et la dérivation 57 est prévue à l'aide d'une vanne 55 placée sur la conduite 56 en amont de la dérivation 57 et d'une autre vanne 59 intégrée dans la dérivation 57 (illustrée en aval du deuxième échangeur 60 mais l'homme du métier comprend que cette vanne 59 pourrait de façon équivalente être disposée en amont de ce deuxième échangeur 60). Une vanne 58, à commande manuelle ou automatique, est également prévue entre les deux points de liaison de la dérivation 57 avec la conduite 56.In the embodiment of the figure 1 , the regulation of the flow in the pipe 56 and the bypass 57 is provided by means of a valve 55 placed on the line 56 upstream of the bypass 57 and another valve 59 integrated in the bypass 57 (illustrated in downstream of the second exchanger 60, but the person skilled in the art understands that this valve 59 could equally be placed upstream of this second exchanger 60). A valve 58, manually or automatically controlled, is also provided between the two points of connection of the bypass 57 with the pipe 56.

Enfin, on remarque sur la figure 1 (et les suivantes) la présence d'une jonction 52 munie d'une vanne 53 entre la conduite isolée 36 et la conduite 51. Cette jonction 52 permet de faire passer directement du liquide issu de l'unité de reliquéfaction 10 directement vers la conduite 51 et donc vers la pompe haute pression 48 sans repasser par un réservoir 1. Il est ainsi clairement possible de limiter les pertes de charges et les pertes thermiques.Finally, we notice on the figure 1 (and the following ones) the presence of a junction 52 provided with a valve 53 between the insulated pipe 36 and the pipe 51. This junction 52 allows the liquid coming from the reliquefaction unit 10 to pass directly to the pipe 51 and therefore to the high pressure pump 48 without going back through a tank 1. It is thus clearly possible to limit the pressure drops and the heat losses.

La figure 2 illustre une variante de réalisation du système de la figure 1 avec deux modifications totalement indépendantes l'une de l'autre. Il est prévu ici tout d'abord, comme déjà évoqué plus haut, d'injecter le gaz comprimé dans la première unité de compression 3 dans le premier étage 11 du compresseur multi-étagé de l'unité de reliquéfaction. Ensuite, il est prévu de réaliser la régulation au niveau du deuxième échangeur 60 de chaleur d'une manière un peu différente. Au lieu d'ajuster les échanges dans l'échangeur en faisant varier les débits dans la dérivation 57 (figure 1), il est prévu ici de faire varier les débits traversant l'échangeur au niveau de la conduite isolée 22. On prévoit ainsi dans la forme de réalisation de la figure 2 de faire passer dans le deuxième échangeur 60 entre 0% et 100% du flux (mélange entre phase gazeuse et liquide mais majoritairement en phase liquide) circulant dans la conduite isolée 22. Pour ce faire, une conduite de dérivation 66 vient court-circuiter le deuxième échangeur 60. Une vanne trois voies 65 est prévue en amont du deuxième échangeur 60 pour réguler le flux de la conduite isolée 22 traversant le deuxième échangeur 60 et celui passant par la conduite de dérivation 66. D'autres moyens de régulation pourraient être envisagés (comme par exemple au niveau de la dérivation 57, avec une vanne en amont de la conduite de dérivation et une vanne dans la conduite de dérivation et/ou dans la branche de circuit contenant le deuxième échangeur). Dans cette forme de réalisation, il est prévu de pouvoir isoler aussi le deuxième échangeur 60 de la ligne d'alimentation du moteur MEGI (conduite 56). À cet effet, la forme de réalisation de la figure 2 prévoit simplement de munir chaque branche de la dérivation 57, une branche amont et une branche aval du deuxième échangeur 60, d'une vanne respectivement 64a et 64b, à commande manuelle ou contrôlée.The figure 2 illustrates an alternative embodiment of the system of the figure 1 with two modifications totally independent of each other. Provision is made here first of all, as already mentioned above, to inject the compressed gas in the first compression unit 3 into the first stage 11 of the multistage compressor of the reliquefaction unit. Then, provision is made for the regulation at the second heat exchanger 60 in a slightly different manner. Instead of adjusting the exchanges in the exchanger by varying the flow rates in bypass 57 ( figure 1 ), provision is made here to vary the flow rates passing through the exchanger at the level of the insulated pipe 22. It is thus provided in the embodiment of the figure 2 to pass through the second exchanger 60 between 0% and 100% of the flow (mixture between gas and liquid phase but mainly in liquid phase) circulating in the insulated pipe 22. To do this, a bypass pipe 66 short-circuits the second exchanger 60. A three-way valve 65 is provided upstream of the second exchanger 60 to regulate the flow of the insulated pipe 22 passing through the second exchanger 60 and that passing through the bypass pipe 66. Other means of regulation could be considered (such as for example at bypass 57, with a valve upstream of the bypass line and a valve in the bypass line and / or in the circuit branch containing the second exchanger). In this embodiment, provision is made to be able to isolate also the second exchanger 60 from the supply line of the MEGI engine (pipe 56). For this purpose, the embodiment of the figure 2 simply provides for providing each branch of the bypass 57, an upstream branch and a downstream branch of the second exchanger 60, with a valve 64a and 64b, respectively, manually or controlled.

