EP2959242B1 - Station for reducing gas pressure and liquefying gas - Google Patents

Station for reducing gas pressure and liquefying gas Download PDF

Info

Publication number
EP2959242B1
EP2959242B1 EP14711813.7A EP14711813A EP2959242B1 EP 2959242 B1 EP2959242 B1 EP 2959242B1 EP 14711813 A EP14711813 A EP 14711813A EP 2959242 B1 EP2959242 B1 EP 2959242B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
cooling system
station
station according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14711813.7A
Other languages
German (de)
French (fr)
Other versions
EP2959242A2 (en
Inventor
Guillaume Pages
Frédéric MARCUCCILI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryostar SAS
Original Assignee
Cryostar SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryostar SAS filed Critical Cryostar SAS
Publication of EP2959242A2 publication Critical patent/EP2959242A2/en
Application granted granted Critical
Publication of EP2959242B1 publication Critical patent/EP2959242B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Definitions

  • the present invention relates to a device for liquefying gas, in particular natural gas.
  • the field of the present invention is that of the treatment of gases, in particular natural gases, for the production of liquid natural gas.
  • Liquid natural gas is used in different applications. It is mainly used as a fuel for vehicles, especially transport trucks.
  • the fuel oil generally used for such vehicles can in fact be replaced by pressurized gas or liquid natural gas.
  • pressurized gas cylinders the use of liquefied gas has an advantage in terms of volume and weight since, on the one hand, the liquid natural gas liquefied by cooling occupies much less space. volume than the same quantity of gaseous natural gas and, on the other hand, where the thermal insulation of cryogenic tanks is much less heavy than the casing of gas cylinders.
  • the vehicles therefore have much more autonomy.
  • Liquid natural gas is also a clean energy source, limiting the release of fine particles such as soot, etc.
  • Liquid natural gas can also be used to power small gas-fired power stations or to power small networks in villages.
  • Gas pipelines or pipelines, are pipes intended for the transport of gaseous materials under pressure.
  • the majority of gas pipelines transport natural gas between extraction areas and areas of consumption or export. From field treatment or storage sites, the gas is transported at high pressure (from 16 to over 100 bars) to delivery sites where it must be brought to a much lower pressure to allow its use.
  • the document US-3,608,323 discloses a method and system for liquefying natural gas in which the power of an expansion turbine is used for the operation of a refrigeration unit.
  • the gas passes through pressure lowering stations, in which the gas pressure is reduced by expansion through a valve or turbine.
  • the pressure reduction effected in this way produces energy which, in the case of a valve, is lost.
  • Gas expansion systems are known using natural gas entering the pressure reduction stations as refrigerant in a system that can be described as an open loop (Linde, Solvay or Claude cycles).
  • the natural gas is expanded in a valve and during this expansion a small part of the gas is liquefied.
  • the liquid obtained is collected and the cold low pressure natural gas which leaves the valve is conveyed to the low pressure pipe of the lowering station.
  • These systems have the advantage of being relatively simple but the temperature obtained at the outlet of the valve depending on the composition of the gas and the composition of the natural gas being variable, the gases liquefied with these systems are mainly heavy gases such as gas. butane or propane but not methane. This method of liquefying gas is also known as flashing.
  • the present invention aims to provide a device making it possible to liquefy gas, in particular natural gas, by controlling the composition of the liquid gas obtained.
  • a device according to the invention will make it possible to recover the expansion energy resulting from the pressure difference of the gas between the inlet and the outlet of the pressure lowering station to produce a fraction of liquid natural gas while avoiding the formation of ice inside the ducts of these stations.
  • the device will also preferably be easy to use and simple in design.
  • this device further comprises means for recovering heat produced by the compression means of the refrigeration system associated with means for heating the gas at the inlet of the pressure reduction station.
  • the device that is the subject of the present invention thus provides for integrating the heating of natural gas before its expansion and the cooling of the refrigerant while saving a significant amount of energy and / or gas for the manufacture of liquid (natural) gas.
  • a flow of gas (natural) in gaseous form is always maintained between the high pressure pipe and the low pressure pipe.
  • a volume of 100 m 3 for example of natural gas 5 to 15 m 3 are converted by means of the device according to the invention into liquid natural gas.
  • the invention thus makes it possible to recover the work of expansion between the two pressure levels to transform a small part (5 to 15%) of the (natural) gas into liquefied (natural) gas.
  • the heating of the gas according to the present invention is carried out at the inlet of the expander by the recovery of the heat emitted by the compression means used for the liquefaction of the gas.
  • the gas going from the high pressure pipe to the low pressure pipe is thus reheated before entering the pressure lowering station so that it is present at the outlet thereof with a temperature above the point of water solidification.
  • the refrigeration system forms a closed loop between the condensing means, the compression means and the means for heating the natural gas.
  • This closed loop makes it possible to combine a refrigeration system (compressor and condenser) for the liquefaction of the gas with a heat exchanger achieving thermal integration between the lowering of the gas pressure and the production of liquid gas.
  • the refrigeration system forms a first closed loop between the compression means, the condensation means and at least one intermediate exchanger as well as a second closed loop, optionally using a separate heat transfer fluid. of a heat transfer fluid used in the first loop, between at least one intermediate exchanger and the means for heating the gas.
  • the device according to the present invention consists, in these two embodiments, of an intermediate system comparable to a closed loop, possibly double, making it possible to cool a fraction of the gas until it liquefies.
  • the advantage of an independent closed loop system is that it makes it possible to achieve significantly low temperatures insofar as it is not linked to the pressure drop achieved within the lowering station. Thanks to this system, the composition of the liquid gas hardly varies with respect to the inlet gas, since the change of state is obtained by direct cooling inside a heat exchanger reserved for this operation at the instead of the classic flashing system.
  • the means for recovering a mechanical work produced in the expansion turbine when the gas pressure is lowered are mechanically coupled to an electric generator, and the compression means are then driven by a powered motor. into electrical energy by the electrical generator.
  • the device that is the subject of the present invention therefore allows the integration a refrigeration loop for liquefying gas and preheating the inlet of the gas pressure lowering station.
  • Liquid natural gas can be produced according to the invention from a refrigeration unit involving a refrigeration system using either nitrogen and / or a mixture of hydrocarbons.
  • a refrigeration system used in a device according to the invention may for example comprise a heat exchanger and / or a condenser of the PFHE aluminum type.
  • the refrigeration system of the device according to the invention comprises compressors and / or radial flow expanders.
  • the device according to the invention comprises means for treating the water and carbon dioxide of natural gas at low pressure by adsorption and / or absorption arranged upstream of the gas condensing means.
  • the figure 1 schematically represents a gas pipeline 2 carrying a gas, for example natural gas composed mainly of methane, under high pressure, for example of the order of 60 to 100 bars (generally in the present application, the examples and the numerical values are illustrative and not limiting).
  • a gas pressure reduction station called PLD (English acronym for Pressure Let Down) on the figure 1 makes it possible to supply a pipe 4 intended to supply a domestic network or the like with gas (natural gas to take up the previous example) at low pressure, generally of the order of a few bars.
  • a liquefied gas production unit 6 is associated with the pressure reduction station PLD. It is supplied with gas from the gas pipeline 2, passes through a processing unit 8 carrying out a treatment of the gas before it enters the production unit 6 in order to remove from the gas impurities which are generally found in gas "gross". At the output of the production unit 6, a liquid natural gas LNG is obtained which is for example stored in a storage unit (not illustrated on the figure 1 ).
  • the figure 2 shows in more detail a first embodiment of the invention implementing the overall scheme of the figure 1 .
  • a gas pipeline 2 which supplies a pressure lowering station PLD to supply gas under less pressure in a pipe 4.
  • a production unit 6 supplies liquefied gas LNG.
  • gas from pipeline 2 passes through pipes G2 and G3. It is heated in each of these conduits by a preheating device 10.
  • conduits G4 and G5 are collected in a conduit G6 which supplies an expansion turbine 12.
  • the gas is expanded and can reach pipe 4 directly via a pipe G7.
  • the production unit 6 essentially comprises a condenser 14.
  • the gas supplying the production unit 6 is supplied from a bypass G9 of the pipe G7 before arriving at a valve 16 at which a pressure reduction. additional is carried out.
  • the gas is conducted via a line G10 to the processing unit 8 which purifies the gas, for example by absorption or preferably by adsorption.
  • the purified gas is conducted through G11 to a desuperheater 18 before being introduced through G12 into the condenser 14. At the outlet of the latter, liquefied gas is obtained which passes through a pipe L1 to a control valve 20. then by L2 to arrive at an LNG liquefied natural gas storage device.
  • the present invention proposes to realize an interaction between the pressure lowering station PLD and the production unit 6.
  • the energy recovered during the expansion in the PLD station is used in the form of electrical energy in the production unit 6 and the heat produced in the production unit 6 is used to heat the gas at the inlet of PLD station.
  • the thermal integration is carried out by a closed loop circuit described below.
  • the fluid used can be, by way of nonlimiting example, nitrogen or else a mixture of hydrocarbons.
  • the refrigerant fluid arrives in the compressor C1 via a pipe R1 and leaves it via a pipe R2. It then arrives in a first preheating device 10 in order to heat the gas coming from the gas pipeline 2 and intended to supply the pressure lowering station PLD.
  • the fluid is then brought by a line R3 to a cooler 22 in order to control the temperature of the refrigerant before being returned to the compression unit by a line R4.
  • the fluid is then compressed by the second compressor C2, then brought by R5 to the second preheating device 10 before being conducted by R6 to a second cooler 22 and reaching through R7 a third compression stage of the compression unit .
  • a third cooler 22, connected to the third compressor C3 by a pipe R8, makes it possible to control the temperature of the fluid leaving the compression unit.
  • a pipe R9 leads the refrigerating fluid to a counter-current exchanger 24 then is brought by R10 to a pressure reducing valve 26.
  • the latter is mechanically linked to the motor M and to the compression unit.
  • the fluid is then brought (R11) to the condenser 14 of the production unit 6 where it absorbs calories from the portion of natural gas that it is desired to liquefy to obtain liquid natural gas (LNG ).
  • the fluid is led (R12) to the desuperheater 18 before reaching, via R13, the counter-current exchanger 24 which is connected downstream to the first compressor C1 of the compression unit.
  • the refrigerant fluid is used to achieve thermal integration between the production unit and the pressure lowering station, in particular by recovering the calories released during the compression of the fluid for use in heating the gas. natural at the inlet of the PLD pressure reduction station.
  • a reservoir 28 which is used conventionally as an expansion vessel for the refrigerant.
  • the figure 3 illustrates an alternative embodiment which uses certain references from the preceding figures to designate similar elements.
  • a closed pressurized water loop or of another heat transfer fluid such as for example thermal oil
  • An air cooler can for example be placed on this line to adjust the cooling capacity to the demand of the compression loop.
  • a positive displacement pump is used to allow the circulation of the heat transfer fluid (pressurized water) and an expansion vessel can be conventionally integrated into this circuit.
  • the main difference with the first embodiment of the figure 2 is that the preheating devices 10 do not directly transfer the calories extracted from the compression stages to natural gas but to another heat transfer fluid, such as, for example, pressurized water.
  • a second refrigerant circuit is thus produced which passes in parallel through the three preheating devices 10 to supply a preheating device 110 transferring the calories from the compression stages to natural gas at the inlet of the PLD station.
  • These preheating devices 10 thus form intermediate exchangers.
  • a positive displacement pump 142 allowing the heat transfer fluid to circulate in the corresponding circuit.
  • a cooler 122 for controlling the temperature of the heat transfer fluid in this circuit.
  • an expansion vessel 144 is advantageously integrated into this refrigerant circuit.
  • FIG 4 illustrates for its part a simplified version of the first embodiment illustrated on the figure 2 .
  • the references already used to designate similar elements are reused in order to simplify the reading comprehension.
  • the compression unit has only one stage with a single compressor C.
  • the natural gas is then reheated within a single preheating device 10 which makes it possible to exchange directly. the calories from the compressor with natural gas at the entrance to the PLD station.
  • the refrigerant circuit uses, for example, a mixture of hydrocarbons and nitrogen as heat transfer fluid.
  • the latter is compressed by the compressor C driven by the electric motor M (electrically coupled to the generator G of the turbine 12 of the PLD station.
  • the fluid is then cooled in contact with natural gas in the preheating device 10 at the inlet of the turbine 12 (it should be noted that one could here also provide another refrigerant circuit between the preheating device 10 and the natural gas as in the previous figure).
  • a cooler 22 or (air cooler) can be introduced into the circuit to adjust the cooling capacity to the demand of the compression loop.
  • the heat transfer fluid is then sent through a heat exchanger 214, for example of the PHFE type (acronym for Plate Fin Heat Exchanger or in French plate and fin heat exchanger), where it is cooled and condensed during a first past. It is then relaxed through a valve 246 where, by the Joule-Thompson effect, it partially vaporizes, causing a further drop in its temperature. It returns (2 nd pass) in the heat exchanger 214 and vaporizes and heats up in contact with the natural gas to be liquefied and the mixture refrigerant to condense. After this second pass, at the outlet of heat exchanger 214, the heat transfer fluid (mixture of hydrocarbons and nitrogen for example) returns to the compressor vs.
  • a mechanical integration is carried out between the pressure lowering station and the production unit ( fig. 5 ) instead of an electrical integration ( fig. 2 to 4 ).
  • This embodiment does not form part of the invention but represents an element of the state of the art which is useful for its understanding.
  • Figure 6 illustrates a fifth embodiment of the present invention. This fifth embodiment can be considered as a variant of the fourth embodiment of the figure 5 since a mechanical integration is carried out here.
  • the orientation of the various elements is quite different from that chosen for the other figures.
  • the pipeline 2 is shown horizontally at the top of the figure.
  • the pipe 4 supplying for example a domestic network is for its part illustrated at the bottom right of this figure.
  • the production unit 6 is shown on the left side of Figure 6 while the pressure lowering station PLD is shown on the right.
  • a first branch 30 supplies the production unit 6 with natural gas from the gas pipeline 2 and a second branch 32 supplies the station. PLD pressure reduction, and therefore also line 4.
  • the gas derived in the first branch 30 firstly passes through a valve bridge 34 before entering the processing unit 8 represented here by two reactors 36.
  • the purified gas is collected by line G11 at the outlet of the 'treatment unit 8 to pass into the condenser 14.
  • the liquid natural gas LNG at the outlet of the condenser 14 is collected in a tank 38.
  • the liquefied gas is for example stored at a pressure of between 0.1 and 10 bars of overpressure by relative to atmospheric pressure, to saturation temperature or else with cooling.
  • the second branch 32 leads the natural gas through an exchanger 40 before passing into the turbine 12.
  • the gas is led (G7) to the pipe 4 .
  • the turbine 12 is mechanically coupled to a compressor C and forms with it a turbocharger.
  • the compressor C is the compressor of a refrigeration circuit used in combination with the condenser 14 to carry out the liquefaction of gas at the level of the production unit.
  • This refrigeration circuit uses a refrigerant fluid (which can here also be, for example, nitrogen or a mixture of hydrocarbons) and is a closed circuit. Conventionally, this refrigerating fluid is expanded at the level of the expansion valve 26.
  • the embodiment of the figure 4 provides for this expansion valve to be mechanically connected to a compressor C 'which enables a second compression stage to be produced.
  • Arrows on the figure 4 illustrate the circulation of the refrigerant in the closed circuit used both as a refrigerant circuit for the production unit 6 of liquid natural gas and also as a thermal integration circuit between the production unit 6 and the lowering station PLD pressure.
  • the fluid at the outlet of compressor C passes into the exchanger 40 to heat the natural gas passing through the second branch 32 to the pressure reduction station. It then passes into the second compressor C 'before passing back into the exchanger 40.
  • the fluid then passes through the countercurrent exchanger 24 before entering the expansion valve 26. It can then enter the condenser 14 within which it absorbs calories from the natural gas of the production unit 6 in order to liquefy it. After passing in the opposite direction in the counter-current exchanger 24, the fluid returns to compressor C.
  • the quantity (mass) of gas passing through the production unit 6 of liquefied gas is of the order of 5 to 20 % of the quantity (mass) of gas passing through the PLD pressure reduction station and supplying line 4.
  • the systems described above make it possible to perfectly control the production of liquid natural gas.
  • the composition of this gas can be controlled. It does not depend on the pressure difference within the pressure lowering station.
  • preheating the gas at the inlet of the pressure lowering station helps prevent icing and pipe obstruction problems.
  • the present invention is not limited to the preferred embodiments described above by way of non-limiting examples. It also relates to the variant embodiments within the reach of a person skilled in the art within the framework of the claims below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention concerne un dispositif de liquéfaction de gaz, notamment de gaz naturel.The present invention relates to a device for liquefying gas, in particular natural gas.

Ainsi, le domaine de la présente invention est celui du traitement des gaz, notamment des gaz naturels, pour la production de gaz naturel liquide.Thus, the field of the present invention is that of the treatment of gases, in particular natural gases, for the production of liquid natural gas.

Le gaz naturel liquide est utilisé dans différentes applications. Il est principalement utilisé comme carburant pour des véhicules, notamment des camions de transport. Le fioul généralement utilisé pour de tels véhicules peut en effet être remplacé par du gaz sous pression ou du gaz naturel liquide. Par rapport à l'utilisation de bonbonnes de gaz sous pression, l'utilisation de gaz liquéfié présente un avantage en termes de volume et de poids dans la mesure, d'une part, où le gaz naturel liquide liquéfié par refroidissement occupe beaucoup moins de volume qu'une même quantité de gaz naturel gazeux et, d'autre part, où l'isolation thermique des réservoirs cryogéniques est beaucoup moins lourde que l'enveloppe des bouteilles de gaz. Les véhicules ont donc beaucoup plus d'autonomie. Le gaz naturel liquide est en outre une source d'énergie propre, limitant les rejets de particules fines comme la suie, etc..Liquid natural gas is used in different applications. It is mainly used as a fuel for vehicles, especially transport trucks. The fuel oil generally used for such vehicles can in fact be replaced by pressurized gas or liquid natural gas. Compared to the use of pressurized gas cylinders, the use of liquefied gas has an advantage in terms of volume and weight since, on the one hand, the liquid natural gas liquefied by cooling occupies much less space. volume than the same quantity of gaseous natural gas and, on the other hand, where the thermal insulation of cryogenic tanks is much less heavy than the casing of gas cylinders. The vehicles therefore have much more autonomy. Liquid natural gas is also a clean energy source, limiting the release of fine particles such as soot, etc.