Dans la variante de réalisation de la figure 3, il est prévu de simplifier la structure du premier échangeur 17 (cette simplification pourrait être également proposée dans les autres variantes de réalisation de l'invention). Ici la conduite de liaison 35 entre le ballon 40 et le collecteur 2 ne passe plus par le premier échangeur 17 dont la structure est de ce fait simplifiée. Grâce aux échanges réalisés au sein du deuxième échangeur 60, il est possible d'obtenir une bonne reliquéfaction des gaz évaporés dans l'unité de reliquéfaction 10 avec un premier échangeur 17 de structure plus simple et donc de prix de revient réduit.In the alternative embodiment of the figure 3 , provision is made to simplify the structure of the first exchanger 17 (this simplification could also be proposed in the other variant embodiments of the invention). Here the connecting pipe 35 between the tank 40 and the collector 2 no longer passes through the first exchanger 17, the structure of which is therefore simplified. Thanks to the exchanges carried out within the second exchanger 60, it is possible to obtain good reliquefaction of the gases evaporated in the reliquefaction unit 10 with a first exchanger 17 of simpler structure and therefore of reduced cost price.

Dans la forme de réalisation de cette figure 3, une autre régulation des flux dans la dérivation 57 est proposée. Dans cette variante, une vanne 63 est disposée entre les deux points de liaison de la dérivation 57 avec la conduite 56 de la ligne d'alimentation du moteur (non représenté).In the embodiment of this figure 3 , another regulation of the flows in the bypass 57 is proposed. In this variant, a valve 63 is arranged between the two points of connection of the bypass 57 with the pipe 56 of the engine supply line (not shown).

Sur la figure 4, il est prévu de faire passer tout le gaz évaporé récupéré dans les réservoirs 1 par le collecteur 2 tout d'abord dans la première unité de compression 3 puis dans l'unité de reliquéfaction 10.On the figure 4 , provision is made to pass all the evaporated gas recovered in the reservoirs 1 through the manifold 2, first of all in the first compression unit 3 then in the reliquefaction unit 10.

Les figures 5 et 6 illustrent des formes de réalisation mettant en œuvre un troisième échangeur 70 de chaleur pour refroidir le gaz en phase gazeuse entrant dans la boucle ouverte de réfrigération de l'unité de reliquéfaction 10. L'échange est ici réalisé entre le liquide de la ligne 56 et le gaz comprimé en phase gazeuse et déjà partiellement refroidi de la conduite dérivée 18.The figures 5 and 6 illustrate embodiments implementing a third heat exchanger 70 to cool the gas in the gaseous phase entering the refrigeration open loop of the reliquefaction unit 10. The exchange is here carried out between the liquid from line 56 and the compressed gas in the gaseous phase and already partially cooled from the branch pipe 18.