Le gaz naturel liquide peut aussi être utilisé pour alimenter de petites centrales à gaz ou pour alimenter de petits réseaux dans des villages.Liquid natural gas can also be used to power small gas-fired power stations or to power small networks in villages.

Des gazoducs, ou pipelines, sont des canalisations destinées au transport de matières gazeuses sous pression. La majorité des gazoducs acheminent du gaz naturel entre des zones d'extraction et des zones de consommation ou d'exportation. À partir de sites de traitement des gisements ou de stockage, le gaz est transporté à haute pression (de 16 jusqu'à plus de 100 bars) jusqu'à des sites de livraison où il doit être porté à une pression beaucoup plus réduite pour permettre son utilisation.Gas pipelines, or pipelines, are pipes intended for the transport of gaseous materials under pressure. The majority of gas pipelines transport natural gas between extraction areas and areas of consumption or export. From field treatment or storage sites, the gas is transported at high pressure (from 16 to over 100 bars) to delivery sites where it must be brought to a much lower pressure to allow its use.

Le document US-3,608,323 divulgue un procédé et un système pour liquéfier du gaz naturel dans lesquels la puissance d'une turbine d'expansion est utilisé pour le fonctionnement d'une unité de réfrigération.The document US-3,608,323 discloses a method and system for liquefying natural gas in which the power of an expansion turbine is used for the operation of a refrigeration unit.

À cet effet, le gaz passe par des stations d'abaissement de pression, dans lesquelles la pression du gaz est réduite par détente à travers une vanne ou une turbine. La réduction de la pression effectuée de cette façon produit de l'énergie qui, dans le cas d'une vanne, est perdue.For this purpose, the gas passes through pressure lowering stations, in which the gas pressure is reduced by expansion through a valve or turbine. The pressure reduction effected in this way produces energy which, in the case of a valve, is lost.

On connaît des systèmes de détente de gaz utilisant le gaz naturel entrant dans les stations d'abaissement de pression comme réfrigérant dans un système que l'on peut qualifier de boucle ouverte (cycles Linde, Solvay ou Claude). Dans ces systèmes, on utilise le fait que le gaz naturel se présente sous haute pression. Le gaz naturel est détendu dans une vanne et lors de cette détente une petite partie du gaz est liquéfiée. Le liquide obtenu est collecté et le gaz naturel basse pression froid qui sort de la vanne est acheminé vers le conduit à basse pression de la station d'abaissement. Ces systèmes présentent l'avantage d'être relativement simples mais la température obtenue à la sortie de la vanne dépendant de la composition du gaz et la composition du gaz naturel étant variable, les gaz liquéfiés avec ces systèmes sont principalement des gaz lourds tels que le butane ou le propane mais pas le méthane. Cette méthode de liquéfaction de gaz est aussi connue sous le nom de flashing.Gas expansion systems are known using natural gas entering the pressure reduction stations as refrigerant in a system that can be described as an open loop (Linde, Solvay or Claude cycles). In these systems, the fact that natural gas is present under high pressure is used. The natural gas is expanded in a valve and during this expansion a small part of the gas is liquefied. The liquid obtained is collected and the cold low pressure natural gas which leaves the valve is conveyed to the low pressure pipe of the lowering station. These systems have the advantage of being relatively simple but the temperature obtained at the outlet of the valve depending on the composition of the gas and the composition of the natural gas being variable, the gases liquefied with these systems are mainly heavy gases such as gas. butane or propane but not methane. This method of liquefying gas is also known as flashing.

L'ensemble du gaz entrant dans la station d'abaissement de pression et passant par la vanne ou la turbine est refroidi au cours de la chute de pression qui est réalisée. Le gaz contient encore de l'eau et du dioxyde de carbone à des teneurs de l'ordre de la centaine de ppm voire du pourcent. Un phénomène de condensation peut alors intervenir au cours de cette étape de détente, susceptible d'engendrer la formation de glace (hydrates) pouvant obturer les conduits. Il est donc nécessaire de traiter le flux de gaz pour éviter que l'eau et le dioxyde de carbone contenu dans le gaz naturel ne se transforment en glace dans les conduits et provoquent ainsi des problèmes d'acheminement du gaz naturel lors de son traitement dans les stations d'abaissement de pression.All the gas entering the pressure lowering station and passing through the valve or the turbine is cooled during the pressure drop that is achieved. The gas still contains water and carbon dioxide at levels of the order of a hundred ppm or even a percentage. A condensation phenomenon can then occur during this expansion step, liable to generate the formation of ice (hydrates) which can block the ducts. It is therefore necessary to treat the gas flow to prevent the water and carbon dioxide contained in the natural gas from turning into ice in the conduits and thus causing problems with the delivery of natural gas during its treatment in the ducts. pressure reduction stations.

La présente invention vise à fournir un dispositif permettant de liquéfier du gaz, notamment du gaz naturel, en contrôlant la composition du gaz liquide obtenu. Avantageusement, un dispositif selon l'invention permettra de récupérer l'énergie de détente résultant de la différence de pression du gaz entre l'entrée et la sortie de la station d'abaissement de pression pour produire une fraction de gaz naturel liquide tout en évitant la formation de glace à l'intérieur des conduits de ces stations. Le dispositif sera également de préférence facile à mettre en œuvre et de conception simple.The present invention aims to provide a device making it possible to liquefy gas, in particular natural gas, by controlling the composition of the liquid gas obtained. Advantageously, a device according to the invention will make it possible to recover the expansion energy resulting from the pressure difference of the gas between the inlet and the outlet of the pressure lowering station to produce a fraction of liquid natural gas while avoiding the formation of ice inside the ducts of these stations. The device will also preferably be easy to use and simple in design.

À cet effet, la présente invention propose un dispositif de liquéfaction de gaz associé à une station d'abaissement de pression d'un gaz, notamment du gaz naturel, entre un conduit haute pression et un conduit basse pression, comprenant :

  • une turbine de détente pour abaisser la pression du gaz,
  • des moyens de récupération d'un travail mécanique produit lors de l'abaissement de la pression du gaz dans la turbine de détente,
  • des moyens de condensation pour liquéfier du gaz, et
  • un système de réfrigération pour absorber les calories du gaz dans les moyens de condensation et comprenant des moyens de compression.
To this end, the present invention provides a gas liquefaction device associated with a station for lowering the pressure of a gas, in particular natural gas, between a high pressure pipe and a low pressure pipe, comprising:
  • an expansion turbine to lower the gas pressure,
  • means for recovering a mechanical work produced during the lowering of the gas pressure in the expansion turbine,
  • condensing means for liquefying gas, and
  • a refrigeration system for absorbing the calories of the gas in the condensing means and comprising compression means.

Selon l'invention, ce dispositif comporte en outre, des moyens de récupération de chaleur produite par les moyens de compression du système de réfrigération associés à des moyens pour chauffer le gaz à l'entrée de la station d'abaissement de pression.According to the invention, this device further comprises means for recovering heat produced by the compression means of the refrigeration system associated with means for heating the gas at the inlet of the pressure reduction station.

Le dispositif objet de la présente invention prévoit ainsi d'intégrer le réchauffement du gaz naturel avant son expansion et le refroidissement du réfrigérant tout en économisant une quantité significative d'énergie et/ou de gaz pour la fabrication du gaz (naturel) liquide.The device that is the subject of the present invention thus provides for integrating the heating of natural gas before its expansion and the cooling of the refrigerant while saving a significant amount of energy and / or gas for the manufacture of liquid (natural) gas.

Un débit de gaz (naturel) sous forme gazeuse est toujours conservé entre le conduit haute pression et le conduit basse pression. Sur un volume de 100 m3 par exemple de gaz naturel on transforme par l'intermédiaire du dispositif selon l'invention 5 à 15 m3 en gaz naturel liquide. L'invention permet ainsi de récupérer le travail de détente entre les deux niveaux de pression pour transformer une petite partie (5 à 15 %) du gaz (naturel) en gaz (naturel) liquéfié.A flow of gas (natural) in gaseous form is always maintained between the high pressure pipe and the low pressure pipe. In a volume of 100 m 3 for example of natural gas, 5 to 15 m 3 are converted by means of the device according to the invention into liquid natural gas. The invention thus makes it possible to recover the work of expansion between the two pressure levels to transform a small part (5 to 15%) of the (natural) gas into liquefied (natural) gas.

Le chauffage du gaz selon la présente invention est réalisé à l'entrée de l'expandeur par la récupération de la chaleur émise par les moyens de compression utilisés pour la liquéfaction du gaz. Le gaz allant du conduit de haute pression vers le conduit basse pression est ainsi réchauffé avant d'entrer dans la station d'abaissement de pression de telle sorte qu'il se présente à la sortie de celle-ci avec une température supérieure au point de solidification de l'eau.The heating of the gas according to the present invention is carried out at the inlet of the expander by the recovery of the heat emitted by the compression means used for the liquefaction of the gas. The gas going from the high pressure pipe to the low pressure pipe is thus reheated before entering the pressure lowering station so that it is present at the outlet thereof with a temperature above the point of water solidification.

Selon une première forme de réalisation de l'invention, le système de réfrigération forme une boucle fermée entre les moyens de condensation, les moyens de compression et les moyens pour réchauffer le gaz naturel. Cette boucle fermée permet de combiner un système de réfrigération (compresseur et condenseur) pour la liquéfaction du gaz avec un échangeur thermique réalisant l'intégration thermique entre l'abaissement de la pression du gaz et la production de gaz liquide.According to a first embodiment of the invention, the refrigeration system forms a closed loop between the condensing means, the compression means and the means for heating the natural gas. This closed loop makes it possible to combine a refrigeration system (compressor and condenser) for the liquefaction of the gas with a heat exchanger achieving thermal integration between the lowering of the gas pressure and the production of liquid gas.

Selon une deuxième forme de réalisation de la présente invention, le système de réfrigération forme une première boucle fermée entre les moyens de compression, les moyens de condensation et au moins un échangeur intermédiaire ainsi qu'une seconde boucle fermée, utilisant éventuellement un fluide caloporteur distinct d'un fluide caloporteur utilisé dans la première boucle, entre au moins un échangeur intermédiaire et les moyens pour chauffer le gaz.According to a second embodiment of the present invention, the refrigeration system forms a first closed loop between the compression means, the condensation means and at least one intermediate exchanger as well as a second closed loop, optionally using a separate heat transfer fluid. of a heat transfer fluid used in the first loop, between at least one intermediate exchanger and the means for heating the gas.

Le dispositif selon la présente invention consiste, dans ces deux formes de réalisation, en un système intermédiaire assimilable à une boucle fermée, éventuellement double, permettant de refroidir une fraction du gaz jusqu'à sa liquéfaction. L'avantage d'un système en boucle fermée indépendant est qu'il permet d'atteindre des températures significativement basses dans la mesure où il n'est pas lié à la baisse de pression réalisée au sein de la station d'abaissement. Grâce à ce système, la composition du gaz liquide ne varie presque pas par rapport au gaz d'entrée, étant donné que le changement d'état est obtenu par refroidissement direct à l'intérieur d'un échangeur de chaleur réservé à cette opération au lieu du système classique de flashing.The device according to the present invention consists, in these two embodiments, of an intermediate system comparable to a closed loop, possibly double, making it possible to cool a fraction of the gas until it liquefies. The advantage of an independent closed loop system is that it makes it possible to achieve significantly low temperatures insofar as it is not linked to the pressure drop achieved within the lowering station. Thanks to this system, the composition of the liquid gas hardly varies with respect to the inlet gas, since the change of state is obtained by direct cooling inside a heat exchanger reserved for this operation at the instead of the classic flashing system.

Selon l'invention, les moyens de récupération d'un travail mécanique produit dans la turbine de détente lors de l'abaissement de la pression du gaz sont couplée mécaniquement à un générateur électrique, et les moyens de compression sont alors entrainés par un moteur alimenté en énergie électrique par le générateur électrique.According to the invention, the means for recovering a mechanical work produced in the expansion turbine when the gas pressure is lowered are mechanically coupled to an electric generator, and the compression means are then driven by a powered motor. into electrical energy by the electrical generator.

Le dispositif objet de la présente invention permet donc l'intégration d'une boucle de réfrigération pour liquéfier du gaz et de préchauffage de l'entrée de la station d'abaissement de pression du gaz.The device that is the subject of the present invention therefore allows the integration a refrigeration loop for liquefying gas and preheating the inlet of the gas pressure lowering station.

Le gaz naturel liquide peut être produit selon l'invention à partir d'un groupe de réfrigération mettant en jeu un système frigorifique utilisant indifféremment de l'azote et/ou un mélange d'hydrocarbures.Liquid natural gas can be produced according to the invention from a refrigeration unit involving a refrigeration system using either nitrogen and / or a mixture of hydrocarbons.

Un système de réfrigération utilisé dans un dispositif selon l'invention peut par exemple comprendre un échangeur de chaleur et/ou un condenseur du type aluminium PFHE.A refrigeration system used in a device according to the invention may for example comprise a heat exchanger and / or a condenser of the PFHE aluminum type.

Dans un mode de réalisation particulier, le système de réfrigération du dispositif selon l'invention comprend des compresseurs et/ou des expandeurs à flux radial.In a particular embodiment, the refrigeration system of the device according to the invention comprises compressors and / or radial flow expanders.

Dans un autre mode de réalisation, le dispositif selon l'invention comprend des moyens de traitement de l'eau et du dioxyde de carbone du gaz naturel à basse pression par adsorption et/ou absorption disposés en amont des moyens de condensation du gaz.In another embodiment, the device according to the invention comprises means for treating the water and carbon dioxide of natural gas at low pressure by adsorption and / or absorption arranged upstream of the gas condensing means.

Des détails et avantages de la présente invention apparaitront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :

  • La figure 1 est une vue très schématique d'ensemble illustrant un dispositif selon la présente invention,
  • La figure 2 est une vue schématique plus détaillée montrant une première forme de réalisation de la présente invention,
  • La figure 3 est une vue similaire à la vue de la figure 2 illustrant deuxième forme de réalisation de l'invention,
  • La figure 4 est une vue similaire à celle des figures 2 et 3 pour une troisième forme de réalisation de la présente
  • La figure 5 est une vue similaire à celle des figures 2 à 4 pour une quatrième forme de réalisation de la présente invention, et
  • La figure 6 illustre schématiquement une cinquième forme de réalisation d'un dispositif selon la présente invention.
Details and advantages of the present invention will appear better from the following description, made with reference to the appended schematic drawing in which:
  • The figure 1 is a very schematic overall view illustrating a device according to the present invention,
  • The figure 2 is a more detailed schematic view showing a first embodiment of the present invention,
  • The figure 3 is a view similar to the view of the figure 2 illustrating the second embodiment of the invention,
  • The figure 4 is a view similar to that of figures 2 and 3 for a third embodiment of the present
  • The figure 5 is a view similar to that of figures 2 to 4 for a fourth embodiment of the present invention, and
  • Figure 6 schematically illustrates a fifth embodiment of a device according to the present invention.

La figure 1 représente schématiquement un gazoduc 2 conduisant un gaz, par exemple du gaz naturel composé majoritairement de méthane, sous haute pression, par exemple de l'ordre de 60 à 100 bars (de manière générale dans la présente demande, les exemples et les valeurs numériques sont illustratifs et non limitatifs). Une station d'abaissement de pression de gaz dénommée PLD (acronyme anglais pour Pressure Let Down, soit en français baisse de pression) sur la figure 1 permet d'alimenter une conduite 4 destinée à alimenter un réseau domestique ou similaire avec du gaz (gaz naturel pour reprendre l'exemple précédent) sous basse pression, généralement de l'ordre de quelques bars.The figure 1 schematically represents a gas pipeline 2 carrying a gas, for example natural gas composed mainly of methane, under high pressure, for example of the order of 60 to 100 bars (generally in the present application, the examples and the numerical values are illustrative and not limiting). A gas pressure reduction station called PLD (English acronym for Pressure Let Down) on the figure 1 makes it possible to supply a pipe 4 intended to supply a domestic network or the like with gas (natural gas to take up the previous example) at low pressure, generally of the order of a few bars.

Une unité de production 6 de gaz liquéfié est associée à la station d'abaissement de pression PLD. Elle est alimentée en gaz depuis le gazoduc 2, passe par une unité de traitement 8 réalisant un traitement du gaz avant son entrée dans l'unité de production 6 afin d'éliminer du gaz des impuretés que l'on trouve généralement dans du gaz "brut". En sortie de l'unité de production 6, on obtient un gaz naturel liquide LNG qui est par exemple stocké dans une unité de stockage (non illustrée sur la figure 1).A liquefied gas production unit 6 is associated with the pressure reduction station PLD. It is supplied with gas from the gas pipeline 2, passes through a processing unit 8 carrying out a treatment of the gas before it enters the production unit 6 in order to remove from the gas impurities which are generally found in gas "gross". At the output of the production unit 6, a liquid natural gas LNG is obtained which is for example stored in a storage unit (not illustrated on the figure 1 ).