Dans la forme de réalisation de la figure 5, le troisième échangeur 70 est monté en parallèle avec le deuxième échangeur 60 tandis que dans la forme de réalisation de la figure 6, le troisième échangeur 70 est monté en série avec le (et en aval du) deuxième échangeur 60.In the embodiment of the figure 5 , the third exchanger 70 is mounted in parallel with the second exchanger 60, while in the embodiment of the figure 6 , the third exchanger 70 is mounted in series with (and downstream of) the second exchanger 60.

La figure 7 propose une forme de réalisation dans laquelle quatre échangeurs 80a-d de chaleur sont prévus en divers endroits du circuit principal de l'unité de reliquéfaction 10 pour refroidir le gaz encore en phase gazeuse avant de le liquéfier. L'échangeur 80a est ici destiné à refroidir le gaz comprimé dans le premier étage 11 du compresseur multi-étagé avant qu'il ne rentre dans le deuxième étage 12 de ce compresseur. L'échangeur 80b est disposé de manière similaire entre le deuxième étage 12 et le troisième étage 13. Un autre échangeur 80c est disposé en aval du compresseur multi-étagé, avant ou après le refroidisseur intermédiaire 16 et avant le premier échangeur 17. Enfin, il est proposé ici de disposer également un échangeur de chaleur 80d sur la conduite de liaison 35 pour refroidir le gaz retournant vers le collecteur 2.The figure 7 proposes an embodiment in which four heat exchangers 80a-d are provided in various places of the main circuit of the reliquefaction unit 10 to cool the gas still in the gaseous phase before liquefying it. The exchanger 80a is here intended to cool the compressed gas in the first stage 11 of the multistage compressor before it enters the second stage 12 of this compressor. The exchanger 80b is disposed in a similar manner between the second stage 12 and the third stage 13. Another exchanger 80c is disposed downstream of the multistage compressor, before or after the intercooler 16 and before the first exchanger 17. Finally, it is proposed here to also have a heat exchanger 80d on the connecting pipe 35 to cool the gas returning to the manifold 2.

Cette forme de réalisation se veut illustrative (et non limitative) des diverses possibilités de positionnement d'échangeurs alimentés par du liquide cryogénique sous haute pression. Ces échangeurs peuvent être au nombre de quatre, ou bien plus, ou bien moins. Ils sont de préférence montés en parallèle comme illustré, les échangeurs 80n formant un système d'échange monté en série avec le deuxième échangeur 60. D'autres montages (série ou parallèle) peuvent être envisagés. On peut aussi prévoir des échangeurs sur le circuit de refroidissement en boucle ouverte.This embodiment is intended to be illustrative (and not limiting) of the various possibilities for positioning exchangers supplied with cryogenic liquid under high pressure. These exchangers may be four in number, or more, or much less. They are preferably mounted in parallel as illustrated, the exchangers 80n forming an exchange system mounted in series with the second exchanger 60. Other assemblies (series or parallel) can be envisaged. It is also possible to provide exchangers on the open loop cooling circuit.

Enfin la figure 8 est jointe pour illustrer que le liquide sous pression (en phase encore liquide) dans la conduite 56 peut également être utilisé, partiellement, pour refroidir d'autres éléments au sein d'un système de refroidissement 90 à bord du navire. Le liquide utilisé pour le système de refroidissement 90 est de préférence disposé en aval du deuxième échangeur 60 de telle sorte que le liquide de la conduite 56 prélevé dans la dérivation 57 serve prioritairement à un refroidissement au niveau de l'unité de reliquéfaction 10. Le système de refroidissement peut être par exemple une unité de climatisation, de froid industriel, ....Finally the figure 8 is attached to illustrate that the pressurized liquid (still liquid phase) in line 56 can also be used, in part, to cool other elements within a cooling system 90 on board the ship. The liquid used for the cooling system 90 is preferably disposed downstream of the second exchanger 60 so that the liquid from the line 56 taken from the bypass 57 primarily serves for cooling at the level of the reliquefaction unit 10. The cooling system can be for example an air conditioning unit, industrial refrigeration, ....