Lorsque du gaz est détendu dans la station d'abaissement de pression PLD, le gaz cède du travail mécanique WM. Il est proposé ici de récupérer tout ou partie de ce travail, sous une forme quelconque, mécanique ou électrique par exemple, pour alimenter l'unité de production 6 qui nécessite de l'énergie pour faire passer le gaz de son état gazeux à un état liquide. Dans la mesure où l'énergie récupérée n'est pas suffisante pour la production de gaz liquide, il est possible d'alimenter l'unité de production avec une source d'énergie complémentaire, par exemple de l'énergie électrique représentée schématiquement par WE sur la figure 1. Enfin, au niveau de l'unité de production 6, on a généralement un compresseur (non représenté sur la figure 1) ou autre dispositif qui libère de la chaleur, schématisée par Q sur la figure 1. Il est proposé de manière originale de récupérer cette quantité de chaleur Q pour réchauffer le gaz en entrée de la station d'abaissement de pression PLD. En effet, au cours d'une détente, le gaz détendu se refroidit. Il risque de descendre en-dessous de la température de solidification de l'eau et ainsi d'entrainer une formation de givre pouvant conduire à une obstruction partielle ou complète de la canalisation correspondante. En réchauffant le gaz avant la détente, on peut ainsi limiter les risques de givrage et d'obstruction.When gas is expanded in the PLD pressure lowering station, the gas gives up mechanical work WM. It is proposed here to recover all or part of this work, in any form, mechanical or electrical for example, to supply the production unit 6 which requires energy to change the gas from its gaseous state to a state liquid. Insofar as the recovered energy is not sufficient for the production of liquid gas, it is possible to supply the production unit with a complementary energy source, for example electrical energy represented schematically by WE on the figure 1 . Finally, at the level of the production unit 6, there is generally a compressor (not shown in the figure 1 ) or other device that releases heat, shown diagrammatically by Q on the figure 1 . It is proposed in an original way to recover this quantity of heat Q to heat the gas entering the pressure lowering station PLD. Indeed, during an expansion, the expanded gas cools. There is a risk that it will drop below the solidification temperature of the water and thus lead to the formation of frost which can lead to partial or complete obstruction of the corresponding pipe. By heating the gas before expansion, the risk of icing and obstruction can thus be limited.

La figure 2 montre plus en détails une première forme de réalisation de l'invention mettant en œuvre le schéma global de la figure 1.The figure 2 shows in more detail a first embodiment of the invention implementing the overall scheme of the figure 1 .

Sur la figure 2, de même que sur les suivantes, on a repris les références de la figure 1 pour désigner des éléments similaires.On the figure 2 , as well as on the following ones, the references of the figure 1 to designate similar items.

On retrouve ainsi sur la figure 2 un gazoduc 2 qui alimente une station d'abaissement de pression PLD pour fournir du gaz sous pression moindre dans une conduite 4. En outre, une unité de production 6 fournit du gaz liquéfié LNG.We thus find on the figure 2 a gas pipeline 2 which supplies a pressure lowering station PLD to supply gas under less pressure in a pipe 4. In addition, a production unit 6 supplies liquefied gas LNG.

Au niveau de la station d'abaissement de pression PLD, du gaz en provenance du gazoduc 2 passe par des conduites G2 et G3. Il est réchauffé dans chacune de ces conduites par un dispositif de préchauffage 10. En sortie de ces dispositifs de préchauffage, des conduites G4 et G5 sont collectées dans une conduite G6 qui alimente une turbine 12 de détente. En sortie de turbine, le gaz est détendu et peut rejoindre la canalisation 4 directement par une conduite G7.At the pressure reduction station PLD, gas from pipeline 2 passes through pipes G2 and G3. It is heated in each of these conduits by a preheating device 10. At the outlet of these preheating devices, conduits G4 and G5 are collected in a conduit G6 which supplies an expansion turbine 12. At the turbine outlet, the gas is expanded and can reach pipe 4 directly via a pipe G7.

L'unité de production 6 comporte essentiellement un condenseur 14. Le gaz alimentant l'unité de production 6 est alimenté à partir d'une dérivation G9 de la conduite G7 avant d'arriver à une valve 16 au niveau de laquelle une réduction de pression supplémentaire est réalisée. Le gaz est conduit par une conduite G10 jusqu'à l'unité de traitement 8 qui réalise une purification du gaz par exemple par absorption ou de préférence par adsorption. Le gaz purifié est conduit par G11 jusqu'à un désurchauffeur 18 avant d'être introduit par G12 dans le condenseur 14. En sortie de ce dernier, on obtient du gaz liquéfié qui passe par une conduite L1 jusqu'à une vanne de contrôle 20 puis par L2 pour arriver à un dispositif de stockage de gaz naturel liquéfié LNG.The production unit 6 essentially comprises a condenser 14. The gas supplying the production unit 6 is supplied from a bypass G9 of the pipe G7 before arriving at a valve 16 at which a pressure reduction. additional is carried out. The gas is conducted via a line G10 to the processing unit 8 which purifies the gas, for example by absorption or preferably by adsorption. The purified gas is conducted through G11 to a desuperheater 18 before being introduced through G12 into the condenser 14. At the outlet of the latter, liquefied gas is obtained which passes through a pipe L1 to a control valve 20. then by L2 to arrive at an LNG liquefied natural gas storage device.

La présente invention propose de réaliser une interaction entre la station d'abaissement de pression PLD et l'unité de production 6. Dans cette forme de réalisation de la figure 2, de l'énergie récupérée lors de la détente dans la station PLD est utilisée sous forme d'énergie électrique dans l'unité de production 6 et de la chaleur produite dans l'unité de production 6 est utilisée pour réchauffer le gaz en entrée de la station PLD.The present invention proposes to realize an interaction between the pressure lowering station PLD and the production unit 6. In this embodiment of the figure 2 , the energy recovered during the expansion in the PLD station is used in the form of electrical energy in the production unit 6 and the heat produced in the production unit 6 is used to heat the gas at the inlet of PLD station.

On remarque sur la figure 2 tout d'abord que la turbine 12 est accouplée à un générateur G. Ainsi, de l'énergie mécanique est récupérée au niveau de la turbine 12 pour être convertie en énergie électrique. L'électricité ainsi récupérée alimente alors un moteur M qui entraine trois compresseurs C1, C2 et C3 formant chacun un étage d'une unité de compression. On réalise de la sorte un couplage électrique entre la station d'abaissement de pression et l'unité de production.We notice on the figure 2 first of all that the turbine 12 is coupled to a generator G. Thus, mechanical energy is recovered at the level of the turbine 12 to be converted into electrical energy. The electricity thus recovered then feeds a motor M which drives three compressors C1, C2 and C3 forming each a stage of a compression unit. In this way, an electrical coupling is made between the pressure lowering station and the production unit.

L'intégration thermique est réalisée par un circuit en boucle fermée décrit ci-après. Pour cette description, il est proposé par la suite de suivre du fluide frigorifique se déplaçant dans ce circuit. Le fluide utilisé peut être, à titre d'exemple non limitatif, de l'azote ou bien un mélange d'hydrocarbures.The thermal integration is carried out by a closed loop circuit described below. For this description, it is proposed below to follow the refrigerant fluid moving in this circuit. The fluid used can be, by way of nonlimiting example, nitrogen or else a mixture of hydrocarbons.

Le fluide frigorifique arrive dans le compresseur C1 par une conduite R1 et en sort par une conduite R2. Il arrive alors dans un premier dispositif de préchauffage 10 afin de réchauffer du gaz en provenance du gazoduc 2 et destiné à alimenter la station d'abaissement de pression PLD. Le fluide est amené ensuite par une conduite R3 à un refroidisseur 22 afin de réaliser un contrôle de la température du fluide frigorifique avant d'être renvoyé dans l'unité de compression par une conduite R4. Le fluide est alors comprimé par le deuxième compresseur C2, puis amené par R5 au second dispositif de préchauffage 10 avant d'être conduit par R6 à un deuxième refroidisseur 22 et d'atteindre par R7 un troisième étage de compression de l'unité de compression. Un troisième refroidisseur 22, relié au troisième compresseur C3 par une conduite R8, permet de contrôler la température du fluide en sortie de l'unité de compression.The refrigerant fluid arrives in the compressor C1 via a pipe R1 and leaves it via a pipe R2. It then arrives in a first preheating device 10 in order to heat the gas coming from the gas pipeline 2 and intended to supply the pressure lowering station PLD. The fluid is then brought by a line R3 to a cooler 22 in order to control the temperature of the refrigerant before being returned to the compression unit by a line R4. The fluid is then compressed by the second compressor C2, then brought by R5 to the second preheating device 10 before being conducted by R6 to a second cooler 22 and reaching through R7 a third compression stage of the compression unit . A third cooler 22, connected to the third compressor C3 by a pipe R8, makes it possible to control the temperature of the fluid leaving the compression unit.

Une conduite R9 mène le fluide frigorifique à un échangeur à contre courant 24 puis est amené par R10 à un détendeur 26. Ce dernier est mécaniquement lié au moteur M et à l'unité de compression. En sortie du détendeur 26, le fluide est alors amené (R11) vers le condenseur 14 de l'unité de production 6 où il absorbe des calories de la portion de gaz naturel que l'on souhaite liquéfier pour obtenir du gaz naturel liquide (LNG). En sortie du condenseur 14 le fluide est conduit (R12) vers le désurchauffeur 18 avant d'atteindre par R13 l'échangeur à contre courant 24 qui est relié en aval au premier compresseur C1 de l'unité de compression.A pipe R9 leads the refrigerating fluid to a counter-current exchanger 24 then is brought by R10 to a pressure reducing valve 26. The latter is mechanically linked to the motor M and to the compression unit. At the outlet of the expansion valve 26, the fluid is then brought (R11) to the condenser 14 of the production unit 6 where it absorbs calories from the portion of natural gas that it is desired to liquefy to obtain liquid natural gas (LNG ). At the outlet of the condenser 14, the fluid is led (R12) to the desuperheater 18 before reaching, via R13, the counter-current exchanger 24 which is connected downstream to the first compressor C1 of the compression unit.

Comme il ressort de cette description, le fluide frigorifique est utilisé pour réaliser une intégration thermique entre l'unité de production et la station d'abaissement de pression en récupérant notamment des calories dégagées lors de la compression du fluide pour les utiliser au réchauffage du gaz naturel en entrée de station d'abaissement de pression PLD.As emerges from this description, the refrigerant fluid is used to achieve thermal integration between the production unit and the pressure lowering station, in particular by recovering the calories released during the compression of the fluid for use in heating the gas. natural at the inlet of the PLD pressure reduction station.

Des éléments accessoires du circuit frigorifique ne sont pas décrits en détails ici. On trouve ainsi par exemple un réservoir 28 qui est utilisé de manière classique comme vase d'expansion pour le fluide frigorifique.Accessory elements of the refrigeration circuit are not described in detail here. There is thus for example a reservoir 28 which is used conventionally as an expansion vessel for the refrigerant.

La figure 3 illustre une variante de réalisation qui reprend certaines références des figures précédentes pour désigner des éléments similaires. Par rapport à la forme de réalisation de la figure 2, une autre forme d'intégration thermique est réalisée. Il est proposé d'avoir une boucle d'eau fermée pressurisée (ou d'un autre fluide caloporteur comme par exemple une huile thermique) pour récupérer la chaleur de compression et la transférer en amont de la turbine de détente. Un aéro-réfrigérant peut par exemple être placé sur cette ligne pour ajuster la capacité de refroidissement à la demande de la boucle de compression. Une pompe volumétrique est utilisée pour permettre la circulation du fluide caloporteur (eau pressurisée) et un vase d'expansion peut être classiquement intégré à ce circuit.The figure 3 illustrates an alternative embodiment which uses certain references from the preceding figures to designate similar elements. With respect to the embodiment of the figure 2 , another form of thermal integration is carried out. It is proposed to have a closed pressurized water loop (or of another heat transfer fluid such as for example thermal oil) to recover the heat of compression and transfer it upstream of the expansion turbine. An air cooler can for example be placed on this line to adjust the cooling capacity to the demand of the compression loop. A positive displacement pump is used to allow the circulation of the heat transfer fluid (pressurized water) and an expansion vessel can be conventionally integrated into this circuit.

On reconnaît ainsi sur la figure 3 un circuit réfrigérant entre l'unité de compression et ses trois compresseurs C1, C2 et C3 et l'unité de production 6 avec son condenseur 14. Ce circuit est simplifié. Il passe successivement par les trois étages de l'unité de compression et après chaque étage traverse un dispositif de préchauffage 10. Le circuit réfrigérant traverse alors l'échangeur à contre courant 24 avant de passer dans le détendeur 26 puis dans le condenseur 14, de retraverser à contre courant l'échangeur à contre courant 24 avant de regagner le premier étage de compression et son compresseur C1.We can thus recognize on the figure 3 a refrigerant circuit between the compression unit and its three compressors C1, C2 and C3 and the production unit 6 with its condenser 14. This circuit is simplified. It passes successively through the three stages of the compression unit and after each stage passes through a preheating device 10. The refrigerant circuit then passes through the counter-current exchanger 24 before passing through the expansion valve 26 then into the condenser 14, from cross the countercurrent exchanger 24 again against the current before returning to the first compression stage and its compressor C1.

La différence principale avec la première forme de réalisation de la figure 2 est que les dispositifs de préchauffage 10 ne transfèrent pas directement les calories extraites des étages de compression au gaz naturel mais à un autre fluide caloporteur, tel par exemple de l'eau pressurisée. On réalise ainsi un second circuit réfrigérant qui passe en parallèle par les trois dispositifs de préchauffage 10 pour alimenter un dispositif de préchauffage 110 transférant les calories en provenance des étages de compression au gaz naturel en entrée de la station PLD. Ces dispositifs de préchauffage 10 forment ainsi des échangeurs intermédiaires. Entre les dispositifs de préchauffage 10 et le dispositif de préchauffage 110, on remarque la présence d'une pompe volumétrique 142 permettant de faire circuler le fluide caloporteur dans le circuit correspondant ainsi qu'un refroidisseur 122 pour contrôler la température du fluide caloporteur dans ce circuit. De manière classique pour l'homme du métier, un vase d'expansion 144 est avantageusement intégré à ce circuit réfrigérant.The main difference with the first embodiment of the figure 2 is that the preheating devices 10 do not directly transfer the calories extracted from the compression stages to natural gas but to another heat transfer fluid, such as, for example, pressurized water. A second refrigerant circuit is thus produced which passes in parallel through the three preheating devices 10 to supply a preheating device 110 transferring the calories from the compression stages to natural gas at the inlet of the PLD station. These preheating devices 10 thus form intermediate exchangers. Between the preheating devices 10 and the preheating device 110, we notice the presence of a positive displacement pump 142 allowing the heat transfer fluid to circulate in the corresponding circuit. as well as a cooler 122 for controlling the temperature of the heat transfer fluid in this circuit. Conventionally for those skilled in the art, an expansion vessel 144 is advantageously integrated into this refrigerant circuit.

La figure 4 illustre quant à elle une version simplifiée de la première forme de réalisation illustrée sur la figure 2. Ici aussi, comme de manière générale dans la présente demande, on réutilise les références déjà utilisées pour désigner des éléments similaires afin de simplifier la compréhension de la lecture.The figure 4 illustrates for its part a simplified version of the first embodiment illustrated on the figure 2 . Here too, as generally in the present application, the references already used to designate similar elements are reused in order to simplify the reading comprehension.

Dans cette forme de réalisation simplifiée, on remarque que l'unité de compression ne comporte qu'un seul étage avec un unique compresseur C. Le gaz naturel est alors réchauffé au sein d'un unique dispositif de préchauffage 10 qui permet d'échanger directement les calories en provenance du compresseur avec le gaz naturel à l'entrée de la station PLD.In this simplified embodiment, it is noted that the compression unit has only one stage with a single compressor C. The natural gas is then reheated within a single preheating device 10 which makes it possible to exchange directly. the calories from the compressor with natural gas at the entrance to the PLD station.

Dans cette forme de réalisation, le circuit réfrigérant utilise par exemple un mélange d'hydrocarbures et d'azote comme fluide caloporteur. Ce dernier est comprimé par le compresseur C entrainé par le moteur électrique M (couplé électriquement au générateur G de la turbine 12 de la station PLD. Le fluide est ensuite refroidi au contact du gaz naturel dans le dispositif de préchauffage 10 à l'entrée de la turbine 12 (il convient de remarquer que l'on pourrait ici aussi prévoir un autre circuit réfrigérant entre le dispositif de préchauffage 10 et le gaz naturel comme sur la figure précédente).In this embodiment, the refrigerant circuit uses, for example, a mixture of hydrocarbons and nitrogen as heat transfer fluid. The latter is compressed by the compressor C driven by the electric motor M (electrically coupled to the generator G of the turbine 12 of the PLD station. The fluid is then cooled in contact with natural gas in the preheating device 10 at the inlet of the turbine 12 (it should be noted that one could here also provide another refrigerant circuit between the preheating device 10 and the natural gas as in the previous figure).

Un refroidisseur 22 ou (aéro-réfrigérant) peut être introduit dans le circuit pour ajuster la capacité de refroidissement à la demande de la boucle de compression. Le fluide caloporteur est ensuite envoyé à travers un échangeur thermique 214, par exemple de type PHFE (acronyme anglais de Plate Fin Heat Exchanger ou en français échangeur de chaleur à plaques et ailettes), où il est refroidi et condensé au cours d'une première passe. Il est ensuite détendu au travers d'une vanne 246 où, par effet Joule-Thompson, il se vaporise partiellement, provoquant encore une baisse de sa température. Il repasse (2nde passe) dans l'échangeur thermique 214 et se vaporise et se réchauffe au contact du gaz naturel à liquéfier et du mélange réfrigérant à condenser. Après cette seconde passe, en sortie d'échangeur thermique 214, le fluide caloporteur (mélange d'hydrocarbures et d'azote par exemple) revient vers le compresseur C.A cooler 22 or (air cooler) can be introduced into the circuit to adjust the cooling capacity to the demand of the compression loop. The heat transfer fluid is then sent through a heat exchanger 214, for example of the PHFE type (acronym for Plate Fin Heat Exchanger or in French plate and fin heat exchanger), where it is cooled and condensed during a first past. It is then relaxed through a valve 246 where, by the Joule-Thompson effect, it partially vaporizes, causing a further drop in its temperature. It returns (2 nd pass) in the heat exchanger 214 and vaporizes and heats up in contact with the natural gas to be liquefied and the mixture refrigerant to condense. After this second pass, at the outlet of heat exchanger 214, the heat transfer fluid (mixture of hydrocarbons and nitrogen for example) returns to the compressor vs.