Les variantes proposées dans les diverses formes de réalisation peuvent être combinées de diverses manières pour réaliser d'autres formes de réalisation selon la présente invention mais non illustrées.The variations provided in the various embodiments can be combined in various ways to achieve other embodiments according to the present invention but not illustrated.

Le système proposé ici réalise une coopération entre une unité de liquéfaction et une alimentation en gaz à haute pression, par exemple pour l'alimentation d'un moteur de type MEGI. Une synergie est créée entre ces deux sous-systèmes, l'un ayant des besoins en froid pour liquéfier un gaz et l'autre nécessitant de l'énergie pour vaporiser du liquide à haute pression. Le système tel que proposé permet d'augmenter le rendement de l'unité de reliquéfaction, c'est-à-dire d'augmenter la proportion du gaz évaporé qui est reliquéfiée, de limiter les besoins en froid à fournir pour réaliser la reliquéfaction de gaz évaporé et à la fois de limiter les besoins énergétiques pour obtenir un gaz à haute pression pour alimenter un moteur (moteur MEGI ou autre système fonctionnant avec du gaz sous haute pression).The system proposed here achieves cooperation between a liquefaction unit and a high pressure gas supply, for example for the supply of a MEGI type motor. A synergy is created between these two sub-systems, one having cooling needs to liquefy a gas and the other requiring energy to vaporize liquid at high pressure. The system as proposed makes it possible to increase the efficiency of the reliquefaction unit, that is to say to increase the proportion of the evaporated gas which is reliquefied, to limit the cooling requirements to be supplied to carry out the reliquefaction of evaporated gas and at the same time to limit the energy needs to obtain a high pressure gas to supply an engine (MEGI engine or other system operating with gas under high pressure).

Le système proposé ici est particulièrement bien adapté à une unité de reliquéfaction présentant une boucle ouverte de gaz réfrigérant correspondant au gaz réfrigéré avec une production de froid à deux températures différentes, une température d'environ -120°C en sortie de la turbine de détente et une température d'environ -160°C en sortie de la vanne de détente.The system proposed here is particularly well suited to a reliquefaction unit having an open loop of refrigerant gas corresponding to refrigerated gas with production of cold at two different temperatures, a temperature of around -120 ° C at the outlet of the expansion turbine. and a temperature of about -160 ° C at the outlet of the expansion valve.

Le système est indépendant des moteurs se trouvant à bord du navire et qui sont alimentés par le gaz évaporé. On peut avoir deux types de moteurs à gaz différents, l'un étant alimenté par la ligne d'alimentation haute pression et l'autre par le gaz évaporé comprimé par la première unité de compression. Le système permet aussi, à partir du gaz évaporé, indépendamment de toute autre source de froid extérieure, de réaliser une liquéfaction.The system is independent of the engines on board the vessel which are powered by evaporated gas. There can be two different types of gas engines, one being supplied by the high pressure supply line and the other by the evaporated gas compressed by the first compression unit. The system also allows, from the evaporated gas, independently of any other external cold source, to achieve liquefaction.

Dans la dérivation créée sur la ligne d'alimentation en gaz sous haute pression, la production de froid peut être adaptée à la charge de l'unité de reliquéfaction et peut être régulée sur une large plage.In the bypass created on the high pressure gas supply line, the cold production can be matched to the load of the reliquefaction unit and can be regulated over a wide range.

Le système proposé ne nécessite pas d'unité de traitement d'azote ou similaire. Sa structure est simplifiée par l'utilisation d'un gaz réfrigérant de même nature que le gaz à réfrigérer et à liquéfier et qui sert en outre de carburant à un moteur (ou similaire).The proposed system does not require a nitrogen treatment unit or the like. Its structure is simplified by the use of a refrigerant gas of the same nature as the gas to be refrigerated and to be liquefied and which also serves as fuel for an engine (or similar).

Bien entendu, la présente invention ne se limite pas aux formes de réalisation des systèmes et procédés décrits ci-dessus à titre d'exemples non limitatifs mais elle concerne également toutes les variantes de réalisation à la portée de l'homme du métier dans le cadre des revendications ci-après.Of course, the present invention is not limited to the embodiments of the systems and methods described above by way of nonlimiting examples, but it also relates to all the variant embodiments within the reach of those skilled in the art in the context of of the following claims.