Dans la forme de réalisation de la figure 5, par rapport aux formes de réalisation des figures précédentes, on réalise entre la station d'abaissement de pression et l'unité de production une intégration mécanique (fig. 5) à la place d'une intégration électrique (fig. 2 à 4). Ce mode de réalisation ne fait pas partie de l'invention mais représente un élément de l'état de la technique qui est utile à sa compréhensionIn the embodiment of the figure 5 , compared to the embodiments of the preceding figures, a mechanical integration is carried out between the pressure lowering station and the production unit ( fig. 5 ) instead of an electrical integration ( fig. 2 to 4 ). This embodiment does not form part of the invention but represents an element of the state of the art which is useful for its understanding.

En effet, alors que dans la forme de réalisation de la figure 2 la turbine 12 entraine un générateur G qui produit de l'électricité consommée dans un moteur M, il est proposé dans la figure 5 de relier mécaniquement la turbine 12 avec les compresseurs C1, C2 et C3 de l'unité de compression de l'unité de production 6.Indeed, while in the embodiment of the figure 2 the turbine 12 drives a generator G which produces the electricity consumed in a motor M, it is proposed in the figure 5 to mechanically connect the turbine 12 with the compressors C1, C2 and C3 of the compression unit of the production unit 6.

Il semble inutile de décrire ici les différents éléments de la station d'abaissement de pression qui sont similaires à ceux représentés sur la figure 2. De même on retrouve un circuit frigorifique similaire pour réaliser à la fois l'unité de production de gaz liquéfié et l'intégration thermique de cette unité de production avec la station d'abaissement de pression.It seems unnecessary to describe here the various elements of the pressure lowering station which are similar to those shown on the figure 2 . Similarly, there is a similar refrigeration circuit to achieve both the liquefied gas production unit and the thermal integration of this production unit with the pressure reduction station.

Sur cette figure 5, on a aussi représenté un moteur M qui est ici utilisé comme source d'énergie supplémentaire (correspond à WE sur la figure 1) pour ajuster la puissance nécessaire à l'unité de production de gaz liquéfié avec la puissance délivrée au niveau de la station d'abaissement de pression.On this figure 5 , we have also shown a motor M which is used here as an additional energy source (corresponds to WE on the figure 1 ) to adjust the power required for the liquefied gas production unit with the power delivered at the pressure lowering station.

La figure 6 illustre une cinquième forme de réalisation de la présente invention. Cette cinquième forme de réalisation peut être considérée comme une variante de la quatrième forme de réalisation de la figure 5 puisqu'on réalise ici une intégration mécanique.Figure 6 illustrates a fifth embodiment of the present invention. This fifth embodiment can be considered as a variant of the fourth embodiment of the figure 5 since a mechanical integration is carried out here.

Sur cette figure 6, l'orientation des divers éléments est tout à fait différente de celle choisie pour les autres figures. Tout d'abord, le gazoduc 2 est représenté horizontalement en haut de la figure. La canalisation 4 alimentant par exemple un réseau domestique est quant à elle illustrée en bas à droite de cette figure. L'unité de production 6 est représentée sur la partie gauche de la figure 6 tandis que la station d'abaissement de pression PLD est illustrée à droite.In this FIG. 6, the orientation of the various elements is quite different from that chosen for the other figures. First, the pipeline 2 is shown horizontally at the top of the figure. The pipe 4 supplying for example a domestic network is for its part illustrated at the bottom right of this figure. The production unit 6 is shown on the left side of Figure 6 while the pressure lowering station PLD is shown on the right.

Une première branche 30 alimente l'unité de production 6 en gaz naturel à partir du gazoduc 2 et une seconde branche 32 alimente la station d'abaissement de pression PLD, et donc aussi la canalisation 4.A first branch 30 supplies the production unit 6 with natural gas from the gas pipeline 2 and a second branch 32 supplies the station. PLD pressure reduction, and therefore also line 4.

Le gaz dérivé dans la première branche 30 passe tout d'abord dans un pont de vannes 34 avant d'entrer dans l'unité de traitement 8 représentée ici par deux réacteurs 36. Le gaz purifié est collecté par la conduite G11 en sortie de l'unité de traitement 8 pour passer dans le condenseur 14. Le gaz naturel liquide LNG en sortie de condenseur 14 est collecté dans un réservoir 38. Le gaz liquéfié est par exemple stocké à une pression comprise entre 0,1 et 10 bars de surpression par rapport à la pression atmosphérique, à la température de saturation ou bien avec un refroidissement.The gas derived in the first branch 30 firstly passes through a valve bridge 34 before entering the processing unit 8 represented here by two reactors 36. The purified gas is collected by line G11 at the outlet of the 'treatment unit 8 to pass into the condenser 14. The liquid natural gas LNG at the outlet of the condenser 14 is collected in a tank 38. The liquefied gas is for example stored at a pressure of between 0.1 and 10 bars of overpressure by relative to atmospheric pressure, to saturation temperature or else with cooling.

Du côté de la station d'abaissement de pression PLD, la seconde branche 32 conduit le gaz naturel à travers un échangeur 40 avant de passer dans la turbine 12. En sortie de turbine 12, le gaz est mené (G7) à la canalisation 4.On the side of the pressure reduction station PLD, the second branch 32 leads the natural gas through an exchanger 40 before passing into the turbine 12. At the outlet of the turbine 12, the gas is led (G7) to the pipe 4 .

La turbine 12 est accouplée mécaniquement à un compresseur C et forme avec lui un turbocompresseur. Le compresseur C est le compresseur d'un circuit frigorifique utilisé en combinaison avec le condenseur 14 pour réaliser la liquéfaction de gaz au niveau de l'unité de production. Ce circuit frigorifique utilise un fluide frigorifique (qui peut ici aussi être par exemple de l'azote ou un mélange d'hydrocarbures) et est un circuit fermé. De manière classique, ce fluide frigorifique est détendu au niveau du détendeur 26. La forme de réalisation de la figure 4 prévoit de relier ce détendeur mécaniquement à un compresseur C' qui permet de réaliser un second étage de compression.The turbine 12 is mechanically coupled to a compressor C and forms with it a turbocharger. The compressor C is the compressor of a refrigeration circuit used in combination with the condenser 14 to carry out the liquefaction of gas at the level of the production unit. This refrigeration circuit uses a refrigerant fluid (which can here also be, for example, nitrogen or a mixture of hydrocarbons) and is a closed circuit. Conventionally, this refrigerating fluid is expanded at the level of the expansion valve 26. The embodiment of the figure 4 provides for this expansion valve to be mechanically connected to a compressor C 'which enables a second compression stage to be produced.

Les flèches sur la figure 4 illustrent la circulation du fluide frigorigène dans le circuit fermé utilisé à la fois comme circuit réfrigérant de l'unité de production 6 de gaz naturel liquide et aussi de circuit d'intégration thermique entre l'unité de production 6 et la station d'abaissement de pression PLD.Arrows on the figure 4 illustrate the circulation of the refrigerant in the closed circuit used both as a refrigerant circuit for the production unit 6 of liquid natural gas and also as a thermal integration circuit between the production unit 6 and the lowering station PLD pressure.

Le fluide, en sortie de compresseur C passe dans l'échangeur 40 pour réchauffer le gaz naturel passant par la seconde branche 32 vers la station d'abaissement de pression. Il passe ensuite dans le second compresseur C' avant de repasser dans l'échangeur 40. Le fluide traverse ensuite l'échangeur à contre courant 24 avant d'entrer dans le détendeur 26. Il peut alors entrer dans le condenseur 14 au sein duquel il absorbe des calories du gaz naturel de l'unité de production 6 afin de le liquéfier. Après passage dans le sens opposé dans l'échangeur à contre courant 24, le fluide retourne au compresseur C.The fluid at the outlet of compressor C passes into the exchanger 40 to heat the natural gas passing through the second branch 32 to the pressure reduction station. It then passes into the second compressor C 'before passing back into the exchanger 40. The fluid then passes through the countercurrent exchanger 24 before entering the expansion valve 26. It can then enter the condenser 14 within which it absorbs calories from the natural gas of the production unit 6 in order to liquefy it. After passing in the opposite direction in the counter-current exchanger 24, the fluid returns to compressor C.

À titre d'exemple purement illustratif, on peut prévoir par exemple, dans les diverses formes de réalisation décrites, que la quantité (masse) de gaz passant dans l'unité de production 6 de gaz liquéfié est de l'ordre de 5 à 20% de la quantité (masse) de gaz passant par la station d'abaissement de pression PLD et alimentant la canalisation 4.By way of purely illustrative example, it can be provided for example, in the various embodiments described, that the quantity (mass) of gas passing through the production unit 6 of liquefied gas is of the order of 5 to 20 % of the quantity (mass) of gas passing through the PLD pressure reduction station and supplying line 4.

Les systèmes décrits ci-dessus permettent de parfaitement maitriser la production de gaz naturel liquide. La composition de ce gaz peut être maitrisée. Elle ne dépend pas de la différence de pression au sein de la station d'abaissement de pression.The systems described above make it possible to perfectly control the production of liquid natural gas. The composition of this gas can be controlled. It does not depend on the pressure difference within the pressure lowering station.

En outre, le préchauffage du gaz à l'entrée de la station d'abaissement de pression permet d'éviter des problèmes de givrage et d'obstruction de canalisation.In addition, preheating the gas at the inlet of the pressure lowering station helps prevent icing and pipe obstruction problems.

La présente invention ne se limite pas aux formes de réalisation préférées décrites ci-dessus à titre d'exemples non limitatifs. Elle concerne également les variantes de réalisation à la portée de l'homme du métier dans le cadre des revendications ci-après.The present invention is not limited to the preferred embodiments described above by way of non-limiting examples. It also relates to the variant embodiments within the reach of a person skilled in the art within the framework of the claims below.

Claims (7)

  1. A station for reducing gas pressure (PLD) and liquefying gas, in particular natural gas, comprising:
    - an expansion turbine (12) for reducing gas pressure,
    - means for recovering mechanical work (WM) produced in the expansion turbine during reduction of pressure of the gas in the expansion turbine,
    - condensation means for liquefying gas, and
    - a cooling system comprising compression means (C1, C2, C3), said cooling system absorbs calories from the gas in the condensation means,
    - a motor (M) supplied with electrical energy for driving the compression means (C1, C2, C3),
    - means for recovering heat (Q) produced by the compression means (C1, C2, C3; C) of the cooling system and means (10; 40; 110) for heating the gas upstream of the expansion turbine (12) associated with the means for recovering heat,
    and characterized in that it comprises
    an electrical generator (G) mechanically coupled to the means for recovering mechanical work produced during reduction of the gas pressure, and in that the motor (M) is supplied with electrical energy by the electric generator (G).
  2. The station according to claim 1, characterized in that the condensation means (14) are powered by a branch pipeline (G9) downstream of the expansion turbine (12).
  3. The station according to one of claims 1 or 2, characterized in that the cooling system forms a closed loop between the condensation means (14),
    the compression means (C1, C2, C3; C) and the means (10; 40) for heating the gas.
  4. The station according to one of claims 1 or 2, characterized in that the cooling system forms a first closed loop between the compression means (C1, C2, C3), the condensation means (14) and at least one intermediate exchanger (10) as well as a second closed loop, optionally using a heat transfer fluid different from the heat transfer fluid used in the first loop, between at least one intermediate exchanger (10) and the means (11 5 0) for heating the gas.
  5. The station according to one of claims 1 to 4,
    characterized in that the cooling system uses a coolant chosen from among nitrogen and/or a mixture of hydrocarbons.
  6. The station according to one of claims 1 to 5,
    characterized in that the cooling system comprises compressors and/or radial flow expanders.
  7. The station according to one of claims 1 to 6,
    characterized in that it comprises means for treatment (8, 36) of the natural gas by adsorption and/or absorption arranged upstream of the condensation means (14) of the gas.
EP14711813.7A 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas Active EP2959242B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300380A FR3002311B1 (en) 2013-02-20 2013-02-20 DEVICE FOR LIQUEFACTING GAS, IN PARTICULAR NATURAL GAS
PCT/FR2014/050349 WO2014128408A2 (en) 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas

Publications (2)

Publication Number Publication Date
EP2959242A2 EP2959242A2 (en) 2015-12-30
EP2959242B1 true EP2959242B1 (en) 2021-03-31

Family

ID=48170651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14711813.7A Active EP2959242B1 (en) 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas

Country Status (10)

Country Link
US (1) US20160003528A1 (en)
EP (1) EP2959242B1 (en)
JP (1) JP2016513230A (en)
CN (1) CN105209841A (en)
BR (1) BR112015019856A2 (en)
ES (1) ES2870082T3 (en)
FR (1) FR3002311B1 (en)
MX (1) MX2015010736A (en)
RU (1) RU2680285C2 (en)
WO (1) WO2014128408A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295252B2 (en) * 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
FR3049341B1 (en) * 2016-03-23 2019-06-14 Cryostar Sas SYSTEM FOR TREATING A GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID AND THE PRESSURIZED GAS SUPPLY OF A GAS ENGINE
RU2694566C1 (en) * 2019-02-14 2019-07-16 Юрий Васильевич Белоусов Natural gas liquefaction system at main gas line compressor station
CZ2019618A3 (en) * 2019-10-04 2020-12-16 Siad Macchine Impianti S.P.A. Natural gas processing equipment
RU2738531C1 (en) * 2020-02-21 2020-12-14 Игорь Анатольевич Мнушкин Integrated cooling unit of natural gas
RU2770777C1 (en) * 2021-05-07 2022-04-21 Публичное акционерное общество энергетики и электрификации "Мосэнерго" "mosenergo-turbokon" method for liquishing, storing and gasification of natural gas
IT202100026921A1 (en) * 2021-10-20 2023-04-20 Gruppo Soc Gas Rimini S P A GAS TREATMENT PLANT, IN PARTICULAR NATURAL GAS, COMING FROM A TRANSPORT NETWORK

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196226A1 (en) * 2002-12-23 2006-09-07 Istvan Bencze Method and system for condensation of unprocessed well stream from offshore gas or gas condensate field

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA874245A (en) * 1967-01-31 1971-06-29 Canadian Liquid Air Natural gas liquefaction process
US4220009A (en) * 1977-01-20 1980-09-02 Wenzel Joachim O M Power station
RU2002176C1 (en) * 1990-10-22 1993-10-30 Арсланбек Харисович Юлбердин Method and device for gas fluidization
RU2137067C1 (en) * 1997-07-17 1999-09-10 Закрытое акционерное общество "Криогенная технология" Natural gas liquefaction plant
US6694774B1 (en) * 2003-02-04 2004-02-24 Praxair Technology, Inc. Gas liquefaction method using natural gas and mixed gas refrigeration
US7065974B2 (en) * 2003-04-01 2006-06-27 Grenfell Conrad Q Method and apparatus for pressurizing a gas
DE102006039616B3 (en) * 2006-08-24 2008-04-03 Eberhard Otten Method and device for storing fuel gas, in particular natural gas
US8601833B2 (en) * 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration
NO328852B1 (en) * 2008-09-24 2010-05-31 Moss Maritime As Gas Process and System
EP2948721A4 (en) * 2013-01-24 2017-01-18 Exxonmobil Upstream Research Company Liquefied natural gas production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196226A1 (en) * 2002-12-23 2006-09-07 Istvan Bencze Method and system for condensation of unprocessed well stream from offshore gas or gas condensate field

Also Published As

Publication number Publication date
WO2014128408A2 (en) 2014-08-28
FR3002311A1 (en) 2014-08-22
RU2015139854A (en) 2017-03-30
BR112015019856A2 (en) 2017-07-18
MX2015010736A (en) 2016-07-11
EP2959242A2 (en) 2015-12-30
JP2016513230A (en) 2016-05-12
RU2680285C2 (en) 2019-02-19
WO2014128408A3 (en) 2015-07-16
US20160003528A1 (en) 2016-01-07
FR3002311B1 (en) 2016-08-26
ES2870082T3 (en) 2021-10-26
CN105209841A (en) 2015-12-30

Similar Documents

Publication Publication Date Title
EP2959242B1 (en) Station for reducing gas pressure and liquefying gas
KR101941403B1 (en) Brayton cycle regasification of liquiefied natural gas
TWI616585B (en) Method and device for integrated lng gasification and power production cycle
FR3049341B1 (en) SYSTEM FOR TREATING A GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID AND THE PRESSURIZED GAS SUPPLY OF A GAS ENGINE
WO2010061102A2 (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
US20130291567A1 (en) Regasification Plant
US20140245779A1 (en) Regasification Plant
WO2017037400A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
WO2013079856A1 (en) Nitrogen-heating method and device for regenerating an adsorption unit of an air separation unit
JP6142360B2 (en) Regasification plant
EP2417411B1 (en) Refrigeration process and system for recovering cold from methane by refrigerants
EP3322948A1 (en) Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant
FR2954973A1 (en) Method for liquefaction/refrigeration of working gas with helium, involves reusing negative kilocalories of part of gas recovered in liquefaction/refrigeration process for cooling refrigerater/liquefactor body
WO2022002494A1 (en) Facility and method for hydrogen refrigeration
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
CA2866104A1 (en) Method and device for condensing a carbon dioxide-rich gas stream
FR2858830A1 (en) Increasing capacity and efficiency of gas installations which include at least one gas turbine comprises cooling air entering turbine
WO2016091903A2 (en) Gas liquefaction system with absorption machine and stirling heat pump
WO2022254132A1 (en) Method and plant for hydrogen liquefaction
FR2944095A1 (en) Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine
WO2024003236A1 (en) Device and method for cryogenic capture of carbon dioxide contained in a target fluid stream
FR3087524A1 (en) NATURAL GAS LIQUEFACTION PROCESS AND PLANT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150921

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200417

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014076134

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210331

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1377383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2870082

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014076134

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230217

Year of fee payment: 10

Ref country code: ES

Payment date: 20230317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331