Claims (14)

  1. System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressured gas, said system comprising, on the one hand, from upstream to downstream, a reliquefaction unit (10) with compression means (11, 12, 13), a first heat exchanger (17) and expansion means (30), and, on the other hand, a pressurized gas supply line comprising from upstream to downstream a pump (48) to pressurize liquid and vaporization means (61) under high pressure, the pressurized gas supply line having, upstream of the vaporization means (61), a bypass (57) for feeding a second heat exchanger (60) between, on the one hand, pressurized fluid from the supply line (56) and, on the other hand, a line (22) of the reliquefaction unit (10) downstream of the first heat exchanger (17) and upstream of the expansion means (30),
    characterized in that the gas resulting from evaporation of a cryogenic liquid, then compressed and cooled is at least partially condensed in the first heat exchanger (17).
  2. System according to claim 1, characterized in that the bypass (57) feeds downstream of the second exchanger (60) a cooling system.
  3. System according to claim 2, characterized in that it comprises a third exchanger (70) mounted in series with and downstream of the second exchanger (60).
  4. System according to one of claims 1 or 2, characterized in that it comprises a heat exchanger (70) mounted in parallel with the second exchanger (60).
  5. System according to one of claims 1 to 4, characterized in that the bypass (56) further feeds the second exchanger (60), one or more heat exchangers for cooling the gas prior to its liquefaction.
  6. System according to one of claims 1 to 5, characterized in that it comprises downstream of the expansion means (30) a balloon (40) separating the gaseous phase from the liquid phase in the expanded fluid, in that a line leads the gaseous phase to a manifold for mixing it with the gas from the evaporation of the cryogenic liquid, and in that the bypass (56) feeds a heat exchanger (80dd') for cooling the gaseous phase prior to introduction into the manifold (2).
  7. System according to one of claims 1 to 6, characterized in that the reliquefaction unit comprises downstream of the compression means (11, 12, 13) a bypass to a loop having second expansion means (14), and in that the loop joins the circuit upstream of the compression means (11, 12, 13) after having passed through the first heat exchanger (17) in the opposite direction to the gas fraction of the circuit not bypassed by the loop.
  8. System according to claim 7, characterized in that the compression means comprise several compression stages (11, 12, 13) each with a compressor wheel, in that the second expansion means comprise an expansion turbine (14), and in that each compressor wheel and the expansion turbine (14) are associated with a same mechanical transmission (15).
  9. System according to claim 3 as well as according to one of claims 7 or 8, insofar as they depend on claim 3, characterized in that the third heat exchanger (70) exchanges heat between pressurized liquid derived from the supply line (56) and gas between the compression means (11, 12, 13) and the second expansion means (14).
  10. Vessel, in particular LNG carrier, propelled by a gas engine, characterized in that it comprises a system for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurized gas according to one of claims 1 to 9.
  11. Method for treating a gas flow produced by the evaporation of a cryogenic liquid and for supplying an engine with gas under high pressure,
    said gas flow being first compressed then cooled in a first heat exchanger (17) before being expanded, and
    the supply in gas under high pressure being achieved by pressurizing cryogenic liquid then vaporizing it,
    characterized in that after its compression, the flow of pressurized liquid is separated into a first part of liquid flow and a second part of liquid flow,
    in that the first part of the liquid flow is used to cool compressed and condensed gas within a second exchanger (60) prior to expansion of the condensed gas, and
    in that the second part of the liquid flow receives the first part of the liquid flow after the latter has cooled compressed gas, the entire liquid flow then being vaporized, characterized in that the gas resulting from the evaporation of a cryogenic liquid and subsequently compressed and cooled is at least partially condensed within the first heat exchanger.
  12. Method according to claim 11, characterized in that for more than half, and preferably at least 90% by mass of the compressed gas, is condensed before being cooled within the second exchanger (60).
  13. Method according to one of claims 11 or 12, characterized in that the flow of pressurized fluid is also used to cool gas before it is condensed.
  14. Method according to one of claims 11 to 13, characterized in that part of the compressed gas is taken from the first heat exchanger to be expanded within an expansion turbine (14), and in that the expanded gas is introduced into the first heat exchanger (17) counter currently to cool the compressed gas and cause its condensation.
EP17716577.6A 2016-03-23 2017-03-22 System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas Active EP3433557B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652504A FR3049341B1 (en) 2016-03-23 2016-03-23 SYSTEM FOR TREATING A GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID AND THE PRESSURIZED GAS SUPPLY OF A GAS ENGINE
PCT/FR2017/050669 WO2017162984A1 (en) 2016-03-23 2017-03-22 System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas

Publications (2)

Publication Number Publication Date
EP3433557A1 EP3433557A1 (en) 2019-01-30
EP3433557B1 true EP3433557B1 (en) 2020-09-02

Family

ID=56148457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17716577.6A Active EP3433557B1 (en) 2016-03-23 2017-03-22 System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas

Country Status (11)

Country Link
US (1) US10914516B2 (en)
EP (1) EP3433557B1 (en)
JP (1) JP6882322B2 (en)
KR (1) KR102340478B1 (en)
CN (1) CN109154471B (en)
CY (1) CY1123721T1 (en)
DK (1) DK3433557T3 (en)
ES (1) ES2829266T3 (en)
FR (1) FR3049341B1 (en)
RU (1) RU2733125C2 (en)
WO (1) WO2017162984A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387172B1 (en) * 2017-12-29 2022-04-15 대우조선해양 주식회사 Boil-Off Gas Treating Apparatus and Method of Liquefied Gas Regasification System
FR3087525B1 (en) * 2018-10-22 2020-12-11 Air Liquide LIQUEFACTION PROCESS OF AN EVAPORATION GAS CURRENT FROM THE STORAGE OF A LIQUEFIED NATURAL GAS CURRENT
JP6595143B1 (en) * 2019-07-03 2019-10-23 株式会社神戸製鋼所 Compressor unit and control method of compressor unit
FR3101408B1 (en) * 2019-09-30 2022-05-13 Gaztransport Et Technigaz System for treating a gas contained in a tank for storing and/or transporting gas in liquid and gaseous state
FR3124830A1 (en) * 2021-06-30 2023-01-06 Gaztransport Et Technigaz Gas supply system for appliances using high and low pressure gas
FR3119013B1 (en) * 2021-01-19 2023-03-17 Gaztransport Et Technigaz Gas supply system for appliances using high and low pressure gas
FR3133907B1 (en) * 2022-03-22 2024-02-09 Eifhytec Product transformation system
FR3134431A1 (en) * 2022-04-07 2023-10-13 Gaztransport Et Technigaz Gas supply system for high and low pressure gas consuming appliances and method of controlling such a system
FR3134430A1 (en) * 2022-04-07 2023-10-13 Gaztransport Et Technigaz Gas supply system for high and low pressure gas consuming appliances and method of controlling such a system
CN115711360B (en) * 2022-11-15 2023-12-08 中国船舶集团有限公司第七一一研究所 Deep cooling type evaporation gas reliquefaction system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038964A (en) * 1956-08-06 1962-06-12 Amar G Bose Loudspeaker system
NL287922A (en) * 1962-02-12
CH561620A5 (en) * 1972-12-11 1975-05-15 Sulzer Ag
GB1471404A (en) * 1973-04-17 1977-04-27 Petrocarbon Dev Ltd Reliquefaction of boil-off gas
US6237347B1 (en) * 1999-03-31 2001-05-29 Exxonmobil Upstream Research Company Method for loading pressurized liquefied natural gas into containers
KR100638925B1 (en) * 2005-01-18 2006-10-26 대우조선해양 주식회사 Operating system for sub-cooled liquefaction boil-off gas of LNG ship
US20080148771A1 (en) * 2006-12-21 2008-06-26 Chevron U.S.A. Inc. Process and apparatus for reducing the heating value of liquefied natural gas
KR101386543B1 (en) * 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
EP2746707B1 (en) * 2012-12-20 2017-05-17 Cryostar SAS Method and apparatus for reliquefying natural gas
FR3002311B1 (en) * 2013-02-20 2016-08-26 Cryostar Sas DEVICE FOR LIQUEFACTING GAS, IN PARTICULAR NATURAL GAS
KR101640768B1 (en) * 2013-06-26 2016-07-29 대우조선해양 주식회사 Method for building a ship
GB201316227D0 (en) * 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
FR3038964B1 (en) * 2015-07-13 2017-08-18 Technip France METHOD FOR RELAXING AND STORING A LIQUEFIED NATURAL GAS CURRENT FROM A NATURAL GAS LIQUEFACTION SYSTEM, AND ASSOCIATED INSTALLATION
FR3040773B1 (en) * 2015-09-03 2021-02-12 Cryostar Sas SYSTEM AND METHOD FOR TREATMENT OF GAS RESULTING FROM THE EVAPORATION OF A CRYOGENIC LIQUID

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6882322B2 (en) 2021-06-02
RU2018134056A3 (en) 2020-05-29
KR102340478B1 (en) 2021-12-21
US20190101329A1 (en) 2019-04-04
RU2733125C2 (en) 2020-09-29
RU2018134056A (en) 2020-04-23
CY1123721T1 (en) 2022-03-24
FR3049341B1 (en) 2019-06-14
FR3049341A1 (en) 2017-09-29
DK3433557T3 (en) 2020-11-16
CN109154471B (en) 2021-05-11
US10914516B2 (en) 2021-02-09
JP2019510943A (en) 2019-04-18
ES2829266T3 (en) 2021-05-31
CN109154471A (en) 2019-01-04
EP3433557A1 (en) 2019-01-30
WO2017162984A1 (en) 2017-09-28
KR20180122723A (en) 2018-11-13

Similar Documents

Publication Publication Date Title
EP3433557B1 (en) System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas
EP3743652B1 (en) Cryogenic heat pump and use thereof in the treatment of liquefied gas
EP3628911B1 (en) Device and method for filling pressurised gas tanks
EP3344936A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
EP3044527A2 (en) Device for recovering vapours from a cryogenic tank
EP3743651A1 (en) Method and system for processing gas in a gas storage facility for a gas tanker
EP4158169A1 (en) Installation for heating a cryogenic fuel
EP2959242B1 (en) Station for reducing gas pressure and liquefying gas
WO2018206510A1 (en) Device and method for cooling liquefied gas and/or natural boil-off gas from liquefied gas
FR3077867A1 (en) METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
WO2020109580A1 (en) Gas treatment system of a receiving terminal equipped with a regasification unit and corresponding gas treatment method
WO2018046809A1 (en) Facility, method for storing and liquefying a liquefied gas and associated transport vehicle
EP2417411B1 (en) Refrigeration process and system for recovering cold from methane by refrigerants
EP4281718A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
EP4314679A1 (en) Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
WO2020109607A1 (en) Device for generating gas in gaseous form from liquefied gas
FR2858830A1 (en) Increasing capacity and efficiency of gas installations which include at least one gas turbine comprises cooling air entering turbine
WO2024003484A1 (en) System for managing a gas contained in a floating structure
WO2015173491A2 (en) Method and device for liquefying methane
WO2023194670A1 (en) Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system
WO2024084154A1 (en) Method for managing a fluid in liquid form contained in a vessel
WO2021064319A1 (en) System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state
FR3134431A1 (en) Gas supply system for high and low pressure gas consuming appliances and method of controlling such a system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017022775

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201109

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200902

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1309318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200902

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200403168

Country of ref document: GR

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2829266

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017022775

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230321

Year of fee payment: 7

Ref country code: FR

Payment date: 20230320

Year of fee payment: 7

Ref country code: DK

Payment date: 20230323

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230320

Year of fee payment: 7

Ref country code: SE

Payment date: 20230315

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230323

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 7

Ref country code: CY

Payment date: 20230314

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240319

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 8

Ref country code: DE

Payment date: 20240321

Year of fee payment: 8

Ref country code: GB

Payment date: 20240322

Year of fee payment: 